Threads and concurrency

Motivation
* operating systems getting really comple
» multiple users, programs, I/Owdees, etc.
» how to manage this complity?

Decomposer separatdardprobleminto severalsimplerones

Programs decompose intoveeal ravs (horizontal layers)
mai n() {
get I nput ();
conmput eResul t () ;
print Qut put () ;
}

getlnput () {
cout ();

cin();

}

conput eResul t () {
sart();
} pow() ;

print Qut put () {
cout ();
}

EECS 482

main

getinput

cout

Processes decompose mix ofatgs running on a processor
into several parallel tasks (columns)

job 1 job 2 job 3

» each job can wrk independently of the others

Rememberfor ary area of OS, ask:
* What's the hardware interbce?

» What's the application inteate?

Peter M. Chen

What's in a process?

Definition of a process
* (informal) a program inxecution. A running piece of
code along with all the things the program can read/
write

note that process != program

* (formal) oneor morethr eadsin theirown addressspace

Play analogy

Thread
* sequence ofxecuting instructions from a program (i.e.
the running computation)
* actve
* play analogy: the acting being done by an actor in the

play

Address space
« all the data the process uses as it runs
 passie (acted upon by the thread)
* play analogy: all the objects on the stage in a play

Types of data in the addess space

EECS 482 2

Peter M. Chen

Multiple threads

Can hae seeral threads in a single address space
* play analogy: seeral actors on a single set. Sometime:

interact(e.g.danceogether)sometimesloindependent
tasks

Private state for a thread vs. global state shared between
threads

» what prvate thread must a threadve@

* other state is shared between all threads in a process

5

EECS 482 3

Upcoming lectures

Concurreng: multiple threads aate at one time (multiple

threads could come from one process, or from multiple
processes)
« thread is the unit of concurrenc
* two main topics:
how multiple threads can cooperate on a single task
how multiple threads can share a single CPU

Address space

« address space is the unit of state partitioning
* main topic: hav multiple address spaces can share a sin-
gle physical memory diciently and safely

Peter M. Chen

Can threadstruly beindependent?

Possible to hae multiple threads on a computer system that
don't cooperate or interact at all?

» what about multiple programs that are related, e.g. m

program reads a PDF attachment and starts acroread

process to display the attachment?

» what about multiple independent programs on a singl
computeye.g. running Quakand 482 project at the
same time?

Two possible sources of sharing

Correct @ample of non-interacting threads

EECS 482

ail

Web server example

Butif threadsarecooperatingisiit still ahelpful abstractiorio
think of multiple threads?Or is it simplerto think of asin-
gle thread doing multiple things?

How to build awebsenerthatrecevesmultiple, simultaneous
requestsandthatneeddo readwebpagedrom disk to sat-
isfy each request?

Handle one request at a time
* easy to program,ub slonv. Cant overlap disk requests
with computation or with netark receve

Peter M. Chen

Finite-state machine with asynchronous 1/Os

* need to kep track of multiple outstanding requests
request 1 arrives
web server receives request 1
web server starts disk 1/0O la to satisfy
request 1
request 2 arrives
web server receives request 2
web server starts disk 1/0O 2a to satisfy
request 2
request 3 arrives
disk 1/0 1la finishes
* At each point, web seev must remember what request

have arrved and are being serviced, what disk 1/Os are

outstanding@ndwhichrequestshey belongto, andwhat
disk 1/Os still need to be done to satisfy each reques

Multiple cooperating threads

* each thread handles one request

» eachthreadcanissuea blocking disk 1/0O, wait for I/O to
finish, then continue with mépart of its request

* even though thread blocks, other threads canemak
progress (and methreads can start to handleanne
requests)

» where is the state of each request stored?

S

~F

EECS 482

Benefits and uses of theads

Threadsystemin operatingsystemmanageshe sharingof the
single CPU among seral threads (e.g. allong one
thread to issue a blocking I/O and still allother threads
to male progress). Applications (or higHewvel parts of
the OS) get a simpler programming model)

Typical domains that use multiple threads
* programusessomeslow resourcesoit paysto have mul-
tiple things happening at once.

* physical control (e.g. airplane controller)
slow component:

» window system (1 thread per wingd®
slow component:

* network sener
slow component

* parallel programming (for using multiple CPUSs)
slow component:

Peter M. Chen

Cooperating threads Non-deterministic ordering produces non-
deterministic results

First major topic in threads: tnomultiple threads can coopert
ate on aésmgle tahsk) - Printing example

assumedor nr?/\;]t atdwe gue enoughphysicalprocessors « thread A: print ABC

to run eac_ thread on |tsyo proc_ess_or o « thread B: print 123

« later well discuss hw to give the illusion of infinite

: : * possible outputs?
physical processors on a single processor

C)

Ordering of gents from diferent threads is non-deterministi
* processor speeds magry

e.g. after 10 seconds, @ifent threads may fia gotten
differing amounts of wrk done

thread A ---------------mmmmo - > _ _
thread B - i) i > * impossible outputs?
threadC-- - - - - - - - - - >

« ordering within a thread is guaranteed to be sequential,
but lots of ways to mege the ordering between threads
» what's being shared between these tiweads?

EECS 482 6 Peter M. Chen

Atomic operations

Arithmetic example

* (initially y=10) Example

e thread A: x =y + 1, e thread A: x=1
sthread B:y =y * 2; « thread B: x=2

* possible results? * possible results?

* is 3 a possible output?

Before we can reasat all about parallel processes, we must
know that some operation &omic

EECS 482 7 Peter M. Chen

Atomic: indiisible. Either happens in its entirety without
interruption, or has yet to happen at all.

