Lattice-Based Cryptography:
 Mathematical and Computational Background

Chris Peikert
Georgia Institute of Technology

crypt@b-it 2013

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Why?

- Simple description and implementation

Lattice-Based Cryptography

Why?

- Simple description and implementation
- Efficient: linear, highly parallel operations

Lattice-Based Cryptography

Why?

- Simple description and implementation
- Efficient: linear, highly parallel operations
- Resists quantum attacks (so far)

Lattice-Based Cryptography

Why?

- Simple description and implementation
- Efficient: linear, highly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions [Ajtai96,...]

Lattice-Based Cryptography

Why?

- Simple description and implementation
- Efficient: linear, highly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions [Ajtai96,...]
- Solutions to "holy grail" crypto problems [Gentry09,...]

Part 1:

Mathematical Background

Coming up:
(1) Definitions: lattice, basis, determinant, cosets, successive minima, ...
(2) Two simple bounds on the minimum distance.

Lattices

- Lattice \mathcal{L} of dimension n : a discrete additive subgroup of \mathbb{R}^{n}.

Lattices

- Lattice \mathcal{L} of dimension n : a discrete additive subgroup of \mathbb{R}^{n}. Additive subgroup: $\mathbf{0} \in \mathcal{L}$, and $\mathbf{x}, \mathbf{y} \in \mathcal{L} \Longrightarrow-\mathbf{x}, \mathbf{x}+\mathbf{y} \in \mathcal{L}$.

Lattices

- Lattice \mathcal{L} of dimension n : a discrete additive subgroup of \mathbb{R}^{n}. Additive subgroup: $\mathbf{0} \in \mathcal{L}$, and $\mathbf{x}, \mathbf{y} \in \mathcal{L} \Longrightarrow-\mathbf{x}, \mathbf{x}+\mathbf{y} \in \mathcal{L}$. Discrete: for all $\mathbf{x} \in \mathcal{L}$, exists $\varepsilon>0$ s.t. $\mathcal{L} \cap \operatorname{Ball}(\mathbf{x}, \varepsilon)=\{\mathbf{x}\}$.

Lattices

- Lattice \mathcal{L} of dimension n : a discrete additive subgroup of \mathbb{R}^{n}. Additive subgroup: $\mathbf{0} \in \mathcal{L}$, and $\mathbf{x}, \mathbf{y} \in \mathcal{L} \Longrightarrow-\mathbf{x}, \mathbf{x}+\mathbf{y} \in \mathcal{L}$. Discrete: for all $\mathbf{x} \in \mathcal{L}$, exists $\varepsilon>0$ s.t. $\mathcal{L} \cap \operatorname{Ball}(\mathbf{x}, \varepsilon)=\{\mathbf{x}\}$.

Lattices	Not lattices
$\{\mathbf{0}\}, \mathbb{Z} \subset \mathbb{R}$	$\mathbb{Q} \subset \mathbb{R}$
$2 \mathbb{Z}, c \mathbb{Z}$ for any $c \in \mathbb{R}$	$2 \mathbb{Z}+1=\{$ odd $x \in \mathbb{Z}\}$
$\mathbb{Z}^{n} \subset \mathbb{R}^{n}$	$\mathbb{Z}+\sqrt{2} \mathbb{Z}$

Lattices

- Lattice \mathcal{L} of dimension n : a discrete additive subgroup of \mathbb{R}^{n}. Additive subgroup: $\mathbf{0} \in \mathcal{L}$, and $\mathbf{x}, \mathbf{y} \in \mathcal{L} \Longrightarrow-\mathbf{x}, \mathbf{x}+\mathbf{y} \in \mathcal{L}$. Discrete: for all $\mathbf{x} \in \mathcal{L}$, exists $\varepsilon>0$ s.t. $\mathcal{L} \cap \operatorname{Ball}(\mathbf{x}, \varepsilon)=\{\mathbf{x}\}$.

Lattices	Not lattices
$\{\mathbf{0}\}, \mathbb{Z} \subset \mathbb{R}$	$\mathbb{Q} \subset \mathbb{R}$
$2 \mathbb{Z}, c \mathbb{Z}$ for any $c \in \mathbb{R}$	$2 \mathbb{Z}+1=\{$ odd $x \in \mathbb{Z}\}$
$\mathbb{Z}^{n} \subset \mathbb{R}^{n}$	$\mathbb{Z}+\sqrt{2} \mathbb{Z}$

Lattices

- Lattice \mathcal{L} of dimension n : a discrete additive subgroup of \mathbb{R}^{n}. Additive subgroup: $\mathbf{0} \in \mathcal{L}$, and $\mathbf{x}, \mathbf{y} \in \mathcal{L} \Longrightarrow-\mathbf{x}, \mathbf{x}+\mathbf{y} \in \mathcal{L}$. Discrete: for all $\mathbf{x} \in \mathcal{L}$, exists $\varepsilon>0$ s.t. $\mathcal{L} \cap \operatorname{Ball}(\mathbf{x}, \varepsilon)=\{\mathbf{x}\}$.

