
1

Zero-Interaction Authentication

Mark Corner
Brian Noble

http://mobility.eecs.umich.edu/

Major tertiary care center for Michigan
FY 1999: 1.2M visits, $1B billable services

Results in large data volume and costs
5-8 pieces of paper/patient visit
all records in physical charts without (official) copying

Obvious solution: electronic access to these records
most patient records in a clinical data repository
web-based front-end for easy access, CareWeb

CareWeb is not as useful as you might imagine
requires aggressive authentication
physicians are notoriously jealous of their time
end-user perception drives acceptance: they don’t!

University of Michigan Medical Center

Disconnected CareWeb
Experience with Coda suggested an obvious solution

a laptop for every physician: disconnected CareWeb
examine physician’s schedule for upcoming day
prefetch records for each scheduled patient

Demonstration for a number of UMHS staff members
the physicians wanted it immediately
the IT staff told us not to show it to any more physicians

Real costs if patient data is improperly revealed
HIPAA: $250K fines for disclosure/misuse of data

Challenge:
protect patient data
without inconveniencing physicians

Solution: constant but invisible authentication
ZIA: zero-interaction authentication

constantly ask user “are you there?”
have something other than user answer

Watch as authentication token: “yes, I’m right here”
worn by user for increased physical security
enough computational power for small cryptographic tasks
secure communication via short-range wireless network

Design goals:
protect laptop data from physical possession attacks
preserve performance and usability

give the user no reason to disable, work around

Outline
Threat model

Design
how are files protected, shared?
how do we improve performance?

Implementation

Evaluation
what overhead does ZIA add?
are optimizations useful?
can ZIA be hidden from users?

Related work

Conclusion

Threat Model
Attacker can exploit physical possession

use cached credentials
console-based attacks
physical modification attacks (remove disk, probe memory)

Attacker can exploit laptop-wireless link
inspection, modification, insertion of messages

Things we don’t consider
network-based exploits (buffer overruns)
jamming laptop-token link (DoS)
replacing operating system
untrustworthy users
rubber hose cryptanalysis

2

Design guidelines
Protect file system data

all data on disk encrypted
ensure user is present for each decryption

Can’t contact token on every decryption
adds (short) latency to (many) operations

Take advantage of caching already used in file systems
data on-disk: encrypted for safety
data in cache: decrypted for performance
token’s keys required for decrypting files

Take advantage of fact that people move slowly
only check “often enough” to notice user departure

Moving data from disk to cache
Tokens cannot decrypt file contents directly

small, battery-powered: limited computation
connected to laptop via wireless link

latency comparable to disk, bandwidth much less

Instead, store file encrypting key on disk, itself encrypted
key encrypting key never leaves token

File Key

File

Laptop Token

Moving data from disk to cache
Tokens cannot decrypt file contents directly

small, battery-powered: limited computation
connected to laptop via wireless link

latency comparable to disk, bandwidth much less

Instead, store file encrypting key on disk, itself encrypted
key encrypting key never leaves token

File Key

File

Laptop Token

Key-Encrypting
Key

File Key

Moving data from disk to cache
Tokens cannot decrypt file contents directly

small, battery-powered: limited computation
connected to laptop via wireless link

latency comparable to disk, bandwidth much less

Instead, store file encrypting key on disk, itself encrypted
key encrypting key never leaves token

File Key

File

Key-Encrypting
Key

Laptop Token

Key-Encrypting
Key

File Key

Key-Encrypting
Key

File Key

Moving data from disk to cache
Tokens cannot decrypt file contents directly

small, battery-powered: limited computation
connected to laptop via wireless link

latency comparable to disk, bandwidth much less

Instead, store file encrypting key on disk, itself encrypted
key encrypting key never leaves token

File Key

File

Key-Encrypting
Key

Laptop Token

Key-Encrypting
Key

File Key

File Key

Key-Encrypting
Key

File Key

Moving data from disk to cache
Tokens cannot decrypt file contents directly

small, battery-powered: limited computation
connected to laptop via wireless link

latency comparable to disk, bandwidth much less

Instead, store file encrypting key on disk, itself encrypted
key encrypting key never leaves token

File Key

File

Key-Encrypting
Key

Laptop Token

Key-Encrypting
Key

File Key

File Key

Key-Encrypting
Key

File Key

Session
Encryption

3

Key-encrypting keys are capabilities
File encrypted by some key, E

E is on disk, encrypted with another key, O
O is known only to authentication token
may also choose to escrow O as a matter of policy

Sharing accommodated by additional encrypted versions of E
UNIX protection model: owner, group, and world
E encrypted by owner key O, group key G
each user’s token holds their O, and all applicable Gs
members of same group share copies of G

Can have per-machine world keys, too

Handle keys efficiently
Key acquisition time can be expensive

network round trip + processing time
many milliseconds
can’t add this to every disk operation!

Two mechanisms mitigate this problem
overlap key acquisition with disk operations
cache decrypted keys, exploiting locality

Neither mechanism helps with file creation
is an asynchronous write: no overlap
is a new file: no cached key
observation: you don’t need any particular key

prefetch a stash of “fresh” keys

Assign keys per directory
What is the right granularity for file keys?

small grain limits damage of key exposure
large grain increases effectiveness of caching

We chose per-directory keys to exploit access patterns
files in same directory tend to be used together
acquisition time amortized across a directory

Directory keys stored in the directory they encrypt

Maintain performance, retain correctness
Optimizations reduce laptop/token interactions

but, still need to ask “are you there?” frequently!

