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Abstract

We demonstrate an average-case problem that is as hard as finding γ(n)-approximate short-
est vectors in certain n-dimensional lattices in the worst case, where γ(n) = O(

√
log n). The

previously best known factor for any non-trivial class of lattices was γ(n) = Õ(n).
Our results apply to families of lattices having special algebraic structure. Specifically, we

consider lattices that correspond to ideals in the ring of integers of an algebraic number field.
The worst-case problem we rely on is to find approximate shortest vectors in these lattices,
under an appropriate form of preprocessing of the number field.

For the connection factors γ(n) we achieve, the corresponding decision problems on ideal
lattices are not known to be NP-hard; in fact, they are in P. However, the search approximation
problems still appear to be very hard. Indeed, ideal lattices are well-studied objects in com-
putational number theory, and the best known algorithms for them seem to perform no better
than the best known algorithms for general lattices.

To obtain the best possible connection factor, we instantiate our constructions with infinite
families of number fields having constant root discriminant. Such families are known to exist
and are computable, though no efficient construction is yet known. Our work motivates the
search for such constructions. Even constructions of number fields having root discriminant up
to O(n2/3−ε) would yield connection factors better than Õ(n).

As an additional contribution, we give reductions between various worst-case problems on
ideal lattices, showing for example that the shortest vector problem is no harder than the closest
vector problem. These results are analogous to previously-known reductions for general lattices.

1 Introduction

In 1996, Ajtai established a remarkable connection between the worst-case and average-case com-
plexity of certain computational problems on lattices [4]. He showed that approximating the
length of the shortest nonzero vector in n-dimensional lattices to within a certain connection factor
γ(n) = poly(n) in the worst case reduces to solving a related problem on the average. This result
opened the door to basing cryptography on a worst-case assumption, namely, that no efficient algo-
rithm can approximately solve the shortest vector problem (SVP) to within a γ(n) factor on every
lattice of dimension n.

It seems reasonable to assume that SVP is indeed hard. The problem dates back over 150 years,
and it has been heavily scrutinized ever since. A major breakthrough occurred in 1982, when
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Lenstra, Lenstra, and Lovász designed an efficient algorithm that approximates SVP to within
a 2O(n) factor [31] (which was later improved to 2O(n(log log n)2/ log n) by Schnorr [47]). While the
so-called LLL algorithm has proved to be useful in many diverse applications, its approximation
factors are much too large to undermine the hardness assumption associated with Ajtai’s result.
To date, the asymptotically best algorithm for SVP offers a trade-off between solution quality and
running time, and for any poly(n) approximation factor still requires time exponential in n [7].

In Ajtai’s original reduction, the connection factor γ(n) was a rather large polynomial in n.
Due to the known time/quality tradeoffs, it is desirable from both a theoretical and practical point
of view to obtain reductions for as small of a γ(n) as possible. This was a main goal of several
follow-up works [16, 37], resulting in the currently best known connection factor of γ(n) = Õ(n) by
Micciancio and Regev [38].

The SVP also has the interesting property that it is NP-hard for small approximation factors
(under randomized reductions). Ajtai first showed hardness for its exact version (in the Euclidean
norm) [5]. This result was improved in a series of works to hardness for any constant approx-
imation factor unless NP 6⊆ RP [17, 34, 30], and for almost-polynomial factors 2log1−ε n unless
NP 6⊆ RTIME(2polylog(n)) [30, 29]. The latter results already approach the perceived limits on the
hardness of approximating SVP, as NP-hardness beyond O(

√
n) factors would imply that NP ⊆

coNP [3] (or NP ⊆ coAM, for factors beyond O(
√

n/ log n) [22]).
In light of the above, improving the worst-case/average-case connection factor to γ(n) = n1/2−ε

appears problematic. In particular, it would imply cryptographic functions based on problems not
known to be in coNP or coAM; as shown by Akavia et al, this would require significantly new
ideas [8]. Going even further to, say, γ(n) = polylog(n) would imply cryptography based on quasi-
NP-hardness, a feat which appears far beyond our current capabilities. (Though see [26] for an
interesting first step in this direction.)

Note that all the perceived barriers to improving the connection factor are based on the com-
plexity of the decision version of SVP. However, Ajtai’s reduction actually solves certain search
problems on lattices. So one potential route to tighter connection factors would be to identify
a suitable worst-case problem whose search version appears hard, but whose decision version is
easy. Doing so would render the perceived barriers vacuous, while preserving or even improving
the concrete hardness of the average-case problem.

1.1 Our Results

We put forward a new class of lattices that admit very small worst-case to average-case connection
factors. These lattices correspond to certain algebraic structures, namely ideals in the ring of
integers of a suitable algebraic number field. Our worst-case problem is to find approximate shortest
vectors in such lattices, under an appropriate form of preprocessing of the number field.

For the connection factors we achieve, the corresponding decision problems on these lattices
are not known to be NP-hard; in fact, they are in P. However, the search approximation problems
still appear to be very hard. Indeed, the best known algorithms for these special lattices seem to
perform no better than the best known algorithms for general lattices.

The high-level structure of our worst-case/average-case reduction inherits from a sequence of
works starting with Ajtai’s original paper [4] and the improvements proposed by Micciancio and
Regev [38], as well as the works of Micciancio [36], Peikert and Rosen [42], and Lyubashevsky
and Micciancio [33]. The latter works generalized the role of the integers Z in prior reductions,
replacing them with some “larger” ring to obtain efficient cryptographic primitives. We show
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that by substituting Z with a ring of algebraic integers, one can also obtain significantly better
connection factors. Our analysis identifies the root discriminant of the number field as the main
quantity governing this improvement.

Informal Theorem. Let K be a number field of degree n having root discriminant DK . Then
there exists an average-case problem which is as hard as finding a γ-approximate shortest nonzero
vector in any ideal lattice over K, where γ ∼ D1.5

K ·
√

log n.

It is a known fact of algebraic number theory that there exist computable infinite families of
number fields (of increasing degree n) having constant root discriminant [46], though we do not
know of any efficient construction. In lattices defined over these families, therefore, we obtain a con-
nection factor of O(

√
log n). More generally, any family of number fields whose root discriminants

are as large as O(n2/3−ε) yield lattices admitting connection factors better than Õ(n).

1.2 Explicitness

As far as we are aware, it is still unknown how to efficiently compute families of number fields having
very small root discriminant. A review of the literature suggests that a fair amount of attention
has been devoted to searching for number fields having highly-optimized root discriminants for
small fixed degrees (see, e.g. [19]). To our knowledge, the problem of efficiently constructing good
asymptotic families of number field has not received nearly as much attention. The best construction
we know of is an infinite family of cyclotomic number fields having root discriminants as small as
O(n(log log n)/(log n)) [48]. As mentioned above, families having root discriminants even up to
O(n2/3−ε) would yield improved connection factors for ideal lattices.

We remark that, while number fields having small root discriminant appear to be rare, one
can efficiently compute the root discriminant of any given number field. Therefore it is easy to
recognize a good number field once it is discovered.

1.3 Uniformity

Our reductions require a small amount of non-uniform advice, which is simply a form of prepro-
cessing: the computational problems are parameterized by some fixed choice of number field, and
the non-uniform advice depends only on this choice (not on the input instance). Preprocessing is a
standard notion for computational problems over codes and lattices [14, 35, 21], and it seems to be
the proper way of stating problems in our setting, given that in real applications the number fields
will be chosen well in advance of any particular problem instance. We remark that preprocessing
does not seem to help solve our worst-case problems.

A certain amount of advice about the number field also seems necessary for obtaining useful
cryptographic hardness, e.g. collision-resistant hash functions. The reason is that we need a way
to map inputs of the cryptographic function to “short” algebraic integers. On the face of it,
computing such a mapping appears to require some particular information about the number field.
See Section 10 for further discussion.

Note that explicit constructions of number fields may actually come with the required advice
“by design,” removing the non-uniformity from our reductions entirely and enabling cryptographic
hardness. This is indeed the case for the cyclotomic number fields mentioned above.
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1.4 The Worst-Case Problem

Our results are based on the worst-case problem of finding a relatively short non-zero vector in
any ideal lattice over certain families of number fields of increasing degree, allowing for arbitrary
preprocessing of the number fields. The vector must be short relative to every `p length.

Due to the algebraic structure of ideal lattices, it is actually trivial to closely approximate the
length λ1 of a shortest nonzero vector. This is because in ideal lattices, λ1 is always within a

√
DK

factor of Minkowski’s upper bound (where DK is the root discriminant of the number field), and
this bound is easily computed.1 However, it does not appear that this makes the search problem
any easier. In particular, the search and decision problems are not known to be equivalent (and for
general lattices, they are only known to be equivalent when the decision problem is NP-hard).

Finding short vectors in ideal lattices over number fields is a long-standing open problem in
algebraic number theory, and is considered to be one of the motivations for the development of the
celebrated LLL algorithm [31]. The problem also plays a role in the Number Field Sieve factoring
algorithm and in “ideal reduction,” which is, for example, an essential step in the computation of
the unit group and class group of a number field (this is a reason why the recent quantum algorithm
of Hallgren [28] is limited to fixed degree). Any efficient algorithm for finding short vectors in ideal
lattices in the worst case would be considered a major breakthrough in computational number
theory [48, 12].

It is hard to qualitatively compare our worst-case/average-case connections with those known
for general lattices. On the one hand, our worst-case problem is restricted to a subclass of lattices
and hence could be seen as potentially easier than the problems on general lattices. On the other
hand, our connection factor is substantially smaller, hence our reduction could be seen as solving
a potentially harder problem.

1.5 Additional Contributions

We additionally give relationships between various worst-case problems on ideal lattices. Specifi-
cally, we establish approximation-preserving reductions (in any `p length) from the shortest vector
problem (SVP) to the closest vector problem (CVP), and from the exact search version of CVP to
the corresponding decision version. Analogous results were already known for general lattices [24],
but these reductions do not preserve the “ideal” structure of their inputs. (That is, the instances
generated by the reduction are not necessarily ideal lattices, even if the input lattice is ideal.) Our
new reductions rely crucially on the splitting behavior of integer primes over number fields.

We give bounds on many standard lattice quantities for ideal lattices, including the successive
minima, basis minimum, and covering radius, in arbitrary `p lengths. We also give a new bound on
the smoothing parameter which, for ideal lattices over number fields with small root discriminant,
is significantly stronger than a prior bound [38].

Finally, we point out that number fields having constant root discriminant give rise to a collec-
tion of lattices that exemplify the tightness of known transference theorems [10, 11], simultaneously
in all `p lengths, up to constant factors (or O(

√
log n) factors for p = 1,∞). This provides a more

general alternative to a similar family of lattices by Conway and Thompson [39], which are tight
for the `2 length.

1The structure of ideal lattices also makes it easy to estimate the value of several other lattice parameters, such
as the successive minima λi and the covering radius µ.
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2 Overview of Techniques

2.1 Ajtai’s Framework

Like almost all prior works on worst-case/average-case reductions for lattice problems [23, 16, 37,
43], we follow the framework initiated by Ajtai [4]. This framework shows how to reduce worst-
case lattice problems to finding “small” nonzero solutions to random linear equations over certain
additive groups G. Specifically, the equations to be solved are of the form

∑
j aj · zj = 0 ∈ G, for

independent and uniformly-random elements aj ∈ G and unknown variables zj ∈ Z.
To find a short vector in an arbitrary input lattice Λ, the reduction samples random aj ∈ G

in a way that is related to Λ. The core idea is a method of sampling aj ∈ G together with a
short “offset” vector dj ∈ Rn. The crucial property of the sampling procedure is this: for any
zj ’s satisfying the equation

∑
aj · zj = 0, the vector v =

∑
dj · zj ∈ Rn is a vector in the input

lattice Λ (and is non-zero with significant probability). In particular, when the coefficients zj are
small, the resulting vector v is relatively short. The length of v, and consequently the connection
factor of the reduction, is therefore governed by two main quantities: (1) the “effective size” of the
average-case solution (i.e., the amount by which it expands the offset vectors), and (2) the lengths
of the offset vectors dj themselves.

