
Circular and KDM Security for Identity-Based Encryption

Jacob Alperin-Sheriff∗ Chris Peikert†

May 1, 2012

Abstract

We initiate the study of security for key-dependent messages (KDM), sometimes also known as
“circular” or “clique” security, in the setting of identity-based encryption (IBE). Circular/KDM security
requires that ciphertexts preserve secrecy even when they encrypt messages that may depend on the secret
keys, and arises in natural usage scenarios for IBE.

We construct an IBE system that is circular secure for affine functions of users’ secret keys, based on
the learning with errors (LWE) problem (and hence on worst-case lattice problems). The scheme is secure
in the standard model, under a natural extension of a selective-identity attack. Our three main technical
contributions are (1) showing the circular/KDM-security of a “dual”-style LWE public-key cryptosystem,
(2) proving the hardness of a version of the “extended LWE” problem due to O’Neill, Peikert and Waters
(CRYPTO’11), and (3) building an IBE scheme around the dual-style system using a novel lattice-based
“all-but-d” trapdoor function.

1 Introduction

Traditional notions of secure encryption, starting with semantic (or IND-CPA) security [GM82], assume that
the plaintext messages do not depend on the secret decryption key (except perhaps indirectly, via the public
key or other ciphertexts). In many settings, this may fail to be the case. One obvious scenario is, of course,
careless or improper key management: for example, some disk encryption systems end up encrypting the
symmetric secret key itself (or a derivative) and storing it on disk. However, there are also situations in which
key-dependent messages are used as an integral part of an cryptosystem. For example, in their anonymous
credential system, Camenisch and Lysyanskaya [CL01] use a cycle of key-dependent messages to discourage
users from delegating their secret keys. More recently, Gentry’s “bootstrapping” technique for obtaining
a fully homomorphic cryptosystem [Gen09] encrypts a secret key under the corresponding public key in
order to support unbounded homomorphism; the cryptosystem therefore needs to be “circular secure.” More
generally, a system that potentially reveals encryptions of any party’s secret key under any user’s public key
needs to be “clique” or “key-dependent message” (KDM) secure. This notion allows for proving formal
symbolic soundness of cryptosystems having complexity-based security proofs [ABHS05].

Since Boneh et al.’s breakthrough work [BHHO08] giving a KDM-secure encryption scheme, in the
standard model, from the Decision Diffie-Hellman assumption, a large number of results (mostly positive)
∗School of Computer Science, College of Computing, Georgia Institute of Technology. Email: jmas6@cc.gatech.edu
†School of Computer Science, Georgia Institute of Technology. Email: cpeikert@cc.gatech.edu. This material is based

upon work supported by the National Science Foundation under Grant CNS-0716786 and CAREER Award CCF-1054495, and by
the Alfred P. Sloan Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation or the Sloan Foundation.

1

have been obtained regarding circular- and KDM-secure encryption [HH09, ACPS09, BHHI10, BG10,
App11, MTY11, BGK11, BV11]. However, all these works have dealt only with the symmetric or public-key
settings; in particular, the question of circular/KDM security for identity-based cryptography has not yet been
considered. Recall that in identity-based encryption [Sha84], any string can serve as a public key, and the
corresponding secret keys are generated and administered by a trusted Private Key Generator (PKG).

Circular security for IBE. In this work we define and construct a circular/KDM-secure identity-based
encryption (IBE) scheme. KDM security is well-motivated by some natural usage scenarios for IBE, as we
now explain.

Recall that identity-based encryption gives a natural and lightweight solution to revocation, via expiring
keys. The lifetime of the cryptosystem is divided into time periods, or “epochs.” An identity string consists
of a user’s “true” identity (e.g., name) concatenated with an epoch; when encrypting, one uses the identity for
the current epoch. To support revocation, the PKG gives out a user’s secret key only for the current epoch,
and only if the user is still authorized to be part of the system. Therefore, a user’s privileges can be revoked
by simply refusing to give out his secret key in future epochs; in particular, this revocation is transparent to
the encrypter.

The above framework makes it necessary for users to periodically get new secret keys from the PKG,
confidentially. The most lightweight method, which eliminates the need for the user to prove his identity
every time, is simply for the PKG to encrypt the new secret key under the user’s identity for the previous
epoch. This can be proved secure, assuming the underlying IBE is CPA-secure, as long as there are no cycles
of encrypted keys. However, if a user deletes or loses an old secret key and wants to decrypt a ciphertext from
the corresponding epoch, it would be natural for the authority to provide the old secret key encrypted under
the user’s identity for the current epoch. But because the current secret key has also been encrypted (perhaps
via a chain of encryptions) under the old identity, this may be unsafe unless the IBE is KDM-secure.

1.1 Our Contributions

As already mentioned, in this work we define a form of circular/KDM security for identity-based encryption,
and give a standard-model construction based on the learning with errors (LWE) problem, hence on worst-case
lattice problems via the reductions of [Reg05, Pei09].

As in prior positive results on circular security [BHHO08, ACPS09, BG10], our definition allows the
adversary to obtain encrypted “key cliques” for affine functions of the users’ secret keys. More precisely, for
any tuple of identities (id1, . . . , idd), the attacker may adaptively query encryptions of f(skid1 , . . . , skidd)
under any of the identities idj , where f is any affine function over the message space, and each skidi is a
secret key for identity idi. (This obviously specializes to encryptions of a single secret key.) Our attack
model is in the style of a “selective identity” attack, wherein the adversary must declare the target identities
id1, . . . , idd (but not the functions f) before seeing the public parameters of the scheme. While this is not the
strongest security notion we might hope for, it appears to at least capture the main security requirements of
the scenarios described above, because encrypted key cycles are only ever published for the same “real-world”
identity at different time epochs. Therefore, just as in a standard selective-identity attack for IBE, the
adversary is actually limited to attacking just a single real-world identity, on a set of d epochs (which could,
for example, include all valid epochs). We also point out that by a routine hybrid argument, security also holds
when attacking a disjoint collection of identity cliques (that are named before seeing the public parameters).

Our IBE construction is built from two components, both of which involve some novel techniques. First,
we give an LWE-based public-key cryptosystem that is clique secure (even for an unbounded number of users)

2

for affine functions, and is suitable for embedding into an IBE like the one of [GPV08]. Second, we construct
a lattice-based “all-but-d” trapdoor function that serves as the main foundation of the IBE. We elaborate on
these two contributions next.

Clique-secure public-key cryptosystem. We first recall that Applebaum et al. [ACPS09] showed that
a variant of Regev’s so-called “primal” LWE cryptosystem [Reg05] is clique secure for affine functions.
Unfortunately, this primal-type system does not seem suitable as the foundation for identity-based encryption
using the tools of [GPV08]. The first reason is that the proof of clique security from [ACPS09] needs the
users’ public keys to be completely independent, rather than incorporating a shared random string (like the
public parameters in an IBE system). The second reason is a bit more technical, and is already described
in [GPV08]: in primal-style systems, the user-specific public keys are exponentially sparse pseudorandom
values (with unique secret keys), and it is difficult to design an appropriate mapping from identities to valid
public keys that actually admit usable secret keys.

Therefore, we first need to obtain clique security for a so-called “dual”-type cryptosystem (using the
terminology from [GPV08]), in which every syntactically valid public key has a functional secret key (actually,
many such secret keys) that can be extracted by the PKG. It turns out that achieving this goal is quite a
bit more technically challenging than it was for the “primal”-style schemes. This is primarily because the
KDM-secure scheme from [ACPS09] (like the earlier one from [BHHO08]) has the nice property that given
the public key alone, one can efficiently generate statistically well-distributed encryptions of the secret key
(without knowing the corresponding encryption randomness). This immediately implies circular security for
“self-loops,” and clique security follows from a couple of other related techniques.

Unfortunately, this nice statistical property on ciphertexts does not seem attainable for dual-style LWE
encryption, because now valid ciphertexts are exponentially sparse and hard to generate without knowing the
underlying encryption randomness. In addition, because the adversary may obtain an unbounded number of
key-dependent ciphertexts, we also cannot rely on any statistical entropy of the secret key conditioned on the
public key, as is common in the security proofs of most dual-style cryptosystems.

We resolve the above issues by relying on computational assumptions twice in our security proof,
first when changing the way that challenge ciphertexts are produced (i.e., by using knowledge of the
secret key), and then again when changing the form of the public key. Notably, unlike prior works
(e.g., [GKPV10, DGK+10]) in which ciphertexts in intermediate games are created by “encrypting with the
(possibly information theoretically revealed) secret key,” we are able to avoid the use of super-polynomially
large noise to “overwhelm” the slight statistical difference between the two ways of generating ciphertexts.
This lets us prove security under fully polynomial lattice/LWE assumptions, i.e., those involving a polynomi-
ally bounded modulus q and inverse error rate for the LWE problem, and therefore polynomial approximation
factors for worst-case lattice problems. We do so by proving the hardness of a version of the extended-LWE
problem, as defined and left open by the recent work of [OPW11]. We believe that this result should be useful
in several other contexts as well.

