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ABSTRACT

Fully Homomorphic Encryption (FHE) is a cryptographic “holy
grail” that allows a worker to perform arbitrary computations on
client-encrypted data, without learning anything about the data
itself. Since the first plausible construction in 2009, a variety of
FHE implementations have been given and used for particular ap-
plications of interest. Unfortunately, using FHE is currently very
complicated, and a great deal of expertise is required to properly
implement nontrivial homomorphic computations.

This work introducesAlchemy, a modular and extensible system
that simplifies and accelerates the use of FHE. Alchemy compiles
“in-the-clear” computations on plaintexts, written in a modular
domain-specific language (DSL), into corresponding homomorphic
computations on ciphertexts—with no special knowledge of FHE
required of the programmer. The compiler automatically chooses
(most of the) parameters by statically inferring ciphertext noise
rates, generates keys and “key-switching hints,” schedules appro-
priate ciphertext “maintenance” operations, and more. In addition,
its components can be combined modularly to provide other useful
functionality, such logging the empirical noise rates of ciphertexts
throughout a computation, without requiring any changes to the
original DSL code.

As a testbed application, we demonstrate fast homomorphic
evaluation of a pseudorandom function (PRF) based on Ring-LWR,
whose entire implementation is only a few dozen lines of simple
DSL code. For a single (non-batched) evaluation, our unoptimized
implementation takes only about 10 seconds on a commodity PC,
which is more than an order of magnitude faster than state-of-
the-art homomorphic evaluations of other PRFs, including some
specifically designed for amenability to homomorphic evaluation.
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1 INTRODUCTION

Fully Homomorphic Encryption (FHE) is a powerful cryptographic
concept that allows a worker to perform arbitrary computations on
client-encrypted data, without learning anything about the data it-
self. Although first envisioned 40 years ago [49] as a cryptographic
“holy grail,” no plausible candidate FHE scheme was known until
Gentry’s seminal work in 2009 [26, 27]. Motivated by FHE’s po-
tential to enable new privacy-sensitive applications and enhance
existing ones, a flurry of research activity has led to FHE schemes
with better efficiency, stronger security assurances, and specialized
features. (See [3, 4, 11–15, 18–20, 30–32, 51, 52] for a sampling.) In
addition, there are a variety of real-world FHE implementations
which have been used for particular applications of interest (see,
e.g., [17, 22, 25, 29, 33, 38, 46]).

Unfortunately, using current FHE implementations for non-trivial
homomorphic computations is quite complicated: First, one must
express the desired “in the clear” computation (on plaintexts) in
terms of the FHE scheme’s “instruction set,” i.e., the basic homo-
morphic operations it natively supports. This is non-trivial because
the operations (which can vary based on the scheme) are typically
algebraic ones like addition and multiplication on finite fields, and
sometimes other functions like permutations on fixed-sized arrays
of field elements. Thus, one needs to “arithmetize” the desired com-
putation in terms of these operations, as efficiently as possible for
the instruction set at hand. (Moreover, the instruction set can some-
times depend on the choice of plaintext and ciphertext rings, which
can also affect the third step below.)

Second, FHE ciphertexts accumulate “errors” or “noise” under
homomorphic operations, and too much noise causes the result to
decrypt incorrectly—so proper noise management is essential. In
addition, the ciphertext “degree” increases under certain operations,
but can be brought back down using other means. So along with
homomorphic operations that perform meaningful work on the
plaintext, one must also carefully schedule appropriate “mainte-
nance” operations, such as linearization and other forms of key
switching, and rescaling (also known as modulus switching) to keep
the ciphertext noise and size under control.

Third, one must choose appropriate ciphertext parameters for
the desired level of security, i.e., dimensions and moduli that are
compatible with the noise rates at the various stages of the compu-
tation (and also consistent with any restrictions inherited from the
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first step). Importantly, the choice of parameters itself affects the
noise growth incurred by the homomorphic operations, so one may
need several cycles of trial and error until the parameters stabilize.

Lastly, one also needs to generate all the needed keys and aux-
iliary key-switching “hints” that are needed for the maintenance
operations, and to encrypt the input plaintexts under the appropri-
ate keys.

In summary, the above process requires a great deal of expertise
in both the theory of FHE and the quirks of its particular imple-
mentation, in addition to a lot of manual programming and trial-
and-error. Perhaps for this reason, most applications of FHE to date
have been ad-hoc, one-off implementations, with complex code that
is hard to debug and which obscures the nature of the underlying
computation.

1.1 Contributions

This work introducesAlchemy, a system that greatly simplifies and
accelerates the implementation of homomorphic computations.1 In
short, Alchemy automatically and safely transforms “in-the-clear”
computations on plaintexts into corresponding homomorphic com-
putations on ciphertexts. Crucially, this requires no detailed knowl-
edge of particular FHE schemes on the part of the programmer. One
simply writes (and runs, and debugs) a program that describes a
desired plaintext computation, and then obtains a matching homo-
morphic computation with very little additional effort.

At a more technical level, Alchemy consists of two main pieces:
(1) domain-specific languages (DSLs) for expressing plaintext and
ciphertext computations, including both “native” operations and a
library of higher-level functions built out of them; and (2) a compiler
that transforms plaintext programs into corresponding homomor-
phic ones. The compiler automatically handles the cumbersome
and delicate tasks of choosing (most of the) parameters, generating
keys and hints, scheduling appropriate “maintenance” operations
to control the ciphertext size and noise, encrypting inputs and de-
crypting outputs under appropriate keys, etc. In addition, it uses
a strict type system to statically—i.e., at compile time—track the
ciphertext noise to choose appropriate moduli, and to check that
other parameters satisfy arithmetic conditions required for correct
computation. Finally, the various pieces of the compiler can be
composed modularly to provide additional useful functionality.

In summary, Alchemy lets programmers write clear and con-
cise code describing what they really care about—the plaintext
computation—and produces a corresponding homomorphic compu-
tation without requiring expertise in the intricacies of FHE. In Sec-
tion 1.2 we describe the approach in more detail, and in Sections 1.3
and 5 we give some simple and then more advanced examples to
demonstrate Alchemy’s convenience and flexibility.

Application: homomorphic PRF evaluation. As a full-scale testbed
application, in Section 5 we demonstrate fast homomorphic eval-
uation of a candidate pseudorandom function (PRF) based on the
Learning With Rounding over Rings (Ring-LWR) problem [6]. In
the non-batched setting, our (still unoptimized) implementation is
more than one order of magnitude faster than prior homomorphic
evaluations of other PRFs. In addition, the programmer-written
1Alchemy is publicly available under a free and open-source license at https://github.
com/cpeikert/ALCHEMY.

implementation of the “plaintext” PRF computation is only a few
dozen lines of very simple and transparent code; Alchemy handles
everything else.

It has long been understood that homomorphic evaluation of
symmetric-key primitives like PRFs is a very useful tool in the the-
ory and practice of FHE (see, e.g., [26, 28, 33]). For example, it allows
a client to encrypt its data using symmetric-key encryption—which
is much faster and more compact than FHE encryption—while still
allowing a worker to compute on the data homomorphically. The
worker first homomorphically evaluates the symmetric decryption
circuit on an FHE encryption of the user’s secret key, resulting in
an FHE encryption of the user’s data. From there the worker can
homomorphically evaluate the actual function of interest.

Prior work has homomorphically evaluated PRFs like the AES
block cipher [18, 24, 33, 45] and the “LowMC” cipher [1], which was
specially designed to have low multiplicative depth for amenability
to FHE and multi-party computation (MPC). On standard laptop-
class hardware, highly optimized state-of-the-art implementations
require a few minutes (or much more) for a single AES or LowMC
evaluation. They can also use SIMD techniques to compute scores
of evaluations at once, resulting in amortized rates of a few seconds
per block, or even sub-second rates for LowMC amortized over
hundreds of blocks. However, the latency remains in the several
minutes, which makes its unsuitable for many scenarios.

By constrast, our homomorphic evaluation of a Ring-LWR PRF
takes only about twelve seconds for a single evaluation on com-
modity hardware.2 This is primarily due to its use of rich natively
supported FHE operations like “ring switching” [22, 30] and SIMD
operations on “slots” [51], its small number of such operations, and
its low multiplicative depth (over a large ring). This good “algebraic
fit” of Ring-LWR for homomorphic evaluation was previously noted
in [3, 5], and our work confirms it in practice.

1.2 Overview of Alchemy

As already mentioned, Alchemy is a collection of domain-specific
languages (DSLs) for expressing plaintext and ciphertext compu-
tations, and interpreters that act on programs written in these lan-
guages. Here “interpreters” is broadly defined, and encompasses
evaluators, optimizers, and, most significantly, compilers that trans-
form programs from one DSL to another.

Alchemy is highly modular and extensible. Each DSL is made
up of small, easy-to-define components corresponding to particular
operations or language features, which can be combined arbitrarily.
Interpreters can support any subset of the language components,
and are easy to extend to new ones. In addition, Alchemy’s inter-
preters are easy to compose with each other to perform a variety
of different tasks. For example, starting from a single plaintext
program one can: evaluate it “in the clear,” compile it to a cor-
responding homomorphic computation, print a representation of
both programs, encrypt a plaintext and perform the homomorphic
computation on it, and track the ciphertext noise throughout.

Another key property of Alchemy is static safety: any well-
formed program, and only well-formed programs, should be ac-
cepted by an interpreter, and the possibility of runtime errors should

2There are limited opportunities for even faster amortized rates via batch evaluation;
we leave these for future work.
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be minimized or even eliminated. For these purposes, the Alchemy
DSLs are functional (pure) and statically typed, in a rich type system
that supports strong type inference.

• Purity means that a function always yields the same out-
put when given the same inputs (no side effects or global
variables), which is a good match for the arithmetic func-
tions and circuits that are common targets for homomorphic
computation.
• Static typing means that every expression has a type that is
known at compile time, and only well-formed expressions
typecheck. This allows many common programming errors—
both in DSL code, and in Alchemy’s own interpreters—to be
caught early on. The type system is very rich, allowing many
safety properties to be encoded into types and automatically
verified by the type checker.
• Type inference ensures that (almost) all types in DSL expres-
sions can be automatically determined by the type system,
and need not be explicitly specified by the programmer. This
makes codemore concise, and easier to understand and check
for correctness.

All the above-described properties are obtained by defining the
DSLs and interpreters in the host language Haskell, from which
Alchemy directly inherits its basic syntax, rich data types, and
safety features—with no special implementation effort or extra
complexity. As its underlying FHE implementation, Alchemy uses
a BGV-style [12] cryptosystem as refined and implemented in
Λ◦λ [22], a recent Haskell framework for FHE and lattice-based cryp-
tography more generally. However, we emphasize that Alchemy
compilers can easily target other FHE schemes and implementa-
tions, not just those based on Λ◦λ and Haskell.

Languages. Domain-specific languages (DSLs) have long been
recognized as powerful tools for working in particular problem
domains; e.g., LATEX is a (Turing-complete) DSL for typesetting doc-
uments, and the MATLAB language is targeted toward numerical
computing and linear algebra.