In Ajtai’s original work [4], the group G is Zn
q , for an appropriate q = poly(n). That is, the

average-case problem is to find small integers zj such that
∑

aj · zj = 0 mod q, for aj chosen
uniformly from Zn modulo q. In Ajtai’s reduction, the effective size of the average-case solution is
a small polynomial in n, and the length of the offset vectors is a poly(n) factor larger than the nth
successive minimum λn of Λ. This results in polynomial connection factors for several worst-case
lattice problems.

In later work, Micciancio and Regev [38] proposed an elegant method of implementing the
sampling procedure, which improved both the effective size of the solution and the lengths of the
offset vectors. Their method relies on adding n-dimensional Gaussian noise to “blur” the lattice,
destroying its discrete structure. The amount of noise required to completely blur the lattice is
called the smoothing parameter, which was shown to be bounded by ∼ λn. Based on this bound, the
sampling procedure produces offset vectors of length ∼

√
n · λn, and it guarantees an average-case

solution of effective size ∼
√

n. The reduction therefore produces lattice points of length ∼ n · λn.
Using several additional ideas, these techniques can also be used to approximate the length λ1 of
the shortest vector to within a factor ∼ n.

2.2 Our Approach

We retain all the essential elements of Ajtai’s framework and its subsequent improvements, but
in a more general setting. The core of our approach is to replace the ring of integers Z with the
ring of algebraic integers OK contained in a number field K of degree n. (The idea of replacing
Z with some “larger” ring is rooted in work of Micciancio [36], whose motivation was improved
cryptographic efficiency. See Section 3 for details and a comparison to our work.)

A number field is a certain kind of field extension of the rationals Q. Every number field K
contains a discrete ring OK , called the algebraic integers, which acts as an analog of the integers Z
in Q. Strictly speaking, K (and in particular, OK) is a subset of the complex numbers C. But K
also corresponds very naturally to an n-dimensional geometric space via its canonical embedding.
In this manner, elements in K can be viewed as vectors which can be added and multiplied, and
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which have magnitudes in various `p lengths.
In Ajtai’s framework, replacing Z with OK alters the type of lattices underlying the worst-case

problem. Instead of general lattices, which are made up of all the Z-combinations of some set of
basis vectors, we end up with all OK-combinations of some basis elements in OK . Specifically, we
get a set {

∑
ci · bi : ci ∈ OK} for some collection of elements bi ∈ OK , which is called an ideal

in OK . When embedded in geometric space, an ideal yields an n-dimensional ideal lattice. This
notion is quite natural and standard in algebraic number theory; see e.g. [20, Chapter 8], [13].

Our average-case problem is defined in a similar way. An instance is given by a vector a =
(a1, . . . , am) ∈ Om

K where the aj are uniform and independent representatives from OK modulo q.
The problem is to find a “small” solution z = (z1, . . . , zm) ∈ Om

K (for an appropriate notion of size)
satisfying the equation

∑m
j=1 ajzj = 0 mod q.

To obtain our improved connection factors, we will use number fields K having small root
discriminant DK (as a function of the degree n). The best number fields for our purposes will have
DK bounded by a constant, which is optimal. Using such number fields will yield a factor of ∼

√
n

improvement in each of the two main aspects of the worst-case to average-case reduction:

1. Smaller average-case solutions. We show that our average-case problem admits very short
solutions z ∈ Om

K , having an “effective size” of ∼
√

log n. In all prior work, the solution size
was at least

√
n log n.

The improvement stems from properties of the algebraic integers OK . Like Z, the ring OK

has a discrete structure and a geometric notion of “absolute value” |·|. In particular, for an
element x ∈ OK with |x| ≤ β, multiplying an element by x increases its “size” by at most β.

The crucial difference between Z and OK is this: while Z contains only ∼ 2β elements of
absolute value at most β, the ring OK contains ∼ βn such elements. Intuitively, and in a
precise geometric sense, OK is much more “densely-packed” than Z.

Now consider any a ∈ Om
K specifying an instance of the average-case problem. Because

OK mod q has exactly qn residue classes, then intuitively we expect (at least) one out of
every qn vectors z ∈ Om

K to satisfy the equation
∑

ajzj = 0 mod q. The density of OK

implies that there are ∼ βmn (non-zero) vectors z ∈ Om
K with |zj | ≤ β for every j. By

choosing β = O(1) and m = O(log n) appropriately so that the number of such z exceeds qn,
we can show that at least one such z satisfies the equation.

In the reduction, the net effect of using such a z is the following: because |zj | ≤ β = O(1),
each offset vector dj expands by only a constant factor when multiplied by zj . Because the
reduction outputs the sum of m = O(log n) such (expanded) offset vectors, the output is only
a O(log n) factor longer than the individual offsets. In fact, a more sophisticated analysis
actually reveals that the overall expansion is only O(

√
log n).

2. Smaller smoothing parameter. In addition, we show that “smoothing” ideal lattices requires
much less noise than general lattices. For ideal lattices over number fields with constant
DK , the smoothing parameter is ∼ λ1/

√
n, whereas for general lattices it can be as large as

∼ λn ≥ λ1 [38]. In the reduction, then, the length of the offset vectors dj is ∼ λ1. Combined
with the size of the average-case solutions, this fact accounts for our O(

√
log n) connection

factor for SVP.

The improved smoothing parameter stems from the fact that ideal lattices and their duals
simultaneously have large minimum distances λ1 (which in turn is due to their algebraic

6



properties). In fact, the relationship is near optimal: for an ideal lattice Λ and its dual Λ∗

(over some K having constant DK), we have λ1(Λ) · λ1(Λ∗) = Ω(n), whereas the bound
λ1(Λ) ·λ1(Λ∗) ≤ n applies for any lattice Λ [10]. We find it a remarkable coincidence that the
same property guaranteeing small average-case solutions (namely, small root discriminant) is
also exactly what accounts for this improvement in the smoothing parameter.

In addition to the improved connection factors, we also obtain a unified reduction where the
worst-case problem can be stated in terms of any `p length, p ∈ [1,∞]. The connection factor is
(essentially) the same for all p. This result relies upon an analysis of Gaussian distributions over
lattices from a concurrent work by Peikert [41].

Our treatment of general `p lengths is partly motivated by a recent result of Regev and
Rosen [45], who showed that worst-case lattice problems are easiest in the `2 length (at least
for general lattices). In light of this fact, obtaining reductions for arbitrary `p lengths under a
unified connection factor is much more desirable. Furthermore, in algebraic number theory there
are multiple notions of magnitude which correspond to different `p lengths, e.g. `∞ for the “height”
of a number, and often `1 length for its “size.”

2.3 Relationships Between Worst-Case Problems

We also provide some new reductions between worst-case problems on ideal lattices, showing, for
example, that the shortest vector problem is no harder than the closest vector problem. For all of
our results, analogous reductions are known for general lattices [24], but those reductions do not
work for ideal lattice problems because they perform transformations that can destroy the ideal
property. Nevertheless, our reductions use techniques similar to those for general lattice problems.

The essential technique from [24] for reducing, say, the shortest vector problem to the closest
vector problem involves constructing a special sequence of sublattices of the input lattice. In this
work, we will generate subideals of the input ideal I by multiplying I by a certain collection of
appropriately-chosen (fixed) ideals. The crucial property of this collection is that all its ideals are
individually “small,” and that their product is the ideal 〈q〉 generated by some integer q ∈ Z. Such
a collection can be derived from any prime q ∈ Z that “splits well” over the number field K.

3 Comparison to Related Work

The idea of exploiting special families of lattices is not new. Some of the results in Ajtai’s original
paper [4] are based on lattices that a have “unique” shortest vector (in some formal sense), as are
the cryptosystems of Ajtai and Dwork [6] and Regev [43].

Micciancio generalized Ajtai’s framework by replacing the integers Z with an alternate ring R for
the purpose of cryptographic efficiency [36]. He proposed the ring of n-dimensional integer vectors
Zn, with cyclic convolution as the product operation. This yielded an efficient and “compact”
one-way function assuming the worst-case hardness of problems on cyclic lattices.

In later independent works, Peikert and Rosen [42] and Lyubashevsky and Micciancio [33]
observed that cyclic lattices actually correspond to ideals in the polynomial ring R = Z[x]/〈xn − 1〉,
and obtained efficient collision-resistant hash functions by exploiting the algebraic structure of this
ring. The latter work also suggested generalizing to other rings of the form R = Z[x]/〈f(x)〉 for
other degree-n polynomials f(x) satisfying certain special properties.
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Our work is closely related to [36, 42, 33], but differs in a couple of crucial ways. First, we
use a different kind of ring, namely the algebraic integers OK in a number field K. In general,
OK is not isomorphic to any ring of the form Z[x]/〈f(x)〉. However, OK always contains such a
subring, and in certain special cases they can coincide. For example, let n be a power of 2. Then
for the cyclotomic number field Q(ζ) where ζ = exp(πi/n) is a root of the irreducible polynomial
f(x) = xn + 1, the ring OK is indeed isomorphic to Z[x]/〈f(x)〉. We caution that cyclotomic
number fields are a very special case in this respect, and that they unfortunately do not have the
other properties we need to obtain improved connection factors.

Just as importantly, we use a different correspondence between elements of our ring OK and
n-dimensional vectors. In [36, 42, 33], a polynomial residue g(x) ∈ R = Z[x]/〈f(x)〉 corresponds to
a point in Zn simply by reading g’s coefficients as an n-dimensional vector. In this work, we use the
canonical embedding of K into an n-dimensional geometric space. Even when OK is isomorphic to
a ring of the form R = Z[x]/〈f(x)〉, the embedding of g ∈ R ≡ OK is in general quite different from
the vector of g’s coefficients. Our use of the canonical embedding will prove crucial in characterizing
the geometric structure of ideal lattices.

Implicit in [38] is a bound on the smoothing parameter (similar to ours) for the special class of
lattices having near-optimal (dual) minimum distances. This yields a connection factor of Õ(

√
n)

for such lattices (because the solutions to the average-case problem are still of size ∼
√

n). Prior
to our work, however, it was not clear whether there were any candidate families of such lattices
that were amenable to a worst-case hardness assumption. (The sequence of lattices constructed by
Conway and Thompson [39], for example, are optimal with respect to minimum distance, but it is
not clear whether the sequence even contains more than one lattice per dimension n.)

4 Preliminaries

4.1 Notation

The complex numbers are denoted by C, the reals by R, the rationals by Q, and the integers by
Z. For a real r, bre = br + 1

2c denotes a closest integer to r. For z ∈ C, z denotes the complex
conjugate of z. For a positive integer n, [n] denotes {1, . . . , n}. The function log denotes the natural
logarithm. For simplicity, we adopt the convention x1/∞ = 1 for any positive x ∈ R. For a function
f and countable set A, f(A) denotes

∑
x∈A f(x).

Vectors are represented as bold lower-case letters, e.g. x. For a vector x, the ith component of
x is denoted by xi. The Hermitian inner product between x,y ∈ Cd is 〈x,y〉 =

∑
i∈[n] xiyi. Note

that when x,y ∈ Rd, the Hermitian inner product and the standard inner product coincide.
For p ∈ [1,∞), the `p length of a vector x ∈ Cd is ‖x‖p = (

∑
i∈[n] |xi|p)1/p.2 For p = ∞, the

`∞ length is ‖x‖∞ = maxi∈[n] |xi|. Let D be any domain supporting an `p length. For any set
V = {vi} ⊆ D define ‖V ‖p = supi ‖vi‖p, and for t ∈ D, define distp(t, V ) = infi ‖t− vi‖p. We
always take p = 2 whenever it is omitted. Note that ‖x‖22 = 〈x,x〉 for any x ∈ Cd.

