
EECS 482 1 Peter M. Chen

Threads and concurrency

Motivation
• operating systems getting really complex
• multiple users, programs, I/O devices, etc.
• how to manage this complexity?

Decomposeor separatehardprobleminto severalsimplerones

Programs decompose into several rows (horizontal layers)
main() {

getInput();
computeResult();
printOutput();

}

getInput() {
cout();
cin();

}

computeResult() {
sqrt();
pow();

}

printOutput() {
cout();

}

Processes decompose mix of activities running on a processor
into several parallel tasks (columns)

• each job can work independently of the others

Remember, for any area of OS, ask:
• What’s the hardware interface?

• What’s the application interface?

main

getInput

cout

job 1 job 2 job 3

EECS 482 2 Peter M. Chen

What’ s in a process?

Definition of a process
• (informal) a program in execution. A running piece of

code along with all the things the program can read/
write

note that process != program

• (formal)oneor morethr eadsin theirown addressspace

Play analogy

Thread
• sequence of executing instructions from a program (i.e.

the running computation)
• active
• play analogy: the acting being done by an actor in the

play

Address space
• all the data the process uses as it runs
• passive (acted upon by the thread)
• play analogy: all the objects on the stage in a play

Types of data in the address space

EECS 482 3 Peter M. Chen

Multiple threads

Can have several threads in a single address space
• play analogy: several actors on a single set. Sometimes

interact(e.g.dancetogether),sometimesdoindependent
tasks

Private state for a thread vs. global state shared between
threads
• what private thread must a thread have?

• other state is shared between all threads in a process

Upcoming lectures

Concurrency: multiple threads active at one time (multiple
threads could come from one process, or from multiple
processes)
• thread is the unit of concurrency
• two main topics:

how multiple threads can cooperate on a single task
how multiple threads can share a single CPU

Address space
• address space is the unit of state partitioning
• main topic: how multiple address spaces can share a sin-

gle physical memory efficiently and safely

EECS 482 4 Peter M. Chen

Can threads truly be independent?

Possible to have multiple threads on a computer system that
don’t cooperate or interact at all?
• what about multiple programs that are related, e.g. mail

program reads a PDF attachment and starts acroread
process to display the attachment?

• what about multiple independent programs on a single
computer, e.g. running Quake and 482 project at the
same time?

Two possible sources of sharing

Correct example of non-interacting threads

Web server example

But if threadsarecooperating,is it still ahelpfulabstractionto
think of multiple threads?Or is it simplerto think of asin-
gle thread doing multiple things?

How to build awebserver thatreceivesmultiple,simultaneous
requests,andthatneedsto readwebpagesfrom disk to sat-
isfy each request?

Handle one request at a time
• easy to program, but slow. Can’t overlap disk requests

with computation or with network receive

EECS 482 5 Peter M. Chen

Finite-state machine with asynchronous I/Os
• need to keep track of multiple outstanding requests

request 1 arrives
web server receives request 1
web server starts disk I/O 1a to satisfy

request 1
request 2 arrives
web server receives request 2
web server starts disk I/O 2a to satisfy

request 2
request 3 arrives
disk I/O 1a finishes

• At each point, web server must remember what requests
have arrived and are being serviced, what disk I/Os are
outstandingandwhichrequeststhey belongto,andwhat
disk I/Os still need to be done to satisfy each request.

Multiple cooperating threads
• each thread handles one request
• eachthreadcanissueablocking disk I/O, wait for I/O to

finish, then continue with next part of its request
• even though thread blocks, other threads can make

progress (and new threads can start to handle new
requests)

• where is the state of each request stored?

Benefits and uses of threads

Threadsystemin operatingsystemmanagesthesharingof the
single CPU among several threads (e.g. allowing one
thread to issue a blocking I/O and still allow other threads
to make progress). Applications (or higher-level parts of
the OS) get a simpler programming model)

Typical domains that use multiple threads
• programusessomeslow resource,soit paysto havemul-

tiple things happening at once.

• physical control (e.g. airplane controller)
slow component:

• window system (1 thread per window)
slow component:

• network server
slow component

• parallel programming (for using multiple CPUs)
slow component:

EECS 482 6 Peter M. Chen

Cooperating threads

First major topic in threads: how multiple threads can cooper-
ate on a single task
• assumefor now thatwehaveenoughphysicalprocessors

to run each thread on its own processor
• later we’ll discuss how to give the illusion of infinite

physical processors on a single processor

Ordering of events from different threads is non-deterministic
• processor speeds may vary

e.g. after 10 seconds, different threads may have gotten
differing amounts of work done

thread A --------------------------------->
thread B - - - - >
thread C - - - - - - - - - - ->

Non-deterministic ordering produces non-
deterministic results

Printing example
• thread A: print ABC
• thread B: print 123
• possible outputs?

• impossible outputs?

• ordering within a thread is guaranteed to be sequential,
but lots of ways to merge the ordering between threads

• what’s being shared between these two threads?

EECS 482 7 Peter M. Chen

Arithmetic example
• (initially y=10)
• thread A: x = y + 1;
• thread B: y = y * 2;

• possible results?

Atomic operations

Example
• thread A: x=1
• thread B: x=2

• possible results?

• is 3 a possible output?

Before we can reasonat all about parallel processes, we must
know that some operation isatomic

EECS 482 8 Peter M. Chen

Atomic: indivisible. Either happens in its entirety without
interruption, or has yet to happen at all.
• no events from other threads can happen in between the

start and end of an atomic event

In above example, if assignment to x is atomic, then only pos-
sible results are 1 and 2.