Lattices	Not lattices
$\{\mathbf{0}\}, \mathbb{Z} \subset \mathbb{R}$	$\mathbb{Q} \subset \mathbb{R}$
$2 \mathbb{Z}, c \mathbb{Z}$ for any $c \in \mathbb{R}$	$2 \mathbb{Z}+1=\{$ odd $x \in \mathbb{Z}\}$
$\mathbb{Z}^{n} \subset \mathbb{R}^{n}$	$\mathbb{Z}+\sqrt{2} \mathbb{Z}$

Lattices

- Lattice \mathcal{L} of dimension n : a discrete additive subgroup of \mathbb{R}^{n}. Additive subgroup: $\mathbf{0} \in \mathcal{L}$, and $\mathbf{x}, \mathbf{y} \in \mathcal{L} \Longrightarrow-\mathbf{x}, \mathbf{x}+\mathbf{y} \in \mathcal{L}$. Discrete: for all $\mathbf{x} \in \mathcal{L}$, exists $\varepsilon>0$ s.t. $\mathcal{L} \cap \operatorname{Ball}(\mathbf{x}, \varepsilon)=\{\mathbf{x}\}$.

Lattices	Not lattices
$\{\mathbf{0}\}, \mathbb{Z} \subset \mathbb{R}$	$\mathbb{Q} \subset \mathbb{R}$
$2 \mathbb{Z}, c \mathbb{Z}$ for any $c \in \mathbb{R}$	$2 \mathbb{Z}+1=\{$ odd $x \in \mathbb{Z}\}$
$\mathbb{Z}^{n} \subset \mathbb{R}^{n}$	$\mathbb{Z}+\sqrt{2} \mathbb{Z}$

This Week: Only Full-Rank Integer Lattices

- Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^{n}$. (Essentially equivalent to rational lattice, by scaling.)

This Week: Only Full-Rank Integer Lattices

- Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^{n}$. (Essentially equivalent to rational lattice, by scaling.)
- Full-rank lattice: $\operatorname{span}(\mathcal{L})=\mathbb{R}^{n}$.

Equivalently, \mathcal{L} has a set of n linearly independent vectors.

This Week: Only Full-Rank Integer Lattices

- Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^{n}$. (Essentially equivalent to rational lattice, by scaling.)
- Full-rank lattice: $\operatorname{span}(\mathcal{L})=\mathbb{R}^{n}$.

Equivalently, \mathcal{L} has a set of n linearly independent vectors.

Full rank	Not full rank
$c \mathbb{Z}^{n}, c \neq 0$	$\{\mathbf{0}\}$
$(1,1) \cdot \mathbb{Z}+(-1,1) \cdot \mathbb{Z}$	$(1,1) \cdot \mathbb{Z}$

This Week: Only Full-Rank Integer Lattices

- Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^{n}$. (Essentially equivalent to rational lattice, by scaling.)
- Full-rank lattice: $\operatorname{span}(\mathcal{L})=\mathbb{R}^{n}$.

Equivalently, \mathcal{L} has a set of n linearly independent vectors.

Full rank	Not full rank
$c \mathbb{Z}^{n}, c \neq 0$	$\{\mathbf{0}\}$
$(1,1) \cdot \mathbb{Z}+(-1,1) \cdot \mathbb{Z}$	$(1,1) \cdot \mathbb{Z}$

This Week: Only Full-Rank Integer Lattices

- Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^{n}$. (Essentially equivalent to rational lattice, by scaling.)
- Full-rank lattice: $\operatorname{span}(\mathcal{L})=\mathbb{R}^{n}$.

Equivalently, \mathcal{L} has a set of n linearly independent vectors.

Full rank	Not full rank
$c \mathbb{Z}^{n}, c \neq 0$	$\{\mathbf{0}\}$
$(1,1) \cdot \mathbb{Z}+(-1,1) \cdot \mathbb{Z}$	$(1,1) \cdot \mathbb{Z}$

Representing Lattices: Bases

- Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ s.t.

$$
\mathcal{L}=\mathcal{L}(\mathbf{B}) \triangleq \mathbf{B} \cdot \mathbb{Z}^{n}=\left\{\sum_{i=1}^{n} c_{i} \mathbf{b}_{i}: c_{i} \in \mathbb{Z}\right\}
$$

The \mathbf{b}_{i} must be linearly ind., because $\operatorname{span}(\mathcal{L})=\operatorname{span}(\mathbf{B})=\mathbb{R}^{n}$.

Representing Lattices: Bases

- Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ s.t.

$$
\mathcal{L}=\mathcal{L}(\mathbf{B}) \triangleq \mathbf{B} \cdot \mathbb{Z}^{n}=\left\{\sum_{i=1}^{n} c_{i} \mathbf{b}_{i}: c_{i} \in \mathbb{Z}\right\}
$$

The \mathbf{b}_{i} must be linearly ind., because $\operatorname{span}(\mathcal{L})=\operatorname{span}(\mathbf{B})=\mathbb{R}^{n}$.