Alchemy’s first main ingredient is a collection of modular and
extensible DSLs for expressing both “in the clear” computations
on plaintexts, and homomorphic computations on ciphertexts. Fol-
lowing the powerful “typed tagless final” approach to embedded
language design [41], each DSL is the union of several independent
and composable language components. Alchemy defines language
components for the following DSL features:

• data types for plaintexts rings and FHE ciphertexts, and
simple data structures like tuples and lists;
• basic arithmetic operations like addition and multiplication,
along with more advanced ones like arbitrary linear func-
tions between plaintext rings;
• ciphertext operations as supported by the underlying FHE
implementation;
• programmer-defined functions, including higher-order func-
tions (i.e., those that operate on other functions);
• and even specific forms of side effects, via monads.

It is easy to introduce additional data types and language features
as needed, simply by defining more language components.

Both the plaintext and ciphertext DSLs include the generic lan-
guage components for data structures, arithmetic operations, and
functions. In addition, each one includes the components that re-
late specifically to plaintext or ciphertext operations. Because the
plaintext DSL involves relatively simple data types and operations,
it is easy for the programmer to hand-write code to express a de-
sired computation. By contrast, proper use of the ciphertext DSL
is significantly more complicated—e.g., ciphertext types involve
many more parameters, and FHE operations must be appropriately
scheduled—so it is not intended for human use (though nothing
prevents this). Instead, it is the target language for Alchemy’s
plaintext-to-ciphertext compiler. As we will see, having a dedi-
cated ciphertext DSL allows for homomorphic computations to be
acted upon in various useful ways beyond just executing them, e.g.,
tracking noise growth or optimizing away redundant operations.

Alchemy also provides a variety of useful higher-level functions
and combinators that are written in the DSLs. These include “arith-
metized” versions of functions that are not natively supported by
FHE schemes, but can be expressed relatively efficiently in terms
of native operations. A particularly important example for our pur-
poses is the “rounding function” from Z2k to Z2, where Zq denotes
the ring of integers modulo q. This function is central to efficient
“boostrapping” algorithms for FHE and the related Learning With
Rounding problem [6], and has an efficient arithmetization [3, 31].
See Section 5 for further details.

Interpreters and compilers. The othermain ingredient of Alchemy
is its collection of composable interpreters for programs written in
its DSLs. In keeping with Alchemy’s modular structure, each inter-
preter separately defines how it implements each relevant language
component. In particular, some of the interpreters are actually com-
pilers that translate programs from various DSL components to
others. Example interpreters provided in Alchemy include:

• an evaluator, which simply interprets the plaintext or cipher-
text DSL operations using the corresponding Haskell and
Λ◦λ operations;
• various utility interpreters that, e.g., print DSL programs,
or compute useful metrics like program size, multiplicative
depth, etc.;
• a diagnostic compiler that modifies any ciphertext-DSL pro-
gram to also log the noise rate of every ciphertext it produces;
• most significantly, a compiler that transforms any program
written in the plaintext DSL to a corresponding homomor-
phic computation in the ciphertext DSL.

The plaintext-to-ciphertext compiler is the most substantial and
nontrivial of the interpreters, and is one of this work’s main contri-
butions. This compiler automatically performs several important
tasks that in all other FHE systems must handled manually by the
programmer. In particular, it:

• generates all necessary secret keys and auxiliary “hints” for
ciphertext operations like key-switching and ring-switching;
• properly schedules all necessary ciphertext maintenance
operations like key-switching (e.g., for “linearization” after
homomorphic multiplication) and modulus-switching (for
noise management);



• statically infers, using compile-time type arithmetic, the ap-
proximate noise rate of each ciphertext to within a small
factor, and selects an appropriate ciphertext modulus from a
given pool (and if any inferred rate is too small relative to
the available moduli, outputs an informative type error);
• generates encrypted inputs for the resulting homomorphic
computation, with appropriate noise rates to ensure correct
decryption of the ultimate encrypted output.

1.3 Example Usage

Here we give a few concrete examples of programs in the Alchemy
DSLs, and the various ways they can be interpreted and compiled.
These examples illustrate the ease of use and flexibility of the ap-
proach. We start with the following simple DSL expression:

ex1 = lam2 $ \x y -> (var x +: var y) *: var y

As expected, ex1 represents a function of two inputs x and y, which
adds them using the DSL operator +:, then multiplies the result by y
using the DSL operator *:. The Haskell typechecker automatically
infers the full type of ex1, which is:

ex1 :: (Lambda_ expr, Mul_ expr a, Add_ expr (PreMul expr a))
=> expr e (PreMul expr a -> PreMul expr a -> a)

This type carries a great deal of important information. Let us
unpack its various components:

• First, the type is polymorphic in the type variables expr, e,
and a. These type variables can represent arbitrary Haskell
types. . .
• . . . subject to the constraints (Lambda_ expr, ...), which
say that expr must be able to interpret the Lambda_, Mul_,
and Add_ language components. More specifically, Lambda_
says that expr supports programmer-defined functions (here
via lam2), Mul_ says that expr can handle multiplication of
two values of type PreMul expr a to produce one of type a,
(via *:), and Add_ says that expr can handle addition of val-
ues of the former type (via +:). (The purpose of PreMul is ex-
plained below, where we describe the plaintext-to-ciphertext
compiler.)
• Finally, the type expr e (PreMul expr a -> ... -> a)
says that ex1 represents a DSL function that takes two input
values of type PreMul expr a and outputs a value of type a.
The type argument e represents the expression’s environ-
ment, which must list the types of any unbound variables
used in “open” code. Here both x and y are bound by the
enclosing lam2, so there are no unbound variables—the code
is “closed”—and hence e is completely unconstrained.

1.3.1 One Program, Many Interpretations. Because ex1 is polymor-
phic in expr, having written it once we can interpret it in several
different ways by specializing expr to various concrete interpreter
types. One simple interpreter is the “not-so-pretty” printer P, which
trivially implements all the requisite language components. Its pub-
lic interface

print :: P () a -> String

converts any closed P-expression to a string representing the compu-
tation in a “desugared” form. Calling print ex1 implicitly special-
izes ex1’s interpreter type variable expr to P and its environment
type variable e to (), resulting in the following:3

print ex1
-- "(\v0 -> (\v1 -> ((mul ((add v0) v1)) v1)))"

Another very simple interpreter is the evaluator E, which just
interprets each of Alchemy’s DSL components using corresponding
Haskell (or Λ◦λ) operations. Its public interface
eval :: E () a -> a

converts any closed DSL expression of arbitrary type a to a Haskell
value of type a, as follows:
eval ex1
-- (Ring a) => a -> a -> a
eval ex1 7 11
-- 198

Because eval implicitly specializes ex1’s type variable expr to E,
which defines PreMul E a = a, the call to eval ex1 produces a
polymorphic Haskell function of type a -> a -> a, for an arbi-
trary Ring type a. The Ring constraint comes from the fact that E
uses the operators + and * (introduced by Ring) to interpret the DSL
operators +: and *: (introduced by Add_ and Mul_, respectively).
The call to eval ex1 7 11 actually evaluates the Haskell function,
yielding (7 + 11) · 11 = 198.

We stress that eval ex1 :: (Ring a) => a -> a -> a is poly-
morphic in a, so it can be applied to elements of any plaintext ring,
or even to ciphertexts from Λ◦λ’s FHE scheme (both of which
instantiate Ring). However, in the latter case ex1 still lacks the
extra ciphertext “maintenace” operations, like relinearization and
modulus-switching, that are needed in typical homomorphic com-
putations. For these we use Alchemy’s plaintext-to-ciphertext com-
piler, described in Section 1.3.3 below.

1.3.2 Ring Switching. Here we exhibit another small program that
illustrates another important language component, for “switch-
ing” from one cyclotomic ring to another. Ring-switching in ho-
momorphic encryption was developed and refined in a series of
works [3, 12, 22, 30], which showed its utility for tasks like “boot-
strapping” and efficiently computing a wide class of linear func-
tions.
ex2 = linearCyc_ (decToCRT @F28 @F182) .:

linearCyc_ (decToCRT @F8 @F28)

Here decToCRT @F8 @F28 is a Haskell expression representing a
certain linear function from the 8th to the 28th cyclotomic ring, and
similarly for decToCRT @F28 @F182. (The specific linear functions
do not matter here, and could be arbitrary.) The .: operator denotes
composition of DSL functions. Naturally, the Haskell type checker
enforces that the output type of the “inner” function must equal
the input type of the “outer” function.

The Haskell compiler automatically infers the following type for
ex2 (we have suppressed some type arguments and constraints for
better readability):
ex2 :: (LinearCyc_ expr cyc, ...) =>

expr e (cyc F8 zp -> cyc F182 zp)

3Notice the automatically indexed variables v0, v1, and prefix-form functions mul, add
in place of the infix operators *:, +:.



This type says that ex2 is a (closed) DSL function that may be
interpreted by any interpreter expr that can handle the LinearCyc_
language component (which introduces linearCyc_). Essentially,
the DSL function maps from cyc F8 zp, which should represent
the 8th cyclotomic ring modulo some integer p, to cyc F182 zp,
which should represent the 182nd cyclotomic ring modulo p. The
type cyc is specified in the LinearCyc_ expr cyc constraint, and
could be, e.g., the concrete type Cyc from Λ◦λ, which implements
cyclotomic rings.

As with the previous example, we can print ex2 and evaluate it
“in the clear.” More interesting is to homomorphically evaluate it on
FHE ciphertexts, using a special form of key-switching as shown
in [22, 30]. For this we use Alchemy’s homomorphic compiler,
described next.

1.3.3 Compiling to the Ciphertext DSL. We now show how the
above example DSL programs, which should now be thought of
as functions on plaintexts, can be compiled into programs that
operate on FHE ciphertexts to homomorphically evaluate the origi-
nal programs on their underlying plaintexts. Like the printer and
evaluator, the compiler is a data type PT2CT that can interpret all
the appropriate DSL components (Add_, Mul_, LinearCyc_, etc.).
Because FHE involves additional parameters like ciphertext rings,
ciphertext moduli, and a choice of key-switching “gadget,” and be-
cause PT2CT statically tracks the error rate of ciphertexts, we must
specify a few additional types. For example, we can define:

type Zq1 = Zq $(mkModulus 34594561)
type Zq2 = Zq $(mkModulus 35642881)
...
type CTModuli = [ Zq1, Zq2, ... ]
type CTRingMap = [ (F8,F512), ... ]
type Gad = TrivGad

-- specialize examples to cyclotomics with
-- desired ciphertext error rates
ex1' = ex1 :: _ => expr e (_ -> _ -> PNoiseCyc 0 F8 _)
ex2' = ex2 :: _ => expr e (_ -> PNoiseCyc 0 _ _)

The type Zq1 represents Zq1 , the ring of integers modulo q1 =
34594561, and similarly for Zq2 etc. (The macro mkModulus defines
a type representing its argument, which is also augmented with
the number of “units of noise” the modulus can hold; see below for
more details.) The type CTRingMap specifies that when the plaintext
ring is the 8th cyclotomic, the ciphertext ring should be the 512th
cyclotomic, etc. (Ciphertext rings must be taken large enough, rela-
tive to the moduli, to achieve a desired level of security; there are
automated tools to aid their selection.) Finally, TrivGad indicates a
simple kind of gadget that emphasizes speed and compactness.

The definitions of ex1', ex2' specialize the output types of ex1,
ex2 to a particular cyclotomic data type PNoiseCyc that specifies a
desired noise rate for the corresponding ciphertext; the 0 arguments
say that the output ciphertexts should be decryptable but need not
support any further homomorphic operations. (The underscores
indicate types that will be inferred by the Haskell type checker.)
This specialization is needed so that the Alchemy compiler can
convert the plaintext types to corresponding ciphertext types, and
statically (back)track error rates.

