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Abstract

We give direct constructions of pseudorandom function (PRF) families based on conjectured hard
lattice problems and learning problems. Our constructions are asymptotically efficient and highly
parallelizable in a practical sense, i.e., they can be computed by simple, relatively small low-depth
arithmetic or boolean circuits (e.g., in NC1 or even TC0). In addition, they are the first low-depth
PRFs that have no known attack by efficient quantum algorithms. Central to our results is a new
“derandomization” technique for the learning with errors (LWE) problem which, in effect, generates the
error terms deterministically.

1 Introduction and Main Results

The past few years have seen significant progress in constructing public-key, identity-based, and homomorphic
cryptographic schemes using lattices, e.g., [Reg05, PW08, GPV08, Gen09, CHKP10, ABB10a] and many
more. Part of their appeal stems from provable worst-case hardness guarantees (starting with the seminal
work of Ajtai [Ajt96]), good asymptotic efficiency and parallelism, and apparent resistance to quantum
attacks (unlike the classical problems of factoring integers or computing discrete logarithms).

Perhaps surprisingly, there has been comparatively less progress in using lattices for symmetric cryp-
tography, e.g., message authentication codes, block ciphers, and the like, which are widely used in practice.
While in principle most symmetric objects of interest can be obtained generically from any one-way function,
and hence from lattices, these generic constructions are usually very inefficient, which puts them at odds
with the high performance demands of most applications. In addition, generic constructions often use their
underlying primitives (e.g., one-way functions) in an inherently inefficient and sequential manner. While
most lattice-based primitives are relatively efficient and highly parallelizable in a practical sense (i.e., they
can be evaluated by small, low-depth circuits), those advantages are completely lost when plugging them
into generic sequential constructions. This motivates the search for specialized constructions of symmetric
objects that have comparable efficiency and parallelism to their lower-level counterparts.

Our focus in this work is on pseudorandom function (PRF) families, a central object in symmetric cryp-
tography first rigorously defined and constructed by Goldreich, Goldwasser, and Micali (“GGM”) [GGM84].
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Given a PRF family, most central goals of symmetric cryptography (e.g., encryption, authentication, identifica-
tion) have simple solutions that make efficient use of the PRF. Informally, a family of deterministic functions
is pseudorandom if no efficient adversary, given adaptive oracle access to a randomly chosen function from
the family, can distinguish it from a uniformly random function. The seminal GGM construction is based
generically on any length-doubling pseudorandom generator (and hence on any one-way function), but it
requires k sequential invocations of the generator when operating on k-bit inputs.

In contrast, by relying on a generic object called a “pseudorandom synthesizer,” or directly on concrete
number-theoretic problems (such as decision Diffie-Hellman, RSA, and factoring), Naor and Reingold [NR95,
NR97] and Naor, Reingold, and Rosen [NRR00] (see also [LW09, BMR10]) constructed very elegant and
more efficient PRFs, which can in principle be computed in parallel by low-depth circuits (e.g., in NC2

or TC0). However, achieving such low depth for their number-theoretic constructions requires extensive
preprocessing and enormous circuits, so their results serve mainly as a proof of theoretical feasibility rather
than practical utility.

In summary, thus far all parallelizable PRFs from commonly accepted cryptographic assumptions
rely on exponentiation in large multiplicative groups, and the functions (or at least their underlying hard
problems) can be broken by polynomial-time quantum algorithms. While lattices appear to be a natural
candidate for avoiding these drawbacks, and there has been some partial progress in the form of randomized
weak PRFs [ACPS09] and randomized MACs [Pie10, KPC+11], constructing an efficient, parallelizable
(deterministic) PRF under lattice assumptions has, frustratingly, remained open for some time now.

1.1 Results and Techniques

In this work we give the first direct constructions of PRF families based on lattices, via the learning with
errors (LWE) [Reg05] and ring-LWE [LPR10] problems, and some new variants. Our constructions are
highly parallelizable in a practical sense, i.e., they can be computed by relatively small low-depth circuits, and
the runtimes are also potentially practical. (However, their performance and key sizes are still far from those
of heuristically designed functions like AES.) In addition, (at least) one of our constructions can be evaluated
in the circuit class TC0 (i.e., constant-depth, poly-sized circuits with unbounded fan-in and threshold gates),
which asymptotically matches the shallowest known PRF constructions based on the decision Diffie-Hellman
and factoring problems [NR97, NRR00].

As a starting point, we recall that in their work introducing synthesizers as a foundation for PRFs [NR95],
Naor and Reingold described a synthesizer based on a simple, conjectured hard-to-learn function. At first
glance, this route seems very promising for obtaining PRFs from lattices, using LWE as the hard learning
problem (which is known to be as hard as worst-case lattice problems [Reg05, Pei09]). However, a crucial
point is that Naor and Reingold’s synthesizer uses a deterministic hard-to-learn function, whereas LWE’s
hardness depends essentially on adding random, independent errors to every output of a mod-q “parity”
function. (Indeed, without any error, parity functions are trivially easy to learn.) Probably the main obstacle
so far in constructing efficient lattice/LWE-based PRFs has been in finding a way to introduce (sufficiently
independent) error terms into each of the exponentially many function outputs, while still keeping the
function deterministic and its key size a fixed polynomial. As evidence, consider that recent constructions
of weaker primitives such as symmetric authentication protocols [HB01, JW05, KSS06], randomized weak
PRFs [ACPS09], and message-authentication codes [Pie10, KPC+11] from noisy-learning problems are
all inherently randomized functions, where security relies on introducing fresh noise at every invocation.
Unfortunately, this is not an option for deterministic primitives like PRFs.
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Derandomizing LWE. To resolve the above-described issues, our first main insight is a way of partially
“derandomizing” the LWE problem, i.e., generating the errors efficiently and deterministically, while pre-
serving hardness. This technique immediately yields a deterministic synthesizer and hence a simple and
parallelizable PRF, though with a few subtleties specific to our technique that we elaborate upon below.

Before we explain the derandomization idea, first recall the learning with errors problem LWEn,q,α in
dimension n (the main security parameter) with modulus q and error rate α. We are given many independent
pairs (ai, bi) ∈ Znq × Zq, where each ai is uniformly random, and the bi are all either “noisy inner products”
of the form bi = 〈ai, s〉 + ei mod q for a random secret s ∈ Znq and “small” random error terms ei ∈ Z
of magnitude ≈ αq, or are uniformly random and independent of the ai. The goal of the (decision) LWE
problem is to distinguish between these two cases, with any non-negligible advantage. In the ring-LWE
problem [LPR10], we are instead given noisy ring products bi ≈ ai · s, where s and the ai are random
elements of a certain polynomial ring Rq (the canonical example being Rq = Zq[z]/(zn + 1) for n a power
of 2), and the error terms are “small” in a certain basis of the ring; the goal again is to distinguish these
from uniformly random pairs. While the dimension n is the main hardness parameter, the error rate α also
plays a very important role in both theory and practice: as long as the “absolute” error αq exceeds

√
n

or so, (ring-)LWE is provably as hard as approximating conjectured hard problems on (ideal) lattices to
within Õ(n/α) factors in the worst case [Reg05, Pei09, LPR10]. Moreover, known attacks using lattice
basis reduction (e.g., [LLL82, Sch87]) or combinatorial/algebraic methods [BKW03, AG11] require time
2Ω̃(n/ log(1/α)), where the Ω̃(·) notation hides polylogarithmic factors in n. We emphasize that without the
error terms, (ring-)LWE would become trivially easy, and that all prior hardness results for LWE and its many
variants (e.g., [Reg05, Pei09, GKPV10, LPR10, Pie10]) require random, independent errors.

Our derandomization technique for LWE is very simple: instead of adding a small random error term to
each inner product 〈ai, s〉 ∈ Zq, we just deterministically round it to the nearest element of a sufficiently
“coarse” public subset of p � q well-separated values in Zq (e.g., a subgroup). In other words, the “error
term” comes solely from deterministically rounding 〈ai, s〉 to a relatively nearby value. Since there are only p
possible rounded outputs in Zq, it is usually easier to view them as elements of Zp and denote the rounded
value by b〈ai, s〉ep ∈ Zp. We call the problem of distinguishing such rounded inner products from uniform
samples the learning with rounding (LWRn,q,p) problem. Note that the problem can be hard only if q > p
(otherwise no error is introduced), that the “absolute” error is roughly q/p, and that the “error rate” relative
to q (i.e., the analogue of α in the LWE problem) is on the order of 1/p.

We show that for appropriate parameters, LWRn,q,p is at least as hard as LWEn,q,α for an error rate α
proportional to 1/p, giving us a worst-case hardness guarantee for LWR. In essence, the reduction relies
on the fact that with high probability, we have b〈a, s〉+ eep = b〈a, s〉ep when e is small relative to q/p,
while bU(Zq)ep ≈ U(Zp) where U denotes the uniform distribution. Therefore, given samples (ai, bi)
of an unknown type (either LWE or uniform), we can simply round the bi terms to generate samples of a
corresponding type (LWR or uniform, respectively). (The formal proof is somewhat more involved, because
it has to deal with the rare event that the error term changes the rounded value.) In the ring setting, the
derandomization technique and hardness proof based on ring-LWE all go through without difficulty as
well. While our proof needs both the ratio q/p and the inverse LWE error rate 1/α to be slightly super-
polynomial in n, the state of the art in attack algorithms indicates that as long as q/p is an integer (so that
bU(Zq)ep = U(Zp)) and is at least Ω(

√
n), LWR may be exponentially hard (even for quantum algorithms)

for any p = poly(n), and superpolynomially hard when p = 2n
ε

for any ε < 1.
We point out that in LWE-based cryptosystems, rounding to a fixed, coarse subset is a common method of

removing noise and recovering the plaintext when decrypting a “noisy” ciphertext; here we instead use it to
avoid having to introduce any random noise in the first place. We believe that this technique should be useful
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in many other settings, especially in symmetric cryptography. For example, the LWR problem immediately
yields a simple and practical pseudorandom generator that does not require extracting biased (e.g., Gaussian)
random values from its input seed, unlike the standard pseudorandom generators based on the LWE or LPN
(learning parity with noise) problems. In addition, the rounding technique and its implications for PRFs are
closely related to the “modulus reduction” technique from a concurrent and independent work of Brakerski
and Vaikuntanathan [BV11a] on fully homomorphic encryption from LWE, and a very recent follow-up work
of Brakerski, Gentry, and Vaikuntanathan [BGV11]; see Section 1.3 below for a discussion and comparison.