All-but-d trapdoor functions. We use the clique-secure cryptosystem described above as the foundation
for a clique-secure IBE. To make the cryptosystem identity-based, as in [GPV08] we need to embed a “strong”
trapdoor into the public parameters so that the PKG can extract a secret key for any identity. Here we use the
ideas behind the tag-based algebraic construction of [ABB10], and follow the somewhat simpler and more
efficient realization recently due to [MP12]. We remark that these trapdoor constructions are well-suited
to security definitions in which the adversary attacks a single tag, because the trapdoor can be “punctured”
(i.e., made useless for extracting secret keys, and useful for embedding an LWE challenge) at exactly one

3

predetermined tag. Unfortunately, this does not appear to be sufficient for our purposes, because in the clique
security game, the adversary is attacking d identities at once and can obtain challenge ciphertexts under all of
them.

To resolve the insufficiency of a single puncture, we extend the trapdoor constructions of [ABB10, MP12]
so that it is possible to puncture the trapdoor at up to d arbitrary, prespecified tags. To accomplish this, we
show how to statistically hide in the public key a degree-d polynomial f(·) over a certain ring R, so that
f(idi) = 0 for all the targeted tags (identities) idi, while f(id) is a unit inR (i.e., is invertible) for all other
identities. The d components of the public key can be combined so as to homomorphically evaluate f on any
desired tag. The underlying trapdoor is punctured exactly on tags id where f(id) = 0, and is effective for
inversion whenever f(id) is a unit in R. Our construction is analogous to the one of [CS06] in the setting
of prime-order groups with bilinear pairings (where arithmetic “in the exponent” happens in a field), and
the all-but-d lossy trapdoor functions of [HLOV11]. However, since lattice-based constructions do not work
with fields or rings like ZN , we instead use techniques from the literature on secret sharing over groups and
modules, e.g., [DF94, Feh98].

We remark that, for technical reasons relating to the number of “hints” for which we can prove the
hardness of the extended-LWE problem, we have not been able to prove the KDM-security of our IBE
under fully polynomial assumptions (as we were able to do for our basic public-key cryptosystem). We
instead rely on the conjectured hardness of LWE for a slightly super-polynomial modulus q and inverse error
rate 1/α, which translates via known reductions [Reg05, Pei09] to the conjectured hardness of worst-case
lattice problems for slightly super-polynomial approximation factors, against slightly super-polynomial-time
algorithms. Known lattice algorithms are very far from disproving such conjectures.

1.2 Open Problems

Our work suggests several interesting problems. Currently, our all-but-d trapdoor function has a key size that
grows at least linearly with d. Finding a more efficient construction, or an “all-but-many” trapdoor function
(which is punctured on superpolynomially many tags), such as the one of [Hof12], would be particularly
useful. Another natural extension would be to construct a KDM-secure IBE scheme which can be proved
fully secure, i.e., under an adaptive choice of target identities.

It would also be interesting to construct a KDM-secure IBE from other mathematical structures that
support IBE, i.e., bilinear pairings and quadratic residues. Both have been used to build KDM-secure
encryption alone (in [BHHO08] and [BG10], respectively), but by imposing a special structure on secret
keys; it is unclear to us whether this structure can be incorporated into IBE schemes.

A less obvious extension would be to construct an IBE scheme that satisfies notions of KDM security
for the master secret key, instead of the user secret keys. Under a sufficiently strong security notion, such a
scheme could be used to construct a KDM-CCA secure scheme using the transformation from [BCHK07].
We note that in a concurrent and independent work, Galindo et al. [GHV12] solved (using bilinear pairings)
variants of these problems in which the number of challenge ciphertexts is a priori bounded.

2 Preliminaries

We denote the real numbers by R and the integers by Z. For a positive integer d, we use [d] to denote the set
{1, . . . , d}. We denote vectors over R and Z with lower-case bold letters (e.g. x), and matrices by upper-case
bold letters (e.g. A). We say that a function is negligible, written negl(n), if it vanishes faster than the inverse
of any polynomial in n. The statistical distance between two distributions X , Y over a finite or countable

4

set D is ∆(X,Y) = 1
2

∑
w∈D |X(w)− Y (w)|. Statistical distance is a metric, and in particular obeys the

triangle inequality. Let {Xn} and {Yn} be ensembles of random variables indexed by the security parameter
n. We say that X and Y are statistically close if ∆(Xn, Yn) = negl(n). For a matrix X ∈ Rn×k, the largest
singular value (also known as the spectral norm) of X is defined as s1(X) = max‖u‖=1‖Xu‖.

2.1 Lattices and Gaussians

A (full-rank) m-dimensional integer lattice Λ is an additive subgroup of Zm with finite index. This work
is concerned with the family of integer lattices whose cryptographic importance was first demonstrated by
Ajtai [Ajt96]. For integers n ≥ 1, modulus q ≥ 2, an m-dimensional lattice from this family is specified by
an “arity check” matrix A ∈ Zn×mq :

Λ⊥(A) = {x ∈ Zm : Ax = 0 ∈ Znq } ⊆ Zm.

For any y in the subgroup of Znq generated by the columns of A, we also define the coset

Λ⊥y (A) = {x ∈ Zm : Ax = y mod q} = Λ⊥(A) + x̄,

where x̄ ∈ Zm is an arbitrary solution to Ax̄ = y.
We briefly recall Gaussian distributions over lattices (for more details see [MR04, GPV08]). For s > 0

and dimension m ≥ 1, the Gaussian function ρs : Rm → (0, 1] is defined as ρs(x) = exp(−π‖x‖2/s2). For
a coset Λ + c of a lattice Λ, the discrete Gaussian distribution DΛ+c,s (centered at zero) assigns probability
proportional to ρs(x) to each vector in the coset, and probability zero elsewhere.

We will need a few standard concepts and facts about discrete Gaussians over lattices. First, for ε > 0 the
smoothing parameter [MR04] ηε(Λ) of an n-dimensional lattice is a positive real value. We will not need its
precise definition, which depends on the notion of the dual lattice, but only recall the few relevant facts that
we need; for details, see, e.g., [MR04, GPV08, MP12].

Lemma 2.1. Let m ≥ Cn lg q for some constant C > 1.

1. For any ω(
√

log n) function, we have ηε(Zn) ≤ ω(
√

log n) for some negligible ε(n) = negl(n).

2. With all but negl(n) probability over the uniformly random choice of A ∈ Zn×mq , the following holds:
For e← DZm,r where r = ω(

√
log n), the distribution of y = Ae mod q is within negl(n) statistical

distance of uniform, and the conditional distribution of e given y is DΛ⊥y (A),r.

3. For any m-dimensional lattice Λ, any c ∈ Zm, and any r ≥ ηε(Λ) where ε(n) = negl(n), we
have ‖DΛ+c,r‖ ≤ r

√
m with all but negl(n) probability. In addition, for Λ = Z we have |DZ,r| ≤

r · ω(
√

log n) except with negl(n) probability.

4. For any r > 0, and for R← Dn×k
Z,r , we have s1(R) ≤ r ·O(

√
n+
√
k) except with negl(n) probability.

Lemma 2.2. For any real number r = ω(
√

log n) and c ∈ Z, the statistical distance between DZ,r and
c+DZ,r is O(|c|/r).

5

2.2 Trapdoors for Lattices

We recall the efficient trapdoor construction and associated sampling algorithm of Micciancio and Peik-
ert [MP12]. This construction uses a universal public “gadget” matrix G ∈ Zn×wq for which there is an
efficient discrete Gaussian sampling algorithm for any parameter r ≥ ω(

√
log n) ≥ ηε(Λ⊥(G)) (for some

ε(n) = negl(n)), i.e., an algorithm that, given any y ∈ Znq and r, outputs a sample from DΛ⊥y (G),r. For
concreteness, as in [MP12] we take G = In ⊗ [1, 2, 4, . . . , 2k−1] ∈ Zn×nkq for k = dlg qe.

Following [MP12], we say that an integer matrix R ∈ Z(m−n)×w is a “strong” trapdoor with tag H
for A ∈ Zn×mq if A

[
R
I

]
= H(G) for some efficiently computable and invertible linear transformation H

over Znq , which is applied column-wise to G. Equivalently, in place of H(G) we may write H ·G for some
invertible matrix H ∈ Zn×nq , but in our constructions it will be more natural to work with invertible linear
transformations, without explicitly referring to the matrices that represent them.

