Lattice-Based Cryptography: Mathematical and Computational Background

> Chris Peikert Georgia Institute of Technology

> > crypt@b-it 2013

Why?

Simple description and implementation

- Simple description and implementation
- Efficient: linear, highly parallel operations

- Simple description and implementation
- Efficient: linear, highly parallel operations
- Resists quantum attacks (so far)

- Simple description and implementation
- Efficient: linear, highly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions [Ajtai96,...]

- Simple description and implementation
- Efficient: linear, highly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions [Ajtai96,...]
- Solutions to "holy grail" crypto problems [Gentry09,...]

Part 1:

Mathematical Background

Coming up:

- 1 Definitions: lattice, basis, determinant, cosets, successive minima,
- 2 Two simple bounds on the minimum distance.

• Lattice \mathcal{L} of dimension n: a discrete additive subgroup of \mathbb{R}^n .

Lattice L of dimension n: a discrete additive subgroup of ℝⁿ. Additive subgroup: 0 ∈ L, and x, y ∈ L ⇒ -x, x + y ∈ L.

Lattices	Not lattices
$\{0\},\mathbb{Z}\subset\mathbb{R}$	$\mathbb{Q}\subset \mathbb{R}$
$2\mathbb{Z},c\mathbb{Z}$ for any $c\in\mathbb{R}$	$2\mathbb{Z}+1 = \{odd \ x \in \mathbb{Z}\}$
$\mathbb{Z}^n \subset \mathbb{R}^n$	$\mathbb{Z} + \sqrt{2}\mathbb{Z}$

Lattices	Not lattices
$\{0\},\mathbb{Z}\subset\mathbb{R}$	$\mathbb{Q} \subset \mathbb{R}$
$2\mathbb{Z},c\mathbb{Z}$ for any $c\in\mathbb{R}$	$2\mathbb{Z}+1 = \{odd \ x \in \mathbb{Z}\}$
$\mathbb{Z}^n \subset \mathbb{R}^n$	$\mathbb{Z} + \sqrt{2}\mathbb{Z}$

Lattices	Not lattices
$\{0\},\mathbb{Z}\subset\mathbb{R}$	$\mathbb{Q}\subset \mathbb{R}$
$2\mathbb{Z},c\mathbb{Z}$ for any $c\in\mathbb{R}$	$2\mathbb{Z}+1 = \{ odd \ x \in \mathbb{Z} \}$
$\mathbb{Z}^n \subset \mathbb{R}^n$	$\mathbb{Z} + \sqrt{2}\mathbb{Z}$

Lattices	Not lattices
$\{0\},\mathbb{Z}\subset\mathbb{R}$	$\mathbb{Q}\subset \mathbb{R}$
$2\mathbb{Z},c\mathbb{Z}$ for any $c\in\mathbb{R}$	$2\mathbb{Z}+1 = \{odd \ x \in \mathbb{Z}\}$
$\mathbb{Z}^n \subset \mathbb{R}^n$	$\mathbb{Z} + \sqrt{2}\mathbb{Z}$

▶ Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^n$. (Essentially equivalent to rational lattice, by scaling.)

• Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^n$. (Essentially equivalent to rational lattice, by scaling.)

Full-rank lattice: span(L) = ℝⁿ.
 Equivalently, L has a set of n linearly independent vectors.

• Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^n$. (Essentially equivalent to rational lattice, by scaling.)

► Full-rank lattice: span(L) = Rⁿ. Equivalently, L has a set of n linearly independent vectors.

Full rank	Not full rank
$c\mathbb{Z}^n$, $c eq 0$	{0 }
$(1,1) \cdot \mathbb{Z} + (-1,1) \cdot \mathbb{Z}$	$(1,1)\cdot\mathbb{Z}$

• Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^n$. (Essentially equivalent to rational lattice, by scaling.)

► Full-rank lattice: span(L) = Rⁿ. Equivalently, L has a set of n linearly independent vectors.