We write poly(·) for some unspecified polynomial function in its parameter. We say that a
function f(n) is negligible in n if it decreases faster than the inverse of any polynomial in n, and
write ν(n) for some unspecified negligible function in n.

The statistical distance between two probability distributions A and B is denoted ∆(A,B).
The uniform distribution over a set S is denoted U(S).

2Usually this is called the `p norm, but the term “norm” will claimed by another notion from number theory.
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4.2 Lattices

Let B = {b1, . . . ,bn} be a set of n linearly independent vectors in Cd ≡ R2d. The lattice generated
by B is the set of all integer combinations

L(B) =
{∑

i∈[n]

cibi : ∀i ∈ [n], ci ∈ Z
}

.

The set B is called a basis of the lattice, and its size n = |B| the rank. Every lattice has an infinite
number of bases generating it. For any basis B, its fundamental region P(B) = {

∑
i∈[n] cibi : ci ∈

[0, 1)}. The n-dimensional volume vol(P(B)), denoted detL(B), is called the fundamental volume
and is invariant over any basis B of the lattice.

The minimum distance in `p length of a lattice Λ, denoted λp
1(Λ), is the length of its short-

est nonzero element (in `p length): λp
1(Λ) = min0 6=x∈Λ ‖x‖p. Minkowski’s Theorem relates the

minimum distance to the fundamental volume of a lattice:

Proposition 4.1 (Minkowski’s Theorem). Let Λ be any lattice of rank n and B ⊆ span(Λ) be any
convex body symmetric about the origin having n-dimensional volume vol(B) > 2n · det Λ. Then B
contains some nonzero x ∈ Λ.

Generalizing the minimum distance, the ith successive minimum in `p length λp
i (Λ) is the

smallest radius r such that the ball rBp
n contains i linearly independent lattice points, where Bp

n

is the closed unit ball under the `p length. A set of n linearly independent lattice points is not
necessarily a basis for the lattice. Let gp(Λ), which we call the basis minimum (in `p length), be
the minimum r such that the ball rBp

n contains a set of lattice vectors that are a basis of Λ. The
covering radius (in `p length) µp(Λ) is the shortest radius r such `p balls rBp

n centered at the points
of Λ cover the subspace it spans: µp(Λ) = maxx∈span(Λ) distp(x,Λ).

The dual lattice of Λ, denoted Λ∗, is defined to be Λ∗ = {x ∈ span(Λ) : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}.
The transference theorems of Banaszczyk give relations between lattices and their duals, in both
the standard `2 length [10] and in general `p lengths [11]. Following Cai [15] in a straightforward
manner, we can generalize Banaszczyk’s results to relate the basis minimum of Λ (under any `p

length) to the minimum distance of Λ∗ (under the dual length of `p):

Lemma 4.2 (Synthesis of [11] and [15]). There is a constant C such that for any lattice Λ of rank
n and any p, r ∈ [1,∞] with 1/p + 1/r = 1,

gp(Λ) · λr
1(Λ

∗) ≤ C · n
√

log n.

4.3 Gaussian Measures

Our review of Gaussian measures over lattices follows the development of prior works [3, 43, 38].
For any s > 0 define the Gaussian function over Cd centered at c ∈ Cd with parameter s as:

∀x ∈ Cd, ρs,c(x) = e−π‖x−c‖2/s2
.

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted. The total measure
of ρs,c(x) over any subspace H ⊆ Cd of dimension n is sn, therefore we can define a continuous
Gaussian probability distribution over H as DH

s,c(x) = s−n · ρs,c(x). We often take the subspace H
to be implicit, omitting the superscript.
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DH
s,c is the sum of n one-dimensional Gaussian distributions (aligned in orthogonal directions

within H), which can each be approximated and sampled arbitrarily well using standard algorithms.
For simplicity, we will assume that algorithms can efficiently sample from DH

s,c exactly; their analysis
can be made rigorous by using a sufficiently precise approximation.

For c ∈ Cd, s > 0, and lattice Λ, define the discrete Gaussian distribution over Λ:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

.

(As above, we may omit the parameters s or c.) Intuitively, DΛ,s,c can be viewed as a “conditional”
distribution, resulting from sampling an x from D

span(Λ)
s,c and conditioning on x ∈ Λ.

The smoothing parameter. Micciancio and Regev [38] proposed a new lattice quantity which
they called the smoothing parameter :

Definition 4.3 ([38]). For a lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is
defined to be the smallest s such that ρ1/s(Λ∗\ {0}) ≤ ε.

The name “smoothing parameter” is motivated by the following (informal) fact: if a lattice Λ is
“blurred” by adding Gaussian noise with parameter s ≥ ηε(Λ), the resulting distribution is within
ε of uniform. The following lemma makes this formal:

Lemma 4.4 ([38]). Let B be a lattice basis. For any ε > 0, c ∈ Cd, and s ≥ ηε(L(B)),

∆(Dspan(L(B))
s,c mod P(B),U(P(B))) ≤ ε/2.

We will need the following simple bound on the smoothing parameter:

Lemma 4.5 ([38]). For any lattice Λ of rank n and ε = 2−n, ηε(Λ) ≤
√

n/λ1(Λ∗).

The behavior of the discrete Gaussian distribution DΛ,s,c also depends on the smoothing pa-
rameter. We will need a bound, shown by Peikert and Rosen [42], on maximum value of DΛ,s,c

(i.e., the probability of the mode):

Lemma 4.6 ([42]). Let Λ be a lattice of rank n. For any ε > 0, s ≥ 2 · ηε(Λ), c ∈ Cd, and x ∈ Λ,

DΛ,s,c(x) ≤ 2−n · 1+ε
1−ε .

5 Basic Algebraic Number Theory

In this section we review the necessary background in algebraic number theory. Due to lack of
space, we will present most facts without proof (which can be found in any number of introductory
books on the topic, e.g. [9, 40].) As new concepts are introduced, the reader may wish to follow
along with an extended example which appears at the end of this section.

An algebraic number ζ ∈ C is any root of some polynomial in Q[x]. The minimal polynomial
of ζ is the unique monic, irreducible polynomial f(x) ∈ Q[x] of minimal degree having ζ as a root.
An algebraic integer is an algebraic number whose minimal polynomial has integer coefficients.

A number field is a field extension K = Q(ζ) that is constructed by adjoining an algebraic
integer ζ to the rationals Q. The minimal polynomial f(x) of ζ is called the generating polynomial
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of K, and the degree of K is the degree of f . Because f(ζ) = 0, there is a natural isomorphism
between Q[x]/〈f(x)〉 and K, given by x 7→ ζ. Due to this isomorphism, it actually does not matter
which root ζ of f we adjoin to Q, as they all yield isomorphic number fields. Therefore, it is often
more convenient to view K as the field of polynomials (having rational coefficients) modulo f ,
rather than as a subfield of C.

5.1 Embeddings and Geometry

Here we describe how a number field corresponds naturally to an n-dimensional geometric space.
An embedding is a ring homomorphism (i.e., a function that preserves multiplication and addi-

tion, and their respective identity elements). A number field K = Q(ζ) of degree n has exactly n
embeddings {σj}j∈[n] into C. Concretely, these embeddings are given by mapping ζ to each root
of the generating polynomial f(x). An embedding whose image lies in R (corresponding to a real
root of f) is called a real embedding; otherwise (for a complex root of f) it is called a complex
embedding. Just as f has pairs of complex conjugate roots, the complex embeddings of K are
also paired into complex conjugates τ, τ where τ(x) = τ(x) for all x ∈ K. The number of real
embeddings is denoted r1, and the number of pairs of conjugate complex embeddings is denoted
r2, so we have n = r1 + 2r2. The pair (r1, r2) is called the signature of K. By convention, we
let {σj}j∈[r1] be the real embeddings, and we number the remaining complex embeddings so that
σj+r1+r2 = σj+r1 for all j ∈ [r2].

The canonical embedding σ : K → Rr1 × C2r2 is defined by

σ(x) = (σ1(x), . . . , σn(x)) .

One can see that σ is an embedding (i.e., a ring homomorphism) from K to Rr1 × C2r2 , where
multiplication and addition in Rr1 × C2r2 are component-wise. Due to the r2 pairs of conjugate
embeddings, σ(K) spans the n-dimensional subspace

H =
{
(x1, . . . , xn) ∈ Rr1 × C2r2 : xj+r1+r2 = xj+r1 , ∀ j ∈ [r2]

}
⊆ Cn.

With the canonical embedding in hand, we can define geometric norms (“lengths”) on K. For
any x ∈ K and any p ∈ [1,∞], define the `p length of x to be ‖x‖p = ‖σ(x)‖p = (

∑
i∈[n] |σi(x)|p)1/p

for p <∞, and maxi∈[n] |σi(x)| for p =∞. As always, we assume the `2 length when p is omitted.
From these definitions and because σ is a ring homomorphism, one can see that for any x, y ∈ K
and any p ∈ [1,∞]:

‖xy‖p ≤ ‖x‖∞ · ‖y‖p .

Therefore the `∞ length acts as an “absolute value” for elements in K (as alluded to in the discussion
from Section 2.2).

5.2 The Ring of Integers and Its Ideals

Here we describe how K contains a discrete n-dimensional analog of the integers Z, called the ring
of integers OK .

Let OK ⊂ K be the set of all algebraic integers contained in K. This set forms a ring under
standard addition and multiplication of complex numbers. Additionally, OK is a free Z-module of
rank n, i.e. it is the set of all Z-combinations of some basis B = {b1, . . . , bn} ⊂ OK . Such a basis
is called an integral basis for K.
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An ideal I ⊆ OK in the ring of integers is a nontrivial (i.e., I 6= {0}) set which is a group under
addition and which is closed under multiplication by OK , i.e. xr ∈ I for all x ∈ I and all r ∈ OK .3

An ideal in OK is the set of all OK-combinations of some number of elements g1, g2, . . . ∈ OK ,
and is denoted 〈g1, g2, . . .〉. Similarly to OK , an ideal is also a free Z-module of rank n with some
Z-basis {u1, . . . , un}. The product of two ideals I and J is another ideal that is the ideal generated
by all products xy, where x ∈ I and y ∈ J .

An ideal q ( OK is prime if whenever a, b ∈ OK and ab ∈ q, then a ∈ q or b ∈ q (or both). The
ring OK has unique factorization of ideals, that is, every ideal I ⊆ OK can be uniquely expressed
as a product of prime ideals. For any prime q ∈ Z, the ideal 〈q〉 factors into prime ideals as
〈q〉 = qe1

1 · · · q
eL
L where the qi are distinct prime ideals and 1 ≤ ei ≤ n. The prime q is said to split

completely if L = n and every ei = 1, and is said to be fully ramified if L = 1 and e1 = n.
A fractional ideal I is a generalization of an ideal, all of whose elements can be written as frac-

tions with some fixed denominator. Formally, there is some d ∈ OK such that dI = {dx : x ∈ I}
is an ideal in OK .

5.3 Field Norm

Here we describe a quantity which measures the “size” of a field element or a (fractional) ideal,
relative to the ring of integers.

The (field) norm of an element x ∈ K is the product of all its embeddings N(x) =
∏

i∈[n] σi(x);
it is nonzero if x 6= 0, is always in Q, and is in Z if x ∈ OK . Because the σi are ring homomorphisms,
the norm is multiplicative: N(xy) = N(x)N(y).

The above definition generalizes to (fractional) ideals. For any integral ideal I ⊆ OK , the norm
is defined to be N(I) = |OK/I| (i.e., the number of distinct residues in OK mod I). The norm of
the element x ∈ OK and the norm of its principal ideal coincide (up to sign): N(〈x〉) = |N(x)|.
For any x ∈ I, N(x) is divisible by N(I) (because 〈x〉 is a subideal of I).

For a fractional ideal I over K with denominator d ∈ OK (i.e., dI is an integral ideal), the
norm is defined to be N(I) = N(dI)/N(d), so it is multiplicative for (fractional) ideals as well.