Lemma 2.3 ([MP12, Theorem 5.1]). Let R be a strong trapdoor for A ∈ Zn×mq . There is an efficient
randomized algorithm that, given R, any u ∈ Znq , and any r ≥ s1(R) · ω(

√
log n) ≥ ηε(Λ⊥(A)) (for some

ε(n) = negl(n)), samples from a distribution within negl(n) distance of DΛ⊥u (A),r.

2.3 Learning With Errors

The learning with errors (LWE) problem is parameterized by a dimension n ≥ 1, an integer modulus q ≥ 2
and an error distribution χ over Z (or its induced distribution over Zq). For a vector s ∈ Znq , the distribution
As,χ over Znq ×Zq is sampled by choosing a ∈ Znq uniformly at random and outputting (a, 〈a, s〉+x), where
x← χ.

The search version of LWE is to recover an arbitrary s given oracle access to As,χ. The decision version
of LWE is to distinguish, with non-negligible advantage, between samples from As,χ for uniformly random
s ∈ Znq and uniformly random samples from Znq × Zq. There are search-to-decision reductions for LWE
for a variety of moduli q and parameter conditions ([Reg05, Pei09, ACPS09, MM11, MP12]). Of particular
importance to us are the reductions from [ACPS09, MP12] for q = pe, where p is prime, e ≥ 1 is an integer,
and Prx←χ[|x| ≥ p/2] = negl(n). The reductions runs in time polynomial in n, p, and e.

For error distribution χ = DZ,αq, where αq ≥ 2
√
n, the search version of LWE is at least as hard as quan-

tumly approximating certain worst-case problems on n-dimensional lattices to within Õ(n/a) factors [Reg05];
for certain parameters, a classical reduction is known for a subset of these lattice problems [Pei09]. Note that
the original hardness result for search-LWE was for a continuous Gaussian error distribution, but this can be
converted to a discrete Gaussian disribution with a suitable randomized rounding method [Pei10].

We will need the transformation of Applebaum et al. [ACPS09] from the standard decision-LWE problem
(where s is uniform) to one where the secret s is chosen from the error distribution χ.

Lemma 2.4 ([ACPS09, Lemma 2]). Let q = pe be a prime power. There is a deterministic polynomial-time
transformation that, for arbitrary s ∈ Znq and error distribution χ, maps As,χ to Ax̄,χ where x̄← χn, and
maps U(Znq × Zq) to itself. The transformation also produces an invertible square matrix Ā ∈ Zn×nq and
b̄ ∈ Znq that, when mapping As,χ to Ax̄,χ, satisfy x̄ = −Āts + b̄.

2.4 Identity-Based Encryption

As usual, an identity-based encryption scheme [BF01] consists of four algorithms: Setup,Ext,Enc,Dec. In
our scheme, in addition to the security parameter 1n, Setup also takes in a parameter d denoting the maximum
number of users in a clique . Setup outputs the master public key MPK (which includes the system parameters)

6

and the master secret key MSK. Ext takes in an identity id MPK, MSK and outputs a secret key SKid for
identity id. Enc takes in MPK, id and a message µ, and returns a ciphertext c. Dec takes in MPK,SKid
and ciphertext c, and returns message µ. As usual for lattice-based schemes, correctness requires that with
overwhelming probability over the random coins used by the algorithms, we have that for (MPK,MSK)←
Setup(1n, d), SKid ← Ext(MPK,MSK, id) and any message µ: Dec(MPK,SKid,Enc(MPK, id, µ)) = µ.

2.5 Key-Dependent Message Security

We now proceed to formally define key-dependent message security for public-key encryption and for identity-
based encryption. We adapt the original definitions of Black et al. [BRS02]. In their original definitions, the
adversary plays a game with a challenger, and is able to make encryption queries for functions of the users’
secret keys. The adversary is restricted to functions from a certain family F ⊂ {f : K` →M}, where K is
the keyspace for identity secret keys andM is the message space of the encryption scheme. (Technically, F
is a family of sets of functions parameterized by the security parameter n and the number of users d.) The
adversary’s goal is to distinguish between honest encryptions of the queried function applied to the secret
keys, and encryptions of a fixed dummy value (say, 0).

To simplify our security proofs, in our definition the adversary specifies two functions (f0, f1) ∈ F with
each query, and must distinguish between encryptions of f0 and encryptions of f1. If f(k1, . . . , kd) = 0 is
contained in F (which should be the case if we want KDM security to imply standard semantic security),
then it is easy to see that this definition is at least as strong as (and is in fact equivalent to) the original.

To define KDM-security for identity-based encryption, we extend the definition of selective security for
IBE from [CHK03, BCHK07]. An adversary plays a game with a challenger that answer encryption queries
for functions of the secret keys for identities from a list I, encrypted under identities from I. For selective
security, I must be specified before the adversary sees the public key and remains static throughout the game.
In addition to (key-dependent) encryption queries, the adversary is also allowed to make extraction queries
for any identity id /∈ I.

Our definitions can be extended to adaptive security as well. In this case, the adversary can adaptively
add identities to I during the course of the game. In order to make the definition meaningful, the adversary is
only allowed to add identities to I for which it has not previously made an extraction query.

For an identity-based encryption scheme (Setup,Ext,Enc,Dec), the security game between an adversary
and a challenger is parameterized by some β ∈ {0, 1} and proceeds as follows.

1. A(1n, d) outputs a list of (distinct) target identities I = (id1, id2, . . . id`) for some ` ≤ d.

2. The challenger runs (mpk,msk)← Setup(1n, d). The adversary is given mpk. The challenger then
extracts secret keys for each of the target identities, running ski ← Extmsk(idi) for each i ∈ [`].

3. A then can make extraction and encryption queries, in the order of its choice.

Extraction Queries: A can query Extmsk(·) for any identity id /∈ I
Encryption Queries: A can make encryption queries of the form (f0, f1, i), where f0, f1 ∈ F and

1 ≤ i ≤ `. The challenger computes m← fβ(sk1, . . . , sk`) and c← Enc(idi,m), and returns c
to A.

We say that the scheme is selective-identity KDM-CPA secure with respect to F if the games for β = 0, 1 are
computationally indistinguishable.

We define KDM-CPA security for a public-key scheme (Gen,Enc,Dec) in a similar manner. Starting
at phase two above (since there are no identities to target), the challenger now runs Gen d times, and gives

7

pk1, . . . , pkd to the adversary. In phase three, the adversary can only make encryption queries (since there
are no identities to extract), and requests encryptions under public keys instead of identities. Everything else
is exactly the same.

3 Hardness of Extended LWE

In this section we describe the extended-LWE problem (as originally defined in [OPW11]), and give a
reduction to it from the standard LWE problem (with polynomially bounded parameters), thus establishing its
hardness under a mild assumption.

3.1 Background and the Problem

O’Neill, Peikert and Waters [OPW11] introduced the extended-LWE problem as a simplifying tool for certain
security proofs in which LWE is used in a “hash proof-like” fashion, and additional information about the
secret key is revealed to the attacker. In prior works, dealing with such situations often involved adding
some “overwhelming” (super-polynomial) extra noise in order to disguise a small but noticeable statistical
difference between, e.g., creating a ciphertext honestly according to an encryption algorithm, and creating one
by combining the secret key with a challenge LWE instance. Unfortunately, the use of such overwhelming
noise requires an underlying LWE problem with super-polynomial modulus q and inverse error rate 1/α,
which corresponds to a substantially stronger assumption than is needed in the security proofs for many other
cryptosystems.

Here we recall the formal definition of the extended-LWE problem. In addition to the usual n, q, and χ
parameters for LWE, we also have a number m = poly(n) of LWE samples, an efficiently sampleable “hint”
distribution τ over Zm (often, a discrete Gaussian Dm

Z,r for some r ≥ 1) and another Gaussian parameter
β > 0. The problem is to distinguish, with non-negligible advantage, between the two experiments described
next; the extended-LWE assumption is that this distinguishing problem is hard. In the ExptLWE experiment,
the challenger chooses A ← Zn×mq , a secret s ← Znq and error vector x ← χm defining bt = stA + xt,
along with a “hint” vector z← τ and error term x̃← DZ,βq, and outputs

(A,b, z, b′ = 〈x, z〉+ x̃).

Note that the first two components just comprise m LWE samples, while the latter two components may be
seen as a hint about the error vector x ∈ Zm in the form of a (noisy) inner product with a vector z ∈ Zm. Note
that the noisy inner product is an integer, which is not reduced modulo anything. The ExptUnif experiment is
the same, except that b is defined to be uniformly random and independent of everything else.

Notice that because A and z are public, one can amortize the extended-LWE problem by outputting any
poly(n) number of vectors bti = stiA + xti and hints b′i = 〈xi, z〉 + x̃i, for independent si,xi, x̃i (and the
same A, z). By a routine hybrid argument, the two forms of the problem are equivalent, up to a poly(n)
factor in the distinguishing advantage. We use this amortized form of the problem in our security proof in
Section 4.