- The fundamental parallelepiped of basis \mathbf{B} is $\mathcal{P}(\mathbf{B})=\mathbf{B} \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$.

Representing Lattices: Bases

- Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ s.t.

$$
\mathcal{L}=\mathcal{L}(\mathbf{B}) \triangleq \mathbf{B} \cdot \mathbb{Z}^{n}=\left\{\sum_{i=1}^{n} c_{i} \mathbf{b}_{i}: c_{i} \in \mathbb{Z}\right\} .
$$

The \mathbf{b}_{i} must be linearly ind., because $\operatorname{span}(\mathcal{L})=\operatorname{span}(\mathbf{B})=\mathbb{R}^{n}$.

- The fundamental parallelepiped of basis \mathbf{B} is $\mathcal{P}(\mathbf{B})=\mathbf{B} \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$. It tiles space: $\mathbb{R}^{n}=\bigcup_{\mathbf{v} \in \mathcal{L}}(\mathbf{v}+\mathcal{P}(\mathbf{B}))$.

Representing Lattices: Bases

- Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ s.t.

$$
\mathcal{L}=\mathcal{L}(\mathbf{B}) \triangleq \mathbf{B} \cdot \mathbb{Z}^{n}=\left\{\sum_{i=1}^{n} c_{i} \mathbf{b}_{i}: c_{i} \in \mathbb{Z}\right\}
$$

The \mathbf{b}_{i} must be linearly ind., because $\operatorname{span}(\mathcal{L})=\operatorname{span}(\mathbf{B})=\mathbb{R}^{n}$.

- The fundamental parallelepiped of basis \mathbf{B} is $\mathcal{P}(\mathbf{B})=\mathbf{B} \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$. It tiles space: $\mathbb{R}^{n}=\bigcup_{\mathbf{v} \in \mathcal{L}}(\mathbf{v}+\mathcal{P}(\mathbf{B}))$.
- A basis is not unique: $\mathbf{B U}$ is also a basis iff $\mathbf{U} \in \mathbb{Z}^{n \times n}, \operatorname{det}(\mathbf{U})= \pm 1$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.
- Determinant $\operatorname{det}(\mathcal{L}) \triangleq\left|\mathbb{Z}^{n} / \mathcal{L}\right|=|\operatorname{det}(\mathbf{B})|=\operatorname{vol}(\mathcal{P}(\mathbf{B}))$, any basis \mathbf{B}.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.
- Determinant $\operatorname{det}(\mathcal{L}) \triangleq\left|\mathbb{Z}^{n} / \mathcal{L}\right|=|\operatorname{det}(\mathbf{B})|=\operatorname{vol}(\mathcal{P}(\mathbf{B}))$, any basis \mathbf{B}.
- For any basis \mathbf{B} and $\mathbf{v} \in \mathbb{R}^{n},(\mathbf{v}+\mathcal{L}) \cap \mathcal{P}(\mathbf{B})=\{\overline{\mathbf{v}}\}$. Write $\overline{\mathbf{v}}=\mathbf{v} \bmod \mathbf{B}$, the "distinguished representative" of $\mathbf{v}+\mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.
- Determinant $\operatorname{det}(\mathcal{L}) \triangleq\left|\mathbb{Z}^{n} / \mathcal{L}\right|=|\operatorname{det}(\mathbf{B})|=\operatorname{vol}(\mathcal{P}(\mathbf{B}))$, any basis \mathbf{B}.
- For any basis \mathbf{B} and $\mathbf{v} \in \mathbb{R}^{n},(\mathbf{v}+\mathcal{L}) \cap \mathcal{P}(\mathbf{B})=\{\overline{\mathbf{v}}\}$. Write $\overline{\mathbf{v}}=\mathbf{v} \bmod \mathbf{B}$, the "distinguished representative" of $\mathbf{v}+\mathcal{L}$.

Cosets and Determinant

- Quotient group $\mathbb{Z}^{n} / \mathcal{L}$ consists of cosets $\mathbf{v}+\mathcal{L}$: "shifts" of the lattice. Recall: $\mathbf{v}_{1}+\mathcal{L}=\mathbf{v}_{2}+\mathcal{L}$ iff $\mathbf{v}_{1}-\mathbf{v}_{2} \in \mathcal{L}$.
- Determinant $\operatorname{det}(\mathcal{L}) \triangleq\left|\mathbb{Z}^{n} / \mathcal{L}\right|=|\operatorname{det}(\mathbf{B})|=\operatorname{vol}(\mathcal{P}(\mathbf{B}))$, any basis \mathbf{B}.
- For any basis \mathbf{B} and $\mathbf{v} \in \mathbb{R}^{n},(\mathbf{v}+\mathcal{L}) \cap \mathcal{P}(\mathbf{B})=\{\overline{\mathbf{v}}\}$. Write $\overline{\mathbf{v}}=\mathbf{v} \bmod \mathbf{B}$, the "distinguished representative" of $\mathbf{v}+\mathcal{L}$.