Full rank	Not full rank
$c\mathbb{Z}^n$, $c eq 0$	{0 }
$(1,1) \cdot \mathbb{Z} + (-1,1) \cdot \mathbb{Z}$	$(1,1)\cdot\mathbb{Z}$

• Integer lattice: $\mathcal{L} \subseteq \mathbb{Z}^n$. (Essentially equivalent to rational lattice, by scaling.)

► Full-rank lattice: span(L) = Rⁿ. Equivalently, L has a set of n linearly independent vectors.

Full rank	Not full rank
$c\mathbb{Z}^n$, $c eq 0$	{0 }
$(1,1) \cdot \mathbb{Z} + (-1,1) \cdot \mathbb{Z}$	$(1,1)\cdot\mathbb{Z}$

• Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ s.t.

$$\mathcal{L} = \mathcal{L}(\mathbf{B}) \stackrel{\Delta}{=} \mathbf{B} \cdot \mathbb{Z}^n = \left\{ \sum_{i=1}^n c_i \mathbf{b}_i : c_i \in \mathbb{Z} \right\}.$$

The \mathbf{b}_i must be linearly ind., because $\operatorname{span}(\mathcal{L}) = \operatorname{span}(\mathbf{B}) = \mathbb{R}^n$.

• Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ s.t.

$$\mathcal{L} = \mathcal{L}(\mathbf{B}) \stackrel{\Delta}{=} \mathbf{B} \cdot \mathbb{Z}^n = \left\{ \sum_{i=1}^n c_i \mathbf{b}_i : c_i \in \mathbb{Z} \right\}.$$

The \mathbf{b}_i must be linearly ind., because $\operatorname{span}(\mathcal{L}) = \operatorname{span}(\mathbf{B}) = \mathbb{R}^n$.

• The fundamental parallelepiped of basis **B** is $\mathcal{P}(\mathbf{B}) = \mathbf{B} \cdot \left[-\frac{1}{2}, \frac{1}{2}\right)^n$.

• Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ s.t.

$$\mathcal{L} = \mathcal{L}(\mathbf{B}) \stackrel{\Delta}{=} \mathbf{B} \cdot \mathbb{Z}^n = \left\{ \sum_{i=1}^n c_i \mathbf{b}_i : c_i \in \mathbb{Z} \right\}.$$

The \mathbf{b}_i must be linearly ind., because $\operatorname{span}(\mathcal{L}) = \operatorname{span}(\mathbf{B}) = \mathbb{R}^n$.

The fundamental parallelepiped of basis B is P(B) = B ⋅ [-1/2, 1/2)ⁿ.
 It tiles space: Rⁿ = ⋃_{v∈L} (v + P(B)).

Basis of \mathcal{L} : ordered set (i.e., matrix) $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ s.t.

$$\mathcal{L} = \mathcal{L}(\mathbf{B}) \stackrel{\Delta}{=} \mathbf{B} \cdot \mathbb{Z}^n = \bigg\{ \sum_{i=1}^n c_i \mathbf{b}_i : c_i \in \mathbb{Z} \bigg\}.$$

The \mathbf{b}_i must be linearly ind., because $\operatorname{span}(\mathcal{L}) = \operatorname{span}(\mathbf{B}) = \mathbb{R}^n$.

The fundamental parallelepiped of basis B is P(B) = B ⋅ [-1/2, 1/2)ⁿ.
 It tiles space: ℝⁿ = ⋃_{v∈L} (v + P(B)).

A basis is not unique: **BU** is also a basis iff $\mathbf{U} \in \mathbb{Z}^{n \times n}$, $det(\mathbf{U}) = \pm 1$.

