
Lattices in Cryptography
Georgia Tech, Fall 2013

Lecture 6
Algorithms for SVP, CVP

Instructor: Chris Peikert
Scribe: Sam Kim

1 The Shortest and Closest Vector Problems

Recall the definition of the approximate Shortest Vector Problem. (The exact version is obtained by taking
γ = 1, which is implicit when γ is omitted.)

Definition 1.1. For γ = γ(n) ≥ 1, the γ-approximate Shortest Vector Problem SVPγ is: given a basis B of
a lattice L = L(B) ⊂ Rn, find some nonzero v ∈ L such that ‖v‖ ≤ γ(n) · λ1(L).

A closely related inhomogeneous variant is the approximate Closest Vector Problem.

Definition 1.2. For γ = γ(n) ≥ 1, the γ-approximate Closest Vector Problem CVPγ is: given a basis B
of a lattice L = L(B) ⊂ Rn and a point t ∈ Rn, find some v ∈ L such that ‖t − v‖ ≤ γ(n) · dist(t,L).
Equivalently, find an element of the lattice coset t + L having norm at most γ(n) · λ(t + L), where
λ(t + L) := minx∈t+L‖x‖ = dist(t,L).

Above we have used the fact that dist(t,L) = minv∈L‖t − v‖ = minx∈t+L‖x‖, because L = −L.
The two versions of CVP are equivalent by associating each v ∈ L with t − v ∈ t + L, and vice versa.
Although the former version of the problem is the more “obvious” formulation, the latter version is often
more convenient in algorithmic settings, so we will use it throughout these notes.

We first show that SVPγ is no harder than CVPγ ; more specifically, given an oracle for CVPγ we can
solve SVPγ efficiently.

Theorem 1.3. For any γ ≥ 1, we have SVPγ ≤ CVPγ via a Cook reduction.

Proof. Consider the following algorithm that, given a lattice basis B = (b1, . . . ,bn), and CVP oracle O,
outputs some v ∈ L = L(B):

• For each i = 1, . . . , n, compute basis Bi = (b1, . . . ,bi−1, 2bi,bi+1, . . . ,bn) and let vi = O(Bi,bi).

• Output one of the vi that has minimal length ‖vi‖.

We claim that this algorithm solves SVPγ , i.e., it returns some nonzero lattice vector of length at most
γ · λ1(L).

First observe that for each i, the lattice Li = L(Bi) ⊂ L consists of all those vectors in L whose
bi-coordinate is even, whereas the coset bi + Li ⊂ L consists of all those whose bi-coordinate is odd.
Therefore,

⋂n
i=1 Li = 2L and 0 6∈ bi + Li for all i, so λ(bi + Li) ≥ λ1(L). Moreover, if v ∈ L is any

shortest nonzero lattice vector, then it cannot be the case that v ∈
⋂n
i=1 Li = 2L, otherwise v/2 ∈ L would

be a shorter nonzero lattice vector. Therefore, v ∈ bi + Li for at least one i, and so λ(bi + Li) = λ1(L) for
all such i.

Now by hypothesis on O, for every i we have vi ∈ bi + Li ⊂ L, so vi 6= 0, and ‖vi‖ ≤ γ · λ(bi + Li).
Since λ(bi + Li) = λ1(L) for at least one i, some ‖vi‖ ≤ γ · λ1(L), and correctness follows.

We note that essentially the same reduction works for the decisional variants GapSVPγ and GapCVPγ of
the problems, where instead of returning vectors vi, the oracle O returns yes/no answers, and the reduction
outputs the logical OR of all the answers.

1

http://www.cc.gatech.edu/~cpeikert/lic13/
http://www.cc.gatech.edu/~cpeikert/

1.1 Algorithms for SVP and CVP

The following are some historical milestones in algorithms for SVP and CVP:

• In 1983, Kannan gave a deterministic algorithm that solves n-dimensional SVP and CVP in nO(n) =
2O(n logn) time and poly(n) space.

• In 2001, Ajtai, Kumar, and Sivakumar (AKS) gave a randomized “sieve” algorithm that solves SVP
and CVP1+ε (for any constant ε > 0) in singly exponential 2O(n) time and space.

• In 2010, Micciancio and Voulgaris (MV) gave a deterministic algorithm that solves CVP (and hence
SVP and other problems) in 2O(n) time and space.

It is an important open question whether there exists a singly exponential-time (or better) algorithm that uses
only polynomial space, or even subexponential space.