In print example above, what are the possible outputs if each
print statement is atomic?

Print example above assumed printing a single character was
atomic. What if printing a single character wasnot
atomic?

On most machines, memory load and store are atomic

But many instructions arenot atomic, e.g. double-precision
floating point on a 32-bit machine (two separate memory
operations)

If you don’t have any atomic operations, you can’t make one.
Fortunately, the hardware folks give us atomic operations,
and we can build up higher-level atomic primitives from
there

Another example:
thread A thread B
i=0 i=0
while (i < 10) { while (i > -10) {

i++ i--
} }
print “A wins” print “B wins”

Who will win?

Is it guaranteed that someone will win?

What if threads run at exactly the same speed and start close
together? Is it guaranteed that it goes on forever?

• What if i++ and i-- are not atomic?

• Should you worry about this actually happening?

EECS 482 9 Peter M. Chen

Non-deterministic interleaving makes debugging challenging
• Heisenbug:abugthatgoesawaywhenyou look at it (via

printf, via debugger, or just via re-running it)

Synchronizing between multiple threads

Must control the interleavings between threads
• order of some operations is irrelevant, because the opera-

tions are independent
• other operations are dependent and their order matters

All possible interleavings must yield a correct answer
• a correct concurrent program will work no matter

how fast the processors are that execute the various
thr eads

Try to constrain the thread executions as little as possible

Controlling the execution and order of threads is called “syn-
chronization”

EECS 482 10 Peter M. Chen

Too much milk

Problem definition
• Janet and Peter want to keep refrigerator stocked with at

most one milk jug
• if either sees fridge empty, she/he goes to buy milk
• correctness properties: someone will buy milk if needed,

but never more than one person buys milk

Solution #0 (no synchronization)
Peter: Janet:
if (noMilk) { if (noMilk) {

buy milk buy milk
} }

Peter Janet
3:00 look in fridge

(no milk)
3:05 leave for Kroger
3:10 arrive at Kroger look in fridge

(no milk)
3:15 buy milk leave for Kroger
3:20 arrive home, put arrive at Kroger

in fridge
3:25 buy milk
3:30 arrive home, put

milk in fridge.
Too much milk!

First type of synchronization:
mutual exclusion

Mutual exclusion
• ensure that only 1 thread is doing a certain thing at one

time (others are excluded). E.g. only 1 person goes
shopping at a time.

Critical section
• a section of code that needs to run atomically with

respect to selected other pieces of code.
• if code A and code B are critical sections with respect to

each other, then multiple threads should not be able to
interleave events from A and B.

• critical sectionsmustbeatomicwith respectto eachother
because they share data (or other resources, e.g. screen,
refrigerator)

• e.g. in too much milk solution #0, critical section is “if
(noMilk), buy milk. Peter and Janet’s critical sections
must be atomic with respect to each other, i.e. events
from these critical sections must not be interleaved.

EECS 482 11 Peter M. Chen

Too much milk (solution #1)

Assume that the only atomic operations are load and store

Idea: leave note that you’re going to check on the milk status,
so other person doesn’t also buy

Peter: Janet:
if (noNote) { if (noNote) {

leave note leave note
if (noMilk) { if (noMilk) {

buy milk buy milk
} }
remove note remove note

} }

Does this work? If not, when could it fail?

Is solution #1 better than solution #0?

Too much milk (solution #2)

Idea: change the order of “leave note” and “check note”. This
requireslabelednotes(otherwiseyou’ll seeyourown note
and think it was the other person’s note)

Peter: Janet:
leave notePeter leave noteJanet
if (no noteJanet) { if (no notePeter) {

if (noMilk) { if (noMilk) {
buy milk buy milk

} }
} }
remove notePeter remove noteJanet

Does this work? If not, when could it fail?

EECS 482 12 Peter M. Chen

Too much milk (solution #3)

Idea:haveaway to decidewhowill buy milk whenbothleave
notes at the same time. Have Peter hang around to make
sure job is done.

Peter: Janet:
leave notePeter leave noteJanet
while (noteJanet) {

do nothing
}

if (no notePeter) {
if (noMilk) { if (noMilk) {

buy milk buy milk
} }

}
remove notePeter remove noteJanet

Peter’s “while (noteJanet)” prevents him from running his crit-
ical section at same time as Janet’s

Proof of correctness
• (Janet)if nonotePeter, thenit’ssafeto buy becausePeter

hasn’t started yet. Peter will wait for Janet to be done
before checking milk status.

• (Janet) if notePeter, then Peter is in the body of the code
and will eventually buy the milk (if needed). Note that
Peter may be waiting for Janet to quit.

• (Peter)if nonoteJanet,it’ssafeto buy (becausePeterhas
already left notePeter, and Janet will check notePeter in
the future)

• (Peter) if noteJanet, Peter hangs around and waits to see
if Janet buys milk. If Janet buys, we’re done. If Janet
doesn’t buy, Peter will buy.

Correct, but ugly
• complicated (and non-intuitive) to prove correct
• asymmetric
• Peter consumes CPU time while waiting for Janet to

remove note. This is calledbusy-waiting.

EECS 482 13 Peter M. Chen

Higher-level synchronization

Solution: raise the level of abstraction to make life easier for
programmer

Locks (mutexes)

A lock preventsanotherthreadfrom enteringacritical section.
e.g. before shopping, leave a note on the fridge, so that
both Peter and Janet don’t go shopping

Two operations
• lock(): wait until lock is free, then acquire it

do {
if (lock is free) {

acquire lock
break

}
} while (1)

• unlock(): release lock

Why wasthe“note” in TooMuchMilk solutions#1and#2not
a good lock?