* no events from other threads can happen in between {

start and end of an atomiceant

In abave example, if assignment to x is atomic, then only pg
sible results are 1 and 2.

In print exkample abwe, what are the possible outputs if eac
print statement is atomic?

Print exkample abwe assumed printing a single charactasw
atomic. What if printing a single characteasmot
atomic?

On most machines, memory load and store are atomic

But mary instructions ar@ot atomic, e.g. double-precision
floating point on a 32-bit machine @vseparate memory
operations)

L

EECS 482

If you dont have ary atomic operations, you camhale one.
Fortunately the hardware folks gve us atomic operations,
and we cantild up higheflevel atomic primitves from

he there
Another ample:
thread A thread B
i=0 i=0
yswhile (i < 10) { while (i > -10) {
i++ I--
} }
print “A wins” print “B wins”

Who will win?

Is it guaranteed that someone will win?

What if threads run atxactly the same speed and start close
together? Is it guaranteed that it goes onvierre

e What if i++ and i-- are not atomic?

» Should you wrry about this actually happening?

Peter M. Chen

Non-deterministic interleang males deligging challenging Svnchronizing between multiple threads
« Heisenlig: a bug thatgoesaway whenyou look atit (via . - '
printf, via delugger or just via re-running it) Must control the interladngs between threads
 order of some operations is irred@t, because the opera-
tions are independent
* other operations are dependent and their order matters

All possible interlegings must yield a correct answer
e a correct concurrent program will work no matter
how fast the processors ag that execute the arious
threads

Try to constrain the threadecutions as little as possible

Controlling the gecution and order of threads is called “syn-
chronization”

EECS 482 9 Peter M. Chen

Too much milk

Problem definition
» Janet and Peterant to leep refrigerator stoekl with at
most one milk jug
« if either sees fridge emptghe/he goes taulg milk
* correctness properties: someone wily Inilk if needed,
but never more than one personys milk

Solution #0 (no synchronization)

Pet er: Janet :
if (noMI1k) { if (noMI1k) {
buy m |k buy m |k
} }
Pet er Janet
3:00 look in fridge
(no m k)

:05 |eave for Kroger
10 arrive at Kroger

w w

| ook in fridge
(no m k)

3:15 buy mlk | eave for Kroger

3:20 arrive hone, put arrive at Kroger
in fridge

3:25 buy mlk

3: 30 arrive honme, put

mlk in fridge.
Too rmuch m | k!

EECS 482

First type of synchronization:
mutual exclusion

Mutual exclusion
 ensure that only 1 thread is doing a certain thing at one
time (others arexeluded). E.g. only 1 person goes
shopping at a time.

Critical section

* a section of code that needs to run atomically with
respect to selected other pieces of code.

« if code A and code B are critical sections with respect to
each otherthen multiple threads should not be able to
interleave events from A and B.

« critical sectiongnustbeatomicwith respecto eachother
because theshare data (or other resources, e.g. screen,
refrigerator)

* e.g. in too much milk solution #0, critical section is “if
(noMilk), buy milk. Peter and Janstctritical sections
must be atomic with respect to each gther events
from these critical sections must not be intareh

Peter M. Chen

Too much milk (solution #1)

Assume that the only atomic operations are load and store

Idea: le&e note that youwé going to check on the milk status,
so other person doesmlso luy

Pet er: Janet :
if (noNote) ({ if (noNote) {
| eave note | eave note
if (noMI1k) { if (noMI1k) {
buy m |k buy m |k
} }
renobve note renobve note
} }

Does this wrk? If not, when could itl?

Is solution #1 better than solution #0?

EECS 482 11

Too much milk (solution #2)

Idea: change the order of “l@anote” and “check note”. This
requiredabelednotes(otherwiseyou’ll seeyour own note
and think it vas the other persanhote)

Janet .
| eave not eJanet
i f (no notePeter) {
if (noMI1k) {
buy m | k

Pet er:
| eave not ePet er
if (no noteJdanet) {
if (noMIk) {
buy m | k
} }
} }

renove not ePet er renove not eJanet

Does this wrk? If not, when could itil?

Peter M. Chen

Too much milk (solution #3)

Idea:have away to decidewho will buy milk whenbothleave
notes at the same time. WaPeter hang around to neak
sure job is done.

Janet :
| eave not eJanet

Pet er:
| eave not ePet er
whil e (noteJdanet) {

do not hi ng
}
if (no notePeter) {
if (noMIKk) { if (noMIKk) {
buy mlk buy mlk
} }

}

renmove not ePet er renmove not eJanet

Peters “while (noteJanet)” prkents him from running his crit;
ical section at same time as Jaset’

EECS 482 12

Proof of correctness

* (Janet)f nonotePeterthenit’ s safeto buy becauséeter
hasnt started yet. Peter will ait for Janet to be done
before checking milk status.

* (Janet) if notePetethen Peter is in the body of the code
and will eventually ly the milk (if needed). Note that
Peter may be aiting for Janet to quit.

* (Peter)if nonoteJanety’ s safeto buy (becauséeterhas
already left notePeteand Janet will check notePeter in
the future)

* (Peter) if noteJanet, Peter hangs around aitswo see
if Janet lys milk. If Janet bys, wete done. If Janet
doesnt buy, Peter will luy.

Correct, lnt ugly
» complicated (and non-intw) to prave correct
e asymmetric
 Peter consumes CPU time whilaiting for Janet to
remove note. This is calledusy-waiting.