LWR-based synthesizers and PRFs. Recall from [NR95] that a pseudorandom synthesizer is a two-
argument function S(·, ·) such that, for random and independent sequences x1, . . . , xm and y1, . . . , ym
of inputs (for any m = poly(n)), the matrix of all m2 values zi,j = S(xi, yj) is pseudorandom (i.e.,
computationally indistinguishable from uniform). A synthesizer can be seen as an (almost) length-squaring
pseudorandom generator with good locality properties, in that it maps 2m random “seed” elements (the xi
and yj) to m2 pseudorandom elements, and any component of its output depends on only two components of
the input seed.

Using synthesizers in a recursive tree-like construction, Naor and Reingold gave PRFs on k-bit inputs,
which can be computed using a total of about k synthesizer evaluations, arranged nicely in only lg k levels
(depth). Essentially, the main idea is that given a synthesizer S(·, ·) and two independent PRF instances F0

and F1 on t input bits each, one gets a PRF on 2t input bits, defined as

F (x1 · · ·x2t) = S
(
F0(x1 · · ·xt) , F1(xt+1 · · ·x2t)

)
. (1.1)

The base case of a 1-bit PRF can trivially be implemented by returning one of two random strings in the
function’s secret key. Using particular NC1 synthesizers based on a variety of both concrete and general
assumptions, Naor and Reingold therefore obtain k-bit PRFs in NC2, i.e., having circuit depth O(log2 k).

We give a very simple and computationally efficient LWRn,q,p-based synthesizer Sn,q,p : Znq × Znq → Zp,
defined as

Sn,q,p(a, s) = b〈a, s〉ep. (1.2)

(In this and what follows, products of vectors or matrices over Zq are always performed modulo q.) Pseudoran-
domness of this synthesizer under LWR follows by a standard hybrid argument, using the fact that the ai vec-
tors given in the LWR problem are public. (In fact, the synthesizer outputs S(ai, sj) are pseudorandom even
given the ai.) To obtain a PRF using the tree construction of [NR95], we need the synthesizer output length
to roughly match its input length, so we actually use the synthesizer Tn,q,p(S1,S2) = bS1 · S2ep ∈ Zn×np for
Si ∈ Zn×nq . Note that the matrix multiplication can be done with a constant-depth, size-O(n2) arithmetic
circuit over Zq. Or for better space and time complexity, we can instead use the ring-LWR synthesizer
SR,q,p(s1, s2) = bs1 · s2ep, since the ring product s1 · s2 ∈ Rq is the same size as s1, s2 ∈ Rq. The ring
product can also be computed with a constant depth, size-O(n2) circuit over Zq, or in O(log n) depth and
only O(n log n) scalar operations using Fast Fourier Transform-like techniques [LMPR08, LPR10].

Using the recursive input-doubling construction from Equation (1.1) above, we get the following concrete
PRF with input length k = 2d. Let qd > qd−1 > · · · > q0 ≥ 2 be a chain of moduli where each qj/qj−1

is a sufficiently large integer, e.g., qj = qj+1 for some q ≥
√
n. The secret key is a set of 2k matrices

Si,b ∈ Zn×nqd
for each i ∈ {1, . . . , k} and b ∈ {0, 1}. Each pair (Si,0,Si,1) defines a 1-bit PRF Fi(b) = Si,b,

and these are combined in a tree-like fashion according to Equation (1.1) using the appropriate synthesizers
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Tn,qj ,qj−1 for j = d, . . . , 1. As a concrete example, when k = 8 (so x = x1 · · ·x8 and d = 3), we have

F{Si,b}(x) =

⌊⌊
bS1,x1 · S2,x2eq2· bS3,x3 · S4,x4eq2

⌉
q1
·
⌊
bS5,x5 · S6,x6eq2· bS7,x7 · S8,x8eq2

⌉
q1

⌉
q0

. (1.3)

(In the ring setting, we just use random elements si,b ∈ Rqd in place of the matrices Si,b.) Notice that the
function involves d = lg k levels of matrix (or ring) products, each followed by a rounding operation. In the
exemplary case where qj = qj+1, the rounding operations essentially drop the “least-significant” base-q digit,
so they can be implemented very easily in practice, especially if every qj is a power of 2. The function is also
amenable to all of the nice time/space trade-offs, seed-compression techniques, and incremental computation
ideas described in [NR95].

In the security proof, we rely on the conjectured hardness of LWRqj ,qj−1 for j = d, . . . , 1. The strongest
of these assumptions appears to be for j = d, and this is certainly the case when relying on our reduction from
LWE to LWR. For the example parameters qj = qj+1 where q ≈

√
n, the dominating assumption is therefore

the hardness of LWRqd+1,qd , which involves a quasi-polynomial inverse error rate of 1/α ≈ qd = nO(lg k).
However, because the strongest assumptions are applied to the “innermost” layers of the function, it is unclear
whether security actually requires such strong assumptions, or even whether the innermost layers need to be
rounded at all. We discuss these issues further in Section 1.2 below.

Degree-k synthesizers and shallower PRFs. One moderate drawback of the above function is that it
involves lg k levels of rounding operations, which appears to lower-bound the depth of any circuit computing
the function by Ω(lg k). Is it possible to do better?

Recall that in later works, Naor and Reingold [NR97] and Naor, Reingold, and Rosen [NRR00] gave
direct, more efficient number-theoretic PRF constructions which, while still requiring exponentiation in large
multiplicative groups, can in principle be computed in very shallow circuit classes like NC1 or even TC0.
Their functions can be interpreted as “degree-k” (or k-argument) synthesizers for arbitrary k = poly(n),
which immediately yield k-bit PRFs without requiring any composition. With this in mind, a natural question
is whether there are direct LWE/LWR-based synthesizers of degree k > 2.

We give a positive answer to this question. Much like the functions of [NR97, NRR00], ours have a
subset-product structure. We have public moduli q � p, and the secret key is a set of k matrices Si ∈ Zn×nq

(whose distributions may not necessarily be uniform; see below) for i = 1, . . . , k, along with a uniformly
random a ∈ Znq .1 The function F = Fa,{Si} : {0, 1}k → Znp is defined as the “rounded subset-product”

Fa,{Si}(x1 · · ·xk) =

⌊
at ·

k∏
i=1

Sxii

⌉
p

. (1.4)

The ring variant is analogous, replacing a with uniform a ∈ Rq (or R∗q , the set of invertible elements)
and each Si by some si ∈ Rq. This function is particularly efficient to evaluate using the discrete Fourier
transform, as is standard with ring-based primitives (see,e.g., [LMPR08, LPR10]). In addition, similarly
to [NR97, NRR00], one can optimize the subset-product operation via pre-processing, and evaluate the
function in TC0. We elaborate on these optimizations in Section 5.2.

For the security analysis of construction (1.4), we have meaningful security proofs under various condi-
tions on the parameters and computational assumptions, including standard LWE. In our LWE-based proof,
two important issues are the distribution of the secret key components Si, and the choice of moduli q and p.

1To obtain longer function outputs, we can replace a ∈ Znq with a uniformly random matrix A ∈ Zn×mq for any m = poly(n).

5



For the former, it turns out that our proof needs the Si matrices to be short, i.e., their entries should be drawn
from the LWE error distribution. (LWE is no easier to solve for such short secrets [ACPS09].) This appears
to be an artifact of our proof technique, which can be viewed as a variant of our LWE-to-LWR reduction,
enhanced to handle adversarial queries. Summarizing the approach, define

G(x) = Ga,{Si}(x) := at ·
∏
i

Sxii

to be the subset-product function inside the rounding operation of (1.4). The fact that F = bGep lets us
imagine adding independent error terms to each distinct output of G, but only as part of a thought experiment
in the proof. More specifically, we consider a related randomized function G̃ = G̃a,{Si} : {0, 1}k → Znq
that computes the subset-product by multiplying by each Sxii in turn, but then also adds a fresh error term
immediately following each multiplication. Using the LWE assumption and induction on k, we can show that
the randomized function G̃ is itself pseudorandom (over Zq), hence so is bG̃ep (over Zp). Moreover, we show
that for every queried input, with high probability bG̃ep coincides with bGep = F , because G and G̃ differ
only by a cumulative error term that is small relative to q—this is where we need to assume that the entries of
Si are small. Finally, because bG̃ep is a (randomized) pseudorandom function over Zp that coincides with
the deterministic function F on all queries, we can conclude that F is pseudorandom as well.

In the above-described proof strategy, the gap between G and G̃ grows exponentially in k, because we
add a separate noise term following each multiplication by an Si, which gets enlarged when multiplied by
all the later Si. So in order to ensure that bG̃ep = bGep on all queries, our LWE-based proof needs both the
modulus q and inverse error rate 1/α to exceed nΩ(k). In terms of efficiency and security, this compares
rather unfavorably with the quasipolynomial nO(lg k) bound in the proof for our tree-based construction,
though on the positive side, the direct degree-k construction has better circuit depth. However, just as with
construction (1.3) it is unclear whether such strong assumptions and large parameters are actually necessary
for security, or whether the matrices Si really need to be short.