- ► Quotient group Zⁿ/L consists of cosets v + L: "shifts" of the lattice. Recall: v₁ + L = v₂ + L iff v₁ - v₂ ∈ L.
- Determinant $det(\mathcal{L}) \stackrel{\Delta}{=} |\mathbb{Z}^n/\mathcal{L}| = |det(\mathbf{B})| = vol(\mathcal{P}(\mathbf{B}))$, any basis **B**.

- ▶ Quotient group Zⁿ/L consists of cosets v + L: "shifts" of the lattice. Recall: v₁ + L = v₂ + L iff v₁ - v₂ ∈ L.
- Determinant $det(\mathcal{L}) \stackrel{\Delta}{=} |\mathbb{Z}^n/\mathcal{L}| = |det(\mathbf{B})| = vol(\mathcal{P}(\mathbf{B}))$, any basis **B**.
- For any basis B and v ∈ ℝⁿ, (v + L) ∩ P(B) = {ū}.
 Write ū = v mod B, the "distinguished representative" of v + L.

- ▶ Quotient group Zⁿ/L consists of cosets v + L: "shifts" of the lattice. Recall: v₁ + L = v₂ + L iff v₁ - v₂ ∈ L.
- Determinant $det(\mathcal{L}) \stackrel{\Delta}{=} |\mathbb{Z}^n/\mathcal{L}| = |det(\mathbf{B})| = vol(\mathcal{P}(\mathbf{B}))$, any basis **B**.
- For any basis B and v ∈ ℝⁿ, (v + L) ∩ P(B) = {ū}.
 Write ū = v mod B, the "distinguished representative" of v + L.

Cosets and Determinant

- ▶ Quotient group Zⁿ/L consists of cosets v + L: "shifts" of the lattice. Recall: v₁ + L = v₂ + L iff v₁ - v₂ ∈ L.
- Determinant $det(\mathcal{L}) \stackrel{\Delta}{=} |\mathbb{Z}^n/\mathcal{L}| = |det(\mathbf{B})| = vol(\mathcal{P}(\mathbf{B}))$, any basis **B**.
- For any basis B and v ∈ ℝⁿ, (v + L) ∩ P(B) = {ū}.
 Write ū = v mod B, the "distinguished representative" of v + L.

Successive Minima

▶ The minimum distance of \mathcal{L} is

$$\lambda_1(\mathcal{L}) \stackrel{\Delta}{=} \min_{\mathbf{0} \neq \mathbf{v} \in \mathcal{L}} \|\mathbf{v}\| = \min_{\text{distinct } \mathbf{x}, \mathbf{y} \in \mathcal{L}} \|\mathbf{x} - \mathbf{y}\|.$$

Successive Minima

• The minimum distance of \mathcal{L} is

$$\lambda_1(\mathcal{L}) \stackrel{\Delta}{=} \min_{\mathbf{0} \neq \mathbf{v} \in \mathcal{L}} \|\mathbf{v}\| = \min_{\text{distinct } \mathbf{x}, \mathbf{y} \in \mathcal{L}} \|\mathbf{x} - \mathbf{y}\|.$$

• More generally, the *i*th successive minimum (i = 1, ..., n) is

 $\lambda_i(\mathcal{L}) \stackrel{\Delta}{=} \min\{r : \mathcal{L} \text{ contains } i \text{ linearly ind. vectors of length} \leq r\} \\ = \min\{r : \dim(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(r))) \geq i\}.$

► The GSO (or QR decomposition) of basis B is:

$$\mathbf{B} = \mathbf{Q}\mathbf{R} = \mathbf{Q} \cdot egin{pmatrix} \| ilde{\mathbf{b}}_1\| & \star & \star & \ & \| ilde{\mathbf{b}}_2\| & \star & dots & \ & & \ddots & \ & & & \| ilde{\mathbf{b}}_n\| \end{pmatrix}, \quad \mathbf{Q}$$