Prior hardness results, and an attack. As observed in [OPW11] (and implicitly in prior works such
as [GKPV10, DGK+10]), there is a straightforward reduction from LWE with error distribution χ = DZ,αq
to extended-LWE where τ is any m-fold product distribution with variance r2, if the ratio β/(rα) is
superpolynomial in n. In fact, in this setting we can securely give out an unbounded polynomial number of
hints zi, b′i = 〈x, zi〉+ x̃i about the error vector x. (Note that this is different from the amortized problem

8

because all the hints are about the same error x.) The reason is that by Lemma 2.2, the noise terms x̃← DZ,βq
statistically hide the inner product 〈x, z〉, since the latter has magnitude ≈ r‖x‖ ≤ rαq

√
m = βq · negl(n).

As a result, the reduction can just simulate the hints (z, 〈x, z〉 + x̃) on its own. The disadvantage of
this approach is that in order to be useful, the modulus q and inverse error rate 1/α typically must be
super-polynomial in n, which corresponds to assuming the worst-case hardness of lattice problems for
super-polynomial approximation factors and running times.

We also point out that for certain parameters, there is an efficient attack on extended-LWE when too
many hints (about the same x) are given out. Specifically, suppose τ is “subgaussian” (e.g., is bounded,
or is a discrete Gaussian distribution) with variance r, and the ratio βq/r (which upper bounds β/(rα) in
the typical case where αq ≥ 1) is polynomial in n. Then if a sufficiently large h = poly(n) number of
hints are given out, there is an efficient attack that recovers x from the hints alone, which trivially allows
for solving the extended-LWE problem. To see this, view the h hints as (Z ∈ Zm×h,yt := xtZ + x̃t). With
overwhelming probability, the singular values of Z will all be r ·Ω(

√
h−C

√
m) for some universal constant

C > 0 (see [Ver11, Theorem 5.39]). Thus, for sufficiently large h = poly(n), with overwhelming probability
the singular values of the right-inverse Z+ ∈ Rh×m of Z will all be small enough so that bx̃t · Z+e = 0. As
a result, we can compute bytZ+e = xt.

3.2 Reduction from LWE

Here we give a tight reduction from standard LWE to extended-LWE, which holds for the same parameters
n, q, χ,m ≥ n + ω(log n) in the two problems, and in which no noise is added to the hint 〈z,x〉 (i.e.,
β = 0). Our reduction imposes one requirement on the parameters: for x ← χm and z ← τ , we need it
to be the case that |〈x, z〉| < p with overwhelming probability, where p is the smallest prime divisor of
the modulus q. For example, if χ = DZ,αq and τ = Dm

Z,r, by standard tail inequalities it suffices to have
αq · r

√
m+ n · ω(

√
log n) < p. In other words, the LWE inverse error rate is 1/α > (q/p) · r

√
m+ n,

which is only polynomial in n when q, r,m are.

Theorem 3.1. There exists a probabilistic polynomial-time oracle machine (a simulator) S such that for any
adversary A,

AdvLWE(SA) ≥ 1
2p−1 ·AdvELWE(A)− negl(n),

where the parameters of the LWE and extended-LWE problems satisfy the condition specified above.

Proof. For the proof it is convenient to use the equivalent “knapsack” form of LWE, which is: given
H ← Z(m−n)×m

q and c ∈ Zm−nq , where c is either c = Hx for x ← χm, or is uniformly random and
independent of H, determine (with non-negl(n) advantage) which is the case. The extended form of the
problem also reveals a hint (z, 〈x, z〉+ x̃), analogously to extended-LWE. The equivalence between LWE
and its knapsack form for m ≥ n+ ω(log n), which also applies to their extended versions, has been noticed
in several prior works; a proof appears in [MM11, Lemmas 4.8 and 4.9].

The reduction S works as follows. It receives an LWE instance (in knapsack form) H ∈ Z(m−n)×m
q , c ∈

Zm−nq . It samples z← τ , x′ ← χm, and v← Zm−nq , then lets

H′ := H− vzt ∈ Z(m−n)×m
q , c′ = c− v · 〈z,x′〉 ∈ Zm−nq .

It sends (H′, c′, z, 〈x′, z〉) to A (an adversary for extended-LWE in knapsack form), and outputs what A
outputs.

9

We now analyze the behavior of S . First consider the case where H, c are uniform and independent. Then
it is clear that H′, c′ are as well, and both x′ and z are also chosen exactly as in ExptUnif, so S perfectly
simulates ExptUnif to A.

Now, consider the case where H, c are drawn from the knapsack distribution, with c = Hx for x← χm.
In this case, we have that H′ is uniformly random (solely over the choice of H), and

c′ = Hx− v · 〈z,x′〉 = H′x + v · 〈z,x− x′〉.

So in the event that 〈x′, z〉 = 〈x, z〉, we have c′ = H′x and so S perfectly simulates ExptLWE to A.
Whereas if 〈z,x− x′〉 is a unit modulo q, then for any fixed choice of H′, z, x, and x′, we have that c′ is
uniformly random over the choice of v alone. Finally, since x and x′ are identically distributed, it follows
that S perfectly simulates ExptUnif to A.

It remains to analyze the probabilities that 〈z,x− x′〉 is zero or a unit (modulo q), respectively. First, by
assumption |〈z,x− x′〉| < pwith overwhelming probability, so exactly one of the two cases holds. Moreover,
we have 〈x, z〉 = 〈x′, z〉 with probability at least 1

2p−1 − negl(n) because x and x′ are independent. The
theorem then follows from a routine calculation.

Connection to Impagliazzo-Naor. It is worth noting that our proof is very similar to Impagliazzo and
Naor’s proof [IN96] that the subset-sum function (over certain additive groups, and with appropriate parame-
ters) is a pseudorandom generator if it is one-way. The proof of [IN96] reduces guessing the Goldreich-Levin
predicate 〈z,x〉 mod 2 (for z ← {0, 1}m) to distinguishing the subset-sum function’s output (on input
x← {0, 1}m) from uniformly random. But in fact, their proof does slightly more: it reduces guessing the
value of the inner product 〈r,x〉 over the integers to the distinguishing problem; this corresponds with the
hint in the extended-LWE problem. In both their proof and ours, the reduction guesses the value of the
inner product; whether the guess is correct determines whether the subset-sum/knapsack instance is further
randomized or not. Our reduction, however, is from the decisional knapsack (not Goldreich-Levin) problem;
it also needs to provide a properly distributed hint (z, 〈z,x〉) to the distinguisher, which is why it chooses z
and a supplementary x′ error vector itself.

Normal form. In our cryptosystems, we need to assume the hardness of extended-LWE in “normal form”
(as in [MR09, ACPS09]), where the secret s← χn is drawn from the error distribution, the matrix A and
vector bt have m − n columns, and the hint is of the form z ← τ , b′ = 〈(s,x), z〉 ∈ Z. Suppose m is
sufficiently large so that a uniformly random matrix from Zn×mq contains an invertible n-by-n submatrix with
overwhelming probability. Then the reduction from [MR09, ACPS09] applies to extended-LWE in this form,
with the slight modification that LWE samples in the first phase are never “thrown away” but are instead
recycled to the second phase.

4 KDM-CPA Secure Public-Key Scheme

Here we present a “dual”-style LWE cryptosystem that is KDM-CPA secure for affine functions of the secret
keys. In fact, by setting the parameters appropriately, the construction and security proof also encompass
(a slight variant of) the cryptosystem from [LP11], which has somewhat smaller keys and ciphertexts than
“primal” or “dual” systems. In Section 6 we build a KDM-CPA secure IBE around this system.

10

4.1 Construction

The cryptosystem involves a few parameters: a modulus q = p2 for a prime p where the message space
is Zp; integer dimensions n,m relating to the underlying LWE problems; and a Gaussian parameter r for
key generation and encryption. To make embedding this scheme into our IBE more natural, Gen includes
an additional parameter d, which will be used to specify the size of identity cliques in the IBE scheme, and
outputs public keys A that are md columns wide. In the public-key scheme alone, the value d is unrelated to
the number of public keys that the adversary can obtain in an attack (which will be denoted as ` below and is
unbounded), and we would just fix d = 1.

• Gen(1n, d): choose A ∈ Zn×mdq , z0 ← Dn
Z,r, z1 ← Dmd

Z,r , and let y = z0 −Az1 = [In | −A]z ∈ Znq
where z = (z0, z1) ∈ Zn+md. The public key is (A,y) and the secret key is z1.

(Notice that, unlike the dual-style encryption of [GPV08], but like the scheme of [LP11], the public
key component y is a perturbed value of −Az1. This will be important in the proof of KDM security.)

• Enc(A,y, µ): to encrypt a message µ ∈ Zp, choose x0 ← Dn
Z,r, x1 ← Dmd

Z,r and x′ ← DZ,r. Output

the ciphertext ct = xt0[A | y] + [xt1 | x′] + [0 | p · µ] ∈ Z1×(md+1)
q .