Successive Minima

- The minimum distance of \mathcal{L} is

$$
\lambda_{1}(\mathcal{L}) \triangleq \min _{\mathbf{0} \neq \mathbf{v} \in \mathcal{L}}\|\mathbf{v}\|=\min _{\text {distinct } \mathbf{x}, \mathbf{y} \in \mathcal{L}}\|\mathbf{x}-\mathbf{y}\|
$$

Successive Minima

- The minimum distance of \mathcal{L} is

$$
\lambda_{1}(\mathcal{L}) \triangleq \min _{\mathbf{0} \neq \mathbf{v} \in \mathcal{L}}\|\mathbf{v}\|=\min _{\text {distinct } \mathbf{x}, \mathbf{y} \in \mathcal{L}}\|\mathbf{x}-\mathbf{y}\|
$$

- More generally, the i th successive minimum $(i=1, \ldots, n)$ is

$$
\begin{aligned}
\lambda_{i}(\mathcal{L}) & \triangleq \min \{r: \mathcal{L} \text { contains } i \text { linearly ind. vectors of length } \leq r\} \\
& =\min \{r: \operatorname{dim}(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(r))) \geq i\}
\end{aligned}
$$

Gram-Schmidt Orthogonalization and Lower Bounding λ_{1}

- The GSO (or QR decomposition) of basis \mathbf{B} is:

$$
\mathbf{B}=\mathbf{Q R}=\mathbf{Q} \cdot\left(\begin{array}{cccc}
\left\|\tilde{\mathbf{b}}_{1}\right\| & \star & \star & \\
& \left\|\tilde{\mathbf{b}}_{2}\right\| & \star & \vdots \\
& & \ddots & \\
& & & \left\|\tilde{\mathbf{b}}_{n}\right\|
\end{array}\right), \quad \mathbf{Q} \text { orthonormal }
$$

Gram-Schmidt Orthogonalization and Lower Bounding λ_{1}

- The GSO (or QR decomposition) of basis \mathbf{B} is:

$$
\mathbf{B}=\mathbf{Q R}=\mathbf{Q} \cdot\left(\begin{array}{cccc}
\left\|\tilde{\mathbf{b}}_{1}\right\| & \star & \star & \\
& \left\|\tilde{\mathbf{b}}_{2}\right\| & \star & \vdots \\
& & \ddots & \\
& & & \left\|\tilde{\mathbf{b}}_{n}\right\|
\end{array}\right), \quad \mathbf{Q} \text { orthonormal }
$$

- Facts: $\mathcal{P}(\tilde{\mathbf{B}})=\tilde{\mathbf{B}} \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$ is a fund. region; $\operatorname{det}(\mathcal{L})=\prod_{i=1}^{n}\left\|\tilde{\mathbf{b}}_{i}\right\|$.

Gram-Schmidt Orthogonalization and Lower Bounding λ_{1}

- The GSO (or QR decomposition) of basis \mathbf{B} is:

$$
\mathbf{B}=\mathbf{Q R}=\mathbf{Q} \cdot\left(\begin{array}{cccc}
\left\|\tilde{\mathbf{b}}_{1}\right\| & \star & \star & \\
& \left\|\tilde{\mathbf{b}}_{2}\right\| & \star & \vdots \\
& & \ddots & \\
& & & \left\|\tilde{\mathbf{b}}_{n}\right\|
\end{array}\right), \quad \mathbf{Q} \text { orthonormal }
$$

- Facts: $\mathcal{P}(\tilde{\mathbf{B}})=\tilde{\mathbf{B}} \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$ is a fund. region; $\operatorname{det}(\mathcal{L})=\prod_{i=1}^{n}\left\|\tilde{\mathbf{b}}_{i}\right\|$.
- Fact: $\lambda_{1}(\mathcal{L}) \geq \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$.

Gram-Schmidt Orthogonalization and Lower Bounding λ_{1}

- The GSO (or QR decomposition) of basis \mathbf{B} is:

$$
\mathbf{B}=\mathbf{Q R}=\mathbf{Q} \cdot\left(\begin{array}{cccc}
\left\|\tilde{\mathbf{b}}_{1}\right\| & \star & \star & \\
& \left\|\tilde{\mathbf{b}}_{2}\right\| & \star & \vdots \\
& & \ddots & \\
& & & \left\|\tilde{\mathbf{b}}_{n}\right\|
\end{array}\right), \quad \mathbf{Q} \text { orthonormal }
$$

- Facts: $\mathcal{P}(\tilde{\mathbf{B}})=\tilde{\mathbf{B}} \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$ is a fund. region; $\operatorname{det}(\mathcal{L})=\prod_{i=1}^{n}\left\|\tilde{\mathbf{b}}_{i}\right\|$.
- Fact: $\lambda_{1}(\mathcal{L}) \geq \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$. Proof: consider $\mathbf{B c}=\mathbf{Q}(\mathbf{R c})$ for $\mathbf{c} \in \mathbb{Z}^{n}$.