5.4 Ideal Lattices

Here we describe how the ring of integers and its ideals yield lattices under the canonical embedding.
Recall that OK is a Z-module having some basis {b1, . . . , bn}. Therefore, it embeds as an n-

dimensional lattice σ(OK) spanning H ⊆ Rr1 × C2r2 and having basis {σ(b1), . . . , σ(bn)}. The
(absolute) discriminant of K, denoted ∆K , is the squared fundamental volume (detσ(OK))2 of
this lattice.4 The root discriminant of K, denoted DK , is defined to be ∆1/n

K . Intuitively, this is a
measure of the “density” of the the algebraic integers (where smaller DK means more dense).

The same ideas apply to any (fractional) ideal I, which has some basis {u1, . . . , un}. Then σ(I)
is a lattice spanning the subspace H and having basis {σ(u1), . . . , σ(un)}. We call such a lattice an
ideal lattice (over K). The fundamental volume of an ideal lattice σ(I) is N(I)

√
∆K .

The dual of an ideal lattice σ(I) is another ideal lattice corresponding to a (possibly fractional)
ideal I∗ over an isomorphic number field K ≡ K. The precise form of I∗ is somewhat complicated
and involves an ideal called the different [13]; we will only need the fact that N(I∗) = (N(I)∆K)−1.

3Nontriviality is a somewhat non-standard condition; we adopt it for ease of exposition.
4Some texts define the discriminant as a signed quantity; because we will only be concerned with its magnitude,

we adopt the simpler absolute definition.
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For ease of notation, when referring to an ideal lattice we will often omit the embedding σ. For
example, we will write λ1(I) instead of λ1(σ(I)), det I instead of detσ(I), etc.

5.5 Distributions over Number Fields

By treating K as a Euclidean space (i.e., one with an `2 length), we can also define Gaussian
distributions over K, and discrete Gaussians on ideals over K. For c ∈ K, real s > 0, and x ∈ K,
define the Gaussian function ρs,c(x) = exp(−π ‖x− c‖2 /s2). We define the continuous Gaussian
probability distribution over K as DK

s,c(x) = s−n · ρs,c(x).5 The discrete Gaussian distribution on a
fractional ideal I is DI,s,c(x) = ρs,c(x)/ρs,c(I) for every x ∈ I (and zero elsewhere on K). We may
efficiently sample from (a close approximation of) DK

s,c by sampling from DH
s,c where c = σ(c), and

applying σ−1 to the result.

5.6 Computational Issues

We next describe how to represent a number field K with its ring of integersOK , and how to perform
basic operations in polynomial time. Our exposition mainly follows [28]; a detailed treatment of
these issues can be found in [18, Sections 4.2–4.7] and [27, Section 2].

For measuring the computational complexity of working with a number field K, “polynomial”
is taken to mean some polynomial in both n and log ∆K . Elements in K will be represented
relative to some integral basis B = {b1, . . . , bn}: an element x ∈ K is represented by a vector
x = (x1, . . . , xn) ∈ Qn, where x =

∑
i∈[n] xibi is the unique representation of x relative to B.

Membership in OK can be tested simply by checking if x ∈ Zn, and addition is implemented simply
by adding representations component-wise. For multiplication, it suffices by linearity to have the
representation (in Zn) of each product bibj ∈ OK for i, j ∈ [n], which are of polynomial size. Given
these products bibj , we can compute all of the following in polynomial time: multiplicative inverses,
the discriminant ∆K , and the embeddings from K into C and their inverses.

An integral ideal I ⊆ OK is represented by a Z-basis U = {u1, . . . , un} ⊂ OK , where the ui are
given relative to B. A fractional ideal I is additionally represented by a denominator d ∈ OK for
which dI ⊆ OK . Given a set U , it is possible in polynomial time to confirm that U is a Z-basis
for an ideal in OK and to compute its norm. The basis U can also be kept efficiently in Hermite
Normal Form (HNF), which makes the representation of the ideal unique. It is possible to multiply
ideals and to reduce an element modulo an ideal in polynomial time. Given two ideals I ′ ⊆ I, it
is possible to sample uniformly from the quotient group I/I ′ in polynomial time and enumerate
I/I ′ in time polynomial in |I/I ′|, log ∆K , and n.

5.7 Example

Let ζ =
√

13, an algebraic integer whose minimal polynomial is f(x) = x2 − 13. The number field
K = Q(ζ) is of degree 2, and consists of all numbers of the form a + bζ for a, b ∈ Q.

The embeddings from K into C are both real, and correspond to the roots ζ and −ζ of f , so
the canonical embedding σ is given by σ(a + bζ) = (a + bζ, a − bζ). The subspace H spanned by
σ(K) is simply R2. The `2 length (for example) on K is ‖a + bζ‖2 =

√
2a2 + 26b2.

5Strictly speaking, K is not a continuous space, and therefore cannot support a continuous probability distribution.
This problem can be circumvented by formally defining the Gaussian distribution DK

s,c over the continuous vector
space KR = K ⊗Q R ≡ H, where ⊗ denotes the field tensor product.
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An integral basis B = {b1, b2} for K is given by b1 = 1, b2 = 1+ζ
2 (we will not prove this). Note

that {1, ζ} is not an integral basis, because it does not generate the algebraic integer 1+ζ
2 ∈ K

(which is a root of x2−x− 3). The ideal 〈2〉 is itself prime and has norm N(2) = 4, while the ideal
〈3〉 factors as the product of prime ideals 〈3, 1 + ζ〉 and 〈3, 1− ζ〉, each having norm 3. The prime
ideal 〈3, 1 + ζ〉 has a Z-basis {3, 1+ζ

2 }.
The lattices for OK and the prime ideal 〈3, 1 + ζ〉 (constructed using the embeddings of their

Z-bases) are depicted in Figure 1. The discriminant ∆K of K is 13.

σ1

σ2

σ(1)

σ( 1+ζ
2 )

Figure 1: The lattices for the ideals OK and I = 〈3, 1 + ζ〉 over the number field K = Q(ζ),
where ζ =

√
13. All the points are elements of OK . The filled points are the elements of I.

All nonzero x ∈ OK have nonzero integer field norm, hence lie on some hyperbola of the form
N(x) = σ1(x) · σ2(x) ∈ Z\ {0}. All nonzero x ∈ I have norm divisible by N(I) = 3, hence lie on
some hyperbola N(x) ∈ 3Z\ {0}.

6 Properties of Ideal Lattices

In this section we develop several useful facts about ideal lattices. It is likely that some of these
facts are already known, however they play such an important role in our work that we prefer to
present their proofs in full. Throughout this section, K denotes any number field of degree n.

6.1 Minima

Here we develop several useful facts about, and connections among, the various minima (minimum
distance, basis minimum) of ideal lattices. We start with a straightforward upper bound on the
minimum distance λ1 of an ideal lattice.

Lemma 6.1. Let K have signature (r1, r2), and let I be a fractional ideal over K. Then for any
p ∈ [1,∞],

λp
1(I) ≤ n1/p ·N1/n(I) ·

√
DK ·

(
2
π

)r2/n
.
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Proof. It suffices to prove the claim for p =∞, because ‖x‖p ≤ n1/p · ‖x‖∞ for any x ∈ K.
We will use Minkowski’s Theorem (Proposition 4.1) to bound the minimum distance λ∞1 . This

requires some care because the `∞ length over H can involve complex coordinates.
Consider the n-dimensional closed “unit cube” C = {x ∈ H : ‖x‖∞ ≤ 1} in H ⊆ Rr1 × C2r2 .

The cube C is the (Cartesian) product of r1 one-dimensional cubes C1 = {x ∈ R : |x| ≤ 1}, and r2

two-dimensional “cubes” C2 =
{
(z, z) ∈ C2 : |z| ≤ 1

}
. The first cube C1 has volume 2. The second

cube C2 is a two-dimensional closed disc of radius
√

2, so its volume is 2π. All together, the volume
of C is vol(C) = 2r1 · (2π)r2 = 2n · (π/2)r2 , where we have used n = r1 + 2r2.

Now for any β > N1/n(I) ·
√

DK · (2/π)r2/n, we have

vol(βC) = βn vol(C) > 2n ·N(I) ·
√

∆K = 2n · det σ(I).

By Minkowski’s Theorem (Proposition 4.1), βC contains a nonzero point of σ(I), so λ∞1 (I) ≤ β.

Our next lemma provides a matching lower bound on λ1 for ideal lattices, which differs by a
factor of at most

√
DK from the upper bound of Lemma 6.1. This trivially implies that the value

λ1 is easy to approximate to within a
√

DK factor, because the value of the lower bound is easy to
compute. This distinguishes ideal lattices in a crucial way from general lattices, in which λ1 can
be much shorter than the Minkowski bound, and is even hard to approximate [5, 34, 30, 29].

The lower bound on λ1 is one of two fundamental properties of ideal lattices that yield our
improved connection factors. It lies at the heart of the improved smoothing parameter (Lemma 6.5),
and is also crucial for bounding the basis minimum ofOK (Lemma 6.3), which is needed for technical
reasons in the reduction.

Lemma 6.2 (First Foundation). For any x ∈ K and p ∈ [1,∞], we have ‖x‖p ≥ n1/p · |N(x)|1/n.
Then for any fractional ideal I over K, we have λp

1(I) ≥ n1/p ·N1/n(I).

Proof. For 1 ≤ p <∞, by the inequality of arithmetic and geometric means we get:

‖x‖pp =
∑
i∈[n]

|σi(x)|p ≥ n ·
(∏

i∈[n]

|σi(x)|p
)1/n

= n · |N(x)|p/n.

Taking pth roots of both sides, we get the claimed bound.

For p =∞, we see that ‖x‖∞ = maxi∈[n] |σi(x)| ≥
(∏

i∈[n] |σi(x)|
)1/n

= |N(x)|1/n.
Now consider any fractional ideal I with denominator d, i.e. dI is an ideal of OK . For any

x ∈ I, dx ∈ OK is an element of dI. Therefore N(dx) = N(d)N(x) ∈ Z is divisible by N(dI) =
|N(d)|N(I). For x 6= 0, we then have |N(x)| ≥ N(I), and the claim follows.

Recall that the basis minimum gp(I) is the minimal length of a basis (in `p length) for I.

Lemma 6.3. There is a constant C such that for any fractional ideal I over K and any p ∈ [1,∞],

gp(I) ≤ C · n1/p ·N1/n(I) ·DK ·
√

log n.

In particular, g∞(OK) ≤ C ·DK ·
√

log n.
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Proof. Let r be such that 1/p + 1/r = 1. By Lemma 4.2, there is some C such that

gp(I) · λr
1(I∗) ≤ C · n

√
log n.

Because I∗ is a fractional ideal over a number field of degree n having root discriminant DK ,
Lemma 6.2 applies, yielding

λr
1(I∗) ≥ n1/r ·N1/n(I∗) = n1/r ·N−1/n(I) ·D−1

K .

Division yields the claim. The particular case of I = OK follows from N(OK) = 1.

The basis minimum of OK actually yields a tight connection between the first and nth successive
minima of any ideal lattice. This is because a single element can be multiplied by the n elements
of a short integral basis, yielding n independent elements (though possibly not a basis) of similar
length in the ideal. We remark that this technique is constructive (given a short integral basis),
and indeed we will also use it in our worst-case to average-case reduction.

Lemma 6.4. For any fractional ideal I over K and any p ∈ [1,∞],

λp
n(I) ≤ g∞(OK) · λp

1(I).

Proof. Let B = {b1, . . . , bn} be an integral basis of K with ‖B‖∞ = g∞(OK). Take x ∈ I such
that ‖x‖p = λp

1(I), and consider the set X = {b1x, . . . , bnx}. First, X ⊆ I because bi ∈ OK for all
i ∈ [n]. Also, the elements in X are nonzero (because OK is an integral domain) and independent
(because b1, . . . , bn are independent), so λp

n(I) ≤ ‖X‖p ≤ ‖B‖∞ · ‖x‖p = g∞(OK) · λp
1(I).