• Dec(z1, c): Compute µ′ = ct [z11] ∈ Zq. Output the µ ∈ {0, . . . , p− 1} = Zp such that µ′ is closest
to (pµ) mod q.

4.2 Parameters and Correctness

For the public-key system alone, it suffices to take m ≥ n by our use of the extended-LWE assumption and
its proof of hardness as in Section 3. When embedding the system into an IBE scheme, however, we will use
m = Θ(n log q) because we need the public parameters to be statistically close to uniform over the choice
of the master secret key. The error parameter r must be small enough (relative to q/p) so that decryption is
correct with overwhelming probability, but large enough to satisfy the reductions to LWE from worst-case
lattice problems [Reg05, Pei09]; for the latter purpose, r ≥ 2

√
n suffices. (Note that even if part of the

security proof relies on LWE in dimension > n, this problem is no easier than LWE in dimension n, and so
we can still securely use r = 2

√
n with the larger dimension.)

Here we give some example bounds. Let r = 2
√
n, let

p = r2
√
n+md · ω(

√
log n) = n

√
n+md · ω(

√
log n),

and let q = p2. Then decryption is correct except with probability negl(n): let (A,y, z)← Gen(1n, d). For
a ciphertext c← Enc(A,y, µ), we have

ct [z11] = xt0Az1 + 〈x1, z1〉+ 〈x0,y〉+ x′ + p · µ = 〈x0, z0〉+ 〈x1, z1〉+ x′ + p · µ mod q,

so decryption is correct whenever |〈x0, z0〉+ 〈x1, z1〉+ x′| < p/2. By known tail bounds on discrete
Gaussians, this bound holds except with probability negl(n) (over the choice of all the random variables), as
required.

4.3 Proof of Security

Theorem 4.1. The above cryptosystem is KDM-CPA secure with respect to the set of affine functions over
Zp, under the extended-LWE assumption for parameters described above.

11

Proof. We proceed by a series of indistinguishable games. We begin with the real KDM-CPA attack game as
defined in Section 2.5, where β ∈ {0, 1} is arbitrary. We then eventually transition to a game which proceeds
in a manner independent of the value of β, thus proving computational indistinguishability between the attack
games for β = 0 and β = 1. Since we are describing the games for an arbitrary value of β, we let f = fβ
denote the function of the secret key that is encrypted in each ciphertext query.

We will be denoting affine functions over Zp of the ` users’ secret keys z1,1, . . . , z`,1 as

fV,w(Z) :=
∑
j∈[`]

〈vj , zj,1〉+ w mod p, where V =
[
v1 . . .v`

]
,Z =

[
z1,1, . . . , z`,1

]
∈ Zmd×`p

throughout the proof.

Game 0. This is the actual attack game. We do everything normally, generating public keys (Ai,yi) with
secret keys zi,1 for any number of users, and encrypt affine functions fV,w of the users’ secret keys under the
public key for user i as

ct = xt0[Ai | yi] + [xt1 | x′] + [0 | p · fV,w(Z)].

Game 1. In this game we rewrite the way we respond to each key-dependent message query fV,w(Z), so
that the response has exactly the same distribution, but it is constructed to syntactically match the ExptLWE
experiment in the (amortized, normal form) extended-LWE problem. Looking ahead, in Game 2 we will
switch the form of the ciphertexts to match the ExptUnif experiment.

For each user i, we proceed as in ExptLWE with parameters error distribution χ := DZ,r, extra noise
β := 0, and the same r as in the cryptosystem. That is, we choose Ai ← Zn×mdq and zi ← Dn+md

Z,r , parsing
it as zi = (zi,0, zi,1) ∈ Zn × Zmd. We let yi = [In | −Ai]zi = zi,0 −Aizi,1, giving user i’s public key
(Ai,yi) to the adversary. (As expected, zi,1 is the secret key for user i.)

For handling later ciphertext queries, we also (lazily) generate an unbounded number of LWE vectors b,
with hints b′, of the form

bt := xt0Ai + xt1 ∈ Z1×md
q , b′ := 〈x, zi〉 ∈ Z,

where x = (x0,x1)← Dn+md
Z,r is freshly chosen for each b, and are amortized over the same fixed Ai, zi

chosen above.
To answer a query to encrypt fV,w under user i’s public key, we generate a fresh b with hint b′ as above,

choose x′ ← DZ,r as usual, and return to the adversary the ciphertext

ct = [bt | −〈b, zi,1〉+ b′ + x′ + p · fV,w(Z)].

We now show that the responses to the KDM queries in this game are distributed exactly the same as in
the previous game. To see this, simply observe that each ciphertext

ct = [bt | −〈b, zi,1〉+ b′ + x′ + p · fV,w(Z)]

= [xt0Ai + xt1 | −(xt0Ai + xt1)zi,1 + 〈x, zi〉+ x′ + p · fV,w(Z)]

= [xt0Ai + xt1 | 〈x0,yi〉+ x′ + p · fV,w(Z)],

which has the same distribution as in Game 0.

12

Game 2. This game is exactly like Game 1, except that instead of using ExptLWE, we instead use ExptUnif,
i.e., we choose the vectors b uniformly at random (but still choose the vectors x for generating the hints
b′ = 〈x, zi〉). Responses to key-dependent message queries are still generated as

ct = [bt | −〈b, zi,1〉+ x′ + b′ + p · fV,w(Z)].

Under the extended-LWE assumption, and hence under the standard LWE assumption with appropriate
parameters (by Theorem 3.1), this game is computationally indistinguishable from Game 1.

Game 3. In this game, we use the LWE distribution transformation from [ACPS09] (our Lemma 2.4) to
answer key-dependent queries without needing to use the secret keys zi,1 explicitly. We begin with oracle
access to At,χ (where t ← Zmdq , χ = DZ,r). We apply the transformation for each i, yielding oracle
access to distributions Azi,1,χ, where each zi,1 is distributed according to χmd. For each user i, we sample
Azi,1,χ a total of n times to get (−Ai ∈ Zn×mdq ,yi = zi,0 −Aizi,1), and set the public key for user i to be
(Ai,yi). (We write −Ai instead of Ai so that yi has the same form with respect to Ai as it does in the actual
encryption scheme.)

As in [ACPS09], we use the auxiliary information output by the LWE transformation to construct
for all users i, j a linear relation between the (unknown) secret keys zi,1, zj,1, i.e., an invertible matrix
Ti,j ∈ Zmd×mdq and vector wi,j ∈ Zmdq such that

zj,1 = Tt
i,j · zi,1 + wi,j mod q. (4.1)

To simplify notation below, we will use this transformation to re-write an arbitary affine function query
fV,w(Z) as a function of any zi,1 alone. Letting ṽi =

∑
j∈[`](Ti,jvj) mod p, w̃i =

∑
j∈[`]〈vj ,wi,j〉 +

w mod p, we have that

fV,w(Z) =
∑
j∈[`]

〈vj , zj,1〉+ w =
∑
j∈[`]

(〈Ti,jvj , zi,1〉+ 〈vj ,wi,j〉+ w) = 〈ṽi, zi,1〉+ w̃i.

To respond to a query for an encryption of fV,w(Z) under the public key for user i, we draw a fresh
(−b0, b1)← Azi,1,χ. Next, we choose a fresh x = (x0,x1)← Dn+md

Z,r . We output the ciphertext

ct = [bt0 + (xt0Ai + xt1) + p · ṽti | b1 + 〈x0,yi〉+ p · w̃i].

We claim that these ciphertexts are distributed identically to those in Game 2. To show this, we let
bt = bt0 + (xt0Ai +xt1) + p · ṽti . Since b0 is uniform (by the definition of Azi,1,χ), b in this game is uniform
over the choice of b0 alone, just as in Game 2. Next, since b1 = −〈b0, zi,1〉 + x′ for x′ ← DZ,r, we can
rewrite the ciphertext constructed in this game as

ct = [bt | 〈−b + (At
ix0 + x1) + p · ṽi, zi,1〉+ x′ + 〈x0,yi〉+ p · w̃i]

= [bt | −〈b, zi,1〉+ x′ + 〈x0,yi + Aizi,1〉+ 〈x1, zi,1〉+ p · (〈ṽi, zi,1〉+ w̃i)]

= [bt | −〈b, zi,1〉+ x′ + 〈x, zi〉+ p · fV,w(Z)],

which is distributed exactly as in Game 2.

13

Game 4. This game is exactly like Game 3, except instead of beginning with oracle access to At,χ for
χ = DZ,r, we begin with oracle access to U(Zmdq × Zq). Computational indistinguishability from Game 3
follows directly from the hardness of decision-LWE.