Peter M. Chen

Higher-level synchronization

Solution: raise the el of abstraction to maklife easier for
programmer

concurrent programs

high-level synchronization operations pided by,
software (e.g. locks, semaphores, monitors)

low-level atomic operations pvaded by hardwre
(e.g. load/store, interrupt enable/disable, test&set)

EECS 482

13

L ocks (mutexes)

A lock preventsanotherthreadfrom enteringa critical section.
e.g. before shopping, ke@a note on the fridge, so that
both Peter and Janet dbgb shopping

Two operations
* lock(): wait until lock is free, then acquire it
do {
if (lock is free) {
acqui re | ock
br eak

}
} while (1)

* unlock(): release lock

Why wasthe“note” in TooMuch Milk solutions#1and#2 not
a good lock?

Four elements of locking
* lock is initialized to be free
 acquire lock before entering critical section
* release lock whenxding critical section
* wait to acquire lock if another thread already holds it

All synchronization imolves waiting

Thread can beunning, or blocked (waiting for something)

Peter M. Chen

Thread-safe queue with locks

Locks male “Too much milk” really easy to saV
enqueue() {

Pet er: Janet :
I ock() l ock()
if (noMIk) { if (noMIKk) { /* find tail of queue */
buy m |k buy m |k for (ptr=head; ptr->next != NULL
} } ptr = ptr->next);
unl ock() unl ock()

/* add new elenment to tail of queue */
ptr->next = new_el enent;
new el enent - >next = NULL

But this preents Janet from doing stuwihile Peter is shop-
ping. l.e. critical section includes the shopping time. }

L ..) dequeue
How to minimize the critical section? a O A

/* if sonething on queue, then renove it */
I f (head->next !'= NULL) {

el ement = head- >next;

head- >next = head- >next - >next;

return(el ement);

}

What bad things can happen ifdwhreads manipulate queue
at same time?

EECS 482 14 Peter M. Chen

| nvariants for multi-threaded queue

Can enqueue() unlock wanhere?

This stable state is called mvariant, i.e. something that is
supposed to “atays” be true for the lirdd list, e.g. each
node appearskactly once when tkeersing list from head
to tail.

Is the irvariant eer alloved to be d&lse?

Invariant can only be brek when lock is held
« only the lock holder should be able to see thedamok
invariant

In general, must hold lock wherex youre manipulating
shareddata(i.e. whenever you're breakingthe invariantof
the shared data)

What if youtre only reading shared data (i.e. yeuot break-
ing the irvariant)?

EECS 482

15

What about the folling locking scheme:

enqueue() {

| ock

find tail of queue

unl ock

| ock

add new el enent to tai
unl ock

of queue

Peter M. Chen

What if you wanted to have dequeue() wait if the queueis
empty?

EECS 482 16 Peter M. Chen

Two types of synchronization

Mutual exclusion
* ensure that only 1 thread (or more gener#dlys than N
threads) is in critical section
* lock/unlock

Ordering constraints
* used when thread shouldiwfor some eent (not just
another thread leang a critical section)
* used to enforce before-after relationships
* e.g. dequeuer awnts to vait for enqueuer to add some-
thing to the queue

EECS 482

17

Monitors

Note that this diers from Bnenbauns treatment in Section
2.3.7

Monitors use separate mechanisms for thetiypes of syn-
chronization
» uselocks for mutual &clusion
* usecondition variables for ordering constraints

A monitor = a lock + the conditiomaviables associated with
that lock

Peter M. Chen

Condition variables

Main idea:malkeit possiblefor threadto sleepinsideacritical
section, byatomically
* releasing lock
* putting thread on &it queue and go to sleep

Each condition ariable has a queue ofwing threads (i.e.
threads that are sleepingaiing for a certain condition)

Each condition ariable is associated with one lock

Operations on conditioraviables

» wait(): atomically release lock, put thread on conditior
wait queue, go to sleep (i.e. start taitfor wakeup).
When wait() returns, it automatically re-acquires the
lock.

* signal(): wake up a thread aiting on this conditionari-
able (if ary)

* broadcast(): wake upall threads witing on this condi-
tion variable (if ary)

Note that thread must be holding lock when it cabst(y

Should thread re-establish th@aniant before calling wit()?

EECS 482

18

Thread-safe queue with monitors

enqueue() {
| ock(queuelLock)
find tail of queue

add new elenment to tail of queue

unl ock(queuelLock)

}

dequeue() {
| ock(queuelLock)

renove item from queue
unl ock(queuelLock)
return renoved item

Peter M. Chen

M esa vs. Hoare monitors

So far have described Mesa monitors
* when vaiter is woken, it must contend for the lock with
other threads
* hence must re-check condition

What would be required to ensure that the condition is met
when the \aiter returns from @it and starts running
agin?

Hoare monitors ge special priority to the @ken-up vaiter
» signalling thread ges up lock (hence signaller must re
establish imariant before calling signal())
» woken-up vaiter acquires lock
* signalling thread re-acquires lock afteaiter unlocks

We'll stickwith Mesamonitors(asdo mostoperatingsystems)

EECS 482

19

Tipsfor programming with monitors

List the shared data needed to sdive problem

Decide which locks (and momary) will protect which data
* more locks (protecting finggrained data) allws differ-
entdatato beaccessedimultaneouslybut is morecom-
plicated
» one lock usually enough in this class

Put lock...unlock calls around the code that uses shared data

List before-after conditions
 one condition ariable per condition
« condition \ariables lock should be the lock that protects
the shared data that is used valaate the condition

Call wait() when thread needs taivfor a condition to be
true; use a while loop to re-check condition aftartw
returns

Call signalwhenaconditionchangeshatanotheithreadmight
be interested in

Make sure imariant is established wherex lock is not held
(i.e. before you call unlock, and before you cadityv

Peter M. Chen

Producer-consumer (bounded buffer)

Problem: producer puts things into a sharneffielh, consumer
takes them out. Need synchronization for coordinating
producer and consumer

producer—»| | | | | | |—»consumer

* e.g. Unix pipeline (gcc calls cpp | ccl | cc2 | as)
* buffer between producer and consumenaddhem to

operate sonwhat independentlyOtherwise must oper-

ate in lockstep (producer puts one thing urffér, then
consumer tads it out, then producer adds anothieen
consumer tads it out, etc.)