Having defined the needed types, we can compile our plaintext-
DSL expressions to corresponding ciphertext-DSL expressions us-
ing the public interface pt2ct (whose type signature is given in Sec-
tion 4.1); the resulting ciphertext-DSL program can then be handled
by any suitable interpreter. One subtlety is that because the com-
piler automatically generates all the requisite random keys and
key-switch hints, it is necessarily monadic, i.e., non-pure. We there-
fore use Haskell’s “do notation” to invoke pt2ct in an appropriate
monadic context. For example, we can compile ex1' (which, to
recall, represents (x + y) * y) and print the resulting “sugar-free”
ciphertext-DSL expression as follows:
do ct1 <- pt2ct @CTRingMap @CTModuli @Gad ex1'

return $ print ct1

-- "(\v0 -> (\v1 ->
-- (((\v2 -> (\v3 ->
-- ((\v4 -> (modSwitch
-- ((\v4 -> (keySwitchQuad <HINT> (modSwitch v4))) v4)))
-- ((mul v2) v3))))
-- ((add v0) v1)) v1)))"

Despite the abundant variables and parentheses, the structure can
be teased out. First, because this is a program in the ciphertext DSL,
we should think of all the variables as representing FHE ciphertexts.
The expression is a function of two inputs, denoted v0 and v1. In the
“inner” layer, the variable v2 is bound to ((add v0) v1), and v3 is
bound to v1.4 These two ciphertexts are multiplied, which results
in a “quadratic” ciphertext, to which v4 is bound. This is modulus-
switched to match the key-switching hint, then key-switched to a
“linear” ciphertext by keySwitchQuad, then finally switched back
to an appropriate modulus for its inherent noise rate. We again
stress that the creation of the key-switch hints, and the selection
of appropriate moduli for hints and ciphertexts, (which are not
displayed in the printer output), is handled automatically.

As another example, we can compile the expression ex2' (which
represents two successive ring-switches) and print the result:
do ct2 <- pt2ct @CTRingMap @CTModuli @Gad ex2'

return $ print ct2

-- "(\v0 ->
-- ((\v0 -> (modSwitch (tunnel <HINT> (modSwitch v0))))
-- ((\v0 -> (modSwitch (tunnel <HINT> (modSwitch v0))))
-- v0)))"

The program takes a ciphertext denoted v0 as input, switches it
to the modulus of the “tunneling hint” that encodes the desired
linear function, then switches rings by “tunneling” with the hint,
then switches back to an appropriate ciphertext modulus. The same
cycle is repeated for the next tunneling step. (Note that some of the
modulus-switches may turn out to be null operations, depending
on the noise rates.)

1.3.4 Evaluating and Logging. While it is nice to be able to see a
representation of ciphertext-DSL programs, we are more interested
in evaluating them to perform a homomorphic computation on

4Note that the expression is highly amenable to “inlining” using β -reduction; while our
compiler does not currently perform such optimizations at the DSL level (though that
could be done by an additional interpreter), the Haskell compiler itself would likely do
so. In any case, the performance cost of not inlining is negligible when compared with
homomorphic operations.



ciphertexts. Fortunately, this is extremely simple: just replace print
with eval in the above code! This specializes the (polymorphic)
interpreter of the output ciphertext-DSL program to the evaluator E
rather than the printer P.

In addition, for diagnostic purposes we may wish to measure the
“error rates” of the ciphertexts as homomorphic evaluation proceeds.
(E.g., during development this was very helpful for designing our
static noise tracker to closely approximate the true noise growth,
and for finding subtle implementation bugs.) Such logging is very
easy using the ERW interpreter, which transforms any ciphertext-
DSL program to an equivalent one that additionally logs the error
rates of all generated ciphertexts. The transformed program can
then be evaluated (or printed, or sized, etc.) as usual. One important
subtlety is that the transformed program itself—rather than just the
process of generating it—is monadic, because it uses the side effect
of writing DSL values to a log. Therefore, our ciphertext DSL needs
to support monadic computation, which it does modularly via the
Monad_ and related language components. Continuing our previous
example:
do logct2 <- writeErrorRates ct2

inputCT <- encrypt inputPT
(result, log) = runWriter $ eval logct2 >>= ($ inputCT)
return log

-- "Error rates:
-- ("modSwitch_Q539360641*Q537264001",6.8495e-7),
-- ("tunnel_Q539360641*Q537264001",3.3651e-6),
-- ("modSwitch_Q537264001",7.3408e-6),
-- ("modSwitch_Q537264001",7.3408e-6),
-- ("tunnel_Q537264001",1.8010e-4),
-- ("modSwitch_Q537264001",1.8010e-4)"

The log shows the error rates of the ciphertexts produced by each
ciphertext-DSL operation (conveniently augmented by its modulus).
We can see that the first tunnel operation increases the error rate
by roughly 5x, the switch to the smaller modulus increases the
rate by roughly 2x, etc. (The other modSwitch operations do not
actually change the modulus, and are therefore null.)

1.4 Limitations and Future Work

As explained above, Alchemy represents significant progress to-
ward making FHE usable for non-experts. Here we describe some
of its present limitations and directions for potential improvement.

Fully automating FHE parameters. Although the PT2CT compiler
automatically chooses parameters for each ciphertext and hint in
the computation, the programmer still must provide a collection
of sufficiently large (and arithmetically valid) cyclotomic indices,
and a pool of sufficiently many moduli to support all the statically
estimated error rates. Ideally, Alchemy would choose all of these
parameters automatically, targeting a desired security level without
unnecessarily sacrificing efficiency. Because in our examples we
generated these parameters semi-automatically using scripts, this
ultimate goal may not be too far out of reach. One potential route
is to use Template Haskell to programmatically generate types
meeting the required constraints at compile time. (Alchemy already
uses Template Haskell in some basic ways, e.g., to compute the
“noise capacity” of the provided moduli.)

Scalability. We have successfully demonstrated Alchemy’s util-
ity on moderate-sized computations, like homomorphic evaluation
of a Ring-LWR-based PRF. However, Alchemy is not yet suitable
for much larger or more complex functions, due to the long compi-
lation times under the ghc Haskell compiler (which unfortunately
have become worse in recent versions). The main bottleneck is
Alchemy’s extensive use of type-level arithmetic for static error-
rate tracking and encoding arithmetic constraints, which severely
stresses the Haskell compiler. (This is a known performance issue
that has been under active consideration for some time.) Relaxing
or simplifying the error-rate arithmetic might help significantly.

Alternative backends. While Alchemy currently targets the FHE
implementation of Λ◦λ, nothing in its design requires this. Because
the plaintext and ciphertext DSLs are polymorphic, one could poten-
tially write interpreters that output, e.g., valid C++ code targeting
HElib [36]. Such a staged-compilation approach could combine the
strong static safety properties of Alchemy’s DSLs and convenience
of its compilers with the high performance of optimized lower-level
libraries.

Formal proofs. Alchemy’s DSL interpreters have very concise
implementations (of at most a few lines of code per method) that are
easy to audit by inspection, but are not formally verified. Therefore,
there is the possibility that Alchemy will transform some program
incorrectly, perhaps for some unusual choices of parameters or
unlikely choices of randomness. Given the complexity of FHE, and
especially of error accumulation, at this stage it is far from clear
what a meaningful formal proof of correctness would entail.

Automating and optimizing arithmetization. Lastly, Alchemy
and all other existing FHE implementations still require the pro-
grammer to arithmetize the desired plaintext computation into
relatively low-level operations (notwithstanding recent progress
like [21, 37]). At present this process is very ad-hoc and manually
driven: the “native instruction sets” of FHEs consist of a motley
assembly of low- and medium-level operations with varying cost
metrics (including “bootstrapping”), and it is not at all clear how
best to arithmetize even some basic computations of interest. An
ambitious goal would be to devise compilers that convert high-level
DSL code into particular FHE instruction sets, and optimize their
performance according to various objectives.

1.5 Related Work

Fully homomorphic encryption. As far as we know, there are no
prior domain-specific languages or compilers for FHE; all implemen-
tations require the programmer to “arithmetize” the desired func-
tion by hand and then write code in a general-purpose language,
manually scheduling appropriate homomorphic and ciphertext-
maintenance operations, generating keys and hints, etc.

Probably the most well-known and mature FHE implementa-
tion is HElib [36], an “assembly language” for fully homomorphic
encryption, which is implemented in C++ on top of NTL [50]. HE-
lib has been used for many homomorphic computations of inter-
est [21, 33, 37, 38], but it requires quite a lot of expertise in FHE
and the library itself to use, because computations must be written
directly in the “assembly language.”



Alchemy is built on top of the Λ◦λ library for lattice-based
cryptography [22] and its FHE implementation. To our knowledge,
this is the only implementation that supports ring-switching, which
we use for homomorphic PRF evaluation. However, up until now
those who wished to use Λ◦λ for FHE still had to write code directly
to its interface, which is roughly at the same level of abstraction as
HElib’s.

FHEW [25] is a refinement and fast implementation of an ef-
ficient bootstrapping algorithm [4] for “third-generation” FHE
schemes [34]. However, it is not yet appropriate for general-purpose
homomorphic computations, because it encrypts only one bit (or
just a few bits) per ciphertext, and supports only basic logic gates.

The SEAL library [17] provides heuristic parameter selection, an
important part of practically usable FHE. However, users must still
manually arithmetize and implement their computations, and gener-
ate keys and hints. SEAL is also limited to power-of-two cyclotomic
rings, which do not support SIMD “slots” (for characteristic-two
plaintext rings) or the most useful forms of ring-switching.

Secure computation. Secure two- and multi-party computation
(2PC and MPC) is similar to FHE, in that it allows mutually dis-
trustful interacting parties to compute a function on their private
inputs while revealing nothing more than the function output (and
what is implied by it). The history of 2PC/MPC stretches back to
the 1980s [8, 35, 53], and its implementations are more mature. Like
FHE, secure computation also requires “in-the-clear” functions to
be converted to (arithmetic or boolean) circuits and compiled into
“encrypted” versions, e.g., garbled circuits. Tools for these tasks
have evolved over many years (e.g., [7, 9, 23, 39, 43, 44, 47, 48]), and
the approach of using specification languages and compilers has
proven to be very powerful.

As a few examples, Fairplay [7, 44], TASTY [39], ShareMonad [42],
and Wysteria [48] all provide high-level domain-specific languages
for expressing computations, and compilers for transforming these
into executable protocols that satisfy the desired security properties.
In particular, TASTY compiles to two-party protocols that use a mix
of garbled circuits and (semi-)homomorphic encryption, but not
fully homomorphic encryption. Wysteria goes further to support
“mixed-mode” programs, and has a strong type system and a proof
of type soundness, which implies formal secrecy guarantees for
the parties’ private data. The use of strong static type systems to
provide higher levels of safety and trustworthiness is also a theme
in Alchemy, though our work does not (yet) provide the kinds of
formal guarantees that Wysteria has.

The rest of the paper is organized as follows.
Section 2 gives the relevant background on the (typed) tagless

final approach of DSL design and implementation, which
Alchemy is based on.

Section 3 describes the various components of Alchemy’s plain-
text and ciphertext DSLs.

