
EECS 482 1 Peter M. Chen

Secure communication and computation

Hardware reality: insecure networks
• attacker can eavesdrop on data going over the wire
• attacker can modify data
• attacker can insert new data or messages
• attacker can delete data

• attacker can replay old messages (eavesdrop, then insert
later)

• attacker can spoof identity, by pretending to send a mes-
sage from your IP address

• man-in-the-middleattack:eavesdropanddeletetheorigi-
nal message, insert a new message that pretends to be
from the original sender

Secure communication
• confidentiality:attackershouldnotbeableto understand

data the sender sends
• authentication: assure receiver that the message is from

the right sender
• freshness: attacker should not be able to replay an old

request
• no denial-of-service (we don’t know how to provide this

yet)

Encryption

Encryption is the main tool used to provide secure communi-
cation

Basic idea
• encrypt(clear text, e-key) = cipher text
• decrypt(cipher text, d-key) = clear text

• encrypt and decrypt algorithms are usually public
• shouldn’t beableto deduced-key from (cleartext, cipher

text) pairs

EECS 482 2 Peter M. Chen

Symmetric key encryption

e-key = d-key (i.e. symmetric)
• only senderandreceiverknow thekey (sometimesthis is

called “secret key” encryption)

Analogous to writing data on a floppy and placing the floppy
inside a box with a padlock, then sending the box to the
receiver via an untrusted courier. When the receiver gets
the box and opens it, he/she knows:
• the true sender wrote the data on the floppy (authentica-

tion)
• nobody other than the sender has read the floppy (confi-

dentiality)

Symmetric-key encryption algorithms are fast

E.g. I send message to registrar with a student’s grade
• encrypt(“B”, key)

• can someone modify the message?

How do sender and receiver get a shared secret key in the first
place?

EECS 482 3 Peter M. Chen

Public-key (asymmetric) encryption

e-key != d-key

Typically, encrypt() == decrypt() (we’ll just call it crypt())

• crypt(clear text, e-key) = encrypted-text-1
• crypt(encrypted-text-1, d-key) = clear text
• crypt(clear text, d-key) = encrypted-text-2
• crypt(encrypted-text-2, e-key) = clear text

Note that
• encrypted-text-1 != encrypted-text-2
• crypt(encrypted-text-2, d-key) != clear text
• crypt(encrypted-text-1, e-key) != clear text

e-key is called the “public key”
• everyone knows the value of everyone’s public keys

d-key is called the “private key”
• only the sender knows his/her own private key

Difficult to guessprivatekey, evenif youknow thepublickey,
crypt(), and lots of encrypted pairs

Using public-key encryption to authenticate sender
• “from pmchen” crypt(message, pmchen-private)
• anyone can read this message (no confidentiality)
• only pmchencangeneratethismessage;otherscanverify

that pmchen generated the message by decrypting with
pmchen-public

• why include “from pmchen”

• this is calleda“digital signature”.Candetectany change
to the data.

Using public-key encryption for privacy
• crypt(message, receiver-public)
• anyone can send this message (no authentication)
• only receiver can read it

Using public-key encryption for authentication and privacy
• crypt(“From pmchen” crypt(message, pmchen-private),

receiver-public)
• only receiver can read this; only pmchen can send it
• does the following work?

“From pmchen”
crypt(crypt(message, receiver-public), pmchen-private)

EECS 482 4 Peter M. Chen

Public-key encryption used in
• SSL (secure sockets layer, used in web https)
• ssh (secure shell)
• pgp (secure mail)

Problems with public-key encryption
• more computationally expensive than symmetric-key

encryption. Solve by using public-key to exchange a
short-lived symmetric key (session key)

• how to change my public key?
• how to trust authenticity of published public keys?

E.g. A wants to communicate with B, so A and B must learn
each other’s public keys (A-public and B-public). Villain
has two public keys V-public1 and V-public2.
• whatif villain managesto convinceA thatB’spublickey

is V-public1? And what if villain can convince B that
A’s public key is V-public2?

• A sends signed and sealed message with the wrong key:
crypt(“From A” crypt(message, A-private), V-public1)

How to authenticate the published public key?

pgp: verify the “fingerprint” of a public key via the telephone
or a trusted web server

SSL example: your web browser wants to communicate with
e-trade. You want to ensure that only e-trade can see your
messages; e-trade wants to be sure that you are really who
you say you are.

step 1: assure you that your messages can be read only be e-
trade
• e-trade has public key, but how to learn this securely?
• certification authority (e.g. verisign) vouches for the

authenticity of e-trade’s public key
• e-trade sends you their public key, digitally signed by

verisign: crypt(“e-trade’s public key is X”, verisign-pri-
vate)

• I decrypt with verisign’s public key and see that verisign
is vouching for e-trade’s public key

• onceI havee-trade’spublickey, e-tradeandI cansetupa
shared session key (could be secret key)

• any problem with this?

EECS 482 5 Peter M. Chen

step 2: assure e-trade that you are really who you say you are
• most clients don’t have a certified public key from veri-

sign
• you send your password (encrypted with the secret ses-

sion key)
• e-trade decrypts with your password to verify that this

session key is really from you.

Replay attacks

Example using symmetric-key encryption (same is possible
with public-key encryption)
• I send message to bank using symmetric-key encryption

encrypt(“transfer $100 to U-M”, key)
• evil U-M administrator eavesdrops and saves the

encrypted message, then replays it later. Bank transfers
another $100 to U-M.

How to defend against this attack?