Add periodic polling
exchange encrypted nonces: challenge/response
once per second, because people are slow

When user is away, protect file system data
must be fast enough to foil theft

When user returns, restore machine to pre-departure state
user should see no performance penalty on return

Make protection fast and invisible
Key question: what to do with cached data on departure?

One alternative: flush on departure, read on arrival
flush is fast: write dirty pages, bzero cache
recovery is slow: read entire file cache from disk

Instead, we encrypt on departure, decrypt on arrival
protection is a bit slower, but fast enough
recovery is much faster: no disk operations

This retains current file cache behavior
unused file blocks can be flushed when idle
encrypted file blocks are treated identically

Implementation
Implementation is split into two parts

in-kernel file system support
authentication system and token

In-kernel support (Linux)
provides cryptographic I/O
manages keys
polls for token

Authentication system
client running in user-space on the user’s laptop
server running on token (Linux or WinCE)
communicate via a secure channel

4

Implementation

Disk
Laptop

VFS

Page Cache

ZIA

Underlying FS

Key Cache

Authentication
Client

Authentication
Server

Token

Implemented in-kernel as a
stackable file system

Uses FiST toolkit (Columbia)

Rijndael used for encryption

Evaluation overview
Several important questions

what overhead does ZIA impose?
how long does it take to secure the cache?
how long does it take to restore the cache?

Prototype System
client system: IBM Thinkpad 570
token: Compaq iPAQ 3650
connected by 802.11 network in 1Mb/s mode

Evaluation: Andrew Benchmark
Determine file system overhead

Modified Andrew Benchmark
copy and compile Apache source code

7.4 MB source only
9.7 MB source plus objects

Compare ZIA against three file systems
Ext2fs: file system “at the bottom”
Base: null stacking layer implemented in FiST
Cryptfs: FiST’s cryptographic file system (+Rijndael)

Modified Andrew Benchmark results

9.32%57.54 (0.20)ZIA

9.28%57.52 (0.18)Cryptfs

0.24%52.76 (0.22)Base

-52.63 (0.30)Ext2fs

Overhead
(vs. Ext2fs)

Time, secFile System

ZIA is indistinguishable from Cryptfs

Benefit of optimizations

optimizations are critical

9.32%57.54 (0.20)ZIA

340.86%232.04 (3.40) No prefetching
No caching

-52.63 (0.30)Ext2fs

Turn off prefetching, caching to see how useful they are

Stress tests
Andrew benchmark obligatory, but not necessarily good

often measures the speed of your compiler

Three benchmarks stress high-overhead operations
1) create many directories
2) scan those directories
3) bulk copy: 40MB Pine source

5

Creating directories

Fresh key prefetching minimizes overhead

5.9%10.25 (0.09)ZIA

2.17%9.88 (0.14)Cryptfs

-0.15%9.66 (0.13)Base

-9.67 (0.23)Ext2fs

Over Ext2fsTime, secFile System

Reading directories

Directory reads expose full key acquisition costs

91.24%29.76 (3.33)ZIA

-0.94%15.41 (1.07)Cryptfs

1.04%15.72 (1.16)Base+

-15.56 (1.25)Ext2fs

Over Ext2fsTime, secFile System

Copying large trees

Bulk data costs dominated by cryptography
and stacking overhead

121.38%43.56 (1.13)ZIA

117.57%42.81 (1.34)Cryptfs

57.78%31.05 (0.68)Base

-19.68 (0.28)Ext2fs

Over Ext2fsTime, secFile System

Time to secure/restore the file system
All data must be encrypted when user leaves

All data must be decrypted when user returns

Benchmark:
copy various trees into ZIA
disable token, measure time to safety
enable token, measure time to recovery

Time to protect/recover the file system

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

Page Cache Size (MB)

Ti
m

e
(s

) recovery time
(get keys, decrypt)

protection time
(encrypt)

Related work
Many examples of cryptographic file systems

CFS (Matt Blaze), Cryptfs (Erez Zadok), EFS (Win2k)
all suffer from the problem of “implied consent”
once you log in, the file system can forevermore decrypt
Win2k asks you to authenticate more frequently

inconvenient: anecdotally, it is often disabled

Can use a smart card to hold keys (Blaze) rather than in-kernel
smart card left in the machine: still has “implied consent”

Some examples of hardware tokens for proximity detection
Landwehr ’97, Ensure Technologies
all advisory; tokens are not capabilities
laptop capable of acting, could be forced to

6

Next Steps (a.k.a. Mark’s Thesis)
Underlying principle

authentication is traditionally a persistent property
what are the implications of making it transient?

Protect applications (brute force)
treat VM images like files
encrypt paging space (Provos)
encrypt in-memory pages on departure, decrypt on return

Expose to applications
API for transient authentication services
security-conscious applications manage their own state

Conclusions
Your machine has the long-term authority to act as you

Zero-Interaction Authentication
user retains long-term authority to decrypt
laptop holds only transient authority
defends against physical possession attacks

There is no reason to turn it off
does not change user behavior
does not noticeably impact performance

Protects and restores machine quickly
entire buffer cache within six seconds