6.2 Smoothing Parameter

Here we present a bound on the smoothing parameter for ideal lattices which is especially strong for
number fields of small root discriminant (see discussion below). The proof is quite straightforward
given our tools from above; it mainly relies on the fact that (the duals of) ideal lattices have large
minimum distance λ1.

Lemma 6.5. For any fractional ideal I over K, ηε(I) ≤ N1/n(I) ·DK , where ε = 2−n.

Proof. We have

ηε(I) ≤
√

n

λ1(I∗)
≤

√
n

√
n ·N1/n(I∗)

=
1

(N1/n(I) ·DK)−1
,

where the first inequality follows from Lemma 4.5, the second from Lemma 6.2, and the last equality
by the norms of dual ideals.

As mentioned in Section 2.2, Lemma 6.5 provides up to a Θ(
√

n) factor improvement over a
similar bound for general lattices [38]. Consider a number field K with constant root discriminant
DK , and a fractional ideal I over K with N(I) = 1 (without loss of generality). Then by Lemma 6.2
we have λ1(I) ≥

√
n, and by Lemma 6.5, ηε(I) ≤ DK ∼ λ1/

√
n. In contrast, the bound for general

lattices is ηε(I) ∼ λn (for a larger, but still negligible, function ε(n)).
We also remark that the proof of Lemma 6.5 is oblivious to the particular ideal I. The proof

only depends on the discriminant of the number field (and N(I), but that can be normalized away).
We do not know if there is a stronger bound that uses more information about the lattice or has a
better dependence on the discriminant, even for a negligible ε(n) larger than 2−n.
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6.3 Module Lattices

As described in Section 2.2, our average-case problem involves an equation over Om
K for some

positive integer m. As we will see in this subsection, the set of solutions to the equation forms
a structure called a OK-module, which can be viewed as a straightforward generalization of an
ideal. Here we develop some of the essential concepts about modules: we define `r lengths for Om

K ,
describe how modules embed as lattices, and give a crucial bound on the lengths of solutions to
our average-case problem.

An OK-module in Om
K is a set Ψ ⊆ Om

K that is closed under (coordinate-wise) addition and scalar
multiplication by any element in OK . Formally, for any x = (x1, . . . , xm),y = (y1, . . . , ym) ∈ Om

K

and any c ∈ OK , we have x + y = (x1 + y1, . . . , xm + ym) ∈ Ψ and cx = (cx1, . . . , cxm) ∈ Ψ. For
m = 1, then, an OK-module is simply an ideal in OK .

Let σ be the canonical embedding of K into H ⊆ Rr1 × C2r2 . Overloading notation slightly,
also define σ : Km → Hm as σ(z) = (σ(z1), . . . , σ(zm)). For any r ∈ [1,∞), define the `r length

‖z‖r = ‖σ(z)‖r =
(∑

i∈[n],j∈[m]
|σi(zj)|r

)1/r
.

The `∞ length is defined similarly, as ‖z‖∞ = ‖σ(z)‖∞ = maxi,j |σi(zj)|.
For a positive q ∈ Z and a = (a1, . . . , am) ∈ Om

K , define the set

ΨK
q (a) =

{
z = (z1, . . . , zm) ∈ Om

K :
∑

j∈[m]
ajzj ∈ 〈q〉

}
.

(We omit K when it is clear from context.) One can verify that Ψ = Ψq(a) is an OK-module. In
addition, it is a free module of rank m, that is, it is generated by an OK-basis {b1, . . . ,bm} ⊂ Om

K .
Therefore, the embedding σ(Ψ) ⊂ Hm is a lattice of rank mn; we call it a module lattice (often
omitting σ for clarity).

Our next lemma provides the second fundamental fact needed for obtaining our improved con-
nection factors: the module lattices Ψq(a) contain very short solution vectors (in any `r length).
For simplicity, consider the `∞ length. The lemma states that Ψq(a) contains a nonzero element
of length at most

√
DK · q1/m. Looking ahead, this bound will be made as small as a constant for

constant DK and appropriately-chosen q = poly(n), m = O(log n).

Lemma 6.6 (Second Foundation). Let K be a number field of degree n with signature (r1, r2), let
r ∈ [1,∞], and let m, q be positive integers. Then for any a ∈ Om

K ,

λr
1(Ψ

K
q (a)) ≤ (mn)1/r · q1/m ·

√
DK ·

(
2
π

)r2/n
.

Proof. It suffices to prove the claim for r =∞, because ‖z‖r ≤ (mn)1/r · ‖z‖∞, for all z ∈ Km.
The proof is similar to that of Lemma 6.1: we analyze the fundamental volume of the mn-

dimensional lattice σ(Ψq(a)) ⊂ Hm, then use Minkowski’s Theorem to bound its minimum distance.
First, Ψq(a) is an additive subgroup of Om

K . Now consider the quotient group G = Om
K/Ψq(a):

two elements z, z′ ∈ Om
K represent the same residue in G iff

∑
ajzj =

∑
ajz

′
j mod 〈q〉. Therefore

the size of G is at most the number of residue classes mod 〈q〉, which is N(〈q〉) = N(q) = qn. The
determinant of the lattice σ(Om

K) is (
√

∆K)m, so we conclude that detΨq(a) ≤ qn · (
√

∆K)m.
Now consider the mn-dimensional “closed unit cube” Cm = {x ∈ Hm : ‖x‖∞ ≤ 1}, where C is

the unit cube in H. From the proof of Lemma 6.1, the volume of Cm is 2mn · (π/2)mr2 .
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Now for any β > q1/m ·
√

DK · (2/π)r2/n, we have

vol(βCm) = βmn · vol(Cm) > 2mn · qn · (
√

∆K)m.

By Minkowski’s Theorem (Proposition 4.1), rC contains a nonzero point of Ψq(a).

6.4 Sums of Discrete Gaussians

In our worst-case to average-case reduction, the output is distributed roughly according to the sum
of m discrete Gaussians over the input ideal. Each discrete Gaussian is scaled by a factor zj ∈ OK ,
where z = (z1, . . . , zm) ∈ Om

K is a short solution to the random instance of our average-case problem.
Therefore the length of the output, and hence the quality of the reduction, is largely determined
by the behavior of such sums of discrete Gaussians. In this section, we give tail bounds on the `p

length as a function of the length ‖z‖r, for various values of p and r. The bounds follow from a
general analysis of discrete Gaussians in a concurrent paper by Peikert [41].

Lemma 6.7. Let I be a fractional ideal over a number field K of degree n. Let m be a positive
integer, ε ≤ 1/(2m+1) be a positive real, s ≥ ηε(I), and z, c ∈ Km. Let yj ∼ DI,s,cj be independent
samples from discrete Gaussians over I, and define v =

∑
j∈[m] zj · (yj − cj).

If ‖z‖∞ ≤ β, then we have Pr
[
‖v‖p > L

]
≤ 1

2 , where

L = cp · s · β ·
√

m ·
{

n1/p for p ∈ [1,∞)√
log n for p =∞

and cp is a constant depending only on p.

In the context of module lattices and our average-case problem, a requirement of the form
‖z‖∞ ≤ β (as in the lemma above) is qualitatively the strictest one we can impose. In light of
Lemma 6.6, it is also interesting (and may be useful in cryptographic contexts) to consider relaxed
requirements of the form ‖z‖r ≤ β · (mn)1/r for other `r lengths. For such z, we can show a nearly
identical bound on the sum of discrete Gaussians in any `p length for p ≤ r. The only effective
difference from Lemma 6.7 is an m1/r factor rather than

√
m, when r < 2.

Lemma 6.8. Take the same notation described in Lemma 6.7.

If ‖z‖r ≤ β · (mn)1/r for some r ∈ [1,∞), then for any p ≤ r we have Pr
[
‖v‖p > L

]
≤ 1

2 , where

L = cp · s · β ·mmax{1/2,1/r} · n1/p.

The proofs of Lemmas 6.7 and 6.8 are somewhat technical (but relatively straightforward), and
are given in Appendix A.

7 Computational Problems on Ideal Lattices

In this section we define several computational problems (both worst-case and average-case) relating
to number fields and ideal lattices.
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7.1 Preprocessing Number Fields

All of the problems we define are parameterized by a fixed choice of number field K (or, in their
asymptotic versions, an infinite family K of number fields). Because the number field is fixed for
all time in advance, an adversary can perform computations on it for an arbitrarily long time, and
use what it has learned when finally presented with a specific instance over K to solve. This is an
example of a general notion called preprocessing, which also applies to problems in coding, lattices,
and cryptography (see, e.g. [14, 35, 21]).

All of the problems we define in this section should be interpreted as problems with preprocessing
of the number field. That is, any algorithm for solving a problem over K receives a polynomially-
long (in the representation of K) auxiliary input which can depend arbitrarily on K. We refer to
this auxiliary input as “advice about K” in any of our reductions that use it. Alternately, one
may imagine a specific circuit designed to solve a problem over a specific number field. Similar
comments apply for families K of number fields and sequences of advice strings or circuit families.

7.2 Worst-Case Problems

Here we define several worst-case problems on ideal lattices. By scaling, it will suffice to define
these problems only for integral (rather than fractional) ideals I ⊆ OK .

In all of the computational problems below, p is any value in [1,∞], γ is a fixed positive real,
and φ is some arbitrary function on lattices (one may imagine φ = λp

1 or φ = ηε for concreteness).
For now, all of the problems are defined over a fixed number field K.

Definition 7.1 (Ideal Generalized/Shortest Vector Problem). An input to K-IGVPp,φ
γ is an ideal

I ⊆ OK . The goal is to output a nonzero x ∈ I such that ‖x‖p ≤ γ ·φ(I). The ideal shortest vector
problem, denoted K-ISVPp

γ , is the special case where φ = λp
1.

We next define an incremental version of IGVP, which will be the actual worst-case problem
we reduce to our average-case problem. The purpose of introducing this incremental problem is to
simplify the worst-case to average-case reduction down to its most essential ideas.

Definition 7.2 (Incremental IGVP). An input to K-IncIGVPp,φ
γ is a pair (I, x) where I is an ideal

in OK and x ∈ I such that ‖x‖p > γ · φ(I). The goal is to output a nonzero x′ ∈ I such that
‖x′‖p ≤ ‖x‖p /2.

It is straightforward to show that there is a standard reduction from K-IGVPp,φ
γ to K-IncIGVPp,φ

γ

which makes a polynomial number of calls to its oracle.
We can also define a generalized promise problem on ideal lattices, which captures the problem

of estimating any particular lattice parameter (such as λ1 or the covering radius µ).

Definition 7.3 (Generalized Parameter Problem). An input to K-GapIGPPφ
γ is a pair (I, R) where

I is an ideal in OK and R ∈ R. It is a YES instance if φ(I) ≤ R, and is a NO instance if φ(I) > γ ·R.
The problem K-GapISVPp

γ is defined by setting φ = λp
1. The problem K-GapICRPp

γ is defined
by setting φ = µp.

The following are the ideal lattice variants of the closest vector problem in its search and decision
versions (respectively):

Definition 7.4 (Ideal Closest Vector Problem). An input to K-ICVPp
γ is a pair (I, t) where I is

an ideal in OK and t ∈ K. The goal is to output a v ∈ I such that ‖t− v‖p ≤ γ · distp(t, I).
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Definition 7.5 (Gap ICVP). An input to K-GapICVPp
γ is a tuple (I, t, R) where I is an ideal in OK ,

t ∈ K, and R ∈ R. It is a YES instance if distp(t, I) ≤ R, and is a NO instance if distp(t, I) > γ ·R.

Asymptotics. In order to speak meaningfully about asymptotic hardness, we parameterize all
of the above problems by an infinite family K = {Kn}n∈T of number fields (for some infinite set
T ⊆ N), where Kn has degree n.6 This is analogous to the formulation of computational problems
for particular infinite families of error-correcting codes (e.g., Reed-Solomon codes).