 ${f Q}$ orthonormal

► The GSO (or QR decomposition) of basis B is:

$$\mathbf{B} = \mathbf{Q}\mathbf{R} = \mathbf{Q} \cdot \begin{pmatrix} \|\tilde{\mathbf{b}}_1\| & \star & \star & \\ & \|\tilde{\mathbf{b}}_2\| & \star & \vdots \\ & & \ddots & \\ & & & & \|\tilde{\mathbf{b}}_n\| \end{pmatrix}, \quad \mathbf{Q} \text{ orthonormal}$$

• Facts: $\mathcal{P}(\tilde{\mathbf{B}}) = \tilde{\mathbf{B}} \cdot [-\frac{1}{2}, \frac{1}{2})^n$ is a fund. region; $\det(\mathcal{L}) = \prod_{i=1}^n \|\tilde{\mathbf{b}}_i\|$.

► The GSO (or QR decomposition) of basis B is:

$$\mathbf{B} = \mathbf{Q}\mathbf{R} = \mathbf{Q} \cdot \begin{pmatrix} \|\tilde{\mathbf{b}}_1\| & \star & \star & \\ & \|\tilde{\mathbf{b}}_2\| & \star & \vdots \\ & & \ddots & \\ & & & \|\tilde{\mathbf{b}}_n\| \end{pmatrix}, \quad \mathbf{Q} \text{ orthonormal}$$

▶ <u>Facts</u>: $\mathcal{P}(\tilde{\mathbf{B}}) = \tilde{\mathbf{B}} \cdot [-\frac{1}{2}, \frac{1}{2})^n$ is a fund. region; det $(\mathcal{L}) = \prod_{i=1}^n \|\tilde{\mathbf{b}}_i\|$. ▶ <u>Fact</u>: $\lambda_1(\mathcal{L}) \ge \min_i \|\tilde{\mathbf{b}}_i\|$.

► The GSO (or QR decomposition) of basis B is:

$$\mathbf{B} = \mathbf{Q}\mathbf{R} = \mathbf{Q} \cdot \begin{pmatrix} \|\tilde{\mathbf{b}}_1\| & \star & \star & \\ & \|\tilde{\mathbf{b}}_2\| & \star & \vdots \\ & & \ddots & \\ & & & \|\tilde{\mathbf{b}}_n\| \end{pmatrix}, \quad \mathbf{Q} \text{ orthonormal}$$

▶ <u>Facts</u>: $\mathcal{P}(\tilde{\mathbf{B}}) = \tilde{\mathbf{B}} \cdot [-\frac{1}{2}, \frac{1}{2})^n$ is a fund. region; det $(\mathcal{L}) = \prod_{i=1}^n \|\tilde{\mathbf{b}}_i\|$. ▶ <u>Fact</u>: $\lambda_1(\mathcal{L}) \ge \min_i \|\tilde{\mathbf{b}}_i\|$. <u>Proof</u>: consider $\mathbf{Bc} = \mathbf{Q}(\mathbf{Rc})$ for $\mathbf{c} \in \mathbb{Z}^n$.

Theorem

- Any convex, centrally symmetric body S of volume > 2ⁿ ⋅ det(L) contains a nonzero lattice point.
- Corollary: $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$.

Theorem

- Any convex, centrally symmetric body S of volume > 2ⁿ ⋅ det(L) contains a nonzero lattice point.
- Corollary: $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$.

Proof of Theorem

1 Let
$$S' = S/2$$
, so $\operatorname{vol}(S') > \det(\mathcal{L})$.

Theorem

- Any convex, centrally symmetric body S of volume > 2ⁿ ⋅ det(L) contains a nonzero lattice point.
- Corollary: $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$.

Proof of Theorem

• Let
$$S' = S/2$$
, so $\operatorname{vol}(S') > \det(\mathcal{L})$.

2 By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S'$ s.t. $\mathbf{x} - \mathbf{y} \in \mathcal{L}$.

Theorem

- Any convex, centrally symmetric body S of volume > 2ⁿ ⋅ det(L) contains a nonzero lattice point.
- Corollary: $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$.