2 The Micciancio-Voulgaris Algorithm for CVP

The MV algorithm solves CVP in any n-dimensional lattice in 2O(n) time (for simplicity, we ignore polyno-
mial factors in the input length). It is based around the (closed) Voronoi cell of the lattice, which, to recall, is
the set of all points in Rn that are as close or closer to the origin than to any other lattice point:

V̄(L) = {x ∈ Rn : ‖x‖ ≤ ‖x− v‖ ∀ v ∈ L \ {0}}.

We often omit the argument L when it is clear from context. From the definition it can be seen that for any
coset t +L, the set (t +L) ∩ V̄ consists exactly of all the shortest elements of t +L. For any lattice point v,
define the halfspace

Hv = {x : ‖x‖ ≤ ‖x− v‖}
= {x : 2〈x,v〉 ≤ 〈v,v〉}.

It is easy to see that V̄ is the intersection of Hv over all v ∈ L \ {0}. The minimal set V of lattice vectors
such that V̄ =

⋂
v∈V Hv is called the set of Voronoi-relevant vectors; we call them relevant vectors for short.

It can be proved that an n-dimensional lattice has at most 2(2n − 1) ≤ 2n+1 relevant vectors.
The MV algorithm has the following high-level structure. Given a basis B of a lattice L = L(B) and a

target point t (defining a coset t + L), the algorithm works as follows:

1. Compute a description of the Voronoi cell V̄(L), as a list containing all the relevant vectors v ∈ L, of
which there are at most 2n+1 = 2O(n). (The possibly exponential number of relevant vectors is the
sole reason for the algorithm’s exponential space complexity.)

This “preprocessing” phase depends only on the lattice L, not the target t, and the result can later be
reused for additional targets.

2. Use the relevant vectors to “walk,” starting from t, through a sequence of elements of the coset t + L
(by adding certain lattice vectors to the target), finally terminating with a point in (t + L) ∩ V̄ , which
is a solution to the CVP instance.

The walk proceeds in phases, where each phase starts with some tk ∈ (t + L) ∩ 2k · V̄ , and outputs
some tk−1 ∈ (t + L) ∩ 2k−1 · V̄ . We show below that each phase takes 2O(n) time, and by using LLL
we can ensure that the initial target point t is in 2O(n) · V̄ , so the total number of phases is only O(n).
Therefore, the overall runtime of this step is 2O(n).

2

2.1 The Walk

We first describe how Step 2, the “walk,” is performed. The first observation is that by a scaling argument, it
suffices to show how to perform the final phase of the walk, which takes some t2 ∈ (t+L)∩ 2V̄ and outputs
some t1 ∈ (t + L) ∩ V̄ . Then all prior phases can be performed using this procedure with a suitable scaling
of the lattice: since 2k · V̄(L) = 2 · V̄(2k−1L), we can use the procedure on the lattice 2k−1L (whose relevant
vectors are just scalings of L’s relevant vectors by a 2k−1 factor) to go from some tk ∈ (t + L) ∩ 2k · V̄(L)
to some tk−1 ∈ (t + L) ∩ 2k−1 · V̄(L).

The walk from 2V̄ to V̄ works as follows: if our current target t ∈ V̄ (which can be checked by testing if
t ∈ Hv for all v ∈ V), then we output t and are done. Otherwise, we add some relevant vector to t and loop.
The only question is, which relevant vector should be added to ensure that we make progress, and terminate
within 2O(n) iterations? Recall that if t 6∈ V̄(L), then it lies outside some halfspace Hv, i.e., it violates the
inequality 2〈t,v〉 ≤ 〈v,v〉. The MV algorithm greedily chooses a relevant vector v whose inequality is
“most violated,” i.e., it maximizes the ratio 2〈t,v〉/〈v,v〉, and subtracts v from t. Observe that for such v, if
we let α = 2〈t,v〉/〈v,v〉, then α is the smallest positive real number such that t ∈ αV̄(L); by assumption,
we start with α ≤ 2.

Lemma 2.1. The walk from t2 ∈ (t + L) ∩ 2V̄ to t1 ∈ (t + L) ∩ V̄ terminates within at most 2n iterations.

The above lemma follows by combining two lemmas that we state and prove next. The first shows that
subtracting the chosen v brings the target closer to the origin, while staying within the same multiple of the
Voronoi cell.