In particular, it would be nice if the function in (1.4) were secure if the Si matrices were uniformly
random over Zn×nq , because we could then recursively compose the function in a k-ary tree to rapidly extend
its input length.2 It would be even better to have a security proof for a smaller modulus q and inverse error rate
1/α, ideally both polynomial in n even for large k. While we have been unable to find such a security proof
under standard LWE, we do give a very tight proof under a new, interactive “related samples” LWE/LWR
assumption. Roughly speaking, the assumption says that LWE/LWR remains hard even when the sampled
ai vectors are related by adversarially chosen subset-products of up to k given random matrices (drawn
from some known distribution). This provides some evidence that the function may indeed be secure for
appropriately distributed Si, small modulus q, and large k. For further discussion, see Section 1.2.

PRFs via the GGM construction. The above constructions aim to minimize the depth of the circuit
evaluating the PRF. However, if parallel complexity is not a concern, and one wishes to minimize the
total amount of work per PRF evaluation (or the seed length), then the original GGM construction with an
LWR-based pseudorandom generator may turn out to be even more efficient in practice.

Recall that the GGM construction makes generic use of any length-doubling pseudorandom generator
G : {0, 1}n → {0, 1}2n. The generator’s output G(s) is viewed as a pair (G0(s), G1(s)), where |G0(s)| =
|G1(s)| = n. The key for a member of the PRF family is a seed s for G, and on input x ∈ {0, 1}k the

2Note that we can always compose the degree-k function with our degree-2 synthesizers from above, but this would only yield a
tree with 2-ary internal nodes.
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function is defined as
Fs(x1 · · ·xk) = Gxk(Gxk−1

(· · ·Gx1(s) · · · )). (1.5)

As mentioned above, the LWR problem immediately yields a simple and practical pseudorandom generator
that, in contrast to the generators obtained from the LWE or LPN problems, does not require extracting
biased random error terms from its input seed. By plugging this generator into the GGM construction
we immediately get a PRF whose evaluation involves precisely k sequential evaluations of the underlying
generator.

The LWR-based generator that we have in mind is a function GA : Znq → Zmp , where the moduli q � p
and the (uniformly random) matrix A ∈ Zn×mq are publicly known. Given a seed s ∈ Znq , the generator is
defined as

GA(s) =
⌊
At · s

⌉
p
. (1.6)

The generator’s seed length (in bits) is n log2 q and its output length is m log2 p, which gives an expansion
rate of (m log2 p)/(n log2 q) = (m/n) logq p. For example, to obtain a length-doubling generator we may
set q = p2 = 22k > n and m = 4n. (Other choices yielding different expansion rates are of course possible.)
This choice of parameters has the additional benefit of admitting a practical implementation of the rounding
and inner-product operations. Note also that when evaluating the resulting PRF, one can get the required part
of GA(s) by computing only the inner products of s with the corresponding columns of A, not the entire
product At · s.

For an even faster implementation one may replace GA by its analogous ring variant, obtained by
replacing A ∈ Zn×mq with uniform a ∈ Rmq , and s ∈ Znq with uniform s ∈ Rq. As noted before, the ring
variant is particularly efficient to evaluate using Fast Fourier Transform-like algorithms.

1.2 Discussion and Open Questions

The quasipolynomial nO(log k) or exponential nO(k) moduli and inverse error rates used in our LWE-based
security proofs are comparable to those used in recent fully homomorphic encryption (FHE) schemes
(e.g., [Gen09, vGHV10, BV11b, BV11a, BGV11]), hierarchical identity-based encryption (HIBE) schemes
(e.g., [CHKP10, ABB10a, ABB10b]), and other lattice-based constructions. However, there appears to be a
major difference between our use of such strong assumptions, and that of schemes such as FHE/HIBE in
the public-key setting. Constructions of the latter systems actually reveal LWE samples having very small
error rates (which are needed to ensure correctness of decryption) to the attacker, and the attacker can break
the cryptosystems by solving those instances. Therefore, the underlying assumptions and the true security
of the schemes are essentially equivalent. In contrast, our PRF uses (small) errors only as part of a thought
experiment in the security proof, not for any purpose in the operation of the function itself. This leaves open
the possibility that our functions (or slight variants) remain secure even for much larger input lengths and
smaller moduli than our proofs require. We conjecture that this is the case, even though we have not yet found
security proofs (under standard assumptions) for these more efficient parameters. Certainly, determining
whether there are effective cryptanalytic attacks is a very interesting and important research direction.

Note that in our construction (1.4), if we draw the secret key components from the uniform (or error)
distribution and allow k to be too large relative to q, then the function can become insecure via a simple
attack (and our new “interactive” LWR assumption, which yields a tight security proof, becomes false).
This is easiest to see for the ring-based function: representing each si ∈ Rq by its vector of “Fourier
coefficients” over Znq , each coefficient is 0 with probability about 1/q (depending on the precise distribution
of si). Therefore, with noticeable probability the product of k = O(q log n) random si will have all-0 Fourier
coefficients, i.e., will be 0 ∈ Rq. In this case our function will return zero on the all-1s input, in violation
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of the PRF requirement. (A similar but more complicated analysis can also be applied to the matrix-based
function.) Of course, an obvious countermeasure is just to restrict the secret key components to be invertible;
to our knowledge, this does not appear to have any drawback in terms of security. In fact, it is possible to
show that the decision-(ring-)LWE problem remains hard when the secret is restricted to be invertible (and
otherwise drawn from the uniform or error distribution), and this fact may be useful in further analysis of the
function with more efficient parameters.

In summary, our work raises several interesting concrete questions, including:

• Is LWRn,q,p really exponentially hard for p = poly(n) and sufficiently large integer q/p = poly(n)?
Are there stronger worst-case hardness guarantees than our current proof based on LWE?

• Is there a security proof for construction (1.4) (with k = ω(1)) for poly(n)-bounded moduli and
inverse error rates, under a non-interactive assumption?

• In construction (1.4), is there a security proof (under a non-interactive assumption) for uniformly
random Si? Is there any provable security advantage to using invertible Si?

• Our derandomization technique and LWR problem require working with moduli q greater than 2. Is
there an efficient, parallel PRF construction based on the learning parity with noise (LPN) problem?

1.3 Other Related Work

Most closely related to the techniques in this work are two very recent results of Brakerski and Vaikun-
tanathan [BV11a] and a follow-up work of Brakerski, Gentry, and Vaikuntanathan [BGV11] on fully homo-
morphic encryption from LWE. In particular, the former work includes a “modulus reduction” technique for
LWE-based cryptosystems, which maps a large-modulus ciphertext to a small-modulus one; this induces a
shallower decryption circuit and allows the system to be “bootstrapped” into a fully homomorphic scheme
using the techniques of [Gen09]. The modulus-reduction technique involves a rounding operation much like
the one we use to derandomize LWE; while they use it on ciphertexts that are already “noisy,” we apply it
to noise-free LWE samples. Our discovery of the rounding/derandomization technique in the PRF context
was independent of [BV11a]. In fact, the first PRF and security proof we found were for the direct degree-k
construction defined in (1.4), not the synthesizer-based construction in (1.3). As another point of comparison,
the “somewhat homomorphic” cryptosystem from [BV11a] that supports degree-k operations (along with all
prior ones, e.g., [Gen09, vGHV10]) involves an inverse error rate of nO(k), much like the LWE-based proof
for our degree-k synthesizer.

Building on the modulus reduction technique of [BV11a], Brakerski et al. [BGV11] showed that homo-
morphic cryptosystems can support certain degree-k functions using a much smaller modulus and inverse
error rate of nO(log k). The essential idea is to interleave the homomorphic operations with several “small”
modulus-reduction steps in a tree-like fashion, rather than performing all the homomorphic operations
followed by one “huge” modulus reduction. This very closely parallels the difference between our direct
degree-k synthesizer and the Naor-Reingold-like [NR95] composed synthesizer defined in (1.3). Indeed, after
we found construction (1.4), the result of [BGV11] inspired our search for a PRF having similar tree-like
structure and quasipolynomial error rates. Given our degree-2 synthesizer, the solution turned out to largely
be laid out in the work of [NR95]. We find it very interesting that the same quantitative phenomena arise in
two seemingly disparate settings (PRFs and FHE).
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1.4 Organization

The rest of the paper is organized as follows. In Section 2 we recall the necessary preliminaries regarding
PRFs and the (ring-)LWE problem. In Section 3 we introduce the “learning with rounding” (LWR) problem
and discuss its relationship with LWE. In Section 4 we describe LWR-based (degree-2) synthesizers and the
PRFs that follow from them. In Section 5 we describe our direct degree-k synthesizer/PRF and its security
proofs under the LWE and “subset-product” LWR problem.

2 Preliminaries

For a probability distribution X over a domain D, let Xn denote its n-fold product distribution over Dn.
The uniform distribution over a finite domain D is denoted by U(D). The discrete Gaussian probability
distribution over Z with parameter r > 0, denoted DZ,r, assigns probability proportional to exp(−πx2/r2)
to each x ∈ Z. It is possible to efficiently sample from this distribution (up to negl(n) statistical distance) via
rejection [GPV08].

For any integer modulus q ≥ 2, Zq denotes the quotient ring of integers modulo q. We define a ‘rounding’
function b·ep : Zq → Zp, where q ≥ p ≥ 2 will be apparent from the context, as

bxep = b(p/q) · x̄e mod p, (2.1)

where x̄ ∈ Z is any integer congruent to x mod q. We extend b·ep component-wise to vectors and matrices
over Zq, and coefficient-wise (with respect to the “power basis”) to the quotient ring Rq defined in the next
subsection. Note that we can use any other common rounding method, like the floor b·c, or ceiling d·e
functions, in Equation 2.1 above, with only minor changes to our proofs. In implementations, it may be
advantageous to use the floor function b·c when q and p are both powers of some common base b (e.g., 2). In
this setting, computing b·cp is equivalent to dropping the least-significant digit(s) in base b.