In this game, the public keys (Ai,yi) are now all uniformly random and independent. Moreover, since
every sample (b0, b1) drawn in the game is also truly uniform and independent of everything else in the
ciphertexts, all of the responses to key-dependent message queries are just uniformly random and independent
vectors. This makes the game independent of β, and concludes the proof.

5 All-But-d Trapdoor Functions

Here we develop a technique for constructing “all-but-d” (tag-based) trapdoor functions, which, informally,
are trapdoor functions for which the trapdoor enables efficient inversion for all but (up to) d tags, which are
specified at the time of key generation. This is the main tool we use for embedding our KDM-CPA-secure
public-key cryptosystem into an identity-based encryption scheme.

Our construction is a generalization (to higher-degree polynomials) of the main technique from [ABB10].
For simplicity and somewhat better efficiency, we follow the construction of [MP12], specifically the use of a
fixed, public “gadget” matrix G as described in Section 2.2.

5.1 Algebraic Background

Let n ≥ 1, q ≥ 2, and d = poly(n) be integers. Let R denote any commutative ring (with efficiently
computable operations, including inversion of multiplicative units) such that the additive group G = Znq is
anR-module, and such that there are at least d+ 1 known elements U = {u0 = 0, u1, u2, . . .} ⊆ R where
ui − uj is invertible in R (i.e., a unit) for every i 6= j. (These are the only abstract properties of the ring
we will need for our constructions. In the next paragraph we recall how to construct such a ring for any n
and q, where U has size at least 2n.) In particular, we have an (efficiently computable) scalar multiplication
operationR×G→ G. Note that multiplication by u ∈ R is an invertible linear transformation on G exactly
when u is invertible (i.e., a unit). We extend scalar multiplication in the natural way to vectors and matrices,
i.e., Ra×b × Gb×c → Ga×c. To avoid confusion with vectors and matrices over Zq, we use ~u notation for
vectors overR, and V notation for matrices overR.

To construct a suitable ring, we use ideas from the literature on secret sharing over groups and modules,
e.g., [DF94, Feh98]. We use an extension ring R = Zq[x]/(F (x)) for any monic, degree-n, irreducible
F (x) = F0 + F1x + · · · + Fn−1x

n−1 + xn ∈ Zq[x]. Scalar multiplication R × G → G is defined by
identifying each a = (a0, . . . , an−1)t ∈ G with the polynomial a(x) = a0 + a1x+ · · ·+ an−1x

n−1 ∈ R,
multiplying in R, then mapping back to G. In other words, scalar multiplication is defined by the linear
transformation x · (a0, . . . , an−1)t = (0, a0, . . . , an−2)t − an−1(F0, F1, . . . , Fn−1)t. It is easy to check that
with this scalar product, G is anR-module. In addition, by the Chinese remainder theorem, r ∈ R is a unit
if and only if it is nonzero (as a polynomial residue) modulo every prime integer divisor p of q. (This is
because Zp[x]/(F (x)) is a field by construction.) Letting p be the smallest such divisor of q, we can define
the universe U = {u0 = 0, u1, u2, . . .} ⊆ R to consist of all the polynomial residues having coefficients in
{0, . . . , p− 1}. Then |U | = pn ≥ 2n and ui − uj is a unit for all i 6= j, as desired.

5.2 Basic Construction

As in [MP12], we fix a universal public “gadget” matrix G ∈ Zn×wq for which there is an efficient Gaussian
preimage sampling algorithm for parameter s ≥ ω(

√
log n), i.e., an algorithm that given any u ∈ Znq outputs

14

a sample from DΛ⊥u (G),s. E.g., we can let G = In ⊗ (1, 2, 4, . . . , 2k−1) ∈ Zn×nkq for k = dlg qe.
As input, the trapdoor generator takes:

• an integer d ≥ 1 and a monic degree-d polynomial f(z) = c0 + c1z + · · ·+ zd ∈ R[z],

• a (usually uniformly random) matrix Ā ∈ Z(nd)×m̄
q for some m̄ ≥ 1, which is made up of stacked

submatrices Āi ∈ Zn×m̄q for i = 0, . . . , d− 1.

• a “short” secret R ∈ Zm̄×w chosen at random from an appropriate distribution (typically, a discrete
Gaussian) to serve as a trapdoor.

As output it produces a matrix A ∈ Z(nd)×(m̄+w)
q (which is statistically close to uniform, when the parameters

and input Ā are appropriately chosen). In addition, for each tag u ∈ U there is an efficiently computable
(from A) matrix Au ∈ Zn×(m̄+w)

q for which R may be a trapdoor, depending on the value of f(u) ∈ R.
We write the coefficients of f(z) as a column vector ~c = (c0, c1, . . . , cd−1)t ∈ Rd, and define

A′f :=
[
Ā ~c⊗G

]
=

 Ā0 c0 ·G
...

...
Ād−1 cd−1 ·G

 ∈ Z(nd)×(m̄+w)
q .

To hide the polynomial f , we output the public key

A := A′f ·
[
I −R

I

]
=
[
Ā (~c⊗G)− ĀR

]
.

Note that as long as the distribution of [Ā | −ĀR] is statistically close to uniform, then so is A for any f .
The tag space for the trapdoor function is the set U ⊂ R. For any tag u ∈ U , define the row vector

~ut := (u0, u1, · · · , ud−1) ∈ Rd (where 00 = 1) and the derived matrix for tag u to be

Au := ~ut ·A +
[
0 ud ·G

]
=
[
~ut · Ā f(u) ·G

]
·
[
I −R

I

]
.

By the condition in Lemma 2.3, R is a (strong) trapdoor for Au exactly when f(u) ∈ R is a unit, because
Au ·

[
R
I

]
= f(u) ·G and f(u) represents an invertible linear transformation when it is a unit.

5.3 Puncturing

In our cryptosystems and security proofs we will need to generate (using the above procedure) an all-but-d
trapdoor function that is “punctured” at up to d tags. More precisely, we are given as input:

• a set of distinct tags P = {u1, . . . , u`} ⊆ U for some ` ≤ d,

• uniformly random matrices A∗i ∈ Zn×m̄q for i ∈ [`] (which often come from an SIS or LWE challenge),

• a “short” secret R ∈ Zm̄×w chosen at random from an appropriate distribution (typically, a discrete
Gaussian) to serve as a trapdoor,

• optionally, some uniformly random auxiliary matrices Y∗i ∈ Zn×kq for i ∈ [`] and some k ≥ 0.

As output we produce a public key A ∈ Z(nd)×m̄
q and auxiliary matrix Y ∈ Z(nd)×k

q so that:

15

1. Each Aui matches the challenge matrix A∗i , and R is only a “weak” trapdoor for Aui . More precisely,

Aui =
[
A∗i 0

]
·
[
I −R

I

]
.

2. R is a (strong) trapdoor for Au for any nonzero u ∈ U \ P , i.e., f(u) is a unit.

3. The auxiliary matrix Yui := ~ui
t ·Y equals the auxiliary input Y∗i for each ui ∈ P .

We satisfy these criteria by invoking the above trapdoor generator with the following inputs f and Ā:

1. We define the monic degree-d polynomial

f(z) = zd−` ·
∏
i∈[`]

(z − ui) ∈ R[z]

and expand to compute its coefficients ci ∈ R. Note that f(ui) = 0 for every ui ∈ P , and f(u) is a
unit for any nonzero u ∈ U \ P because 0 ∈ U and ui − uj is a unit for every distinct ui, uj ∈ U .

2. We define Ā using interpolation: let A∗ ∈ Z(n`)×m̄
q denote the stack of challenge matrices A∗i , and

let V ∈ R`×d be the Vandermonde matrix whose rows are the vectors ~uit defined above. We then let
Ā ∈ Z(nd)×m̄

q be a uniformly random solution to V · Ā = A∗.

Such a solution exists, and is efficiently computable and uniformly random (over the uniformly random
choice of A∗ and the random solution chosen). To see this, extend V to an invertible d×dVandermonde
matrix overR having unit determinant

∏
i<j(uj − ui) ∈ R∗, by adding d− ` additional rows ~ujt for

arbitrary distinct uj ∈ U \ P . Likewise, extend A∗ to have dimension (nd)× m̄ by adding uniformly
random rows. Then for any fixed choice of the (extended) matrix V , the (extended) matrix A∗ and
solution Ā are in bijective correspondence, and so the latter is uniformly random because the former is.

3. We also define the auxiliary matrix Y similarly using interpolation, as a uniformly random solution to
V ·Y = Y∗.

6 Circular-Secure IBE

Our IBE scheme is a generalization of the efficient IBE scheme of Agrawal et al. [ABB10]. Other than some
minor changes in the parameters, the main difference is the use of the all-but-d trapdoor construction, which
allows us to “puncture” the master public key at up to d identities in the security proof. The scheme has
parameters modulus q, message space Zp for some p < q, dimension m, and Gaussian parameters r and γ.
We give example instantiations after describing the scheme.