Four elements of locking
• lock is initialized to be free
• acquire lock before entering critical section
• release lock when exiting critical section
• wait to acquire lock if another thread already holds it

All synchronization involves waiting

Thread can berunning, or blocked (waiting for something)

low-level atomic operations provided by hardware
(e.g. load/store, interrupt enable/disable, test&set)

high-level synchronization operations provided by
software (e.g. locks, semaphores, monitors)

concurrent programs

EECS 482 14 Peter M. Chen

Locks make “Too much milk” really easy to solve!

Peter: Janet:
lock() lock()
if (noMilk) { if (noMilk) {

buy milk buy milk
} }
unlock() unlock()

But this prevents Janet from doing stuff while Peter is shop-
ping. I.e. critical section includes the shopping time.

How to minimize the critical section?

Thread-safe queue with locks

enqueue() {

/* find tail of queue */
for (ptr=head; ptr->next != NULL;

ptr = ptr->next);

/* add new element to tail of queue */
ptr->next = new_element;
new_element->next = NULL;

}

dequeue() {

/* if something on queue, then remove it */
if (head->next != NULL) {

element = head->next;
head->next = head->next->next;

}

return(element);

}

What bad things can happen if two threads manipulate queue
at same time?

EECS 482 15 Peter M. Chen

Invariants for multi-threaded queue

Can enqueue() unlock anywhere?

This stable state is called aninvariant, i.e. something that is
supposed to “always” be true for the linked list, e.g. each
node appears exactly once when traversing list from head
to tail.

Is the invariant ever allowed to be false?

Invariant can only be broken when lock is held
• only the lock holder should be able to see the broken

invariant

In general, must hold lock whenever you’re manipulating
shareddata(i.e.wheneveryou’rebreakingtheinvariantof
the shared data)

What if you’re only reading shared data (i.e. you’re not break-
ing the invariant)?

What about the following locking scheme:
enqueue() {

lock
find tail of queue
unlock

lock
add new element to tail of queue
unlock

}

EECS 482 16 Peter M. Chen

What if you wanted to have dequeue() wait if the queue is
empty?

EECS 482 17 Peter M. Chen

Two types of synchronization

Mutual exclusion
• ensure that only 1 thread (or more generally, less than N

threads) is in critical section
• lock/unlock

Ordering constraints
• used when thread should wait for some event (not just

another thread leaving a critical section)
• used to enforce before-after relationships
• e.g. dequeuer wants to wait for enqueuer to add some-

thing to the queue

Monitors

Note that this differs from Tanenbaum’s treatment in Section
2.3.7

Monitors use separate mechanisms for the two types of syn-
chronization
• uselocks for mutual exclusion
• usecondition variables for ordering constraints

A monitor = a lock + the condition variables associated with
that lock

EECS 482 18 Peter M. Chen

Condition variables

Main idea:make it possiblefor threadto sleepinsideacritical
section, byatomically
• releasing lock
• putting thread on wait queue and go to sleep

Each condition variable has a queue of waiting threads (i.e.
threads that are sleeping, waiting for a certain condition)

Each condition variable is associated with one lock

Operations on condition variables
• wait(): atomically release lock, put thread on condition

wait queue, go to sleep (i.e. start to wait for wakeup).
When wait() returns, it automatically re-acquires the
lock.

• signal(): wake up a thread waiting on this condition vari-
able (if any)

• broadcast(): wake upall threads waiting on this condi-
tion variable (if any)

Note that thread must be holding lock when it calls wait()

Should thread re-establish the invariant before calling wait()?

Thread-safe queue with monitors

enqueue() {
lock(queueLock)
find tail of queue
add new element to tail of queue

unlock(queueLock)
}

dequeue() {
lock(queueLock)

remove item from queue
unlock(queueLock)
return removed item

}

EECS 482 19 Peter M. Chen

Mesa vs. Hoare monitors

So far have described Mesa monitors
• when waiter is woken, it must contend for the lock with

other threads
• hence must re-check condition

What would be required to ensure that the condition is met
when the waiter returns from wait and starts running
again?

Hoare monitors give special priority to the woken-up waiter
• signalling thread gives up lock (hence signaller must re-

establish invariant before calling signal())
• woken-up waiter acquires lock
• signalling thread re-acquires lock after waiter unlocks

We’ll stickwith Mesamonitors(asdomostoperatingsystems)

Tips for programming with monitors

List the shared data needed to solve the problem

Decide which locks (and how many) will protect which data
• more locks (protecting finer-grained data) allows differ-

entdatato beaccessedsimultaneously, but is morecom-
plicated

• one lock usually enough in this class

Put lock...unlock calls around the code that uses shared data

List before-after conditions
• one condition variable per condition
• condition variable’s lock should be the lock that protects

the shared data that is used to evaluate the condition

Call wait() when thread needs to wait for a condition to be
true; use a while loop to re-check condition after wait
returns

Call signalwhenaconditionchangesthatanotherthreadmight
be interested in

Make sure invariant is established whenever lock is not held
(i.e. before you call unlock, and before you call wait)

EECS 482 20 Peter M. Chen

Producer-consumer (bounded buffer)

Problem: producer puts things into a shared buffer, consumer
takes them out. Need synchronization for coordinating
producer and consumer.