Upper Bounding λ_{1} : Minkowski's Theorem

Theorem

- Any convex, centrally symmetric body S of volume $>2^{n} \cdot \operatorname{det}(\mathcal{L})$ contains a nonzero lattice point.
- Corollary: $\lambda_{1}(\mathcal{L}) \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$.

Upper Bounding λ_{1} : Minkowski's Theorem

Theorem

- Any convex, centrally symmetric body S of volume $>2^{n} \cdot \operatorname{det}(\mathcal{L})$ contains a nonzero lattice point.
- Corollary: $\lambda_{1}(\mathcal{L}) \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$.

Proof of Theorem

(1) Let $S^{\prime}=S / 2$, so $\operatorname{vol}\left(S^{\prime}\right)>\operatorname{det}(\mathcal{L})$.

Upper Bounding λ_{1} : Minkowski's Theorem

Theorem

- Any convex, centrally symmetric body S of volume $>2^{n} \cdot \operatorname{det}(\mathcal{L})$ contains a nonzero lattice point.
- Corollary: $\lambda_{1}(\mathcal{L}) \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$.

Proof of Theorem

(1) Let $S^{\prime}=S / 2$, so $\operatorname{vol}\left(S^{\prime}\right)>\operatorname{det}(\mathcal{L})$.
(2) By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S^{\prime}$ s.t. $\mathbf{x}-\mathbf{y} \in \mathcal{L}$.

Upper Bounding λ_{1} : Minkowski's Theorem

Theorem

- Any convex, centrally symmetric body S of volume $>2^{n} \cdot \operatorname{det}(\mathcal{L})$ contains a nonzero lattice point.
- Corollary: $\lambda_{1}(\mathcal{L}) \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$.

Proof of Theorem

(1) Let $S^{\prime}=S / 2$, so $\operatorname{vol}\left(S^{\prime}\right)>\operatorname{det}(\mathcal{L})$.
(2) By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S^{\prime}$ s.t. $\mathbf{x}-\mathbf{y} \in \mathcal{L}$.
(3) Now $2 \mathbf{x},-2 \mathbf{y} \in S$ by central symmetry, so $\mathbf{x}-\mathbf{y} \in S$ by convexity.

Upper Bounding λ_{1} : Minkowski's Theorem

Theorem

- Any convex, centrally symmetric body S of volume $>2^{n} \cdot \operatorname{det}(\mathcal{L})$ contains a nonzero lattice point.
- Corollary: $\lambda_{1}(\mathcal{L}) \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$.

Proof of Theorem

(1) Let $S^{\prime}=S / 2$, so $\operatorname{vol}\left(S^{\prime}\right)>\operatorname{det}(\mathcal{L})$.
(2) By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S^{\prime}$ s.t. $\mathbf{x}-\mathbf{y} \in \mathcal{L}$.
(3) Now $2 \mathbf{x},-2 \mathbf{y} \in S$ by central symmetry, so $\mathbf{x}-\mathbf{y} \in S$ by convexity.

Proof of Corollary

(1) Ball of radius $>\sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$ is convex and centrally symmetric.

Upper Bounding λ_{1} : Minkowski's Theorem

Theorem

- Any convex, centrally symmetric body S of volume $>2^{n} \cdot \operatorname{det}(\mathcal{L})$ contains a nonzero lattice point.
- Corollary: $\lambda_{1}(\mathcal{L}) \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$.

Proof of Theorem

(1) Let $S^{\prime}=S / 2$, so $\operatorname{vol}\left(S^{\prime}\right)>\operatorname{det}(\mathcal{L})$.
(2) By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S^{\prime}$ s.t. $\mathbf{x}-\mathbf{y} \in \mathcal{L}$.
(3) Now $2 \mathbf{x},-2 \mathbf{y} \in S$ by central symmetry, so $\mathbf{x}-\mathbf{y} \in S$ by convexity.

Proof of Corollary

(1) Ball of radius $>\sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$ is convex and centrally symmetric.
(2) It contains a cube of side length $>2 \operatorname{det}(\mathcal{L})^{1 / n}$, which has volume $>2^{n} \cdot \operatorname{det}(\mathcal{L})$.

Part 2:

Computational Background

- Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... \& decision variants.

Part 2:

Computational Background

- Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... \& decision variants.
- We'll focus on the two most relevant to cryptography: the (approximate) Shortest Vector Problem (SVP γ_{γ} and GapSVP $_{\gamma}$) and Bounded-Distance Decoding (BDD) problem.