2.1 Pseudorandom Functions

The main security parameter through this paper is n, and all algorithms (including the adversary) are implicitly
given the security parameter n in unary. We write negl(n) to denote an arbitrary negligible function in n, one
that vanishes faster than the inverse of any polynomial. We say that a probability is overwhelming if it is
1− negl(n).

We consider adversaries interacting as part of probabilistic experiments called games. For an adversary
A and two games H0, H1 with which it can interact, A’s distinguishing advantage (implicitly, as a function
of n) is AdvH0,H1(A) := |Pr[A accepts in H0]− Pr[A accepts in H1]|.

Definition 2.1 (Computational Indistinguishability). We say that games H0, H1 are computationally indistin-
guishable, written H0

c
≈ H1, if AdvH0,H1(A) = negl(n) for any probabilistic polynomial-time A.

By the triangle inequality,
c
≈ is a transitive relation over any poly(n)-length sequence of games. If

H0
c
≈ H1 and S is any probabilistic polynomial-time algorithm, then the outputs of S playing in games H0

and H1 (respectively) are also computationally indistinguishable.

Definition 2.2 (Pseudorandom functions). Let A and B be finite sets, and let F = {Fi : A→ B} be a
function family, endowed with an efficiently sampleable distribution (more precisely, F , A and B are all
indexed by the security parameter n). We say thatF is a pseudorandom function (PRF) family if the following
two games are computationally indistinguishable:
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1. Choose a function F ← F and give the adversary adaptive oracle access to F (·).

2. Choose a uniformly random function U : A→ B and give the adversary adaptive oracle access to U(·).

To efficiently simulate access to a uniformly random function U : A → B, one may think of a process in
which the adversary’s queries are “lazily” answered with independently and randomly chosen elements in B,
while keeping track of the answers so that queries made more than once are answered consistently.

2.2 (Ring) Learning With Errors

We recall the learning with errors (LWE) problem due to Regev [Reg05] and its ring analogue by Lyuba-
shevsky, Peikert, and Regev [LPR10]. For positive integer dimension n (the security parameter) and modulus
q ≥ 2, a probability distribution χ over Z, and a vector s ∈ Znq , define the LWE distribution As,χ to be
the distribution over Znq × Zq obtained by choosing a vector a ← Znq uniformly at random, an error term
e ← χ, and outputting (a, b = 〈a, s〉 + e mod q). We use the following “normal form” of the decision-
LWEn,q,χ problem, which is to distinguish (with advantage non-negligible in n) between any desired number
m = poly(n) of independent samples (ai, bi) ← As,χ where s ← χn mod q is chosen from the (folded)
error distribution, and the same number of samples from the uniform distribution U(Znq × Zq). This form of
the problem is as hard as the one where s ∈ Znq is chosen uniformly at random [ACPS09].

We extend the LWE distribution to w ≥ 1 secrets, defining AS,χ for S ∈ Zn×wq to be the distribution
obtained by choosing a ← Znq , an error vector et ← χw, and outputting (a,bt = atS + et mod q). By a
standard hybrid argument, distinguishing such samples (for S← χn×w) from uniformly random is as hard
as decision-LWEn,q,χ, for any w = poly(n). It is often convenient to group many (say, m) sample pairs
together in matrices. This allows us to express the LWE problem as: distinguish any desired number of pairs
(At,Bt = AtS + E mod q) ∈ Zm×nq × Zm×wq , for the same S, from uniformly random.

For certain moduli q and (discrete) Gaussian error distributions χ, the decision-LWE problem is as hard
as the search problem, where the goal is to find s given samples from As,χ (see, e.g., [Reg05, Pei09, ACPS09,
MM11], and [MP11] for the mildest known requirements on q, which include the case where q is a power
of 2). In turn, for χ = DZ,r with r = αq ≥ 2

√
n, the search problem is as hard as approximating worst-case

lattice problems to within Õ(n/α) factors; see [Reg05, Pei09] for precise statements.3

Ring-LWE. For simplicity of exposition, we use the following special case of the ring-LWE problem. (Our
results can be extended to the more general form defined in [LPR10].) Throughout the paper we let R denote
the cyclotomic polynomial ring R = Z[z]/(zn+1) for n a power of 2. (Equivalently, R is the ring of integers
Z[ω] for ω = exp(πi/n).) For any integer modulus q, define the quotient ring Rq = R/qR. An element of
R can be represented as a polynomial (in z) of degree less than n having integer coefficients; in other words,
the “power basis” {1, z, . . . , zn−1} is a Z-basis for R. Similarly, it is a Zq-basis for Rq.

For a modulus q, a probability distribution χ over R, and an element s ∈ Rq, the ring-LWE (RLWE)
distribution As,χ is the distribution over Rq ×Rq obtained by choosing a ∈ Rq uniformly at random, an error
term x← χ, and outputting (a, b = a ·s+x mod qR). The normal form of the decision-RLWER,q,χ problem
is to distinguish (with non-negligible advantage) between any desired number m = poly(n) of independent
samples (ai, bi) ← As,χ where s ← χ mod q, and the same number of samples drawn from the uniform

3It is important to note that the original hardness result of [Reg05] for search-LWE is for a continuous Gaussian error distribution,
which when rounded naı̈vely to the nearest integer does not produce a true discrete Gaussian DZ,r . Fortunately, a suitable randomized
rounding method does so [Pei10].
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distribution U(Rq ×Rq). We will use the error distribution χ over R where each coefficient (with respect to
the power basis) is chosen independently from the discrete Gaussian DZ,r for some r = αq ≥ ω(

√
n log n).

For a prime modulus q = 1 mod 2n and the error distribution χ described above, the decision-RLWE
problem is as hard as the search problem, via a reduction that runs in time q · poly(n) [LPR10]. In turn, the
search problem is as hard as quantumly approximating worst-case problems on ideal lattices.4

To bound products of samples drawn from the error distribution χ over R, we recall a useful result
from [LPR10].

Lemma 2.3. Let χ be the distribution over the ring R where each coefficient (with respect to the power basis)
is chosen independently from DZ,r for some r > 0, and let t = ω(

√
log n) denote any function that grows

asymptotically faster than
√

log n. Then in the product of k ≥ 1 independent samples drawn from χ, every
coefficient is bounded in magnitude by (r

√
n · t)k/

√
n, except with exp(−Ω(t2)) = negl(n) probability.

2.3 Subgaussian Distributions and Random Matrices

A random variable X over R (or its distribution) with E[X] = 0 is subgaussian with parameter r > 0
if it has Gaussian tails, i.e., for all t > 0, Pr[|X| > t] ≤ 2 exp(−π(t/r)2).5 In particular, DZ,r is
subgaussian with parameter r [Ban95]. Here we recall a useful result from the non-asymptotic theory of
random matrices [Ver11], which bounds the largest singular value (sometimes called the spectral norm)
s1(X) := maxu6=0‖Xu‖/‖u‖ of a matrix with independent subgaussian entries.

Lemma 2.4. Let X ∈ Rn×m be a random matrix (or vector) whose entries are drawn independently from
(not necessarily identical) subgaussian distributions with common parameter r. There exists a universal
constant C > 0 such that s1(X) ≤ r · C(

√
m+

√
n) except with probability at most 2−Ω(m+n).

3 The Learning With Rounding Problem

We now define the “learning with rounding” (LWR) problem and its ring analogue, which are like “derandom-
ized” versions of the usual (ring)-LWE problems, in that the error terms are chosen deterministically.

Definition 3.1. Let n ≥ 1 be the main security parameter and moduli q ≥ p ≥ 2 be integers.

• For a vector s ∈ Znq , define the LWR distribution Ls to be the distribution over Znq × Zp obtained by
choosing a vector a← Znq uniformly at random, and outputting (a, b = b〈a, s〉ep).

• For s ∈ Rq (defined in Section 2.2), define the ring-LWR (RLWR) distribution Ls to be the distribution
over Rq ×Rp obtained by choosing a← Rq uniformly at random and outputting (a, b = ba · sep).

For a given distribution over s ∈ Znq (e.g., the uniform distribution), the decision-LWRn,q,p problem is
to distinguish (with advantage non-negligible in n) between any desired number of independent samples
(ai, bi) ← Ls, and the same number of samples drawn uniformly and independently from Znq × Zp. The
decision-RLWRR,q,p problem is defined analogously.

4More accurately, to prove that the search problem is hard for an a priori unbounded number of RLWE samples, the worst-case
connection from [LPR10] requires the error distribution’s parameters to themselves be chosen at random from a certain distribution.
Our constructions are easily modified to account for this subtlety, but for simplicity, we ignore this issue and assume hardness for a
fixed, public error distribution.

5This simple definition will suffice for our purposes, because we will always use mean-zero distributions. For a more general
definition that applies to any distribution, see [MP11].
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Note that we have defined LWR exclusively as a decision problem, as this is the only form of the problem
we will need. By a simple (and by now standard) hybrid argument, the (ring-)LWR problem is no easier,
up to a poly(n) factor in advantage, if we reuse each public ai across several independent secrets. That is,
distinguishing samples (ai, b〈ai, s1〉ep, . . . , b〈ai, s`〉ep) ∈ Znq × Z`p from uniform, where each sj ∈ Znq is
chosen independently for any ` = poly(n), is at least as hard as decision-LWR for a single secret s. An
analogous statement also holds for ring-LWR.

3.1 Reduction from LWE

We now show that for appropriate parameters, decision-LWR is at least as hard as decision-LWE. We say
that a probability distribution χ over R (more precisely, a family of distributions χn indexed by the security
parameter n) is B-bounded (where B = B(n) is a function of n) if Prx←χ[|x| > B] ≤ negl(n). Similarly, a
distribution over the ring R is B-bounded if the marginal distribution of every coefficient (with respect to the
power basis) of an x← χ is B-bounded.