Proof of Theorem

1 Let S' = S/2, so $vol(S') > det(\mathcal{L})$.

- **2** By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S'$ s.t. $\mathbf{x} \mathbf{y} \in \mathcal{L}$.
- $\textbf{S} \text{ Now } 2\mathbf{x}, -2\mathbf{y} \in S \text{ by central symmetry, so } \mathbf{x} \mathbf{y} \in S \text{ by convexity.}$

Theorem

- Any convex, centrally symmetric body S of volume > 2ⁿ · det(L) contains a nonzero lattice point.
- Corollary: $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$.

Proof of Theorem

1 Let S' = S/2, so $vol(S') > det(\mathcal{L})$.

- **2** By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S'$ s.t. $\mathbf{x} \mathbf{y} \in \mathcal{L}$.
- $\textbf{S} \text{ Now } 2\mathbf{x}, -2\mathbf{y} \in S \text{ by central symmetry, so } \mathbf{x} \mathbf{y} \in S \text{ by convexity.}$

Proof of Corollary

1 Ball of radius $> \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$ is convex and centrally symmetric.

Theorem

- Any convex, centrally symmetric body S of volume > 2ⁿ · det(L) contains a nonzero lattice point.
- Corollary: $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$.

Proof of Theorem

1 Let S' = S/2, so $vol(S') > det(\mathcal{L})$.

- **2** By pigeonhole argument, \exists distinct $\mathbf{x}, \mathbf{y} \in S'$ s.t. $\mathbf{x} \mathbf{y} \in \mathcal{L}$.
- $\textbf{S} \text{ Now } 2\mathbf{x}, -2\mathbf{y} \in S \text{ by central symmetry, so } \mathbf{x} \mathbf{y} \in S \text{ by convexity.}$

Proof of Corollary

- **1** Ball of radius $> \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$ is convex and centrally symmetric.
- 2 It contains a cube of side length $> 2 \det(\mathcal{L})^{1/n}$, which has volume $> 2^n \cdot \det(\mathcal{L})$.

Computational Background

Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... & decision variants.

Computational Background

- Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... & decision variants.
- We'll focus on the two most relevant to cryptography: the (approximate) Shortest Vector Problem (SVP_γ and GapSVP_γ) and Bounded-Distance Decoding (BDD) problem.

Computational Background

- Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... & decision variants.
- We'll focus on the two most relevant to cryptography: the (approximate) Shortest Vector Problem (SVP_γ and GapSVP_γ) and Bounded-Distance Decoding (BDD) problem.
 - **1** They admit worst-case/average-case reductions (to SIS and LWE).

Computational Background

- Lattices are a source of many seemingly hard problems: SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... & decision variants.
- We'll focus on the two most relevant to cryptography: the (approximate) Shortest Vector Problem (SVP_γ and GapSVP_γ) and Bounded-Distance Decoding (BDD) problem.
 - **1** They admit worst-case/average-case reductions (to SIS and LWE).
 - 2 Essentially all crypto schemes are based on versions of these problems.

Approximation problems with factor $\gamma = \gamma(n)$:

Search: given basis **B**, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_1(\mathcal{L})$.

Approximation problems with factor $\gamma = \gamma(n)$:

Search: given basis **B**, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_1(\mathcal{L})$.

Decision: given basis \mathbf{B} and real d, decide between

 $\lambda_1(\mathcal{L}) \leq d$ versus $\lambda_1(\mathcal{L}) > \gamma \cdot d$.

Approximation problems with factor $\gamma = \gamma(n)$:

Search: given basis **B**, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_1(\mathcal{L})$.

Decision: given basis \mathbf{B} and real d, decide between

$$\lambda_1(\mathcal{L}) \leq d$$
 versus $\lambda_1(\mathcal{L}) > \gamma \cdot d$.

Clearly $GapSVP_{\gamma} \leq SVP_{\gamma}$, but the reverse direction is open!