Part 2:

Computational Background

- Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... \& decision variants.
- We'll focus on the two most relevant to cryptography: the (approximate) Shortest Vector Problem (SVP_{γ} and GapSVP_{γ}) and Bounded-Distance Decoding (BDD) problem.
(1) They admit worst-case/average-case reductions (to SIS and LWE).

Part 2:

Computational Background

- Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... \& decision variants.
- We'll focus on the two most relevant to cryptography: the (approximate) Shortest Vector Problem (SVP_{γ} and GapSVP_{γ}) and Bounded-Distance Decoding (BDD) problem.
(1) They admit worst-case/average-case reductions (to SIS and LWE).
(2) Essentially all crypto schemes are based on versions of these problems.

Shortest Vector Problem: SVP $_{\gamma}$ and GapSVP ${ }_{\gamma}$

Approximation problems with factor $\gamma=\gamma(n)$:
Search: given basis \mathbf{B}, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_{1}(\mathcal{L})$.

Shortest Vector Problem: SVP_{γ} and GapSVP_{γ}

Approximation problems with factor $\gamma=\gamma(n)$:
Search: given basis \mathbf{B}, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_{1}(\mathcal{L})$.
Decision: given basis \mathbf{B} and real d, decide between

$$
\lambda_{1}(\mathcal{L}) \leq d \quad \underline{\text { versus }} \lambda_{1}(\mathcal{L})>\gamma \cdot d
$$

Shortest Vector Problem: SVP_{γ} and GapSVP_{γ}

Approximation problems with factor $\gamma=\gamma(n)$:
Search: given basis \mathbf{B}, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_{1}(\mathcal{L})$.
Decision: given basis \mathbf{B} and real d, decide between

$$
\lambda_{1}(\mathcal{L}) \leq d \quad \text { versus } \lambda_{1}(\mathcal{L})>\gamma \cdot d
$$

Clearly GapSVP $_{\gamma} \leq \operatorname{SVP}_{\gamma}$, but the reverse direction is open!

Shortest Vector Problem: SVP_{γ} and GapSVP_{γ}

Approximation problems with factor $\gamma=\gamma(n)$:
Search: given basis \mathbf{B}, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_{1}(\mathcal{L})$.
Decision: given basis \mathbf{B} and real d, decide between

$$
\lambda_{1}(\mathcal{L}) \leq d \quad \text { versus } \lambda_{1}(\mathcal{L})>\gamma \cdot d
$$

Clearly GapSVP $_{\gamma} \leq \operatorname{SVP}_{\gamma}$, but the reverse direction is open!
Recall: $\min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq \lambda_{1} \leq \sqrt{n} \cdot \operatorname{det}(\mathcal{L})^{1 / n}$, but these are often very loose.

Complexity of GapSVP

- Clearly, (Gap)SVP γ_{γ} can only get easier as γ increases.

Complexity of GapSVP

- Clearly, (Gap)SVP γ_{γ} can only get easier as γ increases.

Complexity of GapSVP

- Clearly, (Gap)SVP ${ }_{\gamma}$ can only get easier as γ increases.

- For $\gamma=\operatorname{poly}(n)$, best algorithm is 2^{n} time \& space [AKS'01,MV' $10, \ldots$]

Complexity of GapSVP

- Clearly, (Gap)SVP ${ }_{\gamma}$ can only get easier as γ increases.

- For $\gamma=\operatorname{poly}(n)$, best algorithm is 2^{n} time \& space [AKS'01,MV' $10, \ldots$]
- For $\gamma=2^{k}$, best algorithm takes $\approx 2^{n / k}$ time [Schnorr'87, ...]
E.g., $\gamma=2^{\sqrt{n}}$ appears to be $\approx 2^{\sqrt{n}}$-hard.

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i.

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$.

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$,
(1) Let $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2}-c \cdot \mathbf{b}_{1}$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_{2} \in \tilde{\mathbf{b}}_{2}+\left[-\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbf{b}_{1}$.
(2) If $\left\|\mathbf{b}_{2}\right\|^{2}<\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2}$, swap $\mathbf{b}_{1} \leftrightarrow \mathbf{b}_{2}$ and loop. Else end.

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$,
(1) Let $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2}-c \cdot \mathbf{b}_{1}$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_{2} \in \tilde{\mathbf{b}}_{2}+\left[-\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbf{b}_{1}$.
(2) If $\left\|\mathbf{b}_{2}\right\|^{2}<\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2}$, swap $\mathbf{b}_{1} \leftrightarrow \mathbf{b}_{2}$ and loop. Else end.

-
-
-

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$,
(1) Let $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2}-c \cdot \mathbf{b}_{1}$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_{2} \in \tilde{\mathbf{b}}_{2}+\left[-\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbf{b}_{1}$.
(2) If $\left\|\mathbf{b}_{2}\right\|^{2}<\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2}$, swap $\mathbf{b}_{1} \leftrightarrow \mathbf{b}_{2}$ and loop. Else end.