Section 4 describes the flagship Alchemy compiler, the plaintext-
to-ciphertext compiler.

Section 5 describes a full-scale application in Alchemy, namely
(homomorphic) “ring rounding,” and gives an evaluation.

The appendices contain additional background and technical ma-
terial.

2 TAGLESS-FINAL BACKGROUND

Herewe give the necessary background on the elegant and powerful
“(typed) tagless-final” approach [16, 41] to the design of domain-
specific languages (DSLs), also called object languages, in a host
language. The well-known “initial” approach to DSLs represents
object-language expressions as values of a corresponding data
type/structure in the host language, e.g., an abstract syntax tree. By
contrast, the tagless, or “final,” approach represents object-language
expressions as ordinary combinations of polymorphic terms in the
host language. The polymorphism allows a DSL expression to be
written once and interpreted in many different ways.

The tagless-final approachmakes language design and interpreta-
tion highly modular, extensible, and safe. Object-language features
can be defined independently and combined together arbitrarily.
Interpreters can be defined to handle any subset of the available
language components, and extended to support new ones without
changing existing code. If an interpreter does not implement all the
language components used in an expression, type checking fails at
compile time with an informative error. And the full strength of the
host language’s type system, including type inference, is directly
inherited by the object language with no special effort.

Below we give an introduction to the approach by providing a
running example of several general-purpose language components
and interpreters from [16, 41], which are also included in Alchemy.
In Section 3 we describe more specialized language components
for the plaintext and ciphertext languages.

2.1 Language Components and Interpreters

Language components. In the tagless-final approach for the host
language Haskell, an object-language component is defined by a
type class, or class for short. A class defines an abstract interface
that introduces one or more polymorphic methods, which may be
functions or just values. Concrete data types can then instantiate
the class, by implementing its methods in an appropriate way. For
example, Int and Bool both instantiate the Additive class repre-
senting additive groups, defining its addition operator + as ordinary
integer addition and exclusive-or, respectively.

In the tagless-final context, a language component is defined
by a class. For example, operations related to pairs in the object
language are defined by5

class Pair_ expr where
pair_ :: expr e (a -> b -> (a,b))
fst_ :: expr e ((a,b) -> a)
snd_ :: expr e ((a,b) -> b)

Here pair_ is a polymorphic host-language term representing
an object-language function, which maps (object-language) values
of arbitrary types a and b to an (object-language) value of pair
type (a,b). (All Haskell types are automatically inherited by the
object language.) Naturally, fst_ and snd_ are similar.

Notice the common form expr e t of the method types. The
type expr is an instance of the Pair_ class, and serves as the inter-
preter of pair_, fst_, and snd_. The type t represents the type of
the object-language term, and the type e represents its environment
(discussed below in Section 2.2).
5By convention, names of object-language components and terms always end in an
underscore, to distinguish them from host-language names.



Interpreters. An interpreter of a language component is just a
data type that instantiates the class defining the component. As run-
ning examples, we describe two simple interpreters. The evaluator E
is defined as
newtype E e a = E (e -> a)

which says that a value of type E e a is just a function mapping
e-values to a-values. For example, when e is the null type () (indi-
cating a “closed” expression with no free variables), the function
will map its (null) input to the a-value represented by the object-
language expression. The (not-so-pretty) printer P is defined as
newtype P e a = P String

which says that a value of type P e a is just a String, i.e., the
printed representation of the object-language expression.

We make E and P interpreters of the pair-related DSL opera-
tions by defining them as instances of the Pair_ class. Observe
that when expr is specialized to E, the type of pair_ is equivalent
to e -> a -> b -> (a,b). This leads to the following (partial)
Pair_ instance (the definitions of fst_ and snd_ are also trivial):6

instance Pair_ E where
pair_ = E $ \e -> \a -> \b -> (a,b)

When expr is specialized to P, the type of pair_ is equivalent to
just String, which leads to the easy (partial) instance definition
instance Pair_ P where

pair_ = P $ "pair"

Extending the language and interpreters. We can introduce more
DSL operations simply by defining more classes, e.g., for addition
and multiplication:
class Add_ expr a where

add_ :: expr e (a -> a -> a)
neg_ :: expr e (a -> a)

class Mul_ expr a where
type PreMul_ expr a
mul_ :: expr e (PreMul_ expr a -> PreMul_ expr a -> a)

Notice that here the type a is specific to the instance, not arbitrary:
it is an argument to the Add_ class. This means that an interpreter
may support add_ and neg_ for certain types a, but not others.

The type of mul_ is similar to that of add_, except that the two
(object-language) inputs have type PreMul_ expr a instead of
just a. This allows the interpreter to define the input type as a
function of the output type. We take advantage of this in plaintext-
to-ciphertext compilation, where the types carry static information
about ciphertext error rates (see Section 4).

The instances of Add_ for E and P are again trivial. We show E’s
to highlight one small subtlety:
instance Additive a => Add_ E a where

add_ = E $ \e -> \x -> \y -> x+y -- or: E $ pure (+)
neg_ = E $ \e -> \x -> negate x

Here E is an instance of Add_ only for types a that are instances
of the class Additive. This is necessary because E interprets add_
using Additive’s addition operator +. By contrast, P can inter-
pret add_ for any type a, because it just produces a string.

The instances of Mul_ are almost identical, except that we use the
constraint Ring a and its multiplication operator *. This alsomeans
6A shorter definition is pair_ = E $ pure (,).

we must define PreMul_ E a = a. By contrast, the P interpreter
represents any object-language term as a String, so we are free to
define PreMul_ P a arbitrarily.

2.2 Functions and HOAS

Suppose we want to write an object-language function double_
that adds an input value to itself. We may at first be tempted to
write this as a host-language function on object-language values:

double_ :: Add_ expr a => expr e a -> expr e a
double_ x = x +: x

Unfortunately, there is a subtle problem: when we apply double_,
the object-language argument is “inlined” into the resulting object-
language expression (i.e., call-by-name evaluation), so the argument
is re-evaluated every time it appears in the body of the function:

print $ double_ (3 *: 4)
-- add (mul 3 4) (mul 3 4)

Instead of multiplying 3 by 4 and passing the result to double_ as
we would want, the object-language expression 3 *: 4 is passed to
double_ unevaluated, which ultimately results in two multiplica-
tions instead of one. (Examples involving an exponential blowup in
size are easy to construct.) While this does not change the expres-
sion’s value, it may dramatically harm its computational efficiency.

To resolve this problem we need the object language to sup-
port programmer-defined functions—i.e., function abstraction—and
function application. Ideally, writing and applying functions in the
object language would be as natural as for the host language, via a
direct translation from the latter to the former. Essentially, we seek
to use higher-order abstract syntax (HOAS). In Appendix B, build-
ing heavily on ideas from [40] we present a solution that provides
nearly this degree of ease of use. Importantly, it even works for
effectful (monadic) host-language functions, like our plaintext-to-
ciphertext compiler (which creates random keys and hints during
its code transformations), via simpler interfaces and types than
in [40]:

lam :: Lambda_ expr
=> (forall x . expr (e,x) a -> expr (e,x) b)
-> expr e (a -> b)

lamM :: (Lambda_ expr, Functor m)
=> (forall x . expr (e,x) a -> m (expr (e,x) b))
-> m (expr e (a -> b))

double_ = lam $ \x -> var x +: var x
print $ double_ $: (3 *: 4)
-- (\v0 -> add v0 v0) (mul 3 4)

2.3 Generic Language Components

In the full version we give other general-purpose language com-
ponents that embed basic data types like lists and strings into the
object language. We also define language components for category-
theoretic abstractions like (applicative) functors and monads, which
can model fine-grained (side) effects in the object language. For
example, we use these to modularly add logging of ciphertext error
rates during homomorphic computation (see Appendix C).



3 ALCHEMY DOMAIN-SPECIFIC LANGUAGES

In this section we describe Alchemy’s specialized DSL language
components for expressing computations on FHE plaintexts and
ciphertexts. Recall that in tagless-final style, language components
can be combined arbitrarily. Loosely speaking, “plaintext DSL” (re-
spectively, “ciphertext DSL”) refers to the union of the generic lan-
guage components supporting arithmetic, basic data structures, etc.,
and the language components for specialized plaintext operations
described in Section 3.1 (respectively, homomorphic operations on
ciphertexts described in Section 3.2). Naturally, not every program
written in these DSLs will use every component.

3.1 Plaintext DSL

BGV-style FHE systems [12, 22] natively support homomorphic
evaluation of several operations. We define language components
that model the induced functions on the plaintexts, and instantiate
them for the appropriate Alchemy interpreters; in most cases this
is completely straightforward. More interestingly, the plaintext-
to-ciphertext compiler instantiates plaintext-DSL components by
translating their operations to the ciphertext DSL (see Section 4).

Arithmetic with public values. In FHE one can homomorphically
add or multiply a public value from the plaintext ring with an en-
crypted plaintext, yielding an encrypted result. We model this by
treating the public value as residing in the host language, while
the encrypted plaintext resides in the object language. When trans-
forming from the plaintext DSL to the ciphertext DSL, the public
(host-language) value remains “in the clear,” whereas the object-
language plaintext type is transformed to a ciphertext type.
class AddLit_ expr a where

addLit_ :: a -> expr e (a -> a)

class MulLit_ expr a where
mulLit_ :: a -> expr e (a -> a)

Division by two. When the plaintext modulus p is even and the
plaintext itself is known to also be even, it is possible to homomor-
phically divide both the modulus and plaintext by two. This is a
useful operation in the context of bootstrapping and the homomor-
phic evaluation of PRFs (see Section 5).

The following Div2_ language component introduces an object-
language function that models the divide-by-two operation on
plaintexts. Like the Mul_ class, Div2_ has an associated type family
PreDiv2_ that allows the interpreter to define the input plaintext
type as a function of the output type.
class Div2_ expr a where

type PreDiv2_ expr a
div2_ :: expr e (PreDiv2_ expr a -> a)

Linear functions. In BGV-style FHE over cyclotomic rings, one
can homomorphically apply (to an encrypted plaintext) any func-
tion from the r th cyclotomic to the sth cyclotomic that is lin-
ear over a common subring. The following (somewhat simplified)
LinearCyc_ language component introduces the linearCyc_ func-
tion, which models this operation. Notice that linearCyc_ takes a
host-language value representing the desired linear function (via the
Λ◦λ data type Linear), and produces an object-language function on
plaintexts. Analogously to addLit_ and mulLit_, this reflects the

fact that the choice of linear function always remains “in the clear,”
whereas the object-language plaintext type can be transformed, e.g.,
to a ciphertext type. Notice also that, like PreMul_ and PreDiv2_,
the PreLinearCyc_ type family gives the interpreter some control
over the type of the input as a function of the output type. The
plaintext-to-ciphertext compiler uses this to statically track error
rates; see Section 4.2.2.
class LinearCyc_ expr cyc where

type PreLinearCyc expr cyc

linearCyc_ :: ... => Linear cyc e r s zp ->
expr env ((PreLinearCyc expr cyc) r zp -> cyc s zp)

Higher-level operations. There are a variety of other useful higher-
level operations on plaintexts that, while not natively supported
by BGV-style FHE, have reasonably efficient “arithmetizations” in
terms of native operations.Alchemy includes a few such operations,
which are implemented entirely using standard combinators on
plaintext-DSL terms, and can be used just as easily as the native
operations.