Approximation problems with factor $\gamma = \gamma(n)$:

Search: given basis **B**, find nonzero $\mathbf{v} \in \mathcal{L}$ s.t. $\|\mathbf{v}\| \leq \gamma \cdot \lambda_1(\mathcal{L})$.

Decision: given basis \mathbf{B} and real d, decide between

 $\lambda_1(\mathcal{L}) \leq d$ versus $\lambda_1(\mathcal{L}) > \gamma \cdot d$.

Clearly GapSVP_{γ} \leq SVP_{γ}, but the reverse direction is open! Recall: $\min \|\tilde{\mathbf{b}}_i\| \leq \lambda_1 \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$, but these are often very loose.

• Clearly, $(Gap)SVP_{\gamma}$ can only get easier as γ increases.

• Clearly, (Gap)SVP $_{\gamma}$ can only get easier as γ increases.

• Clearly, (Gap)SVP $_{\gamma}$ can only get easier as γ increases.

For $\gamma = poly(n)$, best algorithm is 2^n time & space [AKS'01,MV'10,...]

• Clearly, (Gap)SVP $_{\gamma}$ can only get easier as γ increases.

For $\gamma = poly(n)$, best algorithm is 2^n time & space [AKS'01,MV'10,...]

For $\gamma = 2^k$, best algorithm takes $\approx 2^{n/k}$ time [Schnorr'87,...] E.g., $\gamma = 2^{\sqrt{n}}$ appears to be $\approx 2^{\sqrt{n}}$ -hard.

An Algorithm for $SVP_{2^{(n-1)/2}}$ ${\scriptscriptstyle [LLL'82]}$

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2)$,

1 Let $\mathbf{b}_2 \leftarrow \mathbf{b}_2 - c \cdot \mathbf{b}_1$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_2 \in \tilde{\mathbf{b}}_2 + [-\frac{1}{2}, \frac{1}{2}) \cdot \mathbf{b}_1$.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2)$,

• Let $\mathbf{b}_2 \leftarrow \mathbf{b}_2 - c \cdot \mathbf{b}_1$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_2 \in \tilde{\mathbf{b}}_2 + [-\frac{1}{2}, \frac{1}{2}) \cdot \mathbf{b}_1$.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2)$,

• Let $\mathbf{b}_2 \leftarrow \mathbf{b}_2 - c \cdot \mathbf{b}_1$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_2 \in \tilde{\mathbf{b}}_2 + [-\frac{1}{2}, \frac{1}{2}) \cdot \mathbf{b}_1$.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2)$,

• Let $\mathbf{b}_2 \leftarrow \mathbf{b}_2 - c \cdot \mathbf{b}_1$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_2 \in \tilde{\mathbf{b}}_2 + [-\frac{1}{2}, \frac{1}{2}) \cdot \mathbf{b}_1$.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2)$,

- 1 Let $\mathbf{b}_2 \leftarrow \mathbf{b}_2 c \cdot \mathbf{b}_1$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_2 \in \tilde{\mathbf{b}}_2 + [-\frac{1}{2}, \frac{1}{2}) \cdot \mathbf{b}_1$.
- 2 If $\|\mathbf{b}_2\|^2 < \frac{3}{4} \|\mathbf{b}_1\|^2$, swap $\mathbf{b}_1 \leftrightarrow \mathbf{b}_2$ and loop. Else end.