EECS 482 6 Peter M. Chen

How to pick a nonce that doesn’t require anyone to keep any
state (allow only probabilistic guarantee of freshness)?

General security

Hardware reality:
• collection of processor, memory, disks, network inter-

faces that can be used by anyone to do anything
• or couldturn it off, leaving youwith hardwarethatwon’t

do anything for anyone

OS abstraction:controlled access to hardware

What primitives does hardware provide for controlling access?

OS will provide two abstractions on top of these primitives
• identity (authentication): who are you?
• security policy (authorization): what are you allowed to

do?

Hardware already provides these two abstractions in a primi-
tive way:

EECS 482 7 Peter M. Chen

Authentication: who are you?

Authentication is the process of you proving your identity to
the operating system. It may also include the operating
system proving its identity to you.

Many ways to do authentication

Passwords
• a shared secret between the user and the OS
• what happens if villain gains access to the list of pass-

words?

instead of storing the password, the OS can store a one-
way function of the password

• what’s the weakest link in a password system?

Authenticate based on a physical token (that can’t be easily
forged)
• e.g. your ticket to the football game
• but what if your token is stolen?

Authenticate based on both a physical token and a password
• e.g. your ATM card plus your PIN
• PIN is small so it’s easy to remember. Limit guessing by

disabling card after small number of guesses

Authenticate based on biometric token
• e.g. retina, thumbprint, signature

How do companies authenticate customers?

EECS 482 8 Peter M. Chen

Authorization: what can you do?

Access control matrix

Two approaches for how to store this information: access con-
trol lists (ACLs) and capabilities

Access control lists
• at each object, store a list of who can access the object

and in what ways they can access it
• e.g. at file2, store <user1 rw; user2 r>
• on each access, check that the user (whose identity is

authenticatedalogin time)haspermissionsto accessthe
file

• canmake thingsmoreconvenientby having usergroups.
e.g. aprakash, pmchen both belong to the “faculty”
group, and file3 could have ACL <faculty, rw>

• villain canattackACL systemsby fooling thesysteminto
thinking he is someone else. E.g. sendmail runs as root.
Attacker can subvert sendmail and get it to run attack
code. System allows arbitrary access, because the sys-
tem thinks this code is root’s code.

Capabilities
• at each user, store a list of objects the user is allowed to

access and how they are allowed to access it
• e.g. at user2, store <file2 r, file3 rw>
• on each access, check that the user has a capability for

this type of access
• possessionof thecapabilitygivesthepower to accessthe

file
• capabilitiesarelikecarkeys. If youpossessthedoorkey

to a car, you have the power to enter the car. If you pos-
sess the ignition key to a car, you have the power to
drive the car.

• villain can attack a capability system by forging a capa-
bility (especially since capabilities are stored at the
user).

• solution is to make the capabilities self-authenticating
(unforgeable). e.g. the capability might include
encrypt(file name, system key).

How doestheownerof anobjectrevokepermissionsfor auser
in an ACL system?

How doestheownerof anobjectrevokepermissionsfor auser
in a capability system?

file1 file2 file3

user1 rw rw rw

user2 - r rw

EECS 482 9 Peter M. Chen

Principles for secure systems

Least privilege
• only give users the minimal privilege they need to work
• e.g. when running MS Outlook, the attachment viewer

should not have the ability to send out e-mails to every-
one in my address book

Minimize the trusted computing base (TCB)
• in everysystem,somepartis “trusted”.E.g.thecodethat

checks the ACL
• theTCB shouldbeassmallandsimpleaspossible(mini-

mizes bugs and loopholes)
• in current operating systems, the entire kernel is trusted.

A specialuser(rootor administrator)is alsotrusted.PCs
typically trust most users with more privileges.

Defense in depth
• havemultiple levelsof defense,with eachlevel checking

the others. For a villain to break in, they have to break
all levels

• some levels might serve to log the actions of other levels

Common attacks

Hidden channels
• attacker gets the system to communicate information in

ways that the designers didn’t anticipate
• e.g. Tenex thought to be very secure. To demonstrate,

givea “red team”all sourcecodeandanormalaccount.
48 hours later, red team had all passwords!

password checker
for (i=0; i<8; i++) {

if (input[i] != password[i]) {break;}
}

• goal is to force attacker to try 2568 passwords
• how to break this?

• another hidden channel is power consumption

EECS 482 10 Peter M. Chen

Buffer overflow
• program reads input into an on-stack buffer. Program

fails to check the length of that input
• villain can give a long input and corrupt your stack. If

they corrupt the return address on the stack, they can
force the program to jump to their code.

Trojan horse
• give somebody that is apparently useful, but have it do

something evil
• e.g.replacethelogin programto e-mailyourpasswordto

the villain
• e.g.sendsomeoneaWorddocument(or ane-mailattach-

ment) with a macro that runs when the document is
opened (it runs with the user’s identity)

Example

KenThompson(creatorof Unix) wroteaself-replicatingpiece
of attack code

goal: put a backdoor into the login program to allow “ken” to
login as root without knowing password
1. make it possible (easy)
2. hide it (tricky)

Step 1: modify login.c
(code A) if (name == “ken”) login as root

But this is really obvious to anyone looking at login.c How to
hide the attack code?

Step 2: modify C compiler
(code B) if (compiling login.c) compile code A

into binary

Now you can remove code A from login.c, and still have a
backdoor. But this is now obvious in the compiler. How to
hide the compiler attack code?

Step 3: distribute a buggy C compiler binary
(code C) if (compiling C compiler), compile

code B into binary