Lemma 2.2. For any t /∈ V̄ , if v ∈ L is a relevant vector maximizing α = 2〈t,v〉/〈v,v〉, then t− v ∈ αV̄
and ‖t− v‖ < ‖t‖.

Proof. As already argued, α is the smallest positive real such that t ∈ α · V̄ , so α > 1 (otherwise, t ∈ V̄).
Since α = 2〈t,v〉/〈v,v〉, we have

‖t‖2 = 〈t, t〉 = 〈t, t〉 − 2〈t,v〉+ 〈v,v〉 = ‖t− αv‖2.

Now because t ∈ αV̄(L) = V̄(αL), it must be that t is a shortest element of t + αL. Since αv ∈ αL, we
also have t−αv ∈ t+αL. Then because ‖t‖ = ‖t−αv‖, we conclude that t−αv is also a shortest element
in t + αL, and so t− αv ∈ αV̄(L). Finally, by convexity of V̄ (which is an intersection of halfspaces) and
the fact that α > 1, we have t− v ∈ α · V̄(L).

For the second claim, since α > 1 and v 6= 0 we have

‖t− v‖ = ‖t‖2 + ‖v‖2 − 2〈t,v〉 = ‖t‖2 − (α− 1)‖v‖2 < ‖t‖2.

The second lemma bounds the number of distinct lengths our intermediate target vectors can have.

Lemma 2.3. For any t, let U = (t + L) ∩ 2V̄(L). Then |{‖u‖ : u ∈ U}| ≤ 2n.

Proof. For any t′ ∈ Rn, the points in (t′ + 2L) ∩ 2V̄(L) are the shortest vectors in the coset t′ + 2L, and
therefore all have the same length. Since L is the union of 2n distinct cosets t′ + 2L (because the quotient
group L/2L has size det(2L)/ det(L) = 2n), we see that t + L is also the union of 2n cosets of 2L. By
partitioning the vectors in U according to these cosets, we conclude that these vectors have at most 2n distinct
lengths overall.

We can now prove Lemma 2.1: since each step strictly decreases the length of the target while keeping it
in 2V̄ , and the intermediate targets can take on at most 2n distinct lengths overall, the walk must terminate
within 2n steps. This completes the analysis of the “walk” step.

3

2.2 Computing the Voronoi Cell

We only summarize the main ideas behind the computation of the Voronoi cell of the lattice L = L(B),
or more precisely, of all its relevant vectors. The basic idea is the compute them in a “bottom-up” fashion,
by iteratively computing the relevant vectors of the lower-rank lattices L1 = L(b1), L2 = L(b1,b2),
L3 = L(b1,b2,b3), etc. Clearly, the relevant vectors of L1 = L(b1) are trivially just {±b1}.

To iteratively compute the relevant vectors of Li, we actually use a CVP oracle for Li−1, which we can
implement using the “walk” step with the already-computed relevant vectors of Li−1. The key fact we use is
a characterization (due to Voronoi) of relevant vectors: v ∈ L is a relevant vector of a lattice L if and only if
±v are the only shortest elements of the coset (v + 2L). In particular, every relevant vector v ∈ L is the
(unique, up to sign) shortest element of some coset t+ 2L for t ∈ L. So if we find a shortest element of each
of the 2n such cosets t+ 2L, we will find every relevant vector (up to sign). We might find other non-relevant
vectors as well, but these do not interfere with the “walk” step and so they can be retained. (In fact, there is a
way to check for relevance if desired.)

For each coset t + 2Li, we find a shortest element using our CVP oracle for Li−1. This is done by
partitioning the coset t+2Li according to the bi coefficient, which yields several “slices” that each correspond
to some coset of 2Li−1. By using an LLL-reduced basis B we can ensure that the number of slices we need
to inspect is only 2O(n). For each of the slices we find a shortest element in the corresponding coset, and then
take a shortest one overall to get a shortest element of t + 2Li.

Overall, to find the relevant vectors of Li (given those of Li−1) we need to solve CVP on 2n cosets of
2Li, each of which reduces to solving CVP on 2O(n) cosets of 2Li−1, each of which takes 2O(n) time using
the “walk” step. So the relevant vectors of Li can be computed in 2O(n) time overall, and hence so can the
relevant vectors of L = L(B).

4

	The Shortest and Closest Vector Problems
	Algorithms for SVP and CVP

	The Micciancio-Voulgaris Algorithm for CVP
	The Walk
	Computing the Voronoi Cell

