Sample Exam Questions

1. The velociraptor spots you 40 meters away and attacks, accelerating at 4 m/s² up to its top speed of 25 m/s. When it spots you, you begin to flee, quickly reaching your top speed of 6 m/s. How far can you get before you're caught and devoured?

2. You are at the center of a 20m equilateral triangle with a raptor at each corner. The top raptor has a wounded leg and is limited to a top speed of 10 m/s.

 (Not to scale)

 The raptors will run toward you. At what angle should you run to maximize the time you stay alive?

3. Raptors can open doors, but they are slowed by them. Using the floor plan on the next page, plot a route through the building, assuming raptors take 5 minutes to open the first door and halve the time for each subsequent door. Remember, raptors run at 10 m/s and they do not know fear.
1. The velociraptor spots you 40 meters away and attacks, accelerating at 4 m/s² up to its top speed of 25 m/s. When it spots you, you begin to flee, quickly reaching your top speed of 6 m/s. How far can you get before you’re caught and devoured?

2. You are at the center of a 20m equilateral triangle with a raptor at each corner. The top raptor has a wounded leg and is limited to a top speed of 10 m/s.

(Not to scale)

The raptors will run toward you. At what angle should you run to maximize the time you stay alive?

3. Raptors can open doors, but they are slowed by them. Using the floor plan on the next page, plot a route through the building, assumingly raptors take 5 minutes to open the first door and half the time for each subsequent door. Remember, raptors run at 10 m/s and they do not know fear.
EECS 370 Discussion

Topics Today:

– Processor Components

– Single-Cycle Datapath

– Project 2

– Time for Questions
LC2Kx Datapath Implementation
EECS 370 Discussion

Processor Components

Control Blocks
EECS 370 Discussion

Processor Components - Mux

- Used to choose options

```java
if (select == 0) {
    OUT = IN1;
} else {
    OUT = IN2;
}
```

![2 to 1 MUX diagram](image)
EECS 370 Discussion

Processor Components - Decoder

Allows an N-bit binary number to select one of 2^N output lines

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00000001</td>
</tr>
<tr>
<td>001</td>
<td>00000010</td>
</tr>
<tr>
<td>010</td>
<td>00000100</td>
</tr>
<tr>
<td>011</td>
<td>00001000</td>
</tr>
<tr>
<td>100</td>
<td>00010000</td>
</tr>
<tr>
<td>101</td>
<td>00100000</td>
</tr>
<tr>
<td>110</td>
<td>01000000</td>
</tr>
<tr>
<td>111</td>
<td>10000000</td>
</tr>
</tbody>
</table>
EECS 370 Discussion

Processor Components – ROM

Just a memory!

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1001</td>
</tr>
<tr>
<td>001</td>
<td>0100</td>
</tr>
<tr>
<td>010</td>
<td>0010</td>
</tr>
<tr>
<td>011</td>
<td>1001</td>
</tr>
<tr>
<td>100</td>
<td>0010</td>
</tr>
<tr>
<td>101</td>
<td>0001</td>
</tr>
<tr>
<td>110</td>
<td>1000</td>
</tr>
<tr>
<td>111</td>
<td>0000</td>
</tr>
</tbody>
</table>
EECS 370 Discussion

Processor Components – ROM
EECS 370 Discussion

Processor Components – ROM
EECS 370 Discussion

Processor Components

Mathematic Blocks
EECS 370 Discussion

Processor Components – Sign Extension Unit

Increases the number of bits in a value
Adds 1s or 0s as appropriate
EECS 370 Discussion

Processor Components – Adder

OUT = IN1 + IN2;

Is this a Half-Adder or Full-Adder?
EECS 370 Discussion

Processor Components – ALU

Performs math operations

```java
if (f == 0) {
    OUT = IN1 + IN2;
} else {
    OUT = IN1 ~& IN2;
}

EQ = (IN1 == IN2);
```
EECS 370 Discussion

Processor Components

State Blocks
EECS 370 Discussion

Processor Components – Registers

![Register File or Register Diagram](image)
EECS 370 Discussion

Processor Components – Memory
EECS 370 Discussion

Single Cycle Datapath
LC2Kx Datapath Implementation
EECS 370 Discussion

Single Cycle Datapath

Key Concept: Entire path executes in a single clock cycle

 Fetch Instruction
 Decode Instruction
 Execute Instruction
 Memory Access
 Writeback Data

This limits the clock speed to slowest instruction
EECS 370 Discussion

Single Cycle Datapath

<table>
<thead>
<tr>
<th>Inst</th>
<th>I-Mem Access</th>
<th>Read Register</th>
<th>ALU Operation</th>
<th>D-Mem Access</th>
<th>Write Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>nand</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>lw</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>sw</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>beq</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jalr</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>noop</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>halt</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: 5ns Reg Access, 10ns ALU Op, 20ns Mem Access
EECS 370 Discussion

Project 2
Suggested Register Convention

HIGHLY recommended you follow this

<table>
<thead>
<tr>
<th>Register</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>Value 0</td>
</tr>
<tr>
<td>R1</td>
<td>Input N</td>
</tr>
<tr>
<td>R2</td>
<td>Input R</td>
</tr>
<tr>
<td>R3</td>
<td>Return Value</td>
</tr>
<tr>
<td>R4</td>
<td>Local Variable</td>
</tr>
<tr>
<td>R5</td>
<td>Stack Pointer</td>
</tr>
<tr>
<td>R6</td>
<td>Temporary Value</td>
</tr>
<tr>
<td>R7</td>
<td>Return Address</td>
</tr>
</tbody>
</table>
EECS 370 Discussion

Exam Review Questions

?