E.g. cole machine
* delivery person (producer) fills machine with egk
« students (consumeryp cokes and drink them
» coke machine has finite space

EECS 482

20

Producer-consumer using monitors

Variables
» shared data for the ceknachine (assume aknachine
can hold “max” coks)
» numColes (number of cas in machine)

One lock (cokLock) to protect this shared data
« fewer locks mak the programming simpleout allow
less concurrenc

Ordering constraints
» consumer must ait for producer to fill bffer if all buff-
ers are empty (ordering constraint)
* producer must @it for consumer to emptyulfer if buff-
ers is completely full (ordering constraint)

Peter M. Chen

What if we wanted to have producer continuously loop? Can
we put the loop inside the lock...unlock region?

Can we use only 1 condition variable?

Can we always use broadcast() instead of signal()?

EECS 482 21 Peter M. Chen

Reader /writer locks using monitors

shared data. This prents ag other threads from access-
ing the data. Can we allomore concurrencwithout risk-
ing the viaving of unstable data?

Problem definition
* shared data that will be read and written by multiple
threads
« allow multiple readers to access shared data when nc
threads are writing data

* a thread can write shared data only when no other thread

is reading or writing the shared data

EECS 482 22

Interface: tvo types of functions to aNwthreads dierent
With standard locks, threads acquire the lock in order to read

types of access
* readerStart()
» readerFinish()
 writerStart()

* writerFinish()

» mary threads can be in between a readerStart and reader
Finish (only if there are no threads who are between
writerStart and writerFinish)

* only 1 threadcanbebetweenwriterStartandwriterFinish

Implement reader/writer locks using monitors. Note the

increased layering of synchronization operations

concurrent program coordinates its access to
shared data by using reader/writer functions

even highetlevel synchronization primaies
(reader/writer functions)

high-level synchronization operations prded by,
software (e.g. locks, semaphores, monitors)

low-level atomic operations pvaded by hardware
(e.g. load/store, interrupt enable/disable, test&set)

Peter M. Chen

Monitor data (this is not the application data. Ratiterthe
dataneededo implementreaderStartieaderFinishyriter-
Start, writerFinish)

» what shared data is needed to implement reader/writer

functions?

* use one lock (R/lock)
» condition \ariables?

EECS 482

23

Peter M. Chen

In readerFinish(), could | switch the order of “humReadersr-Why use broadcast?
and “broadcast”?

If a writer finishes and there areveeal waiting readers and
writers, who will win (i.e. will writerStart return, or will 1
readerStart, or will multiple readerStart)?

Note that all vaiting readers and writers ar@ken up each
How long will a writer vait? time ary thread leges. Hav can we decrease the number
of spurious vakeups?

How to gie priority to a vaiting writer?

EECS 482 24 Peter M. Chen

Readewriter functions are ery similar to standard locks

» call readerStart before you read the data (tisxlling
lock())

» callreaderFinislafteryou aredonereadingthedata(like
calling unlock())

« call writerStart before you write the data @ikalling
lock())

» call writerFinishafteryou aredonewriting thedata(like
calling unlock())

These functions are kmm as “readewriter locks”.
 threadthatis betweerreaderStarandreaderFinishs said
to “hold a read lock”

 threadthatis betweernwriterStartandwriterFinishis said
to “hold a write lock”

Compare readewriter locks with standard locks

EECS 482

Semaphores

Semaphores are Bka generalized lock

A semaphore has a nongagive integer value (>=0) and sup-
ports the folleving operations:
» down(): wait for semaphore to become poatithen
decremensemaphor®éy 1 (originally called“P”, for the
Dutch proberen)

 up(): increment semaphore by 1 (originally called “V”,
for theDutchverhogen)Thiswakesup athreadwaiting
in down(), if there are an

* can also set the initiablue of the semaphore

The key parts in dan() and up() are atomic
* two down() calls at the same time cadecrement the
value belav O

Binary semaphore
* value is either O or 1
» down() waits for \alue to become 1, then setsitto O
» up() sets alue to 1, vaking up vaiting davn (if arny)

Peter M. Chen

Can use semaphoresfor both types of
synchronization

Mutual exclusion
« initial value of semaphore is 1 (or more geneyally

down()
<critical

up()

section>

* like lock/unlock, at more general

» implement lock as a binary semaphore, initialized to 1

Ordering constraints
* usually (not alvays) initial \alue is 0
* e.g. thread A ants to vait for thread B to finish before
continuing

semaphore initialized to O

A B
down()
conti nue execution

do task
up()

EECS 482

26

Solving producer-consumer with semaphores

Semaphore assignments
» mutex: ensures mutuakelusion around code that
manipulates bffer queue (initialized to 1)
o fullBuffers: countsthenumberof full buffers(initialized
to 0)
» emptyBuffers: counts the number of emptyfers (ini-
tialized to N)

Peter M. Chen

Why do we need diérent semaphores for fullBiefs and
emptyBufers?

Does the order of the dm() function calls matter in the con-
sumer (or the producer)?

Does the order of the up() function calls matter in the con-
sumer (or the producer)?

What (if arything) must change to allomultiple producers
and/or multiple consumers?