6.1 Construction

The identity space for the scheme is U \ {0} ⊂ R, where U ,R are constructed as in Section 5.

• Setup(1n, d): On input security parameter 1n and secret key clique size d:

16

1. Sample R← Dmd×w
Z,ω(
√

logn)
, and for i = 0, . . . , d− 1, choose uniformly random Ai ← Zn×mdq ,

yi ← Znq and let Ãi = −AiR ∈ Zn×wq . (Note that this is simply calling the all-but-d trapdoor
construction from Section 5 with an empty set of punctured tags.) Let

A :=

 A0
...

Ad−1

 , Ã :=

 Ã0
...

Ãd−1

 = −AR, y :=

 y0
...

yd−1

 .
2. The public key is mpk = (A, Ã,y). The master secret key is msk = (R).

• Ext(mpk,msk, u) On input mpk,msk and u ∈ U \ {0} ⊆ R:

1. Let ~ut := (u0, u1, . . . , ud−1), Āu = ~ut ·A, yu = ~ut · y and Au = [~ut ·A | udG− ~ut · Ã] =
[Āu | udG− ĀuR], as in Section 5.

2. Sample z0 ← Dn
Z,r, z1 ← DΛ⊥z0−yu

(Au),r using the preimage sampling algorithm (Lemma 2.3),
so that yu = z0 −Auz1 (as in the public-key cryptosystem from Section 4). Output sku := z1.
Note that the above is possible because ud ∈ R is a unit, and by our choice of r below, because
s1(R) = O(

√
md+

√
w) · ω(

√
log n) = O(

√
md) · ω(

√
log n) with all but negl(n) probability

by Lemma 2.1.

• Enc(mpk, u, µ): On input master public key, identity u ∈ U \ {0}, and message µ ∈ Zp do:

1. Let ~ut := (u0, u1, . . . , ud−1), Au = [~ut ·A | udG + ~ut · Ã] ∈ Zn×md+w
q , and yu = ~ut · y.

2. Choose x0 ← Dn
Z,r, x

(1)
1 ← Dmd

Z,r ,x
(2)
1 ← Dw

Z,γ , x2 ← DZ,r. Let xt1 = [(x
(1)
1)t | (x(2)

1)t].

3. Output the ciphertext ct = xt0[Au | yu] + [xt1 | x2] + [0 | p · µ].

• Dec(mpk, sku = z1, c): output the µ ∈ Zp such that ct [z11] is closest to p · µ modulo q.

6.2 Parameters and Correctness

We need most of the parameters to match the parameters from the public-key encryption scheme, with
the additional constraint that r must be large enough that we can run the preimage sampling algorithm
(Lemma 2.3) in Ext. Thus, we choose a sufficiently large m = Θ(n log q), r = O(

√
md) · ω(

√
log n)2,

γ = nω(1) slightly superpolynomial in n, p = γ · poly(n) for a sufficiently large poly(n) term to ensure
correctness, and q = p2. We need m = Θ(n log q) so that the stacked matrix A ∈ Znd×mdq is wide enough
so that (A, Ã = AR) is statistically close to uniform (by Lemma 2.1) over our choice of A and R.

We now prove correctness. Let ct ← Enc(mpk, u, µ) be a properly generated encryption of µ under
identity u, and let z1 ← Ext(mpk,msk, u). Then we have

ct [z11] = xt0Auz1 + xt0yu + 〈x1, z1〉+ x2 + p · µ = 〈x0, z0〉+ 〈x1, z1〉+ x2 + p · µ.

Thus, decryption will be correct whenever |〈x0, z0〉+ 〈x1, z1〉+ x2| < p/2. By Cauchy-Schwarz and
Lemma 2.1, this bound holds except with probability negligible in n (over the choice of all the random
variables), as required.

17

6.3 Proof of Security

Theorem 6.1. For the above parameters, the above IBE scheme is selective identity KDM-CPA secure with
respect to the set of affine functions over Zp, under the LWEq,χ assumption for χ = DZ,r, and the KDM-CPA
security of the system from Section 4.

Proof. Our proof of security proceeds as follows. Game 0 is the actual attack game. In Game 1, we use the
all-but-d trapdoors construction from Section 5 to construct the master public key, “puncturing” it at the
targeted identities. Finally, in Game 2, we play the KDM-CPA security game against a challenger running the
public-key encryption scheme from Section 4 and use the outputs of the challenger to simulate Game 1. This
requires some care because the IBE secret keys and ciphertexts have larger dimension by an additive term
of w (the width of G). To address this, we fill in the missing dimensions of the secret keys by choosing them
ourselves, and use knowledge of the master secret key to fill in the missing dimensions of the ciphertexts
(here is where we use the fact that noise with parameter γ “overwhelms” noise with parameter r). Selective
identity KDM-CPA security then follows from the KDM-CPA security of the public-key encryption scheme.

Game 0. This is the actual security game from Section 2.5. For bit β, we respond to KDM queries
(fV0,w0 =

∑
j∈[d]〈vj,0, zj,1〉+w0, fV1,w1 =

∑
j∈[d]〈vj,1, zj,1〉+w1, i) by encrypting fVβ ,wβ under identity

ui. We respond with ciphertext c, where (for ~uti = (u0
i , u

1
i , . . . , u

d−1
i))

ct = xt0[~uti ·A | ~uti · Ã | ~uti · y] + [xt1 | x2] + [0 | p · fVβ ,wβ].

Game 1. In this game, we use the all-but-d trapdoor construction from Section 5 to “puncture” the public
key at each of the d challenge identities in a statistically indistinguishable manner.

We first choose d uniform random matrices A∗i ∈ Zn×mdq and master secret key R← Dmd×w
Z,ω(
√

logn)
. In

order to successfully simulate the security game, we still need to know a secret key for each of the d challenge
identities. So, for i ∈ [d], we choose the secret key for identity ui to be zi,1 ← Dmd+w

Z,r and choose error
zi,0 ← Dn

Z,r. We then set y∗i = zi,0 − [A∗i | −A∗iR]zi,1.
Lemma 2.1 implies that this is statistically close to choosing the y∗i uniformly at random and then

sampling zi,1 ← DΛ⊥
zi,0−y∗

i
([A∗i |−A∗iR]),r. Recalling that as a result of the all-but-d construction, we will have

that [A∗i | −A∗iR] = [~ui
t ·A | udiG − ~ui

t ·AR] and that y∗i = ~ui
t · y, we see that the master public key

and the secret keys for the challenge identities have been generated in a manner statistically indistinguishable
from how they were generated in Game 0.

So, we invoke the all-but-d trapdoor construction on A∗i ,y
∗
i , R and identities ui (that we received from

the adversary), and receive back Ai, Ãi = −AiR + ciG,yi for i = 0, . . . , d− 1 which we make the master
public key and give to the adversary.

Secret key extractions and responses to KDM queries proceed normally (using the now “punctured”
public key), and so responses to KDM queries are now of the form

ct = xt0[A∗i | −A∗iR | y∗i] + [xt1 | x2] + [0 | p · fVβ ,wβ]. (6.1)

Game 2. In this game, we attack the KDM-CPA secure scheme described in Section 4 and use it to simulate
Game 1. The secret keys in that construction only correspond to the “top parts” (dimension md) of the secret
keys in the IBE scheme (denoted below as z(1)

i). The “bottom parts” (dimension w) will be denoted z
(2)
i ,

with similar notation for syndromes y(1)
i ,y

(2)
i . We will be choosing the “bottom parts” of the keys on our

own, as described below.

18

Answering KDM queries. After receiving the d challenge identities from the adversary, we begin playing
the KDM-CPA security game (for the same values of m and d) against a challenger. The challenger sends us
each user’s public key as (A∗i , (y

∗
i)

(1) = zi,0 −A∗i z
(1)
i,1) for i ∈ [d], where the zi,0 and z

(1)
i,1 are secret. To

construct the full syndrome y∗i for each challenge identity ui in the IBE scheme, we sample the “bottom
part” z

(2)
i,1 ← Dw

Z,r, compute (y∗i)
(2) = A∗iRz

(2)
i,1 , and then set y∗i = (y∗i)

(1) + (y∗i)
(2). Note that as in the

previous game, the A∗i , y
∗
i remain statistically close to uniform by Lemma 2.1.

We then sample R← Dmd×w
Z,ω(
√

logn)
as usual, and use (A∗i ,R,y

∗
i , ui) as the input to our all-but-d trapdoor

construction, receiving back Ai, Ãi = −AiR+ ciG, and yi for i = 0, . . . , d−1, which we make the master
public key.

We continue to respond to secret key extraction queries as in Game 1, using our all-but-d trapdoor to
extract secret keys for all non-challenge identities.