• e.g. Unix pipeline (gcc calls cpp | cc1 | cc2 | as)
• buffer between producer and consumer allows them to

operate somewhat independently. Otherwise must oper-
ate in lockstep (producer puts one thing in buffer, then
consumer takes it out, then producer adds another, then
consumer takes it out, etc.)

E.g. coke machine
• delivery person (producer) fills machine with cokes
• students (consumer) buy cokes and drink them
• coke machine has finite space

Producer-consumer using monitors

Variables
• shared data for the coke machine (assume coke machine

can hold “max” cokes)
• numCokes (number of cokes in machine)

One lock (cokeLock) to protect this shared data
• fewer locks make the programming simpler, but allow

less concurrency

Ordering constraints
• consumer must wait for producer to fill buffer if all buff-

ers are empty (ordering constraint)
• producer must wait for consumer to empty buffer if buff-

ers is completely full (ordering constraint)

consumerproducer

EECS 482 21 Peter M. Chen

What if we wanted to have producer continuously loop? Can
we put the loop inside the lock...unlock region?

Can we use only 1 condition variable?

Can we always use broadcast() instead of signal()?

EECS 482 22 Peter M. Chen

Reader/writer locks using monitors

With standard locks, threads acquire the lock in order to read
shared data. This prevents any other threads from access-
ing the data. Can we allow more concurrency without risk-
ing the viewing of unstable data?

Problem definition
• shared data that will be read and written by multiple

threads
• allow multiple readers to access shared data when no

threads are writing data
• a thread can write shared data only when no other thread

is reading or writing the shared data

Interface: two types of functions to allow threads different
types of access
• readerStart()
• readerFinish()
• writerStart()
• writerFinish()

• many threads can be in between a readerStart and reader-
Finish (only if there are no threads who are between
writerStart and writerFinish)

• only 1 threadcanbebetweenwriterStartandwriterFinish

Implement reader/writer locks using monitors. Note the
increased layering of synchronization operations

low-level atomic operations provided by hardware
(e.g. load/store, interrupt enable/disable, test&set)

high-level synchronization operations provided by
software (e.g. locks, semaphores, monitors)

concurrent program coordinates its access to

even higher-level synchronization primitives
(reader/writer functions)

shared data by using reader/writer functions

EECS 482 23 Peter M. Chen

Monitor data (this is not the application data. Rather, it’s the
dataneededto implementreaderStart,readerFinish,writer-
Start, writerFinish)
• what shared data is needed to implement reader/writer

functions?

• use one lock (RWlock)
• condition variables?

EECS 482 24 Peter M. Chen

In readerFinish(), could I switch the order of “numReaders--”
and “broadcast”?

If a writer finishes and there are several waiting readers and
writers, who will win (i.e. will writerStart return, or will 1
readerStart, or will multiple readerStart)?

How long will a writer wait?

How to give priority to a waiting writer?

Why use broadcast?

Note that all waiting readers and writers are woken up each
time any thread leaves. How can we decrease the number
of spurious wakeups?

EECS 482 25 Peter M. Chen

Reader-writer functions are very similar to standard locks
• call readerStart before you read the data (like calling

lock())
• call readerFinishafteryouaredonereadingthedata(like

calling unlock())
• call writerStart before you write the data (like calling

lock())
• call writerFinishafteryouaredonewriting thedata(like

calling unlock())

These functions are known as “reader-writer locks”.
• threadthatis betweenreaderStartandreaderFinishis said

to “hold a read lock”
• threadthatis betweenwriterStartandwriterFinishis said

to “hold a write lock”

Compare reader-writer locks with standard locks

Semaphores

Semaphores are like a generalized lock

A semaphore has a non-negative integer value (>=0) and sup-
ports the following operations:
• down(): wait for semaphore to become positive, then

decrementsemaphoreby 1 (originally called“P”, for the
Dutch proberen)

• up(): increment semaphore by 1 (originally called “V”,
for theDutchverhogen).Thiswakesupathreadwaiting
in down(), if there are any.

• can also set the initial value of the semaphore

The key parts in down() and up() are atomic
• two down() calls at the same time can’t decrement the

value below 0

Binary semaphore
• value is either 0 or 1
• down() waits for value to become 1, then sets it to 0
• up() sets value to 1, waking up waiting down (if any)

EECS 482 26 Peter M. Chen

Can use semaphores for both types of
synchronization

Mutual exclusion
• initial value of semaphore is 1 (or more generally, N)

down()
<critical section>
up()

• like lock/unlock, but more general
• implement lock as a binary semaphore, initialized to 1

Ordering constraints
• usually (not always) initial value is 0
• e.g. thread A wants to wait for thread B to finish before

continuing

semaphore initialized to 0

A B
down() do task
continue execution up()

Solving producer-consumer with semaphores

Semaphore assignments
• mutex: ensures mutual exclusion around code that

manipulates buffer queue (initialized to 1)
• fullBuffers: countsthenumberof full buffers(initialized

to 0)
• emptyBuffers: counts the number of empty buffers (ini-

tialized to N)

EECS 482 27 Peter M. Chen

Why do we need different semaphores for fullBuffers and
emptyBuffers?

Does the order of the down() function calls matter in the con-
sumer (or the producer)?

Does the order of the up() function calls matter in the con-
sumer (or the producer)?

What (if anything) must change to allow multiple producers
and/or multiple consumers?

What if there’s 1 full buffer, and multiple consumers call
down(fullBuffers) at the same time?