What if theres 1 full huffer, and multiple consumers call
down(fullBuffers) at the same time?

EECS 482 27

Comparing monitors and semaphores

Semaphores used for both mutuatlasion and ordering con-
straints
* elggant (one mechanism for both purposes)
 code can be hard to read and hard to get right

Monitor lock is just like a binary semaphore that is initialized
tol
* lock() = davn()
* unlock() = up()

Condition \ariables vs. semaphores

condition \ariable semaphores
while(cond) {wait()}; down()
conditional code in user pro- | conditionalcodein semaphorelef-
gram inition

user writes customized condi-
tion

condition specified by semaphore
definition (wait if value == 0)

user preides sharedariables,
protect with lock

semaphore prades sharedari-
able(integer) andthread-saf®per-
ations on that ingger

no memory of past signals

“remembers” past up() calls

Peter M. Chen

| mplementing threads on a uni-processor

Condition \ariables are more ftéble than using semaphores

for ordering constraints So far, wee been assuming that wevhanough pysical
e condition \ariables: can use arbitrary condition taitv processors to run each thread On\'ms](p)rocessor
* semaphores: ait if semaphorealue == « but threadsareusefulalsofor runningon a uni-processor

(see web serar example)
 how to give theillusion of infinite physicalprocessorsn
a single processor?

Semaphores ark best if the shared irger and waiting condi-
tion (==0) maps naturally to the problem domain

Play analogy

EECS 482 28 Peter M. Chen

Ready threads

What to do with thread while g€’not running
* must sae its prvate state soméhere
» what constitutes prate data for a thread?

Thisinformationis calledthethread‘context” andis storedin
a “thread control block” when the thread tsninning
* t0 sae space, share code among all threads
* to sa/e space, dohtopy stack to the thread control
block. Ratheruse multiple stacks in the same addres
space, and just cgphe stack pointer to the thread co
trol block.

Keep thread control blocks threads that @memining on a
gueue ot eady (but not running) threads
* thread state can wabe running (the thread thattur-
rently using the CPU), ready (ready to ruat Wwaiting
for the CPU), or blookd (waiting for a signal() or up()
or unlock() from another thread)

—

EECS 482

29

S

Dispatch loop

Main loop of the operating system runs threads
while(1) {

load the context of the next thread
that’s ready to run (from its thread

control block)
run thread
thread returns control

to the dispatch loop

save state of thread (into its thread
control block)

choose new thread to run

}

Or can think of it as a dispatch routine that each thread calls
(sometimes oluntarily) to switch to the ne thread

Peter M. Chen

How to load the context of the next thread to run and run it?

How to get control back to dispatch loop (so system can save
the state of the current thread and run a new thread)?

EECS 482 30 Peter M. Chen

Choosing the next thread to run

How to save state of the current thread?

- save ragisters, PC, stack pointer (SP) If no ready threads, just loop idly
* this is \ery tricky assembly-language code « loop switches to a thread when one becomes ready
» why won't the folloving code vork?

100 save PC (i.e. val ue 100) If 1 ready thread, run it

101 switch to next thread
If more than 1 ready thread, choose one to run
* FIFO
* priority queueaccordingo somepriority (moreonthisin
CPU scheduling)

* in Project 1, wdl use Solaris swapcontet()

EECS 482 31 Peter M. Chen

Example of thread switching

thread 1
print “start thread 1”

yield()
print “end thread 1”

thread 2
print “start thread 2”

yield()
print “end thread 2”

yield
print “start yield (thread %d)”
switch to next thread (swapcontext)
print “end yield (current thread %d)”

thread 1's output

thread 2’s output

EECS 482

32

Thread states

3 thread states
* running (is currently using the CPU)
* ready (vaiting for the CPU)
* blocked (waiting for some othenent, e.g. 1/0 to com-
plete, another thread to call unlock)

running

thread is
preempted or
calls yield

ey) [ocen)
I/O finishes, or another

thread calls unlock or signal

thread maks I/O
request, or lock,
or wait

thread is
scheduled b
dispatch loo

Peter M. Chen

Creating a new thread

Overall: create state for thread and add it to the ready que
» when saing a thread to its thread control block, we
remembered its current state
 we canconstr uct the stateof new threadasif it hadbeen
running and got switched out

Steps
« allocate and initialize methread control block
« allocate and initialize me stack

allocate memory for stack with C++we

initialize the stack pointer and PC so that it looks lik
wasgoingto call aspecifiedfunction. Thisis donewith
makecontat in Project 1.

* add thread to ready queue

Unix’s fork() is related &t different. Unixs fork() creates a
new process (a nethread in a ng address space). In
Unix, this nev address space is a gopf the creatos
address space.

thread_create is l&an asynchronous procedure call

ue

parent call :
return
parent

parent create works -~

child works

What if the parent threadamts to do someavk in parallel
with child thread, then ait for child thread to finish?

parent

parent parent
create works continues
|

EECS 482 33

child works

Peter M. Chen

Does the following work?

parent() {
thread_create

print “parent works”

print “parent continues”

}
child() {

print “child works”
}

Does the following work?
parent() {
thread_create
print “parent works”
thread_yield

print “parent continues”

}

child() {
print “child works”
}

EECS 482

Does the following work?
parent() {

thread_create
lock
print “parent works”
wait
print “parent continues”
unlock

}

child() {
lock
print “child works”
signal
unlock

Peter M. Chen

join(): wait for another thread to finish
parent() {
thread_create
lock
print “parent works”
unlock
join
print “parent continues”