We now show how to respond to the adversary’s key-dependent message queries with encryptions of
fVβ ,wβ , where β parameterizes the KDM-CPA security game that we are playing (and is unknown to us
because that scheme is KDM-CPA secure). To do so, we need to modify the functions fV0,w0 , fV1,w1 given to
us by the adversary before passing them along to the KDM-CPA challenger. For k ∈ {0, 1}, our modifications
will add to the constant part of each function (wk) the sum of the inner products of the “bottom part” of each
affine function vector (v(2)

j,k) with the “bottom part” of each secret key (z(2)
j,1). Thus, instead of only being an

encryption of a function of “top part” of the secret key, the ciphertext we receive back from the KDM-CPA
challenger will in fact be an encryption of fVk,wk , which is exactly what we need.

Concretely, to respond to key-dependent message queries (fV0,w0 , fV1,w1 , i), we first let v′j,k = v
(1)
j,k ,

w′k = wk +
∑

j∈[d]〈v
(2)
j,k , z

(2)
j,1 〉 for k ∈ {0, 1}. We then query the KDM-CPA challenger with

(f ′V0,w0
=
∑
j∈[d]

〈v′j,0, zj,1〉+ w′0, f
′
V1,w1

=
∑
j∈[d]

〈v′j,1, zj,1〉+ w′1, i).

Since for k ∈ {0, 1},
∑

j∈[d]〈v′j,k, z
(1)
j,1 〉+w′k =

∑
j∈[d]〈vj,k, zj,1〉+wk = fVk,wk , we will receive back an

encryption of µ = fVk,wk for k = β as

c′t = [bt0 | b
(1)
2 + µ],

where bt0 = xt0A
∗
i + (x

(1)
1)t, b(1)

2 = xt0(y∗i)
(1) + x2 for x0 ← Dn

Z,r, x
(1)
1 ← Dmd

Z,r and x2 ← DZ,r, and
µ = p · fVβ ,wβ = p · (

∑
j∈[d]〈vj,β, zj,1〉+ wβ), as in the actual scheme from Section 4.

We then compute bt1 = −bt0R+(x
(2)
1)t and b(2)

2 = bt0Rz
(2)
i,1 , where as in the actual scheme, x(1)

1 ← Dw
Z,γ .

Letting b2 = b
(1)
2 + b

(2)
2 , we finally output as our response

ct = [bt0 | bt1 | b2 + µ].

To complete the proof, we need to show that these ciphertexts are statistically indistinguishable from the
ciphertexts in Game 1. The left-most part (bt0) is generated by the KDM-CPA scheme with exactly the same
distribution we used to generate bt0 = xt0A

∗
i + (x

(1)
1)t in Game 1.

In Game 1, the center part of the ciphertexts was generated as −xt0A∗iR + (x
(2)
1)t, while in this game,

the center part is generated as bt1 = −bt0R + (x
(2)
1)t = −xt0A∗iR + (x

(2)
1)t + (x

(1)
1)tR. Lemma 2.1

gives that ‖(x(1)
1)tR‖ ≤ poly(n) (except with negligible probability), so that by Lemma 2.2, the statistical

distance between (x
(2)
1)t and (x

(2)
1)t + (x

(1)
1)tR is at most poly(n)/γ = negl(n). Since the rest of the

19

center part is distributed identically in Games 1 and 2, we have that the center part in Game 1 is statistically
indistinguishable from the center part in Game 2.

Finally, in Game 1, the right part of the ciphertexts was generated as

xt0y
∗
i + x2 + p · (

∑
j∈[d]

〈vj,β, zj,1〉+ wβ).

In this game, the right part is generated as

b2 + µ = xt0(y∗i)
(1) + xt0A

∗
iRz

(2)
i,1 + (x

(1)
1)tRz

(2)
i,1 + x2 + µ

= xt0y
∗
i + (x

(1)
1)tRz

(2)
i,1 + x2 + p · (

∑
j∈[d]

〈vj,β, zj,1〉+ wβ).

Now, we have by Lemma 2.1 that |(x(1)
1)tRz

(2)
i,1 | ≤ poly(n) except with negligible probability. Lemma 2.2

then gives that the statistical distance between x2 and x2 + (x
(1)
1)tRz

(2)
i,1 is at most poly(n)/γ = negl(n),

and since the rest of the right part is distributed identically in Games 1 and 2, we have that the right part in
Game 1 is statistically indistinguishable from the right part in Game 2.

Therefore, the ciphertexts in Game 1 are statistically indistinguishable from the ciphertexts in Game 2,
and so the two games as a whole are statistically indistinguishable. The theorem follows.

Acknowledgments. We thank Oded Regev for helpful comments, and for pointing out a subtle error in a
prior version of our reduction from Section 3.

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553–572. 2010.

[ABHS05] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the presence of
key-cycles. In ESORICS, pages 374–396. 2005.

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In CRYPTO, pages 595–618. 2009.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32,
2004. Preliminary version in STOC 1996.

[App11] B. Applebaum. Key-dependent message security: Generic amplification and completeness. In
EUROCRYPT, pages 527–546. 2011.

[BCHK07] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. SIAM J. Comput.,
32(3):586–615, 2003. Preliminary version in CRYPTO 2001.

20

[BG10] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO, pages 1–20.
2010.

[BGK11] Z. Brakerski, S. Goldwasser, and Y. T. Kalai. Black-box circular-secure encryption beyond affine
functions. In TCC, pages 201–218. 2011.

[BHHI10] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. In
EUROCRYPT, pages 423–444. 2010.

[BHHO08] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision
Diffie-Hellman. In CRYPTO, pages 108–125. 2008.

[BRS02] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-
dependent messages. In Selected Areas in Cryptography, pages 62–75. 2002.

[BV11] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security
for key dependent messages. In CRYPTO, pages 505–524. 2011.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. J. Cryptology,
20(3):265–294, 2007. Preliminary version in EUROCRYPT 2003.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In EUROCRYPT, pages 93–118. 2001.

[CS06] S. Chatterjee and P. Sarkar. Generalization of the selective-ID security model for HIBE protocols.
In Public Key Cryptography, pages 241–256. 2006.

[DF94] Y. Desmedt and Y. Frankel. Perfect homomorphic zero-knowledge threshold schemes over any
finite abelian group. SIAM J. Discrete Math., 7(4):667–679, 1994.

[DGK+10] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key encryption
schemes with auxiliary inputs. In TCC, pages 361–381. 2010.

[Feh98] S. Fehr. Span Programs over Rings and How to Share a Secret from a Module. Master’s thesis,
ETH Zurich, Institute for Theoretical Computer Science, 1998.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

[GHV12] D. Galindo, J. Herranz, and J. Villar. Identity-based encryption with master key-dependent
message security and applications. Cryptology ePrint Archive, Report 2012/142, 2012. http:
//eprint.iacr.org/.

[GKPV10] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning with
errors assumption. In ICS, pages 230–240. 2010.

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984. Preliminary version in STOC 1982.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206. 2008.

21

http://eprint.iacr.org/
http://eprint.iacr.org/

[HH09] I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryption. In TCC, pages
202–219. 2009.

[HLOV11] B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions from
general assumptions and efficient selective opening chosen ciphertext security. In ASIACRYPT.
2011.

[Hof12] D. Hofheinz. All-but-many lossy trapdoor functions. In EUROCRYPT, pages 209–227. 2012.

[IN96] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset sum.
J. Cryptology, 9(4):199–216, 1996.

[LP11] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In CT-RSA,
pages 319–339. 2011.

[MM11] D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample complexity of LWE
search-to-decision reductions. In CRYPTO, pages 465–484. 2011.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT. 2012.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

[MR09] D. Micciancio and O. Regev. Lattice-based cryptography. In Post Quantum Cryptography, pages
147–191. Springer, February 2009.

[MTY11] T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key encryption
with KDM security. In EUROCRYPT, pages 507–526. 2011.

[OPW11] A. O’Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. In CRYPTO, pages
525–542. 2011.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
pages 333–342. 2009.

[Pei10] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO, pages 80–97.
2010.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53.
1984.

[Ver11] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, Jan-
uary 2011. Available at http://www-personal.umich.edu/˜romanv/papers/
non-asymptotic-rmt-plain.pdf, last accessed 4 Feb 2011.

22

http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

	Introduction
	Our Contributions
	Open Problems

	Preliminaries
	Lattices and Gaussians
	Trapdoors for Lattices
	Learning With Errors
	Identity-Based Encryption
	Key-Dependent Message Security

	Hardness of Extended LWE
	Background and the Problem
	Reduction from LWE

	KDM-CPA Secure Public-Key Scheme
	Construction
	Parameters and Correctness
	Proof of Security

	All-But-d Trapdoor Functions
	Algebraic Background
	Basic Construction
	Puncturing

	Circular-Secure IBE
	Construction
	Parameters and Correctness
	Proof of Security