Comparing monitors and semaphores

Semaphores used for both mutual exclusion and ordering con-
straints
• elegant (one mechanism for both purposes)
• code can be hard to read and hard to get right

Monitor lock is just like a binary semaphore that is initialized
to 1
• lock() = down()
• unlock() = up()

Condition variables vs. semaphores

condition variable semaphores

while(cond) {wait()}; down()

conditional code in user pro-
gram

conditionalcodein semaphoredef-
inition

user writes customized condi-
tion

condition specified by semaphore
definition (wait if value == 0)

user provides shared variables,
protect with lock

semaphore provides shared vari-
able(integer)andthread-safeoper-
ations on that integer

no memory of past signals “remembers” past up() calls

EECS 482 28 Peter M. Chen

Condition variables are more flexible than using semaphores
for ordering constraints
• condition variables: can use arbitrary condition to wait
• semaphores: wait if semaphore value == 0

Semaphores work best if the shared integer and waiting condi-
tion (==0) maps naturally to the problem domain

Implementing threads on a uni-processor

So far, we’ve been assuming that we have enough physical
processors to run each thread on its own processor
• but threadsareusefulalsofor runningonauni-processor

(see web server example)
• how to give theillusion of infinite physicalprocessorson

a single processor?

Play analogy

EECS 482 29 Peter M. Chen

Ready threads

What to do with thread while it’s not running
• must save its private state somewhere
• what constitutes private data for a thread?

This informationis calledthethread“context” andis storedin
a “thread control block” when the thread isn’t running
• to save space, share code among all threads
• to save space, don’t copy stack to the thread control

block. Rather, use multiple stacks in the same address
space, and just copy the stack pointer to the thread con-
trol block.

Keep thread control blocks threads that aren’t running on a
queue ofready (but not running) threads
• thread state can now be running (the thread that’s cur-

rently using the CPU), ready (ready to run, but waiting
for the CPU), or blocked (waiting for a signal() or up()
or unlock() from another thread)

Dispatch loop

Main loop of the operating system runs threads
while(1) {

load the context of the next thread
that’s ready to run (from its thread
control block)

run thread

thread returns control to the dispatch loop

save state of thread (into its thread
control block)

choose new thread to run

}

Or can think of it as a dispatch routine that each thread calls
(sometimes involuntarily) to switch to the next thread

EECS 482 30 Peter M. Chen

How to load the context of the next thread to run and run it?

How to get control back to dispatch loop (so system can save
the state of the current thread and run a new thread)?

EECS 482 31 Peter M. Chen

How to save state of the current thread?
• save registers, PC, stack pointer (SP)
• this is very tricky assembly-language code
• why won’t the following code work?

100 save PC (i.e. value 100)
101 switch to next thread

• in Project 1, we’ll use Solaris’s swapcontext()

Choosing the next thread to run

If no ready threads, just loop idly
• loop switches to a thread when one becomes ready

If 1 ready thread, run it

If more than 1 ready thread, choose one to run
• FIFO
• priority queueaccordingto somepriority (moreonthis in

CPU scheduling)

EECS 482 32 Peter M. Chen

Example of thread switching

thread 1
print “start thread 1”
yield()
print “end thread 1”

thread 2
print “start thread 2”
yield()
print “end thread 2”

yield
print “start yield (thread %d)”
switch to next thread (swapcontext)
print “end yield (current thread %d)”

thread 1’s output thread 2’s output
----------------- -----------------

Thread states

3 thread states
• running (is currently using the CPU)
• ready (waiting for the CPU)
• blocked (waiting for some other event, e.g. I/O to com-

plete, another thread to call unlock)

running

blockedready

thread makes I/O
request, or lock,
or wait

I/O finishes, or another
thread calls unlock or signal

thread is
preempted or

calls yield

thread is
scheduled by

dispatch loop

EECS 482 33 Peter M. Chen

Creating a new thread

Overall: create state for thread and add it to the ready queue
• when saving a thread to its thread control block, we

remembered its current state
• wecanconstruct thestateof new threadasif it hadbeen

running and got switched out

Steps
• allocate and initialize new thread control block
• allocate and initialize new stack

allocate memory for stack with C++ new

initialize the stack pointer and PC so that it looks like it
wasgoingto call aspecifiedfunction.This is donewith
makecontext in Project 1.

• add thread to ready queue

Unix’s fork() is related but different. Unix’s fork() creates a
new process (a new thread in a new address space). In
Unix, this new address space is a copy of the creator’s
address space.

thread_create is like an asynchronous procedure call

What if the parent thread wants to do some work in parallel
with child thread, then wait for child thread to finish?

parent call

return

parent create
parent
works

child works

parent create
parent
works

child works

parent
continues

EECS 482 34 Peter M. Chen

Does the following work?
parent() {

thread_create
print “parent works”
print “parent continues”

}

child() {
print “child works”

}

Does the following work?
parent() {

thread_create
print “parent works”
thread_yield
print “parent continues”

}

child() {
print “child works”

}

Does the following work?
parent() {

thread_create
lock
print “parent works”
wait
print “parent continues”
unlock

}

child() {
lock
print “child works”
signal
unlock

}

EECS 482 35 Peter M. Chen

join(): wait for another thread to finish
parent() {

thread_create
lock
print “parent works”
unlock
join
print “parent continues”

}

child() {
lock
print “child works”
unlock

}

Implementing locks— atomicity in the thr ead
library

Concurrent programs use high-level synchronization opera-
tions

Implementing these high-level synchronization operations
• used by multiple threads, so they need to worry about

atomicity (e.g. they use data structures shared across
threads)

• can’t usethehigh-level synchronizationoperationsthem-
selves

low-level atomic operations provided by hardware
(e.g. load/store, interrupt enable/disable, test&set)

high-level synchronization operations provided by
software (e.g. locks, semaphores, monitors)

concurrent programs

EECS 482 36 Peter M. Chen

Use interrupt disable/enable to ensure
atomicity

Onuniprocessor, operationis atomicaslongascontext switch
doesn’t occur in middle of the operation
• how does thread get context switched out?