One important example is themod-p rounding function ⌊·⌉2 : Zp →
Z2, which is defined as ⌊x⌉2 = ⌊ 2p · x⌉ = ⌊

2
p · x +

1
2 ⌋. This function

plays an important role in bootstrapping for FHE [3, 31], as well
as in the Learning With Rounding problem [6]. While rounding
is trivial to implement in the clear, it is not natively supported by
BGV-stlye FHE. However, when p = 2k is a power of two, there are
known arithmetizations as low-depth circuits with native FHE op-
erations as the gates. One was given in [31], and was subsequently
improved in [3]; in the full version of this work we provide one
that is even more efficient for p ≤ 32.

The Alchemy implementation of the rounding tree (slightly
simplified for readability) is given by:
rescaleTree_ :: (Lambda_ expr, Div2_ expr r2, ...) =>

expr e (PreRescaleTree_ expr k r2 -> r2)
rescaleTree_ = ...

type family PreRescaleTree_ expr k r2 where ...

The type k is a positive natural number representing the power of
two associatedwith the inputmodulusp = 2k . The term rescaleTree_
represents a function from (PreRescaleTree expr k r2) to r2,
which should represent a ringmodulop = 2k and two, respectively.7
Observe that the PreRescaleTree_ type family is recursively de-
fined in terms of PreMul_ and PreDiv2_.

The following small example shows the type and printed rep-
resentation in terms of native operations, for p = 4. Note that the
entire type of round4 is inferred by the Haskell compiler.
round4 = rescaleTree_ @2 -- choose k = 2 for p = 22 = 4
-- (Lambda_ expr, AddLit_ expr (PreMul_ expr (PreDiv2_ expr r2)),
-- Mul_ expr (PreDiv2_ expr r2), Div2_ expr r2, ...)
-- => expr e (PreMul_ expr (PreDiv2_ expr r2) -> r2)
print round4
-- "(\v0 -> (div2 ((mul v0) (addLit (Scalar ZqB 1) v0))))"

7Note that in our application in Section 5, the ring is not just the integers Z, but an
appropriate cyclotomic ring that has manymod-2 “slots.” The very same rescaleTree_
function operates in parallel over the slots, without modification.



3.2 Ciphertext DSL

For the ciphertext DSL, we define language components that model
the operations that can be performed on BGV-style FHE cipher-
texts. These include arithmetic operations from the generic Add_
and Mul_ classes, and ciphertext “maintenance” operations like key-
switching and linearization. The latter are defined in a language
component called SHE_ (for “somewhat homomorphic encryption,”
another name for encryption that supports a bounded amount of ho-
momorphic computation). Because Alchemy currently targets the
FHE implementation from Λ◦λ [22], the ciphertext DSL operations
use its types.

FHE types in Λ◦λ. A plaintext is an element of themth cyclotomic
ring modulo an integer p, denoted Rp = Zp [X ]/(Φm (X )), where
Φm (X ) is themth cyclotomic polynomial. In Λ◦λ, this ring is repre-
sented with the data type Cyc m zp, where m is a type representing
the cyclotomic index m, and zp is a type representing Zp , the ring
of integers modulo p.

A ciphertext is a (usually linear) polynomial over R′q , them′th
cyclotomic ring modulo some q ≫ p, where the indexm′ must be
divisible by the plaintext indexm. Ciphertexts are represented by
the type CT m zp (Cyc m' zq). A secret key for a ciphertext of
this type has type SK (Cyc m' z), where z represents the ring of
integers Z (not modulo anything).

Arithmetic operations. The ciphertext data type CT (with appro-
priate arguments) is an instance of Haskell’s Additive and Ring
classes, so we can use the + and * operators on ciphertexts to
perform homomorphic addition and multiplication, respectively.
Therefore, the Add_ and Mul_ instances for, say, the evaluator E
and printer P described in Section 2 already handle object-language
addition +: and multiplication *: of ciphertexts, with no additional
code.

Other homomorphic operations. The remainder of the ciphertext
DSL is (almost) entirely represented by the SHE_ language compo-
nent, which closely corresponds to the public interface of Λ◦λ’s
implementation. Due to space restrictions, we defer its formal defi-
nition and a description of its methods to the full version.

Measuring ciphertext error. Ciphertexts have an implicit error
term that grows as homomorphic operations are performed. If this
error becomes too large relative to the ciphertext modulus, the
ciphertext does not decrypt correctly to the intended plaintext.
Therefore, it is important to control the error growth during homo-
morphic computation. For diagnostic purposes, it can be helpful to
just decrypt the ciphertext and observe the empirical error. This
operation is captured by the following language component:
class ErrorRate_ expr where

errorRate_ :: (...)
=> SK (Cyc m' z)
-> expr e (CT m zp (Cyc m' zq) -> Double)

Because extracting the error term requires the decrypting the ci-
phertext, errorRate_ requires the secret key for the ciphertext. But
observe that the secret key properly resides in the host language
because it is generated prior to the evaluation of the homomorphic
computation.

4 PLAINTEXT-TO-CIPHERTEXT COMPILER

In this sectionwe describe the design and implementation of Alchemy’s
“plaintext-to-ciphertext” compiler PT2CT, which, given an “in-the-
clear” program in the plaintext DSL, interprets it as a corresponding
homomorphic computation in the ciphertext DSL. In keeping with
Alchemy’s modular design, the resulting program can in turn be
handled by any ciphertext-DSL interpreter, such as the evaluator,
the printer, or another transformation like an optimizer or the
error-rate logger described in Appendix C.

The PT2CT compiler automatically performs a number of tasks
to reduce the burden on the programmer and the complexity of
application code: it generates and manages all necessary keys, key-
switching and tunneling hints, and input ciphertexts to the homo-
morphic computation. And it statically (i.e., at compile time) infers
quite sharp upper bounds on the error rates of every ciphertext in
the homomorphic computation, using these to choose appropriate
ciphertext moduli based on their “error capacity.” If the programmer
has not supplied type-level moduli with enough error capacity for
the desired homomorphic computation, PT2CT emits an informative
compile-time type error.

4.1 Interface and Design

We now provide more detail on PT2CT’s public interface and the
key considerations affecting its design. Using PT2CT is as simple as
calling pt2ct, with certain types specifying additional FHE param-
eters, on a plaintext-DSL expression that uses the cyclotomic type
PNoiseCyc to allow static tracking of ciphertext error rates:
-- define a plaintext computation
ex1 = lam2 $ \x y -> (var x +: var y) *: var y
-- specialize ex1's output type for error tracking
ex1' = ex1 :: _ => expr e (_ -> _ -> PNoiseCyc 0 F8 _)

do -- compile to homomorphic computation
exct1 <- pt2ct @CTRingMap @CTModuli @Gad ex1'
xct <- encrypt x -- encrypt plaintext inputs
yct <- encrypt y
return $ eval exct1 xct yct -- evaluate homomorphically

To generate an encrypted input for the generated homomorphic
computation one simply invokes encrypt on a plaintext value, and
invokes decrypt on the ultimate encrypted output to recover the
plaintext; no explicit keys or extra parameters are required.

The design of PT2CT is guided by a few key technical challenges
and our solutions to them, summarized as follows and elaborated
upon below. First, the exposed type of the plaintext-DSL program
that PT2CT interprets needs to be statically transformed to a cor-
responding type of the output ciphertext-DSL program, which in-
volves additional ciphertext parameters. In particular, plaintext
types must be converted to ciphertext types over an appropriate cy-
clotomic ring, and having large enough moduli for their error rates.
Similarly, function types on plaintexts must be converted to func-
tion types on ciphertexts. We accomplish this by parameterizing
PT2CT by a corpus of additional ciphertext parameters, and by defin-
ing a sophisticated type family—i.e., a function on types applied
at compile time—that performs the desired plaintext-to-ciphertext
type conversions.

Second, we want PT2CT to statically track ciphertext error rates
and choose corresponding moduli for each ciphertext. To do this,



newtype PT2CT
m'map -- | type list of (PT index m, CT index m′)
zqs -- | type list of pairwise coprime Zq components
gad -- | gadget type for key-switch hints
mon -- | monad for creating keys and hints
ctex -- | ciphertext-DSL interpreter
e -- | environment
a -- | object-language plaintext type
= PC (mon (ctex (Cyc2CT m'map zqs e) (Cyc2CT m'map zqs a)))

pt2ct :: PT2CT m'map zqs gad ctex mon e a
-> mon (ctex (Cyc2CT m'map zqs e) (Cyc2CT m'map zqs a))

pt2ct (PC ex) = ex

type family Cyc2CT m'map zqs a = ct where ...

encrypt :: ... => Cyc m zp -> mon (CT m zp (Cyc m' zq))
decrypt :: ... => CT m zp (Cyc m' zq) -> mon (Maybe (Cyc m zp))

Figure 1: Definition and public interface of the plaintext-to-

ciphertext compiler PT2CT.

PT2CT requires the types in the plaintext-DSL program to be aug-
mented by what are essentially (mild upper bounds on) the error
rates of the corresponding ciphertexts. Given a desired error rate
for the ultimate output, the Haskell compiler “backtracks” through
the computation to compute error-rate bounds for all the preceding
ciphertexts. This is done via PT2CT’s instances of the type families
PreMul_, PreLinearCyc_, etc., which, to recall, are associated with
the various plaintext-DSL components. For example, these type
families may determine that for mul_ to produce an output with
error rate at most 2−50, the inputs should have error rates at most
2−68. (See Section 4.2.2 for details.)

Third, we want PT2CT to generate and have access to the random
keys and hints that are used in the homomorphic computation,
and for encrypting inputs and decrypting outputs. These values
properly reside in the host language because they are used only
to construct the ciphertext-DSL program and its encrypted inputs.
Therefore, all this is best modeled by embedding the ciphertext-DSL
program in a host-language “accumulator” monad that provides
append-only generation and reading of keys and hints.

Figure 1 shows the definition and public interface of PT2CT,
which is parameterized by several types, whose meanings are given
in the comments. Based on these parameters, PT2CT represents
a plaintext-DSL program as a ciphertext-DSL program of type
Cyc2CT m'map zqs a, interpreted by ctex, and embedded in the
host-language monad mon. The function pt2ct just returns this
representation.

Cyc2CT is a type family—i.e., a function from types to types—that
converts an “in-the-clear” type to a corresponding “homomorphic”
type. In particular, it converts the error-rate–augmented cyclotomic
ring type PNoiseCyc p m zp to the ciphertext type over the cyclo-
tomic ring of index m' = Lookup m m'map, with a large enough
ciphertext modulus as determined by the error rate corresponding
to p (see Section 4.2.2 for details). Similarly, it converts the function
type a -> b by recursing on both arguments a, b, so that functions
on plaintexts (even higher-order functions) map to functions on
ciphertexts of corresponding types.

4.2 Implementation

4.2.1 Instantiations of Language Components. We now show how
PT2CT interprets some instructive plaintext-DSL components. Some
plaintext operations, like addition, translate directly to ciphertext-
DSL addition of ciphertexts. This leads to a trivial Add_ instance:
instance (Add_ ctex (Cyc2CT m'map zqs a), Applicative mon)

=> Add_ (PT2CT m'map zqs gad ctex mon) a where
add_ = PC $ pure add_
neg_ = PC $ pure neg_

Here add_ just embeds the ciphertext-DSL function add_ into the
host-language (applicative) monad mon, and similarly for neg_.