\bullet

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$,
(1) Let $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2}-c \cdot \mathbf{b}_{1}$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_{2} \in \tilde{\mathbf{b}}_{2}+\left[-\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbf{b}_{1}$.
(2) If $\left\|\mathbf{b}_{2}\right\|^{2}<\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2}$, swap $\mathbf{b}_{1} \leftrightarrow \mathbf{b}_{2}$ and loop. Else end.

-

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$,
(1) Let $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2}-c \cdot \mathbf{b}_{1}$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_{2} \in \tilde{\mathbf{b}}_{2}+\left[-\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbf{b}_{1}$.
(2) If $\left\|\mathbf{b}_{2}\right\|^{2}<\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2}$, swap $\mathbf{b}_{1} \leftrightarrow \mathbf{b}_{2}$ and loop. Else end.

Claim 1: At end, $\left\|\tilde{\mathbf{b}}_{2}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{1}\right\|^{2}$ (as desired).
Proof: At end, $\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2} \leq\left\|\mathbf{b}_{2}\right\|^{2} \leq\left\|\tilde{\mathbf{b}}_{2}\right\|^{2}+\frac{1}{4}\left\|\mathbf{b}_{1}\right\|^{2}$.

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$.
In two dimensions: given basis $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$,
(1) Let $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2}-c \cdot \mathbf{b}_{1}$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_{2} \in \tilde{\mathbf{b}}_{2}+\left[-\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbf{b}_{1}$.
(2) If $\left\|\mathbf{b}_{2}\right\|^{2}<\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2}$, swap $\mathbf{b}_{1} \leftrightarrow \mathbf{b}_{2}$ and loop. Else end.

Claim 1: At end, $\left\|\tilde{\mathbf{b}}_{2}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{1}\right\|^{2}$ (as desired).
Proof: At end, $\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2} \leq\left\|\mathbf{b}_{2}\right\|^{2} \leq\left\|\tilde{\mathbf{b}}_{2}\right\|^{2}+\frac{1}{4}\left\|\mathbf{b}_{1}\right\|^{2}$.
Claim 2: Algorithm terminates after poly $(|\mathbf{B}|)$ many iterations.
Proof: Define $\Phi(\mathbf{B})=\left\|\tilde{\mathbf{b}}_{1}\right\|^{2} \cdot\left\|\tilde{\mathbf{b}}_{2}\right\|=\left\|\mathbf{b}_{1}\right\| \cdot \operatorname{det}(\mathcal{L})$.
When we swap, Φ decreases by $>\frac{\sqrt{3}}{2}$ factor. It starts as $2^{\text {poly }(|\mathbf{B}|)}$ and cannot go below 1 .

An Algorithm for $\mathrm{SVP}_{2^{(n-1) / 2}}$ [LLL'82]

- Key idea: manipulate basis to ensure $\left\|\tilde{\mathbf{b}}_{i+1}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{i}\right\|^{2}$, for all i. This implies $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \cdot \min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| \leq 2^{(n-1) / 2} \cdot \lambda_{1}(\mathcal{L})$. In two dimensions: given basis $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$,
(1) Let $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2}-c \cdot \mathbf{b}_{1}$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_{2} \in \tilde{\mathbf{b}}_{2}+\left[-\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbf{b}_{1}$.
(2) If $\left\|\mathbf{b}_{2}\right\|^{2}<\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2}$, swap $\mathbf{b}_{1} \leftrightarrow \mathbf{b}_{2}$ and loop. Else end.

Claim 1: At end, $\left\|\tilde{\mathbf{b}}_{2}\right\|^{2} \geq \frac{1}{2}\left\|\tilde{\mathbf{b}}_{1}\right\|^{2}$ (as desired).
Proof: At end, $\frac{3}{4}\left\|\mathbf{b}_{1}\right\|^{2} \leq\left\|\mathbf{b}_{2}\right\|^{2} \leq\left\|\tilde{\mathbf{b}}_{2}\right\|^{2}+\frac{1}{4}\left\|\mathbf{b}_{1}\right\|^{2}$.
Claim 2: Algorithm terminates after poly $(|\mathbf{B}|)$ many iterations.
Proof: Define $\Phi(\mathbf{B})=\left\|\tilde{\mathbf{b}}_{1}\right\|^{2} \cdot\left\|\tilde{\mathbf{b}}_{2}\right\|=\left\|\mathbf{b}_{1}\right\| \cdot \operatorname{det}(\mathcal{L})$.
When we swap, Φ decreases by $>\frac{\sqrt{3}}{2}$ factor. It starts as $2^{\text {poly }(|\mathbf{B}|)}$ and cannot go below 1 .

LLL in n dimensions: do similar loop on all adjacent pairs $\mathbf{b}_{i}, \mathbf{b}_{i+1}$.

Related: Shortest Independent Vectors Problem $\left(\mathrm{SIVP}_{\gamma}\right)$

- Given basis \mathbf{B}, find lin. ind. $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathcal{L}$ s.t. $\left\|\mathbf{v}_{i}\right\| \leq \gamma \cdot \lambda_{n}(\mathcal{L})$.