Theorem 3.2. Let χ be any efficiently sampleable B-bounded distribution over Z, and let q ≥ p ·B · nω(1).
Then for any distribution over the secret s ∈ Znq , solving decision-LWRn,q,p is at least as hard as solving
decision-LWEn,q,χ for the same distribution over s. The same holds true for RLWRR,q,p and RLWER,q,χ, for
any B-bounded χ over R.

We note that although our proof uses a super-polynomial q = nω(1), as long as q/p ≥
√
n is an integer,

the LWR problem appears to be exponentially hard (in n) for any p = poly(n), and super-polynomially hard
for p ≤ 2n

ε
for any ε < 1, given the state of the art in noisy learning algorithms [BKW03, AG11] and lattice

reduction algorithms [LLL82, Sch87]. We also note that in our proof, we do not require the error terms drawn
from χ in the LWE samples to be independent; we just need them all to have magnitude bounded by B with
overwhelming probability.

Proof of Theorem 3.2. We give a detailed proof for the LWR case; the one for RLWR proceeds essentially
identically. The main idea behind the reduction is simple: given pairs (ai, bi) ∈ Znq × Zq which are
distributed either according to an LWE distribution As,χ or are uniformly random, we translate them into
the pairs (ai, bbiep) ∈ Znq × Zp, which we show will be distributed according to the LWR distribution Ls

(with overwhelming probability) or uniformly random, respectively. Proving this formally takes some care,
however. We proceed via a sequence of games.

Game H0. This is the real attack game against the LWR distribution. That is, we choose s and upon request
generate and give the attacker independent samples from Ls.

Game H1. Here the attack is against a ‘rounded’ version of the LWE distribution As,χ. That is, we first
choose s. Then each time the attacker requests a sample, we generate a pair (a, b) distributed according to
As,χ (that is, choose a ← Znq and b = 〈a, s〉 + x for x ← χ), and return the pair (a, bbep), but with one
exception: we define a ‘bad event’ BAD to be

BAD := bb+ [−B,B]ep 6= {bbep} .

That is, BAD indicates whether b is “too close” to some value in Zq having a different rounded value. (In
other words, rounding the sample (a, b) from As,χ may give a different result than the corresponding sample
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(a, b〈a, s〉ep) from the Ls distribution.) If BAD occurs on any of the attacker’s requests for a sample, we
immediately abort the game.

If BAD does not occur for a particular sample (a, b), then we have bbep := b〈a, s〉+ xep = b〈a, s〉ep
with overwhelming probability over the choice of x← χ, because χ is B-bounded. It immediately follows
that for any (potentially unbounded) attacker A,

AdvH0,H1(A) ≤ Pr[BAD occurs in H1 with attacker A] + negl(n). (3.1)

We do not directly bound the probability of BAD occurring in H1, instead deferring it to the analysis of the
next game, where we can show that it is indeed negligible.

Game H2. Here whenever the attacker requests a sample, we choose (a, b) ∈ Znq ×Zq uniformly at random
and give (a, bbep) to the attacker, subject to the same “bad event” and abort condition as described in the
game H1 above. Under the decision-LWE assumption and by the fact that BAD can be tested efficiently
given b, a straightforward reduction implies that AdvH1,H2(A) ≤ negl(n) for any efficient attacker A. For
the same reason, it also follows that

|Pr[BAD occurs in H1]− Pr[BAD occurs in H2]| ≤ negl(n).

Now for each uniform b, Pr[BAD occurs on b in H2] ≤ (2B + 1) · p/q = negl(n), by assumption on q. It
follows by a union bound over all the samples, and Equation (3.1), that

Pr[BAD occurs in H1 with A] ≤ negl(n) ⇒ AdvH0,H1(A) = negl(n).

Game H3. This game is similar to the game H2, with pairs (a, b) ∈ Znq × Zq being chosen uniformly at
random and BAD being defined similarly. However, in this game we always return (a, bbep) to the attacker,
even when BAD occurs. By the analysis above, we have that for any (potentially unbounded) attacker A,

AdvH2,H3(A) ≤ Pr[BAD occurs in H3 with A] = Pr[BAD occurs in H2 with A] = negl(n).

Game H4. In this game we give the attacker samples drawn uniformly from Znq × Zp. The statistical
distance between U(Znq × Zp) and U(Znq )× bU(Zq)ep is at most p/q = negl(n) by assumption on q, so by
a union bound over all the poly(n) samples, we have AdvH3,H4(A) = negl(n) for any efficient attacker A.

Finally, by the triangle inequality, we have AdvH0,H4(A) = negl(n) for any efficient adversary A,
which completes the proof. Essentially the same proof works for the RLWR problem as well.

4 Synthesizer-Based PRFs

We now describe the LWR-based synthesizer and our construction of a PRF from it. We first define a
pseudorandom synthesizer, slightly modified from the definition proposed by Naor and Reingold [NR95].

Let S : A×A→ B be a function (where A and B are finite domains, which along with S are implicitly
indexed by the security parameter n) and let X = (x1, . . . , xk) ∈ Ak and Y = (y1, . . . , y`) ∈ A` be two
sequences of inputs. Then CS(X,Y ) ∈ Bk×` is defined to be the matrix with S(xi, yj) as its (i, j)th entry.
(Here C stands for combinations.)
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Definition 4.1 (Pseudorandom Synthesizer). We say that a function S : A × A → B is a pseudorandom
synthesizer if it is polynomial-time computable, and if for every poly(n)-bounded k = k(n), ` = `(n),

CS

(
U(Ak) , U(A`)

) c
≈ U

(
Bk×`).

That is, the matrix CS(X,Y ) for uniform and independent X ← Ak, Y ← A` is computationally indistin-
guishable from a uniformly random k-by-` matrix over B.

4.1 Synthesizer Constructions

We now describe synthesizers whose security is based on the (ring-)LWR problem.

Definition 4.2 ((Ring-)LWR Synthesizer). For moduli q > p ≥ 2, the LWR synthesizer is the function
Sn,q,p : Znq × Znq → Zp defined as

Sn,q,p(x,y) = b〈x,y〉ep.

The RLWR synthesizer is the function SR,q,p : Rq ×Rq → Rp defined as

SR,q,p(x, y) = bx · yep.

Theorem 4.3. Assuming the hardness of decision-LWRn,q,p (respectively, decision-RLWRR,q,p) for a uni-
formly random secret, the function Sn,q,p (respectively, SR,q,p) given in Definition 4.2 above is a pseudoran-
dom synthesizer.

It follows generically from this theorem that the function Tn,q,p : Zn×nq × Zn×nq → Zn×np , defined as
Tn,q,p(X,Y) = bX ·Yep, is also a pseudorandom synthesizer, since by the definition of matrix multiplica-
tion, we only incur a factor of n increase in the length of the input sequences. This is the synthesizer that we
use below in the construction of a PRF.

Proof of Theorem 4.3. Let `, k = poly(n) be arbitrary. Let X = (x1, . . . ,xk) and Y = (y1, . . . ,y`) be
uniformly random and independent sequences of Znq -vectors. Assuming the hardness of “multiple secrets”
version of decision-LWRn,q,p (see the remark following Definition 3.1), we have that the tuples(

xi, b〈xi,y1〉ep, . . . , b〈xi,y`〉ep
)
∈ Znq × Z`p

for i = 1, . . . , k are computationally indistinguishable from uniform and independent. That is,(
(xi)i∈[k],CS(X,Y )

) c
≈ U(Zn×kq × Zk×`p ).

From this stronger fact, we have that CS(X,Y )
c
≈ U(Zk×`p ), as desired. Essentially the same proof works

for the RLWR synthesizer as well.

4.2 The PRF Construction

Definition 4.4 ((Ring-)LWR PRF). For parameters n ∈ N, input length k = 2d ≥ 1, and moduli qd ≥
qd−1 ≥ . . . ≥ q0 ≥ 2, the LWR family F (j) for 0 ≤ j ≤ d is defined inductively to consist of functions from
{0, 1}2j to Zn×nqd−j

. We define F = F (d).

• For j = 0, a function F ∈ F (0) is indexed by Sb ∈ Zn×nqd
for b ∈ {0, 1}, and is defined simply as

F{Sb}(x) = Sx. We endow F (0) with the distribution where the Sb are uniform and independent.
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• For j ≥ 1, a function F ∈ F (j) is indexed by some F0, F1 ∈ F (j−1), and is defined as

FF0,F1(x0, x1) = T (j)
(
F0(x0) , F1(x1)

)
where |x0| = |x1| = 2j−1 and T (j) = Tn,qd−j+1,qd−j is the appropriate synthesizer. We endow F (j)

with the distribution where F0 and F1 are chosen independently from F (j−1).

More explicitly, F ∈ F is indexed by a set of matrices {Si,b} (where i ∈ [k], b ∈ {0, 1}), and for input
x = x1 · · ·xk is defined as

F{Si,b}(x) =

⌊
· · ·
⌊
bS1,x1 · S2,x2eqd−1

· bS3,x3 · S4,x4eqd−1

⌉
qd−2

· · ·
⌊
Sk−1,xk−1

· Sk,xk
⌉
qd−1
· · ·
⌉
q0

.

The ring-LWR familyRF (j) is defined similarly to consist of functions from {0, 1}2j to Rqd−j , where
in the base case (j = 0) we replace each Sb with a uniformly random sb ∈ Rqd , and in the inductive case
(j ≥ 1) we use the ring-LWR synthesizer S(j) = SR,qd−j+1,qd−j .

S1,0 S1,1 S2,0 S2,1 Sk,0 Sk,1S3,0 S3,1 S4,0 S4,1

Tn,qd,qd−1
Tn,qd,qd−1

Tn,qd,qd−1

Tn,qd−1,qd−2

Tn,q1,q0

Figure 1: The synthesizer-based PRF evaluated on the input 0111 . . . 0

We remark that the recursive LWR-based construction above does not have to use square matrices; any
legal dimensions would be acceptable with no essential change to the security proof. Square matrices appear
to give the best combination of seed size, computational efficiency, and input/output lengths.