}

child() {
lock
print “child works”
unlock

EECS 482

35

Implementing locks— atomicity in the thread
library

Concurrent programs use highsé synchronization opera-
tions

concurrent programs

high-level synchronization operations prded by,
software (e.g. locks, semaphores, monitors)

low-level atomic operations pvaded by hardware
(e.g. load/store, interrupt enable/disable, test&set)

Implementing these highalel synchronization operations
 used by multiple threads, so yheeed to werry about
atomicity (e.g. thg use data structures shared across
threads)
 cant usethehigh-level synchronizatioroperationghem-
sehes

Peter M. Chen

Useinterrupt disable/enableto ensure
atomicity

With interrupt disable/enable to ensure atomjeitlly do we

need locks?
Onuniprocessqroperations atomicaslong ascontet switch
doesnt occur in middle of the operation « user program calls interrupt disable before entering criti-
* how does thread get comteswitched out? cal section, calls interrupt enable aftenieg critical
section (and mads sure not to call yield in the critical
section)

* prevent cont&t switches at wrong time by enting
these gents

EECS 482 36 Peter M. Chen

L ock implementation #1 (disable interrupts
with busy waiting)

Why is it ok to disable interrupts in lock$)tritical section (it
wasnt ok to disable interrupts while user codaswun-
ning)?

[ock() {
di sable interrupts
while (value !'= FREE) {
enabl e interrupts
di sable interrupts
}
val ue = BUSY Do we need to disable interrupts in unlock()?
enabl e interrupts

}

unl ock() {
di sable interrupts

val ue = FREE)))
enabl e interrupts Why does the body of the while enable, then disable inter-

} rupts?

Why does lock() disable interrupts in thegbwing of the
function?

EECS 482 37 Peter M. Chen

Another atomic primitive: read-modify-write

Test & set: atomically writes 1 to a memory location (set) and

Insiructions returns the &lue that used to be there (test)
Interrupt disable wrks on a uniprocessor by peating the test &et (X) {
current thread from being switched out tmp = X
X =1
But this doesr’work on a multi-processor return(tnp)
* disabling interrupts on one processor daoggsresent }

other processors from running
* not acceptable (or pvaled) to modify interrupt disable
to stop other processors from running Exchange (x86)

» swaps \alue between gester and memory

* note that only 1 process can see a transition from 0 -> 1

Could use atomic load / atomic store instructions (remember
Too Much Milk solution #3)

Modern processors prime an easier ay with atomic read-
modify-write instructions
« atomically{readsvaluefrom memoryinto aregister then
writes nev value to that memory location}

EECS 482 38 Peter M. Chen

L ock implementation #2 (test& set with busy

waiting)

(value is initially 0)

[ock() {
while (testé&set(value) == 1) {
}

}

unl ock() {
value = 0

}

If lockis free(value=0), test&setsetsvalueto 1 andreturns0,
so the while loop finishes

If lock is busy (\alue = 1), test&set doedrchange thealue
and returns 1, so loop continues

EECS 482

39

Busy waiting

Problem with lock implementation #1 and #2
 waiting threadusedots of CPUtime justcheckingfor the
lock to become free. This is calledu$y waiting”
* better for thread to go to sleep and let other threads run
« stratgy for reducing bsy-waiting: integrate the lock
implementation with the thread dispatcher data struc-
tures and hae lock code manipulate thread queues

Peter M. Chen

L ock implementation #3 (interrupt disable,
no busy-waiting)

Waiting thread gies up processor so that other threads (e.g.

the thread with the lock) can run more quicl8pmeone
wakes up thread when the lock is free.

| ock() {
di sable interrupts
if (value == FREE) {
val ue = BUSY

} else {
add thread to queue of threads waiting for
this | ock

switch to next runnabl et hr ead

}

enable interrupts

}

unl ock() {

di sable interrupts

val ue = FREE

if (any thread is waiting for this |ock) {
nmove waiting thread fromwaiting queue to

ready queue

val ue = BUSY

}

enabl e interrupts

o

EECS 482 40

This is ahandoff lock

« thread calling unlock() ges lock to the witing thread

Why have a separateaiting queue? Whnot put vaiting

thread onto ready queue?

Peter M. Chen

|nter rupt disable/enable pattern

Enableinterruptsafteraddingthreadto wait queue put before

Whenshouldlock() re-enablénterruptsbeforecalling switch? switching to n&t thread?
| ock() {

Enable interrupts before adding thread &itwueue? di sabl e interrupts

| ock() {

if (lock is busy) {

disable interrupts add thread to | ock wait queue

Co - enabl e interrupts
a éngrelanngLpEs switch to next runnabl e thread
add thread to | ock wait queue }
switch to next runnable thread et g .
} But this fils if interrupt happens after thread enable interrupts
* lock() adds thread toait queue
When could thisdil? * lock() enables interrupts

« interruptcausepreemptionj.e. switchto anotheithread.
Preemptiormovesthreadto readyqueue Now threadis
on two queues (@it and ready)!

Also, switch is lilely to be a critical section

Adding threadto wait queueandswitchingto next threadmust
beatomic

Solution: waiting thread leges interrupts disabled when it
callsswitch.Next threadto run hastheresponsibilityof re-
enabling interrupts before returning to user code. When
waiting thread \akes up, it returns from switch with inter-
rupts disabled (from the last thread).