For an infinite family K of number fields and a function γ : Z+ → R+, for any problem K-Pγ

above, we define K-Pγ to be the ensemble of instances from Kn-Pγ(n). When reducing from a
problem K-P to another problem K-P′, we say that the reduction is number field-preserving if, for
every input instance of the problem Kn-P, the reduction only issues queries on instances of the
problem Kn-P′.

7.3 Average-Case Problem

We now define our average-case problem, whose goal is to find a nontrivial z = (z1, . . . , zm) ∈ Ψq(a)
that is short in `r length, for random a.

Definition 7.6 (Short Algebraic Integer Solution). For a number field K, positive q, m ∈ Z,
positive β ∈ R, and r ∈ [1,∞], an input to the problem K-SAISr

q,m,β is a vector a ∈ Om
K . The goal

is to find a nonzero z ∈ Ψq(a) such that ‖z‖r ≤ β · (mn)1/r.
For an infinite family K = {Kn} of number fields, r ∈ [1,∞], and functions q(n), m(n),

β(n), define K-SAISr
q,m,β to be the probability ensemble over instances a = (a1, . . . , am(n)) of Kn-

SAISq(n),m(n),β(n) where the ai are chosen independently and uniformly from a canonical set of
residues representing OKn/〈q(n)〉.

Implicit in the definition of K-SAIS is the assumption that a short enough solution z ∈ Ψq(a)
exists (otherwise the problem is trivially unsolvable). Lemma 6.6 gives a relationship among the
parameters that guarantees the existence of a solution. We require that β be no less than the bound
from Lemma 6.6, otherwise we say that the problem is undefined.

8 Complexity of Worst-Case Problems

8.1 Easy Estimation Problems

In this subsection we show that it is easy to estimate various parameters of ideal lattices to within
small factors, by showing that their corresponding promise problems are in P. These results all
follow very easily from the bounds we derived in Section 6.1 (plus other tools on lattices such as
transference theorems), therefore we will omit detailed explanations. We remark that none of these
results seem to have any impact on the apparent difficulty of search problems on ideal lattices.

Lemma 8.1. Let K = {Kn} be a family of number fields. The problem K-GapIGPPφ
γ is easy (i.e.,

in P) for the following choices of the lattice parameter φ and approximation factor γ(n):

• φ = λp
1 and γ(n) =

√
DKn.

6In fact, for any number field K of fixed degree, all of the above problems are solvable exactly (i.e., for γ = 1) in
time polynomial in the instance size, e.g. using [7]. Of course, the running time grows exponentially in the degree.
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• φ = λp
n or φ = gp (the basis minimum in `p length) and γ(n) = DKn ·O(

√
log n).

• φ = µp (the covering radius in `p length) and γ(n) =
√

DKn ·O(n
√

log n).

8.2 Reductions Between Problems

In this subsection we provide some (worst-case to worst-case) reductions between problems on ideal
lattices, such as from ISVP to ICVP. For all of our results, analogous reductions are known to exist
for general lattices [24], but those reductions are not valid for ideal lattice problems because they
query their oracles on non-ideal lattices. Nevertheless, the reductions we demonstrate here use
techniques similar to those for general lattice problems.

The essential technique from [24] for reducing, say, SVP to CVP can be abstracted in the
following way: for an instance involving a lattice Λ, construct a carefully-chosen set of sublattices
Λi ⊆ Λ such that (1) the quotient groups Λ/Λi are all small, and (2) the intersection of all the Λis
cannot contain a shortest vector of Λ. For general lattices, Λi is constructed simply by doubling
the ith basis vector of Λ, and leaving the remaining basis vectors unchanged. This makes the size
of the quotient groups |Λ/Λi| = 2, and the intersection

⋂
Λi = 2Λ. While this technique satisfies

the conditions from above, in our setting it may not yield ideal sublattices.
Instead, we will generate subideals of the input ideal I by multiplying I by a collection of

appropriately-chosen (fixed) ideals. We also generalize the above structure, constructing several
chains of subideals Ii,e ⊂ · · · ⊂ Ii,1 ⊂ Ii,0 = I such that (1) the quotient groups Ii,j−1/Ii,j are all
small, and (2) the intersection of all the Ii,js cannot contain a shortest vector in I.

Our reductions will rely on an integer prime q ∈ Z that “splits well” over OK into prime ideal
divisors having small norm. That is, if 〈q〉 factors in OK as 〈q〉 = qe1

1 · · · q
eL
L , we will need N(qi)

to be small for all i. One way (but not the only way) of satisfying this condition is to let q be a
prime that splits completely in OK , namely, 〈q〉 factors into n distinct prime ideals, each of norm
q. Guruswami [25] demonstrated that there exist infinite families of number fields, all having the
same (constant) root discriminant, for which some fixed q splits completely in every member of the
family. Another way is to let q be a prime that is fully ramified in OK , namely, 〈q〉 = qn where
N(q) = q. We do not know if there is an efficient way, given an arbitrary number field, to find a
prime q that splits completely, is fully ramified, or otherwise splits well for our purposes.

No matter how q splits in OK , the ideals qe1
1 , . . . , qeL

L are pairwise relatively prime, so for any
fractional ideal I we have ⋂

i∈[L]

(qei
i I) =

( ⋂
i∈[L]

qei
i

)
· I = q · I,

which cannot contain a shortest vector of I.
For the remainder of this section, let K be a number field for which prime q ∈ Z factors as

〈q〉 = qe1
1 · · · q

eL
L . All of the reductions we give below are between problems on the fixed number

field K (not a family K), because their efficiency depends only on the input size and the splitting
behavior of q, and not (explicitly) on the dimension n.

Reducing ISVP to ICVP. Here we show that for ideal lattices, and for any `p length, approx-
imating the shortest vector is no harder than approximating the closest vector, with no loss in
approximation ratio.
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Proposition 8.2. For any γ and any p ∈ [1,∞], there is a deterministic non-adaptive Cook
reduction from K-ISVPp

γ (resp., K-GapISVPp
γ) to K-ICVPp

γ (resp., K-GapICVPp
γ). The reduction

makes
∑

i∈[L] ei · (N(qi) − 1) oracle queries, and runs in time poly(S) ·
∑

i∈[L] ei · N(qi), where S
is the input size.

Proof. We provide a reduction between the search problems, which can be easily adapted for the
decision versions. The advice about K needed by the reduction is the value of q and the factorization
of 〈q〉 into prime ideals.

Suppose oracle A solves K-ICVPp
γ in the worst case. Then our reduction proceeds as follows:

on input an ideal I ⊆ OK ,

1. For each i ∈ [L] and each j ∈ {0, . . . , ei}, let Ii,j = q
j
iI.

2. For each i ∈ [L], j ∈ [ei], and each nonzero ti,j,k ∈ Ii,j−1/Ii,j , let vi,j,k ← A(Ii,j , ti,j,k).

3. Among all vectors ti,j,k − vi,j,k, output one whose `p length is minimal.

We first analyze the running time of the reduction. Given bases for I and each qi we can
efficiently compute a basis for Ii,j = q

j
iI by performing j ≤ n multiplications of ideals. We can also

enumerate over Ii,j−1/Ii,j in time N(qi) · poly(S). The size of Ii,j−1/Ii,j is N(qi), so the number
of calls to A is

∑
i∈[L] ei · (N(qi)− 1)).

We now prove that the reduction is correct. First, we see that 0 6= ti,j,k − vi,j,k ∈ I for every
i, j, k, because both ti,j,k, vi,j,k ∈ Ii,j−1 ⊂ I, but ti,j,k 6∈ Ii,j while vi,j,k ∈ Ii,j . Therefore the
reduction outputs a nonzero element of I.

Now let w ∈ I be such that ‖w‖p = λp
1(I). Then w 6∈

⋂
i∈[L](q

ei
i I) = qI. By the Chinese

Remainder Theorem, there exists an i ∈ [L] such that w 6= 0 mod Ii,ei . Then there exists a
j ∈ [ei] such that w 6= 0 mod Ii,j but w = 0 mod Ii,j−1. Therefore there exists some k such that
w = ti,j,k mod Ii,j . Therefore distp(ti,j,k, Ii,j) = distp(w, Ii,j) ≤ ‖w‖p = λp

1(I). By assumption on
A, ‖ti,j,k − vi,j,k‖p ≤ γ · distp(ti,j,k, Ii,j) ≤ γ · λp

1(I), so the reduction solves ISVPp
γ .

Reducing ICVP1 to GapICVP1. Here we show a reduction from search to decision for the exact
versions of the closest vector problem on ideal lattices. Just as for general lattices, we do not know
of a reduction to the approximation version of the decision problem (for factors γ > 1).

Proposition 8.3. For any γ and any p ∈ [1,∞], there is a deterministic adaptive Cook reduction
from K-ICVPp

1 to K-GapICVPp
1. The reduction runs in time poly

(
S ·
∑

i∈[L] ei ·N(qi)
)
, where S

is the input size.

Proof. The advice about K needed by the reduction is the value of q, its factorization into prime
ideals, and a set of coefficients for performing Chinese remaindering mod 〈q〉, specifically: for every
i ∈ [L], an element ri ∈ OK such that ri = 1 mod qei

i and ri ∈ qek
k for every k 6= i.

On an instance (I, t), let v ∈ I be some closest lattice point to t. It will suffice for the reduction
to compute w = v mod qI. Then we can iterate the reduction with I ′ = qI and t′ = t− w, which
will output w′ = (v−w) mod q2I, etc. After a polynomial number of iterations, we can reconstruct
all of v ∈ I. We defer the details to the full version.

In order to compute v mod qI, the reduction will progressively find, for every i and increasing
values of j up to ei, the residue v mod (qj

iI). Using the final values vi = v mod (qei
i I), it will then

reconstruct v mod qI using the Chinese remaindering coefficients.
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Suppose oracle A solves K-GapICVPp
1 in the worst case. The reduction proceeds as follows: on

input (I, t) where I is an ideal of OK and t ∈ K,

1. Compute the distance d = distp(t, I) from t to the lattice via binary search. (Details omitted.)

2. For i ∈ [L] and j ∈ {0, . . . , ei}, let Ii,j = q
j
iI be as in the reduction of Proposition 8.2.

3. For each i ∈ [L], let vi = 0 and t′ = t. Then for each j = 1, . . . , ei do:

(a) Find (by enumeration) some x ∈ Ii,j−1/Ii,j for which A(Ii,j , t′ − x, d) = YES.
(b) Let t′ = t′ − x, and vi = vi + x.

4. Output
∑

i∈[L] vi · ri mod qI.
Using arguments similar to those in [24], we can show that in Step (3a) there is always an x that

makes A output YES. It is also not hard to show that the final values of vi are as described above,
and that the output is v mod qI by the Chinese remainder theorem. We defer the details.

9 Worst-Case to Average-Case Reduction

In this section we give a reduction from solving the problem IGVP (actually, its equivalent incre-
mental version) in the worst case to solving SAIS on the average. We complete the section by
connecting ISVP to IGVP for concrete choices of the family K of number fields.

Theorem 9.1 (Main Reduction). For any infinite family of number fields K = {Kn}, p ∈ [1,∞],
m(n), q(n), β(n) = poly(n) and γ(n) that satisfy the conditions below, there is a polynomial-time
number field-preserving reduction from solving K-IncIGVPp,ηε

γ (equivalently, K-IGVPp,ηε
γ ) in the worst

case to solving K-SAIS∞q,m,β on the average with non-negligible probability.
The conditions on the parameters are as follows:

1. For p ∈ [1,∞), γ(n) ≥ cp · β(n) ·
√

m(n) · n1/p for a constant cp depending only on p;
For p =∞, γ(n) ≥ c∞ · β(n) ·

√
m(n) ·

√
log n for a universal constant c∞.

2. q(n) ≥ 2 · β(n) ·m(n) · n · g∞(OKn).

Proof. The parameters ε, γ, m, q, and β are all functions of n, and the number fields Kn are from
the family K indexed by n. For notational clarity we will often omit this dependence on n.