4.3 Efficiency

Consider a function in either one of the families F orRF from Definition 4.4. Computing the function at
any given point x ∈ {0, 1}k can be done in a tree-like fashion using a tree of depth d = lg k, where each
node of the tree corresponds to an evaluation of an appropriate synthesizer. Each synthesizer involves a single
matrix (or ring) product mod qd−j+1, followed by a rounding step. Here we discuss implementations of the
synthesizers, describing both the simplest practical methods along with depth-optimized parallel solutions
(which rely on preprocessing and use larger circuits). In summary, the synthesizers can be computed by
small, low-depth arithmetic circuits; moreover, in principle they can be implemented in TC0, the class of
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constant-depth, poly(n)-sized circuits with unbounded fan-in and threshold gates (which is a subset of NC1).
Therefore, the PRFs can be implemented in TC1, which matches the best constructions from [NR95].

In a practical sequential implementation, we can use any fast matrix multiplication algorithm (e.g.,
Strassen’s), and we can multiply ring elements (in the standard power basis) in O(n log n) scalar operations
mod q (see, e.g., [LPR10]). In a practical parallel implementation, we can compute a matrix multiplication in
the natural way using a size-O(n2), depth-2 arithmetic circuit over Zq, where the first layer of multiplication
gates have fan-in 2 and the second layer of addition gates has fan-in n. The same is true for a product of ring
elements in Rq, since it can be expressed as a matrix-vector product: multiplication by any fixed element
a ∈ Rq is a linear transformation.

For computing a synthesizer Tn,q,p in TC0, we note that a matrix product consists of n2 parallel inner
products of n-dimensional vectors, which each involve a multi-sum of (binary) scalar products modulo q.
The subsequent rounding step simply amounts to dropping some of the least-significant digits if q and p are
both powers of the same small base, or more generally, multiplying by p/q (under suitable precision) and
truncating. Both operations can be performed in TC0, for any q = 2poly(n) [RT92].

Interestingly, once we allow for threshold gates, there seems to be no asymptotic improvement in depth
for the ring-based synthesizer SR,q,p. This is because threshold circuits enable binary matrix product to be
computed in constant depth, and the depth of computing the PRF is anyway dominated by d, the depth of the
tree. The gains in efficiency obtained by using a ring-based construction will be much more pronounced in
the case of the degree-k synthesizers described in Section 5. We discuss these gains in detail in Section 5.2.

We remark that Naor and Reingold [NR95] describe several nice optimizations and additional features of
their synthesizer-based PRFs, including compression of the secret key and faster amortized computation for a
sequence of related inputs. Our functions are amenable to all these techniques as well.

4.4 Security Proof

The security proof for our PRF hinges on the fact that the functions T (j) = Tn,qd−j+1,qd−j are synthesizers for
appropriate choices of the moduli. In fact, the proof is essentially identical to Naor and Reingold’s [NR95]
for their PRF construction from pseudorandom synthesizers; the only reason we cannot use their theorem
exactly as stated is because they assume that the synthesizer output is exactly the same size as its two inputs,
which is not quite the case with our synthesizer due to the modulus reduction. This is a minor detail that does
not change the proof in any material way; it only limits the number of times we may compose the synthesizer,
and hence the input length of the PRF.

Theorem 4.5. Assuming that T (j) = Tn,qd−j+1,qd−j is a pseudorandom synthesizer for every j ∈ [d] (in
particular, assuming the hardness of decision-LWRn,qd−j+1,qd−j ), the LWR family F from Definition 4.4 is a
pseudorandom function family.

The same holds for the ring-LWR familyRF , assuming that S(j) = SR,qd−j+1,qd−j is a pseudorandom
synthesizer for every j ∈ [d] (in particular, assuming the hardness of decision-RLWRR,qd−j+1,qd−j ).

Proof. We give a detailed proof for the family F ; the one forRF proceeds essentially identically. We prove
that each F (j) is a pseudorandom function family by induction for j = 0, . . . , d. The case j = 0 is trivial by
construction of F (0). Assuming the inductive hypothesis on F (j−1) for some j ≥ 1, we prove the claim for
F (j) via the following series of games.

Game H0. This is the PRF attack game against F (j): we choose an F ← F (j), i.e., choose F0, F1 ←
F (j−1) independently, and give the attacker oracle access to FF0,F1(x0, x1) = T (j)(F0(x0), F1(x1)), where
as always |x0| = |x1| = 2j−1.
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Game H1. We replace F0, F1 above with truly uniform functions. Specifically, we (lazily) choose two
uniform and independent functions U0, U1 : {0, 1}2j−1 → Zn×nqd−j+1

. On each query x = (x0, x1) ∈ {0, 1}2j ,
we return T (j)(U0(x0), U1(x1)). By a trivial reduction using the inductive hypothesis that F (j−1) is a
PRF family (so F0, F1 are computationally indistinguishable from U0, U1 given query access), this game is
computationally indistinguishable from H0.

Game H2. We give the attacker oracle access to a (lazily defined) uniform function U : {0, 1}2j → Zn×nqd−j
.

We claim that games H0 and H1 are computationally indistinguishable, because T (j) is a synthesizer
by hypothesis. Suppose that an efficient adversary A makes at most Q = poly(n) total queries. We design
an efficient simulator S which, given input (Zi,j)i,j∈[Q] ∈ (Zn×nqd−j

)Q×Q where either Zi,j = T (j)(Xi,Yj)

for some uniformly random and independent Xi,Yj ∈ Zn×nqd−j+1
for i, j ∈ [Q], or each Zi,j is uniformly

random and independent, simulates game H1 or H2, respectively. Because the two types of inputs to S are
computationally indistinguishable by assumption on T (j) (and S is efficient), it follows that games H1 and
H2 are indistinguishable as well.
S works as follows: starting from i = j = 1, on each query x = (x0, x1) ∈ {0, 1}2j from A, look up

whether x0 (respectively, x1) is already associated with an index ı̂ (resp., ̂); if not, associate it with the
current value of i (resp., j) and increment that variable. Return the associated matrix Zı̂,̂ to A. It is clear by
inspection that the behavior of S is as claimed above.

We conclude that game H0 is computationally indistinguishable from game H2, i.e., that F (j) is a
pseudorandom function family, as desired.

5 Direct PRF Constructions

Here we present another, potentially more efficient construction of a pseudorandom function family whose
security is based on the intractibility of the LWE problem.

5.1 Constructions

Definition 5.1 ((Ring-)LWE degree-k PRF). For parameters n ∈ N, moduli q ≥ p ≥ 2, positive integer
m = poly(n), and input length k ≥ 1, the family F consists of functions from {0, 1}k to Zm×np . A function
F ∈ F is indexed by some A ∈ Zn×mq and Si ∈ Zn×n for each i ∈ [k], and is defined as

F (x) = FA,{Si}(x1 · · ·xk) :=

⌊
At ·

k∏
i=1

Sxii

⌉
p

. (5.1)

We endow F with the distribution where A is chosen uniformly at random, and below we consider a number
of natural distributions for the Si.

The ring-based family RF is defined similarly to consist of functions from {0, 1}k to Rp, where we
replace A with uniformly random a ∈ Rq and each Si with some si ∈ R.

5.2 Efficiency

Consider a function F ∈ F as in Definition 5.1. Computing the function involves a subset-product of
matrices. Generally speaking, matrix multi-product does not appear to be computable in TC0 (if it were, then
TC0 would equal NC1 [MP00]). However, in our case the matrices are known in advance (the variable input
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is the subset, so it may be possible to reduce the depth of the computation via preprocessing, using ideas
from [RT92]. As described in Section 4.3, both binary matrix product and rounding can be implemented with
simple depth-2 arithmetic circuits, and hence in TC0, so at worst F can be computed in TC1 by computing
the subset product in a tree-like fashion, followed by a final rounding step.

The ring variant of Construction 5.1 appears to be more efficient to evaluate, both in practice and in
terms of the best theoretical depth. Consider a function F ∈ RF as in Definition 5.1. As is standard
with ring-based primitives (see, e.g., [LMPR08, LPR10]), one could store the ring elements a, s1, . . . , sk as
vectors in Znq using the discrete Fourier transform or “Chinese remainder” representation modulo q (that is, by
evaluating a and the si as polynomials at the n roots of zn + 1 modulo q), so that multiplication of two ring
elements just corresponds to a coordinate-wise product of their vectors. Then to evaluate the function, one
would just compute a subset-product of the appropriate vectors, then interpolate the result to the power-basis
representation, using essentially an n-dimensional Fast Fourier Transform over Zq, in order to perform
the rounding operation. For the interesting case of k = ω(log n), the sequential runtime of this method is
dominated by the kn scalar multiplications in Zq to compute the subset-product; in parallel, the arithmetic
depth (over Zq) is O(log(nk)). Alternatively, the subset-product part of the function might be computed even
faster by storing the discrete logs, with respect to some arbitrary generator g of Z∗q , of the Fourier coefficients
of a and si.6 The subset-product then becomes a subset-sum, followed by exponentiation modulo q, or even
just a table lookup if q is relatively small. Assuming that additions mod q − 1 are significantly less expensive
than multiplications mod q, the sequential runtime of this method is dominated by the O(n log n) scalar
operations in the FFT, and the parallel arithmetic depth is again O(log n).

In terms of theoretical depth, the multi-product of vectors can be performed in TC0, as can the Fast Fourier
Transform and rounding steps [RT92]. This implies that the entire function can be computed in TC0, matching
(asymptotically) the shallowest known PRFs based on the DDH and factoring problems [NR97, NRR00].

5.3 Security Proof Under LWE

Our first theorem says that when the entries of the Si are “small,” i.e., chosen from a suitable LWE error
distribution, the degree-k construction is a PRF under a suitable LWE assumption.