• prevent context switches at wrong time by preventing
these events

With interrupt disable/enable to ensure atomicity, why do we
need locks?

• user program calls interrupt disable before entering criti-
cal section, calls interrupt enable after leaving critical
section (and makes sure not to call yield in the critical
section)

EECS 482 37 Peter M. Chen

Lock implementation #1 (disable interrupts
with busy waiting)

lock() {
disable interrupts
while (value != FREE) {

enable interrupts
disable interrupts

}
value = BUSY
enable interrupts

}

unlock() {
disable interrupts
value = FREE
enable interrupts

}

Why does lock() disable interrupts in the beginning of the
function?

Why is it ok to disable interrupts in lock()’s critical section (it
wasn’t ok to disable interrupts while user code was run-
ning)?

Do we need to disable interrupts in unlock()?

Why does the body of the while enable, then disable inter-
rupts?

EECS 482 38 Peter M. Chen

Another atomic primitive: read-modify-write
instructions

Interrupt disable works on a uniprocessor by preventing the
current thread from being switched out

But this doesn’t work on a multi-processor
• disabling interrupts on one processor doesn’t prevent

other processors from running
• not acceptable (or provided) to modify interrupt disable

to stop other processors from running

Could use atomic load / atomic store instructions (remember
Too Much Milk solution #3)

Modern processors provide an easier way with atomic read-
modify-write instructions
• atomically{readsvaluefrom memoryinto aregister, then

writes new value to that memory location}

Test & set: atomically writes 1 to a memory location (set) and
returns the value that used to be there (test)

test&set(X) {
tmp = X
X = 1
return(tmp)

}

• note that only 1 process can see a transition from 0 -> 1

Exchange (x86)
• swaps value between register and memory

EECS 482 39 Peter M. Chen

Lock implementation #2 (test&set with busy
waiting)

(value is initially 0)

lock() {
while (test&set(value) == 1) {
}

}

unlock() {
value = 0

}

If lock is free(value= 0), test&setsetsvalueto 1 andreturns0,
so the while loop finishes

If lock is busy (value = 1), test&set doesn’t change the value
and returns 1, so loop continues

Busy waiting

Problem with lock implementation #1 and #2
• waitingthreaduseslotsof CPUtimejustcheckingfor the

lock to become free. This is called “busy waiting”
• better for thread to go to sleep and let other threads run
• strategy for reducing busy-waiting: integrate the lock

implementation with the thread dispatcher data struc-
tures and have lock code manipulate thread queues

EECS 482 40 Peter M. Chen

Lock implementation #3 (interrupt disable,
no busy-waiting)

Waiting thread gives up processor so that other threads (e.g.
the thread with the lock) can run more quickly. Someone
wakes up thread when the lock is free.

lock() {
disable interrupts
if (value == FREE) {

value = BUSY
} else {

add thread to queue of threads waiting for
this lock

switch to next runnablethread
}
enable interrupts

}

unlock() {
disable interrupts
value = FREE
if (any thread is waiting for this lock) {

move waiting thread from waiting queue to
ready queue

value = BUSY
}
enable interrupts

}

This is ahandoff lock
• thread calling unlock() gives lock to the waiting thread

Why have a separate waiting queue? Why not put waiting
thread onto ready queue?

EECS 482 41 Peter M. Chen

Interrupt disable/enable pattern

Whenshouldlock() re-enableinterruptsbeforecallingswitch?

Enable interrupts before adding thread to wait queue?
lock() {

disable interrupts
...
if (lock is busy) {

enable interrupts
add thread to lock wait queue
switch to next runnable thread

}

When could this fail?

Enableinterruptsafteraddingthreadto wait queue,but before
switching to next thread?

lock() {
disable interrupts
...
if (lock is busy) {

add thread to lock wait queue
enable interrupts
switch to next runnable thread

}

But this fails if interrupt happens after thread enable interrupts
• lock() adds thread to wait queue
• lock() enables interrupts
• interruptcausespreemption,i.e.switchto anotherthread.

Preemptionmovesthreadto readyqueue.Now threadis
on two queues (wait and ready)!

Also, switch is likely to be a critical section

Addingthreadto wait queueandswitchingto next threadmust
beatomic

Solution: waiting thread leaves interrupts disabled when it
callsswitch.Next threadto runhastheresponsibilityof re-
enabling interrupts before returning to user code. When
waiting thread wakes up, it returns from switch with inter-
rupts disabled (from the last thread).