EECS 482 41 Peter M. Chen

Invariant
« all threadgpromiseto have interruptsdisabledwvhenthey
call switch
« all threads promise to re-enable interrupts after ¢et
returned to from switch

Thread A Thread B

yield() {
di sable interrupts
swi tch

enabl e interrupts

}
<user code runs>
| ock() {
di sable interrupts
swi tch
back fromsw tch
enable interrupts
}
<user code runs>
unl ock() (nove thread
A to ready queue)
yield() {
di sable interrupts
swi tch
back fromsw tch
enable interrupts
}
EECS 482

42

L ock implementation #4 (test& set, minimal
busy-waiting)

Cant implementocksusingtest&setwithout someamountof
busy-waiting, kut can minimize it

Idea: use bsy waiting only to atomically xeecute lock code.
Give up CPU if bisy.

l ock() {
whi | e(test &et (guard)) {
}

i f (val ue
val ue
} else {
add thread to queue of threads waiting for
this | ock

FREE) {
BUSY

switch to next runnabl et hr ead

}

guard = 0

Peter M. Chen

unl ock() {
while (testé&set(guard)) {
}

val ue = FREE
if (any thread is waiting for this lock) {
nove waiting thread fromwaiting queue to
ready queue

val ue = BUSY
}
guard = 0
}
EECS 482

43

Deadlock

Resources
» something needed by a thread
* a threadvaits for resources
* e.g. locks, disk space, memoGPU

Deadlock

« a circular vaiting for resources, leading to the threads

involved not being able to malkprogress

Example
thread A thread B
| ock(x) | ock(y)
| ock(y) | ock(x)
unl ock(y) unl ock(x)
unl ock(x) unl ock(y)

» can deadlock occur with code?

« will deadlock alvays occur with this code?

Peter M. Chen

General structure of thread code

phase 1. while (not done) {
acqui re some resources
wor k

}

phase 2. release all resources

Assume phase 1 has finite amount ofkv

EECS 482

Dining philosophers

5 philosophers sitting around a round table, 1 chopstick in
between each pair of philosophers (5 chopsticks total).
Each philosopher needsdwhopsticks to eat.

Ly

|
7 i

Algorithm for each philosopher
wait for chopstick on right to be free, then
pick it up
wait for chopstick on left to be free, then
pick it up
eat
put both chopsticks down

Can this deadlock?

Peter M. Chen

Conditionsfor deadlock

Four conditions must all be true for deadlock to occur
* limited resource: not enough resources toesatlv
threads simultaneously

* hold and wait: threads hold resources whilaiing to
acquire other resources

* N0 preemption: thread system ddotce thread to ge
up resource

e circular chain of requests
thread A

SN

resource 1 resource 2

.

thread B

EECS 482

45

Strategies for handling deadlock

3 general stratpes
* ignore

» detect and fix

* prevent

Detect and fix

 can detect by looking forycles in the ait-for graph

* how to fix once detected?

Peter M. Chen

Deadlock prevention

Idea is to eliminate one of the four necessary conditions
* increase resources to decreasding (this minimizes
chance of deadlock)

* eliminate hold and ait
wait until all resources yoli'need are free, then grab
them all at once

this moves all the waiting to the bginning (when you
arent holding ary resources)
* allow preemption

can preempt CPU byag its state to thread control
block and resuming later

can preempt memory by sygping memory out to disk
and loading it back later

can we preempt the holding of a lock?

EECS 482

46

« eliminate circular chain of requests

Peter M. Chen

Banker’s algorithm

Similar to reserving all resources agb®ing, lut more €ffi-
cient

State maximum resource needs inatbe (it dont actually
acquiretheresources)Whenthreadlatertriesto acquirea
resource, barde’s algorithm determines whensitsafe to
satisfy the request (and blocks the thread whemait
safe).

General structure of thread code

1. state maxi mum resource needed
2. while (not done) {

acqui re some resources

wor k

3. release all resources

Preventing deadlock by requesting all resources ginoeng
would block thread in step #1 also(kut step #2 can pro-
ceed without \aiting)

In banler’salgorithm,step#1 providestheinformationneeded
to determinewhenit’ s safeto satisfyeachresourceequest
in step #2.

“Safe” means guaranteeing the ability for all threads to finish
(no possibility of deadlock)

EECS 482 47 Peter M. Chen

Example: use bamk’s algorithm to model a bank loaning
money to its customers

Bank has $6000. Customers sign up with bank and establi

credit limit (maximum resource needed). ¥l®rrov
mone in stages (up to their credit limit). When yfre
done, the return all the mone

Solution #1: reserall resources when customer starts
Ann asks for credit limt of $2000 (bank oks)

Bob asks for credit limt of $4000 (bank oks)
Charlie asks for credit limt of $6000 (bank

must say no, because this could lead to
deadl ock)

EECS 482

Solution #2: banér’s algorithm
» bankapprosesall creditlimits, but customemayhave to

wait when actually asking for the mgne
sh a

Ann asks for credit Iinmt of $2000 (bank oks)
Bob asks for credit limt of $4000 (bank oks)

Charlie asks for credit limt of $6000 (bank
oks)

Ann takes out $1000 (bank has $5000 | eft)

Bob takes out $2000 (bank has $3000 |eft)

Charlie wants to take out $2000. Is this
al | owed?

Allow iff, after gving the mong, there &ists some sequential
orderof fulfilling all maximumresourcegworst-casanal-
ysis)

o if give $2000 to Charlie, bank will i@ $1000 left

» Ann canfinish evenif shetakesouthermax(i.e. another
$1000). When Ann finishes, she returns her mone
(bank will have $2000)

 After Ann finishes, Bob can talout his max (another
$2000), then finish

» Then Charlie can finishyen if he taks out his max
(another $4000).

48 Peter M. Chen

What about this scenario?
Ann asks for credit limt of $2000 (bank oks)

Bob asks for credit limt of $4000 (bank oks)

Charlie asks for credit limt of $6000 (bank
oks)

Ann takes out $1000 (bank has $5000 |eft)

Bob takes out $2000 (bank has $3000 | eft)

Charlie wants to take out $2500. Is this
al | oned?