Claim 1: At end, $\|\tilde{\mathbf{b}}_2\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_1\|^2$ (as desired). Proof: At end, $\frac{3}{4} \|\mathbf{b}_1\|^2 \le \|\mathbf{b}_2\|^2 \le \|\tilde{\mathbf{b}}_2\|^2 + \frac{1}{4} \|\mathbf{b}_1\|^2$.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2)$,

- **1** Let $\mathbf{b}_2 \leftarrow \mathbf{b}_2 c \cdot \mathbf{b}_1$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_2 \in \tilde{\mathbf{b}}_2 + [-\frac{1}{2}, \frac{1}{2}) \cdot \mathbf{b}_1$.
- 2 If $\|\mathbf{b}_2\|^2 < \frac{3}{4} \|\mathbf{b}_1\|^2$, swap $\mathbf{b}_1 \leftrightarrow \mathbf{b}_2$ and loop. Else end.
 - Claim 1: At end, $\|\tilde{\mathbf{b}}_2\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_1\|^2$ (as desired). Proof: At end, $\frac{3}{4} \|\mathbf{b}_1\|^2 \le \|\mathbf{b}_2\|^2 \le \|\tilde{\mathbf{b}}_2\|^2 + \frac{1}{4} \|\mathbf{b}_1\|^2$.
 - Claim 2: Algorithm terminates after poly(|**B**|) many iterations. Proof: Define $\Phi(\mathbf{B}) = \|\tilde{\mathbf{b}}_1\|^2 \cdot \|\tilde{\mathbf{b}}_2\| = \|\mathbf{b}_1\| \cdot \det(\mathcal{L})$. When we swap, Φ decreases by $> \frac{\sqrt{3}}{2}$ factor. It starts as $2^{\text{poly}(|\mathbf{B}|)}$ and cannot go below 1.

• Key idea: manipulate basis to ensure $\|\tilde{\mathbf{b}}_{i+1}\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_i\|^2$, for all i. This implies $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \min_i \|\tilde{\mathbf{b}}_i\| \le 2^{(n-1)/2} \cdot \lambda_1(\mathcal{L})$.

In two dimensions: given basis $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2)$,

- **1** Let $\mathbf{b}_2 \leftarrow \mathbf{b}_2 c \cdot \mathbf{b}_1$ for the $c \in \mathbb{Z}$ s.t. $\mathbf{b}_2 \in \tilde{\mathbf{b}}_2 + [-\frac{1}{2}, \frac{1}{2}) \cdot \mathbf{b}_1$.
- 2 If $\|\mathbf{b}_2\|^2 < \frac{3}{4}\|\mathbf{b}_1\|^2$, swap $\mathbf{b}_1 \leftrightarrow \mathbf{b}_2$ and loop. Else end.
 - Claim 1: At end, $\|\tilde{\mathbf{b}}_2\|^2 \ge \frac{1}{2} \|\tilde{\mathbf{b}}_1\|^2$ (as desired). Proof: At end, $\frac{3}{4} \|\mathbf{b}_1\|^2 \le \|\mathbf{b}_2\|^2 \le \|\tilde{\mathbf{b}}_2\|^2 + \frac{1}{4} \|\mathbf{b}_1\|^2$.
 - Claim 2: Algorithm terminates after poly(|**B**|) many iterations. Proof: Define $\Phi(\mathbf{B}) = \|\tilde{\mathbf{b}}_1\|^2 \cdot \|\tilde{\mathbf{b}}_2\| = \|\mathbf{b}_1\| \cdot \det(\mathcal{L})$. When we swap, Φ decreases by $> \frac{\sqrt{3}}{2}$ factor. It starts as $2^{\text{poly}(|\mathbf{B}|)}$ and cannot go below 1.
- LLL in n dimensions: do similar loop on all adjacent pairs $\mathbf{b}_i, \mathbf{b}_{i+1}$.

Related: Shortest Independent Vectors Problem (SIVP $_{\gamma}$)

• Given basis **B**, find lin. ind. $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathcal{L}$ s.t. $\|\mathbf{v}_i\| \leq \gamma \cdot \lambda_n(\mathcal{L})$.

Related: Shortest Independent Vectors Problem (SIVP $_{\gamma}$)

• Given basis **B**, <u>find</u> lin. ind. $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathcal{L}$ s.t. $\|\mathbf{v}_i\| \leq \gamma \cdot \lambda_n(\mathcal{L})$.