EECS 482 42 Peter M. Chen

Invariant
• all threadspromiseto have interruptsdisabledwhenthey

call switch
• all threads promise to re-enable interrupts after they get

returned to from switch
Thread A Thread B

yield() {
disable interrupts
switch

enable interrupts
}
<user code runs>
lock() {

disable interrupts
...
switch

back from switch
enable interrupts

}
<user code runs>
unlock() (move thread

A to ready queue)
yield() {

disable interrupts
switch

back from switch
enable interrupts

}

Lock implementation #4 (test&set, minimal
busy-waiting)

Can’t implementlocksusingtest&setwithoutsomeamountof
busy-waiting, but can minimize it

Idea: use busy waiting only to atomically execute lock code.
Give up CPU if busy.

lock() {
while(test&set(guard)) {
}

if (value == FREE) {
value = BUSY

} else {
add thread to queue of threads waiting for

this lock

switch to next runnablethread
}
guard = 0

}

EECS 482 43 Peter M. Chen

unlock() {
while (test&set(guard)) {
}

value = FREE
if (any thread is waiting for this lock) {

move waiting thread from waiting queue to
ready queue

value = BUSY
}
guard = 0

}

Deadlock

Resources
• something needed by a thread
• a threadwaits for resources
• e.g. locks, disk space, memory, CPU

Deadlock
• a circular waiting for resources, leading to the threads

involved not being able to make progress

Example
thread A thread B
lock(x) lock(y)
lock(y) lock(x)
... ...
unlock(y) unlock(x)
unlock(x) unlock(y)

• can deadlock occur with code?

• will deadlock always occur with this code?

EECS 482 44 Peter M. Chen

General structure of thread code
phase 1. while (not done) {

acquire some resources
work

}
phase 2. release all resources

Assume phase 1 has finite amount of work

Dining philosophers

5 philosophers sitting around a round table, 1 chopstick in
between each pair of philosophers (5 chopsticks total).
Each philosopher needs two chopsticks to eat.

Algorithm for each philosopher
wait for chopstick on right to be free, then

pick it up
wait for chopstick on left to be free, then

pick it up
eat
put both chopsticks down

Can this deadlock?

a

b

cd

e

1 2

3

4

5

EECS 482 45 Peter M. Chen

Conditions for deadlock

Four conditions must all be true for deadlock to occur
• limited resource: not enough resources to serve all

threads simultaneously

• hold and wait: threads hold resources while waiting to
acquire other resources

• no preemption: thread system can’t force thread to give
up resource

• circular chain of requests

Strategies for handling deadlock

3 general strategies
• ignore

• detect and fix

• prevent

Detect and fix
• can detect by looking for cycles in the wait-for graph
• how to fix once detected?

thread A

resource 2resource 1

thread B

EECS 482 46 Peter M. Chen

Deadlock prevention

Idea is to eliminate one of the four necessary conditions
• increase resources to decrease waiting (this minimizes

chance of deadlock)

• eliminate hold and wait
wait until all resources you’ll need are free, then grab
them all at once

this moves all the waiting to the beginning (when you
aren’t holding any resources)

• allow preemption

can preempt CPU by saving its state to thread control
block and resuming later

can preempt memory by swapping memory out to disk
and loading it back later

can we preempt the holding of a lock?

• eliminate circular chain of requests

a

b

cd

e

1 2

3

4

5

EECS 482 47 Peter M. Chen

Banker’s algorithm

Similar to reserving all resources at beginning, but more effi-
cient

State maximum resource needs in advance (but don’t actually
acquiretheresources).Whenthreadlatertriesto acquirea
resource, banker’s algorithm determines when it’s safe to
satisfy the request (and blocks the thread when it’s not
safe).

General structure of thread code
1. state maximum resource needed
2. while (not done) {

acquire some resources
work

}
3. release all resources

Preventing deadlock by requesting all resources at beginning
would block thread in step #1 above (but step #2 can pro-
ceed without waiting)

In banker’salgorithm,step#1providestheinformationneeded
to determinewhenit’ssafeto satisfyeachresourcerequest
in step #2.

“Safe” means guaranteeing the ability for all threads to finish
(no possibility of deadlock)

EECS 482 48 Peter M. Chen

Example: use banker’s algorithm to model a bank loaning
money to its customers

Bank has $6000. Customers sign up with bank and establish a
credit limit (maximum resource needed). They borrow
money in stages (up to their credit limit). When they’re
done, the return all the money.

Solution #1: reserve all resources when customer starts
Ann asks for credit limit of $2000 (bank oks)

Bob asks for credit limit of $4000 (bank oks)

Charlie asks for credit limit of $6000 (bank
must say no, because this could lead to
deadlock)

Solution #2: banker’s algorithm
• bankapprovesall creditlimits, but customermayhaveto

wait when actually asking for the money.

Ann asks for credit limit of $2000 (bank oks)

Bob asks for credit limit of $4000 (bank oks)

Charlie asks for credit limit of $6000 (bank
oks)

Ann takes out $1000 (bank has $5000 left)
Bob takes out $2000 (bank has $3000 left)
Charlie wants to take out $2000. Is this

allowed?

Allow iff, after giving the money, there exists some sequential
orderof fulfilling all maximumresources(worst-caseanal-
ysis)
• if give $2000 to Charlie, bank will have $1000 left
• Ann canfinishevenif shetakesouthermax(i.e.another

$1000). When Ann finishes, she returns her money
(bank will have $2000)

• After Ann finishes, Bob can take out his max (another
$2000), then finish

• Then Charlie can finish, even if he takes out his max
(another $4000).

EECS 482 49 Peter M. Chen

What about this scenario?
Ann asks for credit limit of $2000 (bank oks)

Bob asks for credit limit of $4000 (bank oks)

Charlie asks for credit limit of $6000 (bank
oks)

Ann takes out $1000 (bank has $5000 left)
Bob takes out $2000 (bank has $3000 left)
Charlie wants to take out $2500. Is this

allowed?