Multiplication. By contrast, translating plaintext multiplication
to a full homomorphic ciphertext multiplication is much more
involved, but still has relatively concise code for the amount of
work it does:
instance (Lambda_ ctex, SHE_ ctex, Mul_ ctex (PreMul_ ...),

MonadAccumulator Hints mon,
MonadAccumulator Keys mon,
MonadRandom mon, ...)

=> Mul_ (PT2CT m'map zqs gad ctex mon) (PNoiseCyc p m zp) where

mul_ = PC $
lamM $ \x -> lamM $ \y -> do

hint <- getQuadCircHint -- lookup/gen key-switch hint
return $ modSwitch_ .: -- switch to output modulus

keySwitchQuad_ hint .: -- switch quad ctext to linear
modSwitch_ $: -- switch to hint modulus

var x *: var y -- multiply input ciphertexts

The body of mul_ first multiplies (using *:) the ctex terms bound to
the input variables x and y; this requires Mul_ ctex (PreMul_ ...).
The result is a quadratic ciphertext, which is switched back to
a linear ciphertext using keySwitchQuad_; hence the SHE_ ctex
constraint. Key-switching requires an appropriate “hint,” which is
looked up using getQuadCircHint, a monadic function that looks
up (or generates and stores) an appropriate hint by looking up
(or generating and storing) the appropriate secret keys. (All this
requires the various Monad... mon constraints.)

Linear functions. Another plaintext-DSL operation with a non-
trivial homomorphic implementation is linearCyc_ f, which, to
recall from Section 3.1, represents applying a desired linear func-
tion f from one (plaintext) cyclotomic ring to another:
instance (Lambda_ ctex, SHE_ ctex,

MonadAccumulator Keys mon,
MonadRandom mon, ...)

=> LinearCyc_ (PT2CT m'map zqs gad ctex mon) (PNoiseCyc p) where
linearCyc_ f = PC $
lamM $ \x -> do

hint <- getTunnelHint f -- generate a hint for tunneling
return $ modSwitch_ .: -- switch to the output modulus

tunnel_ hint .: -- tunnel with the hint
modSwitch_ $: var x -- switch to the hint modulus

Here linearCyc_ applies a special type of ring-switching [30]
called ring tunneling [22]. This is implemented as a special form of
key switching, which requires an appropriate hint that is generated
using the monadic function getTunnelHint.



4.2.2 Statically Tracking Error Rates. Most homomorphic opera-
tions induce error growth in the resulting ciphertexts. The precise
amount of error growth depend in a rather complex way on the
operation, the error in the input ciphertext(s), the choice of gad-
get, the ciphertext ring and moduli, and more. When composing
homomorphic operations, we need the error in the ultimate output
ciphertext to be small enough (relative to the ciphertext modulus)
that it will decrypt correctly.

To ensure correct decryption for a given homomorphic com-
putation, PT2CT uses Haskell’s type system to statically compute
error-rate bounds, working backwards from the output to its inputs.
Given a DSL expression and a desired output error rate, PT2CT in-
ductively does type-level arithmetic—via the type families PreMul_,
PreLinearCyc_, etc.—to compute sufficient bounds for all the pre-
ceding ciphertexts to yield the desired output rate. It then chooses
sufficiently large ciphertext moduli to support these error rates, by
combining component moduli from its given corpus. If there are
insufficiently many (or insufficiently large) moduli in the corpus,
compilation fails and an informative type error is raised.

To facilitate these type computations, PT2CT requires the use
of a special data type PNoiseCyc p m zp for plaintext cyclotomic
rings. This type is parameterized by a type p representing a nat-
ural number p, called the “pNoise bound” of the corresponding
ciphertext. It is essentially a bound on the negative logarithm of
the error rate α of the ciphertext, i.e., α ≲ 2−Cp , where C is a
constant representing one multiplicative “unit” of error rate. (The
name “pNoise” reflects this logarithmic relationship.) For pNoise p,
the corresponding ciphertext modulus would need to be ≳ Cp bits
long. We typically set the ultimate output pNoise p = 0 to indicate
that the ciphertext need not be used for any further homomorphic
computation; intermediate ciphertexts generally have increasing
pNoise values from the output back to the inputs.

5 HOMOMORPHIC PRF EVALUATION

Having surveyed the different components of Alchemy on toy
programs, we now demonstrate its use with a full-size example.
Specifically, we demonstrate fast homomorphic evaluation of a
candidate pseudorandom function (PRF) based on the Learning
With Rounding (LWR) lattice problem [6]. The heart of this PRF
is a “ring-rounding” function, which independently rounds each
Zp -coefficient (relative to a certain basis) of a cyclotomic ring el-
ement modulo some p ≫ 2 to Z2, essentially keeping only the
most significant bit. This ring-rounding functionality is also the
heart of the asymptotically efficient “bootstrapping” method for
BGV-style FHE systems developed in [3, 31], so our approach here
applies equally well to bootstrapping, though significantly larger
parameters would be needed.

5.1 Ring-Rounding In the Clear

We first need to arithmetize the ring-rounding function in terms of
plaintext operations that the target FHE scheme natively supports,
then program it in the plaintext DSL. For a modulusp = 2k (e.g.,p =
32 or p = 64), the integer rounding function ⌊·⌉p : Zp → Z2 has an
efficient arithmetization that is implemented as the plaintext-DSL
function rescaleTree_; see Section 3.1. However, this function is
defined for integers modulo p; when the same arithmetic operations

are applied to a cyclotomic ring element inRp , the result is nonsense
because the Zp -coefficients “mix” together.

To map the Zp -rounding function over the coefficients of a ring
element, we first apply a linear function that moves the coefficients
into the “Zp -slots” of another carefully-chosen ring. Concretely,
we use the efficient method described in [3] and refined in [22],
which switches through a sequence of “hybrid” cyclotomic rings
that convert the source ring to the target ring in small steps. Once
the coefficients are in slots, applying the arithmetized Zp -rounding
function to the entire ring element causes each slot to be rounded
independently, due to the product-ring structure of the slots.8

The precise sequence of hybrid rings that move the coefficients
into slots depends on the particular choice of source ring: in partic-
ular, the target ring needs to have at least as many Zp -slots as the
degree of the source ring. Therefore, the programmer must supply
a suitable sequence of hybrid rings. Fortunately, these are not hard
to find with a little trial and error using the principles laid out in [3],
and several example sequences are available in the literature.

Plaintext-DSL implementation. Here we give what is essentially
our entire plaintext-DSL implementation of the (arithmetized) ring-
rounding function. The clarity and concision of the code makes its
intent apparent, and demonstrates the ease of expressing nontrivial
computations.

First we define (type-level) indices for an appropriate sequence
of hybrid cyclotomic rings (see Figure 2):
type H0 = F128
type H1 = ...

Next, we define a plaintext-DSL function coeffsToSlots as a com-
position of ring-switches through the hybrid rings, which maps
the 64 coefficients of the H0th ring to the slots of the H5th ring:
coeffsToSlots =

linearCyc_ (decToCRT @H4) .: linearCyc_ (decToCRT @H3) .:
linearCyc_ (decToCRT @H2) .: linearCyc_ (decToCRT @H1) .:
linearCyc_ (decToCRT @H0)

Recall from Section 3.1 that linearCyc_ f yields a plaintext-DSL
function for a given linear function f from one cyclotomic ring to
another. Here we take each f to be a specialization of the polymor-
phic function decToCRT, which essentially maps a portion of one
hybrid-ring coefficients to a portion of the slots of the next hybrid
ring. The type applications @H0, @H1 etc. are necessary to specify
the concrete choices of rings for the polymorphic decToCRT, but all
other types and constraints are inferred by the Haskell compiler.

Finally, we define the full ring-rounding function as a compo-
sition of the above linear function and the arithmetized rescaling
tree for our choice of modulus p:
type K = 5 -- modulus p = 25 = 32
ringRound :: _ => expr env (_ -> PNoiseCyc 0 H5 (Zq 2))
ringRound = (rescaleTree_ @K) .: coeffsToSlots

Note that we have monomorphized the output type as required for
plaintext-to-ciphertext compilation, setting the pNoise parameter
to zero to indicate that no further homomorphic operations are
needed on the output.

8Optionally, we could switch back to the original cyclotomic ring to move the rounded
slot entries back to coefficients, but this is not needed for our application so we omit
it. Switching back would be required for bootstrapping, but fortunately, switching is a
small fraction of the overall running time in the bootstrapping scenario.



5.2 Rounding Homomorphically

Next, we want to use PT2CT to compile the plaintext-DSL function
ringRound to a ciphertext-DSL function that homomorphically
rounds the coefficients of an encrypted input. Recall that to use its
interface pt2ct, we need to specify types for the cyclotomic indices
of ciphertext rings and available ciphertext moduli (see Figure 2):
type H0' = H0 * 7 * 13
type H1' = ...
type M'Map = [(H0,H0'), (H1,H1'), ...]
-- corpus of ciphertext moduli
type Zqs = [ Zq $(mkModulus 1543651201), ... ]

The type M'Map associates each plaintext ring index with its cipher-
text ring index. The type Zqs is a collection of Zq -types that PT2CT
combines to assign large enough moduli to each ciphertext.

Having defined the necessary types, it is now trivial to compile
the plaintext computation to its homomorphic counterpart:
homomRingRound = pt2ct @M'Map @Zqs @TrivGad ringRound

Recall that pt2ct yields a monadic value, where the monad needs
to support generation and accumulation of keys and hints, so we
need to use homomRingRound in an appropriate monadic context.

5.3 Homomorphic PRF Evaluation

Now that we have homomRingRound, we can easily implement ho-
momorphic evaluation of RLWR-based PRFs. The simplest such
PRF is defined as Fs (x ) = ⌊H (x ) · s⌉2, where H : X → Rp is a
hash function modeled as a random oracle mapping the PRF input
space to Rp , and ⌊·⌉2 denotes the ring-rounding function. (There
are also variants where H is replaced with a publicly evaluable
function [5, 10], which has no effect on homomorphic evaluation.)

To homomorphically compute an FHE encryption of Fs (x ) given
an FHE encryption s̃ of the secret key s ∈ Rp and an input x , we
first compute the hash value a = H (x ) ∈ Rp , then we use the FHE’s
multiply-by-a-public-value operation to get an encryption ã · s .
Finally, we apply homomorphic ring rounding to get an encryption
of the PRF output: K⌊a · s⌉2 = IFs (x ).

The following code chooses a uniformly random PRF key s ∈ Rp
and returns s , a host-language function f that maps any a ∈ Rp

to K⌊a · s⌉2, and the corpus of generated FHE keys that allows for
decrypting the result:
homomRLWR = do

s <- getRandom
(f, keys, _) <- runKeysHints $

liftM2 (.) (eval <$> homomRingRound) $
flip mulPublic <$> encrypt s

return (s, f, keys)

Here homomRLWR is a monadic value, where the monad just needs
to provide a source of randomness. The call to runKeysHints
sets up the additional “accumulator monad” context required by
homomRingRound, and outputs the desired host-language function f
along with all the generated FHE keys and hints (the latter of which
we ignore as unneeded).

5.4 Parameters, Security and Performance

The concrete cyclotomic ring indices and ring dimensions we use
are given in Figure 2. Our PRF uses a modulus of p = 25 = 32.
Our entire corpus of ciphertext moduli is altogether less than 2180.

