March Madness is (NP-)Hard
(draft)

David Liben-Nowell, Moses Liskov, Chris Peikert, Abhi Shelat, Adam Smith,
and Grant Wang

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA
{d1ln,mliskov,cpeikert,abhi,asmith,gjw}@theory.lcs.mit.edu

Abstract. We formally define the MARCH-MADNESS decision problem
(inspired by popular betting pools for the NCAA basketball tourna-
ment), and prove it NP-complete.

1 Introduction

The National Collegiate Athletic Association (NCAA) Basketball Tournament[3],
held every March, is a tournament among the top 64 (or more recently, 65)
collegiate basketball teams in the United States. The tournament is set up in
single-elimination form: to start, each team occupies the leaf of a complete bi-
nary tree. Two teams occupying sibling nodes play against each other, and the
winner moves up to occupy its parent node, while the loser is out of the tour-
nament. This process continues until only one team (occupying the root node)
remains, and that team is crowned the national champion.

Popular distractions during the tournament are so-called “March Madness”
pools, often organized among friends and co-workers. Each participant in a pool
predicts the winner of every game, by filling out the internal nodes of the tour-
nament tree, prior to the start of the tournament. Once the tournament begins,
everyone’s predictions are made public. Participants get some number of points
for each winner they correctly predict (note that they need not predict which
team is defeated by the winner). After the entire tournament has been played,
the participant with the most points is declared the winner of the pool. Most
scoring methods give more points for correct predictions in later games, because
it is hard to predict which teams will advance many rounds, and to predict the
winner of a game between two closely-matched teams.

As the tournament progresses, many interesting phenomena can occur. For
example, many participants may have predicted Team A to win many games,
when in fact it may lose its first game. In this case, those participants lose the
potential to gain many points later in the tournament, because Team A cannot
possibly win any of the games it was predicted to win. For this reason, early in
the tournament one participant may have many more points than all the others,

but no hope of winning the pool (because the teams he picked to win many
games have already lost).

As a participant of a March Madness pool, one might naturally ask: “Given
the results of the tournament thus far, is there any way I can win the pool? Or is
it the case that, no matter which teams win from now on, some other participant
will have a higher score than me?” Of course, for the actual constant-sized NCAA
tournament tree, this question can be answered in time linear in the size of the
pool, by enumerating all tournament outcomes in constant time. However, we
show that under an appropriate formalization (i.e., in the sizes of the pool and
the tournament tree), answering this question is NP-complete. Our results hold
for a wide class of scoring methods; see the remark at the end of Section 4.

This result is interesting because it leaves the participant with little choice
but to keep his interest in tournament, because he cannot efficiently tell if he is
eliminated from the pool until the end of the tournament (unless P=NP). Note
that we never make any assumptions about how likely it is for a team to win
(i.e., odds or probabilities); even if a participant were omnipotent in the sense
that he could control the outcome of any remaining games, he still would not be
able to efficiently determine whether doing so would allow him to win the pool.

This result is also interesting in contrast to similar problems. In Major League
Baseball, for example, after the season has started, there is an efficient procedure
(by a reduction to a flow problem [4]) for determining if a team can make it to
the playoffs or not (even though this decision is based on the outcomes of all the
other games in the same league).

2 Definitions

Before formally define the M ARCH-MADNESS problem, we first need to define
some related terms.

Definition 1 (March-Madness Vocabulary). We define the following:

— A tournament (T,) is a complete binary tree T (having vertices V', leaves
L, and internal nodes I), with a bijective labelling A : L — {1,...,|L|}.

— A bracket 8 for a tournament (T,)) is a complete set of predictions about
the games of a tournament. That is, B is a labelling of V', where B(1) = A(I)
for alll € L, and B(u) € {B(s),B(t)}, for each u € I having children s,t.

— A partial result 7 of a tournament (T, \) is a labelling of some V' CV,V' D
L, where w(l) = A() for alll € L, and for every u € I having children s,t:
ueV' =>s,te V' and w(u) € {n(s),n(t)}.

— A tournament result for a tournament (T, \) is simply a partial result defined
on oll of V. A tournament result p is consistent with a partial result =,
written as p = w, if p(v) = w(v) for all nodes v for which 7 is defined.

— The score o,(8) of a bracket 8 relative to a partial result = (defined on V')
is {veV'nI : B(v) =w)}.

Definition 2 (March-Madness). The language

MARCH-MADNESS = {(T, A, 6, {B;}]2q,7) :
3 a tournament result p = © such that
0p(8) 2 max o,(5;)},

where

— (T,) is a tournament,

— & is the distinguished bracket for (T, \),

— {Bj}}L, is a set of m competing brackets for (T,), and
— 7 s a partial result of (T,).

3 Reduction from an NP-complete problem

We reduce the NP-complete problem 3SAT to MARCH-MADNESS. We design a
function I' which, given a 3SAT instance ¢ having n variables {z;}? , and m
clauses {c;}7,, outputs an instance (T', A, 4, {$;}7L;,m) of MARCH-MADNESS,
with one competing bracket §; for each clause ¢; in ¢. The tree T' is a complete
binary tree having 8- 2198271 leaves. It is constructed by connecting n “widgets”
of 8 leaves each, one corresponding to each variable x; in ¢, plus enough other
widgets to complete the binary tree. The labelling A of the leaves L is an arbitrary
injective function.