Banker allows system to overcommit resources without intro-
ducing the possibility of deadlock. Sum of max resource
needs of all current threads can be greater than total
resources, as long as there’s some way for the all the
threads to finish without getting into deadlock.

How to apply banker’s algorithm to dining philosophers?

Unfortunately, it’s difficult to anticipate maximum resources
needed

CPU scheduling

How shoulddispatchloopchoosenext threadto run?Whatare
the goals of the CPU scheduler?

Minimize average response time
• average elapsed time to do each job

Maximize throughput of entire system
• rate at which jobs complete in the system

Fairness
• share CPU among threads in some “equitable” manner

EECS 482 50 Peter M. Chen

First-come, first-served (FCFS)

FIFO ordering between jobs

No preemption (run until done)
• thread runs until it calls yield() or blocks on I/O
• no timer interrupts

Pros and cons
+ simple
- short jobs get stuck behind long jobs
- what about the user’s interactive experience?

Example
• job A takes 100 seconds
• job B takes 1 second

time 0: job A arrives and starts
time 0+: job B arrives
time 100 job A ends (response time = 100); job

B starts
time 101: job B ends (response time = 101)

average response time = 100.5

Round robin

Goal: improve average response time for short jobs

Solution: periodically preempt all jobs (viz. long-running
ones)

Is FCFS or round robin more “fair”?

Example
• job A takes 100 seconds
• job B takes 1 second
• time slice of 1 second (a job is preempted after running

for 1 second)

time 0: job A arrives and starts
time 0+: job B arrives
time 1: job A is preempted; job B starts
time 2: job B ends (response time = 2)
time 101: job A ends (response time = 101)

average response time = 51.5

EECS 482 51 Peter M. Chen

Does round-robin always achieve lower response time than
FCFS?

Pros and cons
+ good for interactive computing
- round robin has more overhead due to context switches

How to choose time slice?
• big time slice: degrades to FCFS
• small time slice: each context switch wastes some time

• typically a compromise, e.g. 10 milliseconds (ms)
• if context switchtakes.1ms,thenroundrobinwith 10ms

time slice wastes 1% of the CPU

STCF (shortest time to completion first)

STCF: run whatever job has the least amount of work to do
before it finishes (or blocks for an I/O)

STCF-P: preemptive version of STCF
• if anew job arrivesthathaslesswork thanthecurrentjob

has remaining, then preempt the current job in favor of
the new one

Idea is to finish the short jobs first
• improves response time of shorter jobs by a lot
• doesn’t hurt theresponsetimeof longerjobsby toomuch

STCFgivesoptimalresponsetimeamongnon-preemptivepol-
icies

STCF-P gives optimal response time among preemptive poli-
cies (and non-preemptive policies)

I/O
• is the following job a “short” or “long” job?

while(1) {
use CPU for 1 ms
use I/O for 10 ms

}

EECS 482 52 Peter M. Chen

Pros and cons
+ optimal average response time
- unfair. Shortjobscanpreventlong jobsfrom evergetting
any CPU time (starvation)
- needs knowledge of future

STCF and STCF-P need knowledge of future
• it’s often very handy to know the future :-)

• how to find out this information about the future time
required by a job?

Example

job A
compute for 1000 seconds

job B
compute for 1000 seconds

job C
while(1) {

use CPU for 1 ms
use I/O for 10 ms

}

C canuse91%of thediskby itself. A or B caneachuse100%
of the CPU. What happens when we run them together?

Goal: keep both CPU and disk busy

FCFS
• if A or B run before C, they prevent C from issuing its

disk I/O for up to 2000 seconds

EECS 482 53 Peter M. Chen

Round robin with 100 ms time slice
CA---------B---------CA---------B---------...
 |--|

C’s
I/O

• disk is idle most of the time that A and B are running
(about 10 ms disk time every 200 ms)

Round robin with 1 ms time slice
CABABABABABCABABABABABC...

|--------| |--------|
C’s C’s
I/O I/O

• C runs more often, so it can issue its disk I/O almost as
soon as its last disk I/O is done

• disk is utilized almost 90% of the time
• little effect on A or B’s performance
• general principle: first start the things that can run in par-

allel
• problem: lots of context switches (and context switch

overhead)

STCF-P
• runs C as soon as its disk I/O is done (because it has the

shortest next CPU burst)

CA---------CA---------CA--------- ...
 |--------| |--------| |---------|

 C’s C’s C’s
 I/O I/O I/O

EECS 482 54 Peter M. Chen

Real-time scheduling

So far, we’ve focused onaverage-case analysis (average
response time, throughput)

Sometimes, the right goal is to get each job done before its
deadline (irrelevant how much before the deadline the job
completes)
• video or audio output. E.g. NTSC (National Television

Standards Committee) outputs 1 TV frame every 33 ms
• control of physical systems, e.g. auto assembly, nuclear

power plants

This requiresworst-case analysis

How do we do this in real life?

Earliest-deadline first (EDF)

Always run the job that has the earliest deadline (i.e. the dead-
line coming up next)

If a new job arrives with an earlier deadline than the currently
running job, preempt the running job and start the new one

EDFis optimal—itwill meetall deadlinesif it’spossibleto do
so

Example
job A: takes 15 seconds, deadline is 20

seconds after entering system
job B: takes 10 seconds, deadline is 30

seconds after entering system
job C: takes 5 seconds, deadline is 10

seconds after entering system

time--->
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

A +

B +

C +