According to the “core-SVP” methodology [2] for estimating the
security of LWE/LWR parameters, our FHE and PRF parameters
have at least 100 bits of security (and this is likely a significant
underestimate).

On an iMac (Retina 5k) late-2015 model with 4 GHz Core i7
and 16 GB RAM, homomorphic evaluation of the PRF itself (after
generating all keys and hints) takes only 10–11 seconds for each
of several runs. Generating the keys and hints takes about 150
seconds, due primarily to a very naive implementation of finite-field
arithmetic in Λ◦λ, which is used for computing decToCRT. These
performance figures were achieved with no compiler optimization
flags turned on (ghc-8.0.2), so even better performance may be
possible; however, certain flags cause compilation to take a great
deal of time and memory.

PT ring indexm CT ring indexm′ dimension φ (m′)

H0 = 27 H ′0 = H0 · 7 · 13 4,608
H1 = 26 · 7 H ′1 = H1 · 5 · 13 9,216
H2 = 25 · 7 · 13 H ′2 = H2 · 3 · 5 9,216
H3 = 23 · 5 · 7 · 13 H ′3 = H3 · 3 · 5 11,520
H4 = 22 · 3 · 5 · 7 · 13 H ′4 = H4 · 5 5,760
H5 = 20 · 32 · 5 · 7 · 13 H ′5 = H5 · 5 8,640

Figure 2: Cyclotomic ring indices used for the homomorphic

evaluation of the Ring-LWR PRF.
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A BASIC INTERPRETERS

In this section we describe the implementation of a few simple
object-language interpreters included with Alchemy, which are
due to [16, 41]. (We have already seen one interpreter in its entirety:
the evaluator E described in Section 2.)

A.1 Printer

The printer converts an object-language expression into a (host-
language) string representing the expression. This interpreter was
presented in a simplified form in Section 2; we describe the actual
implementation here. It has the following formal definition and
public interface:

newtype P e a = P (Int -> String)

print :: P () a -> String
print (P f) = f 0 -- closed code has lambda depth 0

This says that an object-language expression is represented by an
Int -> String function. The Int argument indicates how many
variables have already been bound “outside” the expression, and is
used only by the Lambda_ instance to unambiguously name new
variables:

instance Add_ P a where
add_ = P $ \i -> "add" -- or: P $ pure "add"

-- instances of Mul_ etc. are similar

instance Lambda_ P where
lamDB (P f) =
P $ \i -> "(\\v" ++ show i ++ " -> " ++ f (i+1) ++ ")"

(P f) $: (P a) =
P $ \i -> "(" ++ f i ++ " " ++ a i ++ ")"

v0 = P $ \i -> "v" ++ show (i-1)
weaken (P v) = P $ \i -> v (i-1)

Here lamDB creates (a function mapping an Int i to) a string rep-
resenting a function of variable vi , where the body of the lambda
is in a context where i + 1 variables have been bound. Function
application (the $: operator) produces (a function mapping to) a
string that just appends the function string and the argument string;
the number of bound variables does not change. For v0, because
the body of any function appears in a context with at least one
bound variable (by definition), we print index i − 1 so that variables
are zero-indexed. Finally, because weaken refers to a variable one
step “down” the environment stack, it recursively interprets the
subexpression in a context with one fewer bound variable.
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A.2 Expression Size

A useful metric for the complexity of an expression is its size in
term of the number of “primitive” DSL terms used. The interpreter S
that converts an expression to its size is defined as follows:
newtype S e a = S Int

size :: S () a -> Int
size (S i) = i

This says that an expression is simply represented by an Int, which
can be extracted using size. With this definition it is trivial to
interpret all the language components:
instance Add_ S a where
add_ = S 1

-- instances of Mul_ etc. are similar

instance Lambda_ S where
lamDB (S i) = S $ i+1
(S f) $: (S a) = S $ f + a
v0 = S 1
weaken (S i) = S i

The most interesting instance is Lambda_. The size of a function
definition (i.e., a call to lamDB) is one larger than the size of its
body, and the size of a function application (the $: operator) is the
sum of the sizes of the function and the argument. As for uses of
variables, v0 clearly should have unit size. The same should be true
for any other variable regardless of its location in the environment,
so weaken does not change the size of its subexpression.

Using S is easy:
ex1 = lam $ \x -> lam $ \y -> var y *: (var y +: var x)
size ex1
-- 7

A.3 Duplicator

The above interpreters each use a concrete host-language represen-
tation (a String, an Int) as their interpretations of object-language
expressions. Such interpreters are “terminal” in that they produce
a result in the host language. However, we also have interpreters
(like the error-rate logger ERW and plaintext-to-ciphertext com-
piler PT2CT) that transform object-language code into other object-
language code, i.e., “compilers.” Importantly, we want the produced
code to itself be interpretable in a variety of ways, i.e., it should
be also polymorphic in its interpreter. Unfortunately, this is not
currently possible in mainstream Haskell: while we can write poly-
morphic “top-level” DSL code that can be interpreted in multiple
ways by monomorphizing the interpreter, any DSL code output by
an interpreter must be monomorphic; therefore, it can be handled
by only one interpreter.9

Fortunately, [41] provides a simple way to work around this re-
striction via a special interpreter that duplicates any object-language
expression into two equivalent expressions. These expressions,
while necessarily monomorphic, can use different interpreters. This
duplicating interpreter Dup has the following definition and public
interface:

9The functionality we seek is known as impredicative polymorphism, which is quite
poorly supported in the GHC Haskell compiler.

data Dup expr1 expr2 e a = Dup (expr1 e a) (expr2 e a)

dup :: Dup expr1 expr2 e a -> (expr1 e a, expr2 e a)
dup (Dup ex1 ex2) = (ex1, ex2)

Notice that the Dup interpreter is parameterized by two other in-
terpreters, expr1 and expr2, and represents an object-language
expression simply as a pair of such expressions, one for each of
these interpreters. Naturally this idea can be applied recursively
to interpret an expression in arbitrarily many ways, by letting one
or both of expr1, expr2 themselves be a Dup (with appropriate
arguments).

The instances for Dup are all very simple and completely me-
chanical. For example:
instance (Add_ expr1 a, Add_ expr2 a)

=> Add_ (Dup expr1 expr2) a where
add_ = Dup add_ add_
neg_ = Dup neg_ neg_

The constraints on the instance say that in order for Dup expr1 expr2
to be able to interpret Add_ for (object-language) type a, the inter-
preters expr1, expr2must be able to do the same. The implementa-
tion mirrors these constraints: the add_ term for Dup expr1 expr2
is simply the pair of add_ terms for the expr1 and expr2 inter-
preters.

Using Dup is very simple:
ex = functionThatOutputsSomeDSLExpression someArg

-- the following code infers the *monomorphic* type
-- ex :: Dup P E () Int

(ex1, ex2) = dup ex
print ex1
-- "(\\v0 -> ((add v0) v0))"
eval ex2 3
-- 6

B OBJECT-LANGUAGE FUNCTIONS AND

HOAS

Recall that we wish to have function abstraction and application
in our object languages, using the host language’s facilities for the
same. There is a standard, very elegant solution:
class LambdaPure_ expr where

lamPure :: (expr a -> expr b) -> expr (a -> b)
($:) :: expr (a -> b) -> expr a -> expr b

double_ :: (Lambda_ expr, Add_ expr a) => expr e (a -> a)
double_ = lamPure $ \x -> x +: x

pprint $ double_ $: (3 *: 4)
-- (\v0 -> add v0 v0) (mul 3 4)

addMulPure = lamPure $ \x -> lamPure $ \y -> (x +: y) *: y

Notice that there is no need for an explicit environment argument
to expr; LambdaPure_ lets us rely entirely on the host language
for creating functions and naming variables, resolving variable
references, etc. This approach is known as higher-order abstract
syntax (HOAS).

Unfortunately, LambdaPure_ is too weak for our needs. While
pure host-language functions present no problem, difficulties arise



with effectful (monadic) ones that use side-effects to produce object-
language code, such as our plaintext-to-ciphertext compiler (which
creates random keys and hints during its code transformations). The
problem is most easily seen with an example: given some monadic
function
foo :: Monad m => expr a -> m (expr b)

we would like to convert it to an object-language function (in a
monadic context) of type m (expr (a -> b)). Unfortunately, this
is impossible in general: if expr a is isomorphic to a (as is the
case with evaluators), then we are asking to transform a monadic
function of type a -> m b into a pure function in a monadic con-
text, of type m (a -> b). This cannot be done because the former
type allows the monadic output to depend upon the input a-value,
whereas the latter type allows only the function itself to depend on
the monadic context.

The difficulty of using HOAS with effectful generators has long
been recognized in the literature as a thorny problem, and various
approaches—none of them completely satisfactory—have been pro-
posed; see [40] for an overview. In what follows we improve upon
the solution offered in [40, 41], by allowing interpreters to hide the
fact that they are effectful, and significantly simplifying the type
signatures and syntax of object-language code.

Functions and environments. As an alternative to LambdaPure_,
following [16] and [41, Section 3.3] we start from an object-language
representation expr e a, where the environment argument e has a
nested-pair structure reflecting de Bruijn-indexed variables. More
specifically:
class Lambda_ expr where

lamDB :: expr (e,a) b -> expr e (a -> b)
($:) :: expr e (a -> b) -> expr e a -> expr e b
v0 :: expr (e,a) a
weaken :: expr e a -> expr (e,x) a

The host-language function lamDB creates an object-language func-
tion (i.e., lambda abstraction). Notice its use of the environment: it
converts any object-language term of type b, in any environment
whose “topmost” entry has type a, into an object-language function
of type a -> b.

Similarly, in any environment whose topmost entry has type a,
the object-language term v0 represents that topmost entry. Essen-
tially, an environment can be thought of as a stack of values of
specific types, and v0 is the object-language term representing the
value at the top. To allow access to values farther down, weaken
“demotes” any object-language term in environment e to an equiv-
alent term in a modified environment with an additional value
(of arbitrary type) pushed on top. For example, v1 = weaken v0
has type expr ((e,a),x) a and represents the second value on
the stack, v2 = weaken v1 represents the third, etc. Putting these
pieces together, for example, lamDB v0 has type expr e (a -> a)
and represents the identity function. Finally, the $: operator applies
an object-language function of type a -> b to an object-language
value of type a to yield an object-language value of type b.

The definitions of lamDB, v0, $:, and weaken are trivial for the
evaluator E. They are almost as trivial for the printer, but the P type
needs to be redefined as a function from the “lamDB depth” of the
term to String, so that proper variable indices can be generated.
See Appendix A.1 for the actual definition of this interpreter.

Higher-order abstract syntax (HOAS).. Referencing variables by
their positions in the environment (i.e., de Bruijn indexing) soon
becomes painful, because the same index, e.g., v0 or v2, can repre-
sent different object-language values depending on its lexical scope,
and tracking down the correct binding location in the code can
be quite difficult. We would instead like to use the host language
for creating, binding, and referencing arbitrary human-readable
variable names (i.e., HOAS), just as we could with lamPure, but for
effectful generators.