Advice about K. For instances of K-IncIGVP where K = Kn is a number field in K, the advice
about K needed by the reduction is an integral basis B = {b1, . . . , bn} ⊂ OK of K that is as short
as possible in `∞ length. By Lemma 6.3, there exists such a basis B with ‖B‖∞ = g∞(OK) ≤
C · DK

√
log n for some constant C. Actually, it suffices merely to have ‖B‖∞ = poly(n), if we

require q(n) to be correspondingly larger.

Rounding in K. Our reduction will need to “round off” elements in K = Kn to nearby (but not
necessarily nearest) algebraic integers in OK . The rounding algorithm will take a w ∈ K and the
integral basis B of K discussed above, and will output some algebraic integer denoted bweB ∈ OK .
This can be accomplished by taking the representation of w in the basis B, w =

∑
i∈[n] cibi where

ci ∈ Q, and rounding each coefficient to the nearest integer: bweB =
∑

i∈[n]bciebi. This algorithm
outputs bweB ∈ OK such that ‖w − bweB‖∞ ≤

n
2 · ‖B‖∞ (by the triangle inequality). We write

bwe = bweB when B is clear from context.
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The reduction. Suppose oracle F solves the average-case problemK-SAISq,m,β with non-negligible
probability. We construct an algorithm to solve K-IncIGVPp,ηε

γ as follows:
On input (I, x) where I is an ideal of OK and x ∈ I with ‖x‖p > γ · ηε(I),

1. For j = 1 to m,

• Sample a uniform vj ∈ I/〈x〉.
• Sample yj ∼ DK

s , where s = 2 ‖x‖p /γ ≥ 2ηε(I). Let y′j = yj mod I.
• Let wj = qx−1(vj + y′j) mod 〈q〉. Let aj = bwjeB mod 〈q〉.

2. Let a = (a1, . . . , am) and let z = (z1, . . . , zm)← F(A). Output

x′ =
∑

j∈[m]

(
x(wj − bwje)

q
− yj

)
· zj . (1)

Analysis. The correctness of the reduction follows from several claims, which we state and prove
in turn. In all of the claims, probabilities are taken over the randomness of the reduction and of F .

Claim 9.2. The probability that z ∈ Ψq(a) is non-negligible in n.

Proof. It suffices to bound the statistical distance ∆(a,Um(OK/〈q〉)) by m · ε/2 = ν(n). Each aj

is independent, so by the triangle inequality it suffices to bound ∆(aj ,U(OK/〈q〉)) by ε/2.
First, by Lemma 4.3, ∆(y′j ,K/I) ≤ ε/2 (i.e., y′j is almost uniform over K/I), and because

vj is uniform over I/〈x〉, we have ∆(vj + y′j ,U(K/〈x〉)) ≤ ε/2. Because wj = qx−1(vj + y′j),
we have ∆(wj ,U(K/〈q〉)) ≤ ε/2. It follows by the description of the rounding algorithm that
∆(aj ,U(OK/〈q〉)) ≤ ε/2, as desired.

Claim 9.3. If z ∈ Ψq(a), then x′ ∈ I.

Proof. From Equation (1), we can rewrite x′ as:

x′ =
∑

j∈[m]

(
xwj

q
− yj

)
· zj − x ·

∑
j∈[m]

bwjezj

q
(2)

We start by analyzing the second term of Equation (2). By construction,∑
j∈[m]

bwjezj =
∑

j∈[m]

ajzj mod 〈q〉.

By hypothesis z ∈ Ψq(a), so
∑

ajzj ∈ 〈q〉, and we conclude x ·
∑ bwjezj

q ∈ 〈x〉 ⊆ I.
Now we turn to the first term of Equation (2). By definition of wj ,

xwj

q
= (vj + y′j) mod 〈x〉.

Therefore (
xwj

q
− yj

)
· zj = (vj + y′j − yj) · zj mod 〈x〉.

Both vj , y
′
j − yj ∈ I, and zj ∈ OK by hypothesis. Therefore (vj + y′j − yj) · zj ∈ I, and because

〈x〉 ⊆ I, we conclude that the first term of Equation (2) is also in I.
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Claim 9.4. Conditioned on z ∈ Ψq(a), ‖x′‖p ≤
‖x‖p

2 with probability at least 1/2.

Proof. By rewriting Equation (1) and the triangle inequality, we have:∥∥x′∥∥
p
≤

∑
j∈[m]

∥∥∥∥x(wj − bwje)zj

q

∥∥∥∥
p

+
∥∥∥∥∑

j∈[m]

yjzj

∥∥∥∥
p

. (3)

We start by bounding the first summation of (3). For all j ∈ [m], we have∥∥∥∥x(wj − bwje)zj

q

∥∥∥∥
p

≤ 1
q
‖x‖p · ‖wj − bwje‖∞ · ‖zj‖∞ .

By the rounding algorithm, we have ‖wj − bwje‖∞ ≤
n
2 ‖B‖∞, and by hypothesis, ‖zj‖∞ ≤ β.

Then the first summation of (3) is at most

‖x‖p ·
βmn ‖B‖∞

2q
.

By hypothesis q ≥ 2βmn ‖B‖∞, so the quantity above is at most ‖x‖p /4 with certainty.
We now bound the second term from (3). By a now-standard argument [38, 36, 42, 33], condi-

tioned on any value of y′j , the value yj − y′j is distributed according to DI,s,−y′j
, and is independent

of a and z. We will bound the value
∥∥∥∑j∈[m] yjzj

∥∥∥
p

conditioned on any fixed values of y′j , which

by averaging implies the bound on the unconditioned value. By Lemma 6.7,

Pr

[∥∥∥∥∑j∈[m]
yjzj

∥∥∥∥
p

> L

]
= Pr

[∥∥∥∥∑j∈[m]
zj · ((yj − y′j)− (−y′j))

∥∥∥∥
p

> L

]
≤ 1/2,

where for p ∈ [1,∞),
L = c′p · s · β ·

√
m · n1/p

(for p =∞, the n1/p term is replaced by
√

log n). Because s = 2 ‖x‖p /γ and by definition of γ, we
have for p ∈ [1,∞),

L ≤
2c′p · ‖x‖p · β ·

√
m · n1/p

cp · β ·
√

m · n1/p
=
‖x‖p

4

for appropriate constant cp, and similarly for p = ∞. Therefore
∥∥∥∑j∈[m] yjzj

∥∥∥
p
≤ ‖x‖p /4 with

probability at least 1/2, so by (3) the claim follows.

Claim 9.5. Conditioned on z ∈ Ψq(a), x′ 6= 0 with overwhelming probability.

Proof. The main idea is that x′ = 0 if and only if a sample from DI,s,c hits one particular “bad”
value. Lemma 4.6 guarantees that the probability of this event is negligibly small.

By definition of wj ,
xwj

q
= tj + vj + y′j

for some tj ∈ 〈x〉. Therefore

x′ = 0 ⇐⇒
∑

j∈[m]

(
tj + vj + y′j − yj −

xbwje
q

)
· zj = 0.
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Because z 6= 0, there exists i such that zj 6= 0; assume without loss of generality that i = 1.
Then by rearranging, we get x′ = 0 if and only if:

y1 − y′1 =
(

t1 + v1 −
xbwje

q

)
+ z−1

1

m∑
i=2

(
tj + vj + y′j − yj −

xbwje
q

)
· zj . (4)

As in the proof of Claim 9.4, conditioned on the value of y′1, y1 − y′1 distributed according to
DI,s,−y′1

and is independent of all other variables appearing in Equation (4). There are two cases:
if the right-hand side of Equation (4) is not in I, then the equation is satisfied with probability
zero because the support of DI,s,−y′1

is I. If the right-hand side of Equation (4) is in I, then
because s ≥ 2 · ηε(I), Lemma 4.6 guarantees that the equation is only satisfied with probability
2−n · 1+ε

1−ε = ν(n).

By Claims 9.2 through 9.5 and the union bound, the reduction solves K-IncIGVPp,ηε
γ with non-

negligible probability. This can be amplified to overwhelming probability by standard repetition
techniques for worst-case problems. Theorem 9.1 follows.

Theorem 9.1 concerns the average-case problem SAIS∞q,m,β , whose solutions must have `∞ length
at most β. We can also show that the more relaxed average-case problem SAISr

q,m,β , whose solutions
must have `r length at most β · (mn)1/r, is as hard as ISVPp

γ for any p ≤ r, for almost identical
connection factors. This may make it easier to construct cryptographic applications.

Theorem 9.6. Generalizing Theorem 9.1, there is a reduction from K-IncIGVPp,ηε
γ to K-SAISr

q,m,β

for any 1 ≤ p ≤ r <∞, subject to the following conditions on the parameters:

1. γ(n) ≥ cp · β(n) · (m(n))max{1/2,1/r} · n1/p for a constant cp depending only on p.

2. q(n) ≥ 2 · β(n) · (m(n) · n)1+1/r · g∞(OKn).

Proof. The reduction is the same as the one from the proof of Theorem 9.1, and most of the proof
remains the same as well. The only change is to the proof of Claim 9.4.

To prove Claim 9.4, we need to analyze the two terms of (3). For the first term, we only need
the fact that for all j ∈ [m], ‖zj‖∞ ≤ ‖z‖∞ ≤ ‖z‖r. By the definition of the problem K-SAISr

q,m,β ,
we have ‖z‖r ≤ β · (mn)1/r. By the (strengthened) hypothesis on q, the first term remains bounded
by ‖x‖p /4.

For the second term of (3), we use Lemma 6.8 rather than Lemma 6.7. By the hypothesis on
γ, the second term also remains bounded by ‖x‖p /4 with probability at least 1/2. This completes
the proof.

9.1 Connection to ISVP

In this section we give a reduction from ISVP to SAIS (via IGVP), instantiating all the parameters
from Theorem 9.1 asymptotically, and focusing especially on the role of the root discriminant.

Theorem 9.7. For any infinite family K = {Kn} of number fields where DKn = poly(n), any
p ∈ [1,∞), and any m(n) = Θ(log n), there exist

q(n) = O(n · log1.5 n) ·DKn β(n) = O(1) ·
√

DKn γ(n) = O(
√

log n) ·D1.5
Kn

such that solving K-ISVPp
γ in the worst case reduces to solving K-SAIS∞q,m,β on the average. For

p =∞, there exists γ(n) = O(log n) ·D1.5
Kn

for which the same applies.
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Proof. Assume that p ∈ [1,∞), and let ε = 2−n. By Lemma 6.3, there are integral bases Bn (of
Kn) with ‖Bn‖∞ = O(

√
log n) ·DKn . To satisfy the conditions in Theorem 9.1, we can choose some

q(n) = O(β(n) · n · log1.5 n) ·DKn

β(n) = O(q(n)1/m(n)) ·
√

DKn = O(poly(n)1/ log n) ·
√

DKn = O(1) ·
√

DKn .

Applying Theorem 9.1, K-IGVPp,ηε

γ′ reduces to K-SAIS∞q,m,β for some γ′(n) = O(n1/p
√

log n) ·
√

DKn .
We now connect K-IGVP to K-ISVP. By Lemma 6.2 and Lemma 6.5,

λp
1(I) ≥ n1/p ·N1/n(I) ≥ n1/p

DKn

· ηε(I)

for any ideal I ⊆ OKn . Therefore solving K-IGVPp,ηε

γ′ also solves K-ISVPp
γ for some γ(n) =

O(
√

log n) ·D1.5
Kn

. For p =∞, a similar analysis applies.

Corollary 9.8. There exists an infinite family K = {Kn} of number fields such that for any
p ∈ [1,∞) and any m(n) = Θ(log n), there exist

q(n) = O(n log1.5 n) β = O(1) γ(n) = O(
√

log n)

such that solving K-SAIS∞q,m,β on the average with non-negligible probability is at least as hard as
solving K-ISVPp

γ in the worst case. For p = ∞, there exists γ(n) = O(log n) for which the same
claim applies.