Related: Shortest Independent Vectors Problem $\left(\mathrm{SIVP}_{\gamma}\right)$

- Given basis B, find lin. ind. $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathcal{L}$ s.t. $\left\|\mathbf{v}_{i}\right\| \leq \gamma \cdot \lambda_{n}(\mathcal{L})$.
- LLL algorithm also solves SIVP $_{2^{(n-1) / 2}}$.

Related: Shortest Independent Vectors Problem $\left(\mathrm{SIVP}_{\gamma}\right)$

- Given basis B, find lin. ind. $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathcal{L}$ s.t. $\left\|\mathbf{v}_{i}\right\| \leq \gamma \cdot \lambda_{n}(\mathcal{L})$.
- LLL algorithm also solves SIVP $_{2^{(n-1) / 2}}$.
- We know GapSVP ${ }_{\gamma} \leq$ SIVP $_{\gamma}$, but the reverse direction is open!

Bounded-Distance Decoding (BDD)

Search: given basis B, point \mathbf{t}, and real $d<\lambda_{1} / 2$ s.t. $\operatorname{dist}(\mathbf{t}, \mathcal{L}) \leq d$, find the (unique) $\mathbf{v} \in \mathcal{L}$ closest to \mathbf{t}.

Bounded-Distance Decoding (BDD)

Search: given basis B, point \mathbf{t}, and real $d<\lambda_{1} / 2$ s.t. $\operatorname{dist}(\mathbf{t}, \mathcal{L}) \leq d$, find the (unique) $\mathbf{v} \in \mathcal{L}$ closest to \mathbf{t}.

Equivalently, given coset $\mathbf{t}+\mathcal{L} \ni \mathbf{e}$ s.t. $\|\mathbf{e}\| \leq d$, find \mathbf{e}.

Bounded-Distance Decoding (BDD)

Search: given basis B, point \mathbf{t}, and real $d<\lambda_{1} / 2$ s.t. $\operatorname{dist}(\mathbf{t}, \mathcal{L}) \leq d$, find the (unique) $\mathbf{v} \in \mathcal{L}$ closest to \mathbf{t}.

Equivalently, given coset $\mathbf{t}+\mathcal{L} \ni \mathbf{e}$ s.t. $\|\mathbf{e}\| \leq d$, find \mathbf{e}.
Decision: given basis \mathbf{B}, coset $\mathbf{t}+\mathcal{L}$, and real d, decide between

$$
\operatorname{dist}(\mathbf{0}, \mathbf{t}+\mathcal{L}) \leq d \quad \underline{\text { versus }}>\gamma \cdot d
$$

Bounded-Distance Decoding (BDD)

Search: given basis B, point \mathbf{t}, and real $d<\lambda_{1} / 2$ s.t. $\operatorname{dist}(\mathbf{t}, \mathcal{L}) \leq d$, find the (unique) $\mathbf{v} \in \mathcal{L}$ closest to \mathbf{t}.

Equivalently, given coset $\mathbf{t}+\mathcal{L} \ni \mathbf{e}$ s.t. $\|\mathbf{e}\| \leq d$, find \mathbf{e}.
Decision: given basis \mathbf{B}, coset $\mathbf{t}+\mathcal{L}$, and real d, decide between

$$
\operatorname{dist}(\mathbf{0}, \mathbf{t}+\mathcal{L}) \leq d \quad \underline{\text { versus }}>\gamma \cdot d
$$

Algorithms for BDD [Babai'86]

"Round off:" Using a "good" basis B, output $\mathbf{e}=\mathbf{t} \bmod \mathbf{B}$. Works if $\operatorname{Ball}(d) \subseteq \mathcal{P}(\mathbf{B})$: radius $d=\min _{i}\left\|\mathbf{b}_{i}^{\perp}\right\| / 2$.

Algorithms for BDD [Babai'86]

"Round off:" Using a "good" basis B, output $\mathbf{e}=\mathbf{t} \bmod \mathbf{B}$. Works if $\operatorname{Ball}(d) \subseteq \mathcal{P}(\mathbf{B})$: radius $d=\min _{i}\left\|\mathbf{b}_{i}^{\perp}\right\| / 2$.
"Nearest plane:" Output $\mathbf{e}=\mathbf{t} \bmod \tilde{\mathbf{B}}$. Proceeds iteratively. Works if $\operatorname{Ball}(d) \subseteq \mathcal{P}(\tilde{\mathbf{B}})$: radius $d=\min _{i}\left\|\tilde{\mathbf{b}}_{i}\right\| / 2$.

Wrapping Up

- Now you know (almost) everything you need to know about lattices (to do cryptography, at least).
- We've covered a lot: do the exercises to reinforce your understanding!
- Tomorrow: the cryptographic problems SIS and LWE (as SVP and BDD variants), and some basic applications.