Banler allovs system towercommit resources without intro-
ducing the possibility of deadlock. Sum of max resource
needs of all current threads can be greater than total
resources, as long as theresbme \ay for the all the
threads to finish without getting into deadlock.

How to apply bankr’s algorithm to dining philosophers?

Unfortunatelyit’s difficult to anticipate maximum resources
needed

EECS 482 49

CPU scheduling

How shoulddispatchoop choosenext threadto run?Whatare
the goals of the CPU scheduler?

Minimize average response time
» average elapsed time to do each job

Maximize throughput of entire system
* rate at which jobs complete in the system

Fairness
» share CPU among threads in some “equitable” manner

Peter M. Chen

First-come, first-sewved (FCES)

FIFO ordering between jobs

No preemption (run until done)
* thread runs until it calls yield() or blocks on I/O
* no timer interrupts

Pros and cons
+ simple
- short jobs get stuck behind long jobs
- what about the userinteractre experience?

Example
* job A tales 100 seconds
* job B tales 1 second

time O: job A arrives and starts

time O+ job B arrives

time 100 job A ends (response tine = 100); job
B starts

tinme 101: job B ends (response tinme = 101)

average response tine = 100.5

EECS 482

50

Round robin

Goal: improve arerage response time for short jobs

Solution: periodically preempt all jobs (viz. long-running
ones)

Is FCFS or round robin moredif”?

Example
* job A tales 100 seconds
* job B tales 1 second
* time slice of 1 second (a job is preempted after running
for 1 second)

time O: job A arrives and starts

time O+: job B arrives

time 1: job Ais preenpted; job B starts
time 2: job B ends (response tine = 2)
time 101: job A ends (response tinme = 101)

average response tine = 51.5

Peter M. Chen

Does round-robin alays achiee lover response time than
FCFS?

Pros and cons
+ good for interactie computing
- round robin has moreverhead due to conteswitches

How to choose time slice?
* big time slice: dgrades to FCFS
* small time slice: each comxteswitch wastes some time

* typically a compromise, e.g. 10 milliseconds (ms)
« if context switchtakes.1 ms,thenroundrobinwith 10ms
time slice vastes 1% of the CPU

EECS 482

STCEF (shortest time to completion first)

STCF: run whateer job has the least amount obnk to do
before it finishes (or blocks for an 1/O)

STCF-P: preempte \ersion of STCF
« if anew job arrivesthathaslesswork thanthecurrentjob
has remaining, then preempt the current jolanoif of
the nev one

Idea is to finish the short jobs first
 improves response time of shorter jobs by a lot
 doesnt hurttheresponse¢ime of longerjobsby too much

STCFgivesoptimalrespons¢ime amongnon-preemptie pol-
icies

STCF-P gres optimal response time among preeweppioli-
cies (and non-preempé policies)

1/0O
* is the follaving job a “short” or “long” job?
while(1) {
use CPU for 1 ns
use /O for 10 ns

Peter M. Chen

Pros and cons
+ optimal aerage response time
- unfair. Shortjobscanpreventlongjobsfrom ever getting
arny CPU time (staration)
- needs knaledge of future

STCF and STCF-P need kmedge of future
* it's often ery handy to knw the future :-)

* how to find out this information about the future time
required by a job?

EECS 482

52

Example

job A

conmput e for 1000 seconds
job B

conmpute for 1000 seconds
job C

whi l e(1) {

use CPU for 1 ns
use |/O for 10 ns

}

C canuse91%of thedisk by itself. A or B caneachusel100%
of the CPU. What happens when we run them together?

Goal: keep both CPU and diskisy

FCFS
« if A or B run before C, theprevent C from issuing its
disk 1/O for up to 2000 seconds

Peter M. Chen

Round robin with 100 ms time slice
CA----—---- 2 —— CA----—---- 2 JS—
|--|

C’s
/O

» disk is idle most of the time that A and B are running
(about 10 ms disk timevery 200 ms)

Round robin with 1 ms time slice
CABABABABABCABABABABABC...

 C runs more often, so it can issue its disk I/O almost ;
soon as its last disk 1/0 is done

» disk is utilized almost 90% of the time

* little effect on A or BS performance

« general principle: first start the things that can run in j
allel

* problem: lots of contd switches (and cortéswitch
overhead)

STCF-P

ar-

EECS 482

53

 runs C as soon as its disk I/O is done (because it has the
shortest net CPU hurst)

CA-----m—-- CA-----mm-- CA---------
-] o L
C’s C’'s C’'s
/1O /1O /O

Peter M. Chen

Real-time scheduling Earliest-deadline first (EDF)

So far, we've focused omverage-casanalysis (gerage Always run the job that has the earliest deadline (i.e. the dead-
response time, throughput) line coming up net)

Sometimes, the right goal is to get each job done before its If a nev job arrves with an earlier deadline than the currently
deadline (irreleant hav much before the deadline the job running job, preempt the running job and start the oee

completes)
e video or audio output. E.g. NTSC (Nationa“@ision EDFis Optlmal—ltWIH meetall deadlinesf it,SpOSSibldo do
Standards Committee) outputs 1 TV frarmerg 33 ms SO
« control of plysical systems, e.g. auto assemhlyclear
Example
power plants) : :
job A takes 15 seconds, deadline is 20
. .) . seconds after entering system
This requiresvorst-caseanalysis job B: takes 10 seconds, deadline is 30
q do this | | life? seconds after entering system
How do we do this in real life? job C. takes 5 seconds, deadline is 10

seconds after entering system

time--->
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
A+
B +
C +

EECS 482 54 Peter M. Chen