Proof. Follows from Theorem 9.7 by choosing K to be a family such that lim supn→∞ DKn = C for
some constant C. As we have mentioned before, such families exist by the theory of infinite towers
of Hilbert class fields (cf. [46]).

10 Future Work

Our work opens up many avenues of investigation. The most important open problem, in our
view, is the explicit construction of families of number fields having small root discriminant. By
“explicit construction” we mean an efficient algorithm which, given n, outputs a full description
of the degree-n number field from the family. Such constructions would also have applications in
coding theory [32, 25]. It would be even nicer to find an explicit construction which provides, by
design, the non-uniform advice that is needed by our reductions.

Another important problem is to better understand the worst-case search version of SVP for
ideal lattices over number fields. The situation seems to be quite different from that of general
lattices, because in our case the decision version of SVP is easy for factors as small as

√
DK . It

would also be interesting to consider quantum algorithms for search-SVP on ideal lattices.
Our bound on the smoothing parameter for ideal lattices is most useful when the root dis-

criminant of the number field is at most O(
√

n). Beyond that point, the prior bound relating the
smoothing parameter to λn may be stronger [38]. We leave it as an open problem to unify these
two bounds for ideal lattices, for the full range of interesting values of the root discriminant.

In contrast to prior work on average-case hardness from lattice problems (e.g., [4, 23, 38, 42, 33]),
we do not yet know how to obtain cryptographic hardness (e.g. collision-resistant hash functions)
from ideal lattices over an arbitrary good number field K. The reason is that we seem to require an
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efficient injective mapping from function inputs (bit strings) to sufficiently short vectors z ∈ Om
K .

This appears to require some additional advice about the number field.
For example, if we had an “almost-orthogonal” short basis for Om

K , then it would be possible
to produce elements of Om

K that are short enough in `2 length, simply by summing up subsets of
the basis vectors. This would suffice for cryptographic hardness, assuming the worst-case difficulty
of SVP on ideal lattices in the `p norm for some p ≤ 2.7 As mentioned above, it is possible that
explicit constructions of number fields might come with the required advice as a side-effect.

A final interesting question is whether the public-key cryptosystem of Regev [44] can be adapted
to work based on ideal lattices, with a corresponding improvement in its efficiency and connection
factor. It seems plausible that this could be done without requiring the encryption and decryption
algorithms to use any special advice about the number field (though the security reduction might
still require it).
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A Proofs

Here we give proofs of Lemmas 6.7 and 6.8 on the sums of discrete Gaussians. Throughout this
section, for any p ∈ [1,∞] we let cp denote an appropriate constant depending only on p which may
vary from one expression to the next (to be concrete, cp is proportional to

√
p for finite p).

We start by stating our main tool, which is an analysis of discrete Gaussians from [41]. Let
U = {u1, . . . ,ud} ⊂ CN denote a set of d orthonormal vectors for d = 1 or d = 2. Define the “U
norm” on CN as ‖x‖U =

∑
i∈[d] |〈x,ui〉|.

Proposition A.1 ([41]). For any lattice Λ in CN , p ∈ [1,∞), c ∈ Cn, and U as above,

E
x∼DΛ,c

[
‖x− c‖pU

]
≤ cp

p ·
ρ(Λ)
ρc(Λ)

.

(Technically, the lemma from [41] is stated in terms of full-rank lattices in RN . However, the
subspace span(Λ) ⊆ CN with inner product is isomorphic to RN ′

for some N ′; this is sufficient for
the proof to go through in our setting.)

We now recall the notation from Lemmas 6.7 and 6.8, which we keep throughout this section:
I is a fractional ideal over a number field K of degree n; m is a positive integer; ε ≤ 1/(2m + 1)
and s ≥ ηε(I) are positive reals; z, c ∈ Km are arbitrary fixed vectors; yj ∼ DI,s,cj are independent
samples from discrete Gaussians over I, and we define

v =
∑

j∈[m]

zj · (yj − cj).

The goal is to show tail bounds for ‖v‖p assuming an appropriate upper bound on ‖z‖r. For
simplicity, we will assume without loss of generality that s = 1 ≥ ηε(I) throughout this section;
the general results all follow by appropriate scaling.

Recall also that σi is the ith embedding of K, and σ : K → Rr1×C2r2 is the canonical embedding
of K, whose image is contained in the n-dimensional subspace H ⊆ Rr1 × C2r2 .

We start by deriving a bound on the moments of |σi(v)|, which will be needed in the proofs of
both Lemma 6.7 and Lemma 6.8. For each i ∈ [n], define ri = (σi(z1), . . . , σi(zm)) ∈ Cm.

31



Lemma A.2. For any p ∈ [1,∞) and every i ∈ [n], we have:

E [|σi(v)|p] ≤ cp
p · ‖ri‖p2 .

Proof. We first start by setting up some notation for the application of Proposition A.1. Just as
in Section 6.3, define σ : Km → (Rr1 × C2r2)m via coordinate-wise application of σ. Then let
Λ′ = σ(I × · · · × I) ⊂ Hm be the Cartesian product of m copies of σ(I), forming a lattice of rank
mn. Likewise, let c′ = σ(c1, . . . , cm) ∈ Hm, and y′ = σ(y1, . . . , ym) ∈ Hm.

By some routine calculations (see [41, Proof of Corollary 5.2]), one can show that y′ is distributed
according to DΛ′,c′ , and that from the hypothesis ε ≤ 1/(1 + 2m) we have

ρ(Λ′)
ρc′(Λ′)

≤
(
1 + 1

m

)m
< exp(1).

We now separate the proof into two cases, based on whether σi is a real embedding (i ∈ [r1])
or a complex embedding (r1 < i ≤ n). The former case is somewhat simpler, so we start with it.

Define w ∈ H by wi = 1, and wk = 0 for all k 6= i. Then for any x ∈ K, we have σi(x) =
〈σ(x),w〉. Therefore

σi(v) =
∑

j∈[m]

σi(zj) · σi(yj − cj)

=
∑

j∈[m]

〈σ(yj − cj), σi(zj) ·w〉

=
〈
y′ − c′, (σi(z1) ·w, . . . , σi(zm) ·w)︸ ︷︷ ︸

w̃=r·u∈Hm

〉
= r

〈
y′ − c′,u

〉
,

where u ∈ Hm is the unit vector parallel to w̃, and r2 = 〈w̃, w̃〉 =
∑

j∈[m] σ
2
i (zj) = ‖ri‖22. Now

set U = {u}, so |σi(v)| = ‖ri‖2 · ‖y′ − c′‖U. By Proposition A.1, we get the desired bound on
E [|σi(v)|p].

We now turn to the case that σi is a complex embedding. We may assume that r1 < i ≤ r1 +r2,
for if i > r1 + r2, we have σi(v) = σi−r2(v) and hence |σi(v)| = |σi−r2(v)|. Now define w ∈ H to
be the vector that “selects” the real part of the ith coordinate of any x ∈ H via Hermitian inner
product, i.e., 〈x,w〉 = Re {xi}. Concretely, wi = wi+r2 = 1/2 and wk = 0 otherwise.

As above, we can show that Re {σi(v)} = 〈y′ − c′, w̃〉 = r 〈y′ − c′,u〉 where u ∈ Hm is the unit
vector parallel to appropriate w̃ ∈ Hm and

r2 = 〈w̃, w̃〉 =
∑

j∈[m]

(∣∣∣∣σi(zj)
2

∣∣∣∣2 +
∣∣∣∣σi+r2(zj)

2

∣∣∣∣2
)

=
∑

j∈[m]

|σi(zj)|2

2
=
‖ri‖22

2
.

Similarly, let w′ ∈ H be the vector that selects the imaginary part of the ith coordinate of
x ∈ H, i.e. 〈x,w′〉 = Im {xi}. Concretely, w′

i = −w′
i+r2

=
√
−1/2, and wk = 0 otherwise. Then as

above, we have Im {σi(v)} = r 〈y′ − c′,u′〉, where r2 = ‖ri‖22 /2. Furthermore, one can check that
u and u′ are orthogonal (this stems from the fact that w and w′ are orthogonal).

Now set U = {u,u′}. We have |σi(v)| ≤ |Re {σi(v)}|+|Im {σi(v)}| = ‖ri‖2√
2
·‖y′ − c′‖U. Applying

Proposition A.1, we get the desired bound on E [|σi(v)|p].

32



For analyzing ‖v‖∞, we will also need the following:

Lemma A.3. For every i ∈ [n], we have

Pr
[
|σi(v)| > c∞ · ‖ri‖2 ·

√
log n

]
≤ 1

2n
.

Proof. The proof is almost identical to the one above, but instead uses a tail inequality on discrete
Gaussians [41, Lemma 5.3].

We now prove Lemmas 6.7 and 6.8, which we restate below (with s = 1) for convenience.

Lemma A.4 (Restatement of Lemma 6.7). If ‖z‖∞ ≤ β, then Pr[‖v‖p > L] ≤ 1
2 , where

L = cp · β ·
√

m ·
{

n1/p for p ∈ [1,∞)√
log n for p =∞

Proof. We start with the case p ∈ [1,∞). We have:

E
[
‖v‖pp

]
=
∑
i∈[n]

E [|σi(v)|p]

≤ cp
p ·
∑
i∈[n]

‖ri‖p2 (Lemma A.2)

≤ cp
p ·
∑
i∈[n]

(
√

m)p · ‖ri‖p∞ (‖ri‖2 ≤
√

m · ‖ri‖∞)

≤ cp
p · (
√

m)p · βp · n. (‖ri‖∞ ≤ ‖z‖∞ ≤ β)

Therefore by Jensen’s inequality, E
[
‖v‖p

]
≤ cp · β ·

√
m · n1/p. Finally, Markov’s inequality yields

the claim.
Now we consider the case p = ∞. Because ‖ri‖2 ≤

√
m · ‖ri‖∞ ≤

√
m · β, by Lemma A.3 we

have Pr [|σi(v)| > L] ≤ 1/2n. By the union bound over all i ∈ [n], the claim follows.

Lemma A.5 (Restatement of Lemma 6.8). If ‖z‖r ≤ β · (mn)1/r for some r ∈ [1,∞), then for any
p ≤ r we have Pr[‖v‖p > L] ≤ 1

2 , where

L = cp · β ·mmax{1/2,1/r} · n1/p.

Proof. We recall Hölder’s inequality, which implies that for 1 ≤ p ≤ r ≤ ∞ and any x ∈ CN , we
have ‖x‖p ≤ N1/p−1/r · ‖x‖r.

First, define t = (‖r1‖r , . . . , ‖rn‖r) ∈ Rn. Observe that

‖t‖r =
(∑

i∈[n]

‖ri‖rr
)1/r

=
( ∑

i∈[n],j∈[m]

|σi(zj)|r
)1/r

= ‖z‖r ≤ β · (mn)1/r.
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Now consider the case r < 2. By standard properties of norms, we have ‖ri‖2 ≤ ‖ri‖r. Then:

E
[
‖v‖p

]
≤
(
E
[
‖v‖pp

])1/p
(Jensen’s inequality)

=
(∑

i∈[n]
E [|σi(v)|p]

)1/p

(linearity of E)

≤ cp ·
(∑

i∈[n]
‖ri‖p2

)1/p

(Lemma A.2)

≤ cp ·
(∑

i∈[n]
‖ri‖pr

)1/p

(properties of norms)

≤ cp · ‖t‖p (definition of t)

≤ cp · n1/p−1/r · ‖t‖r (Hölder’s inequality, p ≤ r)

≤ cp · β ·m1/r · n1/p (above bound on ‖t‖r = ‖z‖r)

Now consider r ≥ 2. By Hölder’s inequality, we have ‖ri‖2 ≤ m1/2−1/r · ‖ri‖r. By an argument
nearly identical to the one above, we have

E
[
‖v‖p

]
≤ cp ·m1/2−1/r · ‖t‖p ≤ cp · β ·m1/2 · n1/p.

Finally, the desired result follows by Markov’s inequality.
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