Theorem 5.2. Let χ = DZ,r for some r > 0, and let q ≥ p · k(Cr
√
n)k · nω(1) for a suitable universal con-

stant C. Endow the family F from Definition 5.2 with the distribution where each Si is drawn independently
from χn×n. Then assuming the hardness of decision-LWEn,q,χ, the family F is pseudorandom.

An analogous theorem holds for the ring-based familyRF , under decision-RLWE.

Theorem 5.3. Let χ be the distribution over the ring R where each coefficient (with respect to the power
basis) is chosen independently from DZ,r for some r > 0, and let q ≥ p · k(r

√
n · ω(

√
log n))k · nω(1).

Endow the familyRF from Definition 5.2 with the distribution where each si is drawn independently from χ.
Then assuming the hardness of decision-RLWEn,q,χ, the familyRF is pseudorandom.

We first prove Theorem 5.2 for the standard LWE construction.

Proof of Theorem 5.2. To aid the proof, it helps to define a family G of functionsG : {0, 1}k → Zn×nq , which
are simply the unrounded counterparts of the functions in F . That is, for A ∈ Zn×mq and Si ∈ Zn×n for
i ∈ [k], we define GA,{Si}(x1 · · ·xk) := At ·

∏k
i=1 S

xi
i . We endow G with the same distribution over A and

the Si as F has.
6If necessary, one would also store binary mask vectors indicating which Fourier coefficients are zero, and hence not in Z∗q .
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We proceed via a sequence of games, much like in the proof of Theorem 3.2. First as a “thought
experiment” we define a new family G̃ of functions from {0, 1}k to Zm×nq . This family is a counterpart to G,
but with two important differences: it is a PRF family without any rounding (and hence, with rounding as
well), but each function in the family has an exponentially large key. Alternatively, one may think of the
functions in G̃ as randomized functions with small keys. Then we show that with overwhelming probability,
the rounding of G̃← G̃ agrees with the rounding of the corresponding G ∈ G on all the attacker’s queries,
because the outputs of the two functions are relatively close. It follows that the rounding of G ← G (i.e.,
F ← F) cannot be distinguished from a uniformly random function, as desired.

More formally, we define the following games:

GameH0. This is the real PRF attack game against the familyF : we choose an F ← F (so F (·) = bG(·)ep
for G← G), and the attacker has oracle access to F (·).

GameH1. Here we instead choose G̃← G̃, where the family G̃ is given in Definition 5.4 below. The choice
of G̃ induces a corresponding G ∈ G having the same distribution as in H0. (This is simply because the key
of G is just a portion of the key of G̃.) To be precise, we choose G̃ “lazily” as the attacker makes queries,
because the description of G̃ has exponential size; see the remarks following Definition 5.4 for details.

The attacker has oracle access to bG̃(·)ep, but with one exception: on query x, define the “bad event”
BADx for that query to be ⌊

G̃(x) + [−B,B]m×n
⌉
p
6= {bG̃(x)ep},

where B = k(Cr
√
n)k. That is, BADx indicates whether any entry of G̃(x) ∈ Zm×nq is “too close” to

another element of Zq that rounds to a different value in Zp. Note that a y ∈ Zq is “too close” in this sense if
and only if b(ȳ −B) · pq e 6= b(ȳ +B) · pq e ∈ Z, where ȳ ∈ Z is any integer congruent to y mod q, so BADx

can be efficiently detected given only the value of G̃(x). If BADx occurs any of the attacker’s queries, then
the game immediately aborts.

In Lemma 5.5 below, we show that for every fixed x ∈ {0, 1}k, with overwhelming probability over the
choice of G̃ ← G̃ and the induced G ∈ G, it is the case that G(x) ∈ G̃(x) + [−B,B]m×n mod q. Hence
bG(x)ep = bG̃(x)ep so long as BADx does not occur, and the attacker’s queries are answered exactly as they
are in H0, subject to the game not aborting. It follows that for any (potentially unbounded) attacker A,

AdvH0,H1(A) ≤ Pr[some BADx occurs in H1 with attacker A] + negl(n). (5.2)

We do not directly bound the probability that some BADx occurs in H1, but instead defer to the analysis of
the next game, where we can show that it is indeed negligible.

Game H2. Here we choose U to be a uniformly random function from {0, 1}k to Zm×nq (defined “lazily”
as the attacker makes queries). The attacker has oracle access to bU(·)ep, with the same “bad event” and
abort condition as in H1, but defined relative to U instead of G̃.

In Theorem 5.6 below, we show that under the LWE assumption from the theorem statement, no efficient
adversary can distinguish (given oracle access) between G̃← G̃ and a uniformly random function U . Because
the BADx event in H1 (respectively, H2) for a query x can be tested efficiently given query access to G̃
(resp., U ), a trivial simulation implies that for any efficient attacker A, we have AdvH1,H2(A) ≤ negl(n).
For the same reasons, it also follows by a straightforward simulation that for any efficient attacker A,

|Pr[some BADx occurs in H1 with A]− Pr[some BADx occurs in H2 with A]| ≤ negl(n).
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In H2, because U is a uniformly random function, for any particular query x the probability that BADx
occurs is bounded by (2B + 1) · p/q = negl(n), by assumption on q. By a union bound over all poly(n)
queries of an efficient A, and then applying Equation (5.2), we therefore have that

Pr[some BADx occurs in H1 with A] = negl(n) ⇒ AdvH0,H1(A) = negl(n).

Game H3. Here we still choose a uniformly random function U and give the attacker oracle access to
bU(·)ep. For each query x we define the event BADx as in game H2, but still answer the query and continue
with the game even if BADx occurs. From the above analysis of H2 it follows that for any (potentially
unbounded) attacker A making poly(n) queries, we have

AdvH2,H3(A) ≤ Pr[some BADx occurs in H2 with A] = negl(n).

Finally, observe that bU(·)ep is a truly random function from {0, 1}k to Zm×np , up to the bias involved in
rounding the uniform distribution on Zq to Zp. Because q ≥ p · nω(1), this bias is negligible (and there is no
bias if p divides q).

By the triangle inequality, it follows that for any efficient A, we have AdvH0,H3(A) = negl(n), and this
completes the proof.

We now define the family G̃ used in the proof of Theorem 5.2.

Definition 5.4. For parameters n, q,m, k and error distribution χ (over Z) as in Definition 5.1, the family G̃(i)

for 0 ≤ i ≤ k is defined inductively to consist of functions from {0, 1}i to Zm×nq ; we define G̃ = G̃(k).

• For i = 0, a function G̃ ∈ G̃(0) is indexed by some A ∈ Zm×nq , and is defined simply as G̃A(ε) = At.
We endow G̃(0) with the distribution where A is chosen uniformly at random.

• For i ≥ 1, a function G̃ ∈ G̃(i) is indexed by some G̃′ ∈ G̃(i−1), plus an Si ∈ Zn×n and error
matrices Ex′ ∈ Zm×n for each x′ ∈ {0, 1}i−1 (where {0, 1}0 is the singleton set {ε}). For x =
(x′, xi) ∈ {0, 1}i where |x′| = i− 1, the function is defined as

G̃(x) = G̃G̃′,Si,{Ex′}
(x′, xi) := G̃′(x′) · Sxii + xi ·Ex′ mod q.

We endow G̃(i) with the distribution where G̃′ ← G̃(i−1), and all the entries of Si and every Ex′ are
chosen independently from χ.

Note that a function G̃ ∈ G̃ is fully specified by A, {Si}i∈[k], and exponentially (in k) many error
matrices Ex1···xi−1 for all x ∈ {0, 1}k and i ∈ [k]; these error matrices are what prevents G̃ itself from being
used as a PRF family. However, as needed in the proof of Theorem 5.2 (game H1), the error matrices can be
chosen “lazily,” since the value of G̃(x) depends only on A, {Si}, and Ex1···xi−1 for i ∈ [k]. For a function
G̃ = G̃A,{Si},{Ex′} ∈ G̃, we define its induced function in the family G to be G = GA,{Si}. Note that for
G̃← G̃, the induced function G has the same marginal distribution as if it had been chosen from G directly.

The following lemma is used in the analysis of game H1.

Lemma 5.5. Let x ∈ {0, 1}k be arbitrary. Then except with 2−Ω(n) probability over the choice of G̃ =
G̃A,{Si},{Ex′} ← G̃ and its induced function G = GA,{Si} ∈ G, we have

G(x) ∈ G̃(x) + [−B,B]m×n mod q

for some B = k · (Cr
√
n)k, where C is a universal constant.
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Proof. Observe that

G̃(x1 · · ·xk) = (· · · ((At · Sx11 + x1 ·Eε) · Sx22 + x2 ·Ex1) · · · ) · Sxkk + xk ·Ex1···xk−1
mod q

= At ·
k∏
i=1

Sxii︸ ︷︷ ︸
G(x)

+ x1 ·Eε ·
k∏
i=2

Sxii + x2 ·Ex1 ·
k∏
i=3

Sxii + · · ·+ xk ·Ex1···xk−1
mod q.

Now by Lemma 2.4, except with probability 2−Ω(n), for every i ∈ [k] we have s1(Si) ≤ O(r
√
n) and

‖e‖ ≤ O(r
√
n) for every row e of the error matrices Ex1···xi−1 . Therefore, each row of the k cumulative

error matrices Ex1···xi−1 ·
∏k
j=i+1 S

xj
j (for i ∈ [k]) has Euclidean length at most O(r

√
n)k, and so its entries

are bounded by the same quantity in magnitude. The claim follows.

Theorem 5.6. Under the LWE assumption from the statement of Theorem 5.2, the family G̃ of functions from
{0, 1}k to Zm×nq is pseudorandom.

In the proof we will need the following intermediate function families.