We now describe the partial results 7 and the distinguished bracket §. First,
we arbitrarily assign the results of all the first-round games by labelling the
parents of L. Then § is constructed as follows: in each of n widgets corresponding
to variables from ¢, it makes the correct predictions in exactly three of the four
first-round games. The predicted winner of the other first-round game is also
predicted to win in the second round, but not in the third round. Finally, in the
other second-round game, the winner is chosen arbitrarily. See Figure 1 for the
actual predictions we will use, with the partial results from # included. Note
the special vertex v;, and that the distinguished bracket’s prediction at vertex v;
cannot possibly be correct, given . Also note that for each v;, b; is its “bottom”
child (the lower of its two children in Figure 1), and wu; is its “upper” child.

We now describe how the competing brackets are constructed. For each clause
¢j in ¢ involving distinct variables z,, z,,z; we construct a competing bracket
B, which is identical to J, except in the widgets corresponding to variables
Zr,Ts, Ts- In place of the predictions shown in Figure 1, we use the predictions
from one of the two widgets pictured below. For each non-negated variable in
the clause, we include the predictions shown in Figure 2. For each variable that
appears negated in the clause, we include the predictions shown in Figure 3.
Note that in each widget, there is one prediction which is not fixed. In two of
these three widgets, 3; makes the incorrect prediction, and in the other widget
B; makes the correct prediction.

Fig. 1. A widget from T, corresponding to the variable z; in ¢, with distinguished draw
¢ and partial results 7. The upper half of each internal node u contains é(u), while the
lower half contains 7(u) (if it is defined). Note that §(v;) is incorrect, regardless of the
outcome of the game between B and C.

Fig. 2. Partial results 7, and predictions from ; for widget 7, where clause ¢; contains
the literal z;. Note that it is possible for §;(v;) to be correct. Also note that the
prediction for the game between G and H is not fixed.

Fig. 3. Partial results 7, and predictions from f; for widget 7, where clause ¢; contains
the literal Z;. Note that it is possible for §;(v;) to be correct. Also note that the
prediction for the game between G and H is not fixed.

4 Correctness of the reduction

We are now ready to prove the following theorem.
Theorem 1. ¢ € 3SAT <= I'(¢) = (T, A,0,{B;}}L,,m) € MARCH-MADNESS.

Proof: We first make a few observations about the brackets. First, note that
for all j, 0,(8) = 2+ 0.(B;). Next, note that for all j, and for all (except three)
nodes v for which 7 is undefined, d(v) = 3;(v). The three exceptional nodes are
precisely v,.,vs, v, where variables x,, zs, z; appear in clause j of ¢. Combining
these observations, we see that for any p = m, 0,(8;) > 0,(8) = B;(v,) =
p(01), B;(vs) = p(v,), B (v2) = p(ve).

= let & be a satisfying assignment of ¢. Then we construct a tournament
result p as follows: for each i, if z; is true, let p(v;) = p(b;); if z; is false, let
p(v;) = p(u;). Assign p arbitrarily (but so that it is a tournament result) at all
other nodes.

Because every clause in ¢ is satisfied by «, each clause c; contains some
true literal, say either some variable z; or its negation. Then f;(v;) # p(vi) by
construction, so by the above observation, ¢,(d) > o,(8;) as desired.

<: given a tournament outcome p for which ¢ has the highest score, construct
a satisfying assignment for ¢ as follows: if p(v;) = p(b;), let z; be true, otherwise
let x; be false. Because the distinguished bracket ¢ has the highest score, each
competing bracket §; has 8;(v;) # p(v;) for some variable z; involved in clause
¢;. By construction, the corresponding literal (either z; or its negation) is true
in ¢;, so ¢; is satisfied, therefore = satisfies ¢. |

Corollary 1. MARCH-MADNESS is NP-complete.

Proof: The running time of the reduction is polynomial in the size ¢: building
a widget requires O(1) time, as does connecting two disconnected binary trees.
At most 2n widgets are created, and are connected into one tree. Creating each
of the m + 1 draws require time linear in the size of tree, so the total running
time of the reduction is O(mn) = poly(|¢|).

Finally, MARCH-MADNESS € NP: given any instance (T, A, 6, {3;},7), a wit-
ness of membership in MARCH-MADNESS consists of any tournament result
p = m such that 0,(8) > max;—i, . m0,(8;). Checking the validity of the witness
consists of counting the number of correct predictions from each bracket, and
verifying that the distinguished bracket has the highest score. This again can
be done in time polynomial in the number of teams in the tournament and the
number of brackets in the pool.

By Theorem 1, 3SAT <p MARCH-MADNESS, and the result follows. a
Remark: typically, actual betting pools offer more points for correctly predict-
ing games in later rounds of the tournament. For example, each first-round game
may be worth 1 point, each second-round game 2 points, and so on. Qur results
remain valid under these types of scoring systems, as long as all games in the
same round are worth the same number of points, and the value of a second-
round game is at most a polynomial (in the number of brackets) factor of the

value of a first-round game. If the value of a second-round game is s, we only
need the distinguished bracket’s score to lead all other brackets’ scores by be-
tween 2s and 3s — 1 (inclusive) after the first round. Therefore we can modify
the reduction by enlarging the size of the widgets so that each clause’s bracket
makes enough incorrect predictions in the first round.

5 Acknowledgements

We would like to thank Umesh Shankar for a helpful discussion, in which he
conjectured that MARCH-MADNESS might be NP-complete.

References

1. Stephen A. Cook. The complexity of theorem-proving procedures. In ACM Sympo-
stum on Theory of Computing, pages 151-158, 1971.

2. Michael R. Garey and David S. Johnson. Computers and Intractibility. W. H. Free-
man and Company, 1979.

3. NCAA final four tournament website. http://www.finalfour.net.

4. Kevin Wayne. A new property and a faster algorithm for baseball elimination. In
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoret-
ical and Ezperimental Analysis of Discrete Algorithms), 1999.