LLL algorithm also solves SIVP_{2(n-1)/2}.

Related: Shortest Independent Vectors Problem (SIVP $_{\gamma}$)

- Given basis **B**, find lin. ind. $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathcal{L}$ s.t. $\|\mathbf{v}_i\| \leq \gamma \cdot \lambda_n(\mathcal{L})$.
- LLL algorithm also solves $SIVP_{2^{(n-1)/2}}$.
- We know $GapSVP_{\gamma} \leq SIVP_{\gamma}$, but the reverse direction is open!

Search: given basis B, point t, and real $d < \lambda_1/2$ s.t. $\operatorname{dist}(\mathbf{t}, \mathcal{L}) \leq d$, find the (unique) $\mathbf{v} \in \mathcal{L}$ closest to t.

Search: given basis B, point t, and real $d < \lambda_1/2$ s.t. $dist(t, \mathcal{L}) \leq d$, find the (unique) $v \in \mathcal{L}$ closest to t.

Equivalently, given coset $\mathbf{t} + \mathcal{L} \ni \mathbf{e}$ s.t. $\|\mathbf{e}\| \leq d$, find \mathbf{e} .

Search: given basis B, point t, and real $d < \lambda_1/2$ s.t. $dist(t, \mathcal{L}) \leq d$, find the (unique) $v \in \mathcal{L}$ closest to t.

Equivalently, given coset $\mathbf{t} + \mathcal{L} \ni \mathbf{e}$ s.t. $\|\mathbf{e}\| \leq d$, find \mathbf{e} .

Decision: given basis **B**, coset $\mathbf{t} + \mathcal{L}$, and real *d*, decide between

 $\operatorname{dist}(\mathbf{0}, \mathbf{t} + \mathcal{L}) \leq d \quad \underline{\operatorname{versus}} > \gamma \cdot d.$

Search: given basis B, point t, and real $d < \lambda_1/2$ s.t. $dist(t, \mathcal{L}) \leq d$, find the (unique) $v \in \mathcal{L}$ closest to t.

Equivalently, given coset $\mathbf{t} + \mathcal{L} \ni \mathbf{e}$ s.t. $\|\mathbf{e}\| \leq d$, find \mathbf{e} .

Decision: given basis **B**, coset $\mathbf{t} + \mathcal{L}$, and real d, decide between

 $\operatorname{dist}(\mathbf{0}, \mathbf{t} + \mathcal{L}) \leq d \quad \underline{\operatorname{versus}} \quad > \gamma \cdot d.$

Algorithms for BDD [Babai'86]

"Round off:" Using a "good" basis B, output $\mathbf{e} = \mathbf{t} \mod \mathbf{B}$. Works if $\mathsf{Ball}(d) \subseteq \mathcal{P}(\mathbf{B})$: radius $d = \min_i ||\mathbf{b}_i^{\perp}||/2$.

Algorithms for BDD [Babai'86]

"Round off:" Using a "good" basis B, output $\mathbf{e} = \mathbf{t} \mod \mathbf{B}$. Works if $\mathsf{Ball}(d) \subseteq \mathcal{P}(\mathbf{B})$: radius $d = \min_i ||\mathbf{b}_i^{\perp}||/2$.

"Nearest plane:" Output $\mathbf{e} = \mathbf{t} \mod \tilde{\mathbf{B}}$. Proceeds iteratively. Works if $\mathsf{Ball}(d) \subseteq \mathcal{P}(\tilde{\mathbf{B}})$: radius $d = \min_i \|\tilde{\mathbf{b}}_i\|/2$.

Wrapping Up

- Now you know (almost) everything you need to know about lattices (to do cryptography, at least).
- ▶ We've covered a lot: do the exercises to reinforce your understanding!
- Tomorrow: the cryptographic problems SIS and LWE (as SVP and BDD variants), and some basic applications.