Definition 5.7. For n, q, m, and χ as in Definition 5.1, and an integer i ≥ 1, the family H(i) consists of
functions from {0, 1}i to Zm×nq . A function H from the family is indexed by some Si ∈ Zn×n and matrices
Ax′ ∈ Zn×mq ,Ex′ ∈ Zm×n for each x′ ∈ {0, 1}i−1 (where {0, 1}0 = {ε}). It is defined as

H(x) = HSi,{Ax′},{Ex′}(x
′, xi) := At

x′ · S
xi
i + xi ·Ex′ mod q,

where |x′| = i− 1. We endowH with the distribution where each Ax′ is uniformly random and independent,
and all the entries of Si and Ex′ are chosen independently from χ. We remark that an H ← H(i) can be
chosen “lazily” in the natural way.

Proof of Theorem 5.6. We prove that each family G̃(i) is pseudorandom by induction on i, from 0 to k. The
base case of i = 0 is trivial by construction. For i ≥ 1, we prove the claim by the following series of games.

Game H0. We (lazily) choose a G̃← G̃(i) and give the attacker oracle access to G̃(·).

Game H1. We (lazily) choose an H ← H(i) (defined above) and give the attacker oracle access to H(·).
We claim that H0

c
≈ H1 under the inductive hypothesis that G̃(i−1) is a PRF family. To prove this, we

design an efficient simulator S that is given oracle access to a function F : {0, 1}i−1 → Zm×nq , where F is
either G̃′ ← G̃(i−1) or a uniformly random function, and S emulates either game H0 or H1 (respectively) to
an attacker. The simulator S first chooses an Si ← χn×n, and on each query x = (x′, xi) from the attacker
where |x′| = i− 1, S queries its oracle to get At

x′ = F (x′), chooses an Ex′ ← χm×n (if it has not already
been defined by a previous query), and returns At

x′ ·S
xi
i +xi ·Ex′ to the attacker. It is clear by the definitions

of G̃(i) and H(i) that if F is some G̃′ ← G̃(i−1), then S emulates access to G̃G̃′,Si,{Ex′} ∈ G̃
(i) with the

appropriate distribution, whereas if F is a uniformly random function, then S emulates access to H ← H(i).
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Game H2. We (lazily) choose a uniformly random function U : {0, 1}i → Zm×nq and give the attacker
oracle access to U(·).

We claim that H1
c
≈ H2 under the decision-LWE assumption from Theorem 5.2. To prove this, we

design an efficient simulator S that is given access to an oracle O that outputs arbitrarily many pairs
(At,Bt) ∈ Zm×nq × Zm×nq , drawn either as a group of samples (At,Bt = AtS + E mod q) from the LWE
distribution AS,χ (for the same S ← χn×n) or from the uniform distribution, and S emulates either game
H1 or H2 (respectively) to an attacker. Under the decision-LWE assumption, this will establish the claim.
The simulator S answers queries x = (x′, xi) where |x′| = i− 1 in the following way: if x′ has never been
queried before, then it draws a new sample (At

x′ ,B
t
x′) from O and stores it, otherwise it looks up the already

stored (At
x′ ,B

t
x′). It then returns At

x′ if xi = 0, and Bt
x′ if xi = 1. It is clear by inspection and the definition

ofH(i) that S has the claimed behavior given the two types of oracles O.
By the triangle inequality, we have H0

c
≈ H2, i.e., G̃(i) is a pseudorandom function family.

We now analyze the ring-LWE construction.

Proof sketch for Theorem 5.3. The proof proceeds almost identically to the proof of Theorem 5.2, so we only
outline the few small differences. We define the function familiesRG andRG̃ in exactly the same fashion as
the families G and G̃, respectively, with a ∈ Rq, si ∈ R and ex′ ∈ R substituting A, Si and Ex′ respectively.
In the games, the bad event BADx occurs if any coefficient of RG̃(x) ∈ Rq (for RG̃← RG̃) is “too close”
to another element in Zq having a different rounded value, where “too close” is defined using the interval
[−B,B] for B = k(r

√
n · ω(

√
log n))k/

√
n. For this bound B, the analogue of Lemma 5.5 (which bounds

the cumulative error terms, i.e., the difference RG̃(x) − RG(x)) follows immediately from Lemma 2.3.
Finally, pseudorandomness of the familyRG̃ follows analogously to the proof of Theorem 5.6, via families
RH(i) defined similarly toH(i).

Remark 5.8. By almost identical proofs, a similar subset-product-like construction

FA,{Si,b}(x1 · · ·xk) =

⌊
At ·

k∏
i=1

Si,xi

⌉
p

, (5.3)

for uniform A ∈ Zn×mq and matrices Si,b ∈ Zn×n (for i ∈ [k], b ∈ {0, 1}), and the analogous function
in the ring setting, are also PRF families for the same parameters and distributions as in Theorem 5.2 and
Theorem 5.3. (These functions are analogous to the factoring-based PRF of [NRR00].) While the secret keys
are about twice as large as their counterparts’ from Definition 5.1, these functions are more “symmetric,”
which may be important in practice (e.g., to prevent timing attacks).

5.4 Security Proof Under Interactive LWR

We now present an “interactive” LWR assumption and prove that under this assumption, the degree-k
construction from Definition 5.1 is a PRF under an appropriate distribution of the Si. The advantage of this
proof is that it allows us to prove security for a small modulus q and inverse error rate (both small polynomials
in n), and it also works for uniformly random (or uniform invertible) matrices Si, among other distributions.
For example, this allows us to compose the degree-k construction with itself (or with any other PRF) in a
k-ary tree. The drawback to our proof is that it relies on a stronger assumption that is harder to evaluate or
falsify, because it allows the adversary to make queries to its challenger.
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Definition 5.9 (k-subset-product LWR). Let q ≥ p be integer moduli. We describe a pair of games, which
are parameterized by integers k ≥ 1 and m = poly(n), and a distribution ψ over Zn×nq (e.g., the uniform
distribution). In both games, we choose A ∈ Zn×mq uniformly at random and Si ← ψ independently for each
i ∈ [k], then give A and Si for i ∈ [k − 1] to the attacker. We then allow the attacker to adaptively make
queries to a function H : {0, 1}k−1 → Zm×np . In the first game, the function H is defined to be

H(x) :=

⌊
At ·

k−1∏
i=1

Sxii · Sk

⌉
p

;

in the second game, H is a uniformly random function. The k-subset-product LWR problem, denoted
k-LWRq,p,m,ψ, is to distinguish between these two games with an advantage non-negligible in n. The k-
subset-product ring-LWR problem is defined analogously. (A subset-product version of (ring-)LWE is also
easy to formulate, where instead of rounding we add random and independent error terms to each answer.)

We make a few simple observations about the k-LWR problem. First note that Bt
x = At ·

∏k−1
i=1 Sxii is

the part of the product that changes for each new query. Since A and all the Si for i ∈ [k− 1] are given to the
attacker, it can compute each Bt

x on its own, and its goal is to determine whether the challenger is returning
rounded products bBt

x · Skep or uniformly random and independent values. In effect, the k-LWR problem is
therefore to solve LWR when the sampled A matrices are related by adversarially chosen subset-products of
given random matrices Si. To avoid an efficient attack (as outlined in the introduction), the distribution ψ
should be chosen so that the product of many Si ← ψ does not significantly reduce the entropy of At

∏
i Si.

It appears that restricting ψ to invertible elements is most effective for this purpose.
We also observe that 1-LWRq,p,m,ψ is just the standard LWRq,p problem given m samples, where the

secret matrix S is chosen from ψ. The problems form a hierarchy over k, that is, k-LWRq,p,m,ψ no harder than
(k − 1)-LWRq,p,m,ψ, by a reduction that just prepends 0 to all queries, and withholds S1 from the attacker.

Theorem 5.10. Endow the family F from Definition 5.2 with the distribution where each Si is drawn from
some distribution ψ. Then, assuming that k-LWRq,p,m,ψ problem is hard, the family F is pseudorandom.

Unlike our inductive proof of Theorem 5.6, which transitions from the PRF family to a random function
by “dropping” the secret key components Si from i = 1 to k, the proof of Theorem 5.10 drops them from
i = k down to 1. This prevents the error terms from growing with k (because the errors are not compounded
by multiplication with other Si), which is what allows us to use a small modulus q if we so desire. However,
this style of proof also seems to require an interactive assumption, so that a simulator can answer queries
involving the component Si that is being dropped between adjacent games.

Proof of Theorem 5.10. We prove this by induction over k. For k = 0, the claim follows trivially by
construction. For k ≥ 1, we again proceed via a series of games.

Game H0. This is the real PRF attack game against the family F : we choose an F ← F , and the attacker
has oracle access to F (·).

Game H1. We choose F ← F . For attacker queries of the form x = x1 . . . xk−11, we return uniformly
random and independent value (consistent with prior answers), and for queries of the form x = x1 . . . xk−10,
we return F (x) =

⌊
At ·

∏k−1
i=1 Sxii

⌉
p
.
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We claim that H0
c
≈ H1 by a straightforward reduction assuming the hardness of k-LWR. As proof, we

construction a simulator S that interacts with an oracle O that implements one of the two games from the
k-LWR problem, and emulates either H0 or H1 respectively. The simulator is first given some matrices A
and Si for i ∈ [k− 1]. It then answers attacker queries x = (x′, 0) ∈ {0, 1}k by returning bAt ·

∏k−1
i=1 Sxii ep,

and answers queries x = (x′, 1) ∈ {0, 1}k by returning O(x′) to the attacker. It is clear by inspection that
the behavior of S is as claimed.

Game H2. We lazily choose a uniformly random function U : {0, 1}k → Zm×np and give the attacker
oracle access to U(·).

We claim that H1
c
≈ H2 by the inductive hypothesis. This is because in game H1, queries ending in 1

are already answered uniformly, while queries ending in 0 are answered according to a function drawn from
the family F of degree (k − 1). This family is pseudorandom by the inductive hypothesis, and the fact that
(k − 1)-LWR is no easier than k-LWR.

This completes the induction and the proof.

Acknowledgments. We thank Oded Regev for interesting discussions.
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