By adapting a key idea from [40], it turns out that we can obtain
HOAS as a relatively simple layer around our existing Lambda_ class.
The core idea is this: suppose we have a host-language function f
of (for the moment underspecified) type expr ? a -> expr ? b,
which is defined as f = \x -> ... We can think of the func-
tion body as an object-language expression in the “topmost” host-
language variable x. We can substitute x with the “topmost” object-
language variable v0 simply by invoking f v0. If we can arrange
for the result to have type expr (e,a) b, then applying lamDB to
it yields a value of the desired type expr e (a -> b). The type
of v0 :: expr (e,a) a gives us a clue about what the full type
of f could be, yielding the following candidate implementation:
unsafeLam :: Lambda_ expr

=> (expr (e,a) a -> expr (e,a) b)
-> expr e (a -> b)
unsafeLam f = lamDB $ f v0

However, as its name suggests and as shown in [40, Section 4.1],
unsafeLam has a subtle but serious flaw: it allows variable bindings
to be “mixed up.” For example, consider the function
ex f = unsafeLam (\y -> unsafeLam (\x -> f (var x)))

Surprisingly, certain function arguments f cause f (var x) to
evaluate to y! The problem, essentially, is that f can have a type
that swaps the topmost two environment variables. This ought not
be possible under the expected scoping rules of our DSL.

To rememdy the problem, we use a key idea from [40], which is
to make lam a higher-rank function:
lam :: Lambda_ expr

=> (forall x . expr (e,x) a -> expr (e,x) b)
-> expr e (a -> b)

lam f = lamDB $ f v0

The only difference with unsafeLam is that the host-language func-
tion f has a more general type: its input’s topmost environment
variable may have arbitrary type x. Essentially, this prevents f from
“misbehaving” by letting x escape its scope or swapping it with
entries of the environment, because x cannot be unified with them.
Invoking f v0 specializes x to a, so the same implementation as
unsafeLam works.

Perhaps surprisingly, the above easily generalizes to our ultimate
goal of HOAS for effectful generators!
lamM :: (Lambda_ expr, Functor m)
=> (forall x . expr (e,x) a -> m (expr (e,x) b))
-> m (expr e (a -> b))
lamM f = lamDB <$> f v0

Essentially, the type variable x acts as a “hole” allowing us to bring
the type a inside the monad.

These abstractions do not yield quite the same level of simplicity
as lamPure did above. In particular, replacing lamPure with lam in



addMulPure fails to typecheck because x and y necessarily have dif-
ferent environments: y’s strictly contains x’s. In order to add these
two values, we must “weaken” x by extending its environment:
addMul = lam $ \x -> lam $ \y -> ((weaken x) +: y) *: y

This is not much more usable than the original index-based ap-
proach, because the required number of weakens depends on the
lexical scope. To remedy this, we take one more idea from [40].
We define the Extends m n typeclass, which allow us to induc-
tively weaken a term until its environment is compatible with the
surrounding context.
class Extends m n where
var :: expr m a -> expr n a

instance {-# OVERLAPS #-} Extends m m where
var = id

instance (Extends m n, x ~ (n, e)) => Extends m x where
var = weaken . var

We adopt the general rule of always using var to automatically
extend the environment of any variable (if necessary). The above
example then becomes:
addMul = lam $ \x -> lam $ \y -> (var x +: var y) *: var y

Though this is not quite as simple as lamPure, the use of var is
mechanical and context-independent, and gives us foolproof HOAS.

C LOGGING ERROR RATES

Recall that in FHE, ciphertexts have some internal error that grows
under homomorphic operations. If the error grows too large rel-
ative to the ciphertext modulus, the ciphertext will not decrypt
to the correct plaintext. The exact error growth incurred by a ho-
momorphic computation depends in a rather complex way on the
particular sequence of homomorphic operations and the various
parameters of the system, so it can be difficult to predict in advance
exactly what parameters, especially ciphertext moduli, should be
used: moduli that are too small will make it impossible to decrypt
the result, while unnecessarily large moduli induce (for security
reasons) other large parameters and less efficiency.

To aid a good selection of parameters, Alchemy includes a
ciphertext-DSL interpreter that logs the empirical error rate—essentially,
the ratio of the error to the ciphertext modulus—of every ciphertext
created during a homomorphic computation. By observing these
error rates for a particular computation of interest, the programmer
can easily adjust the parameters upward or downward as needed.

In keeping with Alchemy’s modular approach, the error-rate
logger is actually a compiler that transforms any ciphertext-DSL
program into an equivalent one that additionally logs the error
rates of any ciphertexts it generates. The output program can in
turn be passed on to any suitable interpreter, e.g., the evaluator, the
printer, other DSL transformations, etc.

C.1 Usage Example

Figure 3 gives a slightly simplified usage example of the log-
ger’s public interface writeErrorRates. (See Section 5 for a more
involved example.) The code first defines a toy object-language
function ex that simply adds its argument to itself. It then com-
piles ex into a homomorphic (ciphertext-DSL) computation, and

ex = lam $ \x -> var x +: var x

((exct, ctarg), keys, hints) <- runKeysHints $ do
exct <- pt2ct ex
ctarg <- encrypt =<< getRandom
return (exct, ctarg)

exct' = runReader keys $ writeErrorRates exct

(result, errors) = runWriter $ eval exct' >>= ($ ctarg)
print errors
-- [("add_Q268440577",7.301429694065961e-7)]

Figure 3: Example usage of the error-rate logger.

encrypts a random value to serve as the input. These computa-
tions require keys (and in other cases, key-switching hints) to be
generated and stored; runKeysHints sets up the monadic context
for doing this, and ultimately outputs all the generated keys and
hints. Next, the code invokes writeErrorRates exct to convert
the ciphertext-DSL function into one that also logs the error rate
of any ciphertext it produces (which in this case is just the out-
put ciphertext); the call to runReader keys sets up the necessary
monadic context that gives “reader” access to the secret keys. Lastly,
the code evaluates the augmented ciphertext-DSL function on the
encrypted input ctarg, where runWriter sets up the necessary
monadic context for logging the error rates. This produces both
the (encrypted) result and a log, which consists of a list of pairs
describing the DSL operation that produced each ciphertext (help-
fully augmented with the value of its modulus), and the ciphertext’s
error rate.

We point out that the monadic ciphertext-DSL code produced au-
tomatically from a plaintext-DSL program by pt2ct and writeErrorRates
could in principle instead be written manually be the programmer.
However, due to the lack of do-notation “syntactic sugar” in the ob-
ject language, this would be quite burdensome on the programmer,
and would greatly conceal the meaning and intent of the code.

C.2 Interface and Implementation

The design and implementation of our error-rate logger involves a
number of technical challenges:

(1) To measure ciphertext error rates we need access to the cor-
responding decryption keys, which are properly values in
the host language because they are generated during the con-
struction of the homomorphic computation, not its evaluation.
Therefore, access to the keys is best modeled by embedding
the transformed DSL expression in a host-language “reader”
monad that provides such access.

(2) Creating a log of error rates is most naturally seen as a side
effect of the main homomorphic computation, which is best
modeled by embedding the computation in a “writer” monad.
Because the error rates depend on the ciphertexts, which are
values in the object language, we need the object language
itself to support monads. (The DSL components for object-
language monads are given in Section 2.3.)



newtype ERW
expr -- | the underlying interpreter
k -- | (reader) monad that supplies keys
w -- | (writer) monad for logging error rates
e -- | environment
a -- | object-language type
= ERW (k (expr (Kleislify w e) (w (Kleislify w a))))

writeErrorRates ::
ERW expr k w e a

-> k (expr (Kleislify w e) (w (Kleislify w a)))
writeErrorRates (ERW ex) = ex

type family Kleislify w a = r | r -> a where
Kleislify w (a -> b) = Kleislify w a -> w (Kleislify w b)
Kleislify w (a,b) = (Kleislify w a, Kleislify w b)
Kleislify w [a] = [Kleislify w a]
Kleislify _ a = a

Figure 4: Definition and public interface of the error-rate

writer ERW.

(3) The exposed object-language type of the original ciphertext-
DSL program must be rewritten as an appropriate object-
language type of the transformed expression, incorporating
all the monadic embeddings (and similarly for their environ-
ments).

The data type ERW (short for “error-rate writer”) resolves all of
the above issues; see Figure 4 for its formal definition and public
interface. The (partially applied) type ERW expr k w is an inter-
preter which, as usual, is additionally parameterized by an envi-
ronment type e and an object-language type a. It represents an
object-language expression of exposed type a by another one of
type w (Kleislify w a), as interpreted by expr. (This represen-
tation is also embedded in the host-language reader monad k, mod-
eling the fact that we need access to the decryption keys.) The
Kleislify type family lifts the type a -> b of any pure object-
language function into the monadic type a -> w b, recursing into
pairs and lists to find all appearances.10 This models the fact that
the transformed function may now use the side effect of writing
error rates to a log. For example, supposing that CT denotes the
type of ciphertexts, the exposed object-language type CT is inter-
nally represented by the type w CT, and CT -> CT -> CT by the
type w (CT -> w (CT -> w CT)).

Interpretation of language components. Naturally, ERW expr k w
is an instance of all our generic and ciphertext-DSL language com-
ponents, subject to appropriate constraints on expr, k, and w. Specif-
ically, we need:
• MonadReader Keys k, which says that k provides access to
a corpus of FHE secret keys, and
• MonadWriter [(String,Double)] w, which says that w sup-
ports the side-effect of append-onlywrites of (String,Double)
pairs to a log. Here Double represents the empirical error
rate of an intermediate ciphertext, and the matching String

10Formally, Kleislify recursively lifts into the Kleisli category of w.

instance (Add_ expr CT, ...) => Add_ (ERW expr k w) CT where
neg_ = ERW $ liftWriteError "neg_" neg_
add_ = ERW $ liftWriteError2 "add_" add_

-- | Given an annotation string, and an object-lang function that
-- | outputs a ciphertext, lift it to one that also logs the error
liftWriteError :: (ErrorRate_ expr, ...)

=> String -- | annotation
-> expr e (a -> CT) -- | the function to lift
-> k (expr e (w (a -> w CT)))

liftWriteError str f_ = do
key <- lookupKey
return $ return_ $:

case key of
Just sk -> (after_ $: tellError_ str sk) .: f_
Nothing -> return_ .: f_ -- | no key, so can't log

-- | Given an annotation string and a secret key, produce an
-- | object-lang function that writes a ciphertext's error rate
tellError_ :: (ErrorRate_ expr, ...)
=> String -> SK -> expr e (CT -> w ())

-- | Apply an action to a value, then return the original value
after_ :: (Monad_ expr w, ...) => expr e ((a -> w b) -> a -> w a)

Figure 5: Simplified partial implementation of ERW. (Many

constraints are elided for brevity.)

is an annotation to identify the step in the larger expression
that produced it.

As an illustrative example, Figure 5 shows the instantiation of
Add_ for ciphertexts, and the key supporting functions. The most
important of these is liftWriteError, a host-language function
whose type signature hints at its functionality: it transforms any
object-language pure function that produces a ciphertext into a
monadic one that also logs the ciphertext’s error, if a suitable de-
cryption key is available. First, liftWriteError uses lookupKey
(associated with the reader monad k) to try to obtain a key that can
decrypt the ciphertext. (This lookup is based on the ciphertext’s
type parameters, which we have suppressed here for readability.) If
a key is found, liftWriteError produces a new object-language
function that applies the original function, calls tellError_ on
its result, and returns that result. (The generic after_ combinator
performs this sequencing.) If no key is found, it just returns the
original function, but modified so that its output is monadic.
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