
EECS 482 Final (Fall 1998) 1

EECS 482 Final (Fall 1998)

You will have 110 minutes to work on this exam, which is closed book. There are 4 problems
on 14 pages.

Read the entire exam through before you begin working. Work on those problems you find
easiest first. Read each question carefully, and note all that is required of you. Keep your answers
clear and concise, and carefully state all of your assumptions.

You are to abide by the University of Michigan/Engineering honor code. Please sign below to
indicate that you have abided by the honor code on this exam.

Honor code pledge: I have neither given nor received aid on this exam.

Signature:___________________________

Problem 1 ______ out of 30
Problem 2 ______ out of 20
Problem 3 ______ out of 40
Problem 4 ______ out of 10

Total: _______ out of 100

Name:________________________________

Uniqname: ____________________________

EECS 482 Final (Fall 1998) 2

Uniqname:__

1. Security (parts A-C) (approx. 30 minutes)

You are the owner of a bank and would like to increase the security of customer-teller interac-
tions using private-key encryption. Your goal is to assure the teller that the customer at the teller
window is who he/she claims to be, and to assure the customer that the teller is the authentic bank
teller (there’s only one teller). Assume that each customer is given a unique private key, known
only to them and the teller. Everyone carries a calculator to compute encryption and decryption.

Consider the following protocol for authenticating both customer and teller to each other.

Step 1. Customer sends the following message to the teller:
<name>, encrypt(<key>, “I am <name>, <random string>”)

notes:
<name> is the name of the customer
<key> is the private key for this customer
<random string> is a random string generated by the customer
encrypt(<key>, X) means encrypt the text X using the key value<key>

Step 2. Teller receives message and decrypt’s the encrypted part using <name>’s key. Teller
checks that “I am <name>” appears in the decrypted message. If it does not appear,
the teller stops the protocol.

Step 3. Teller sends the following message to the customer (without encryption):
<random string>

Step 4. Customer receives message and checks that the random string received from the teller
is the same random string sent in Step 1.

EECS 482 Final (Fall 1998) 3

Uniqname:__

A. Answer the following questions about the parts of the message in Step 1:

Why must <name> be sent unencrypted?

Why must “I am <name>” be present?

Why must “I am <name>, <random string>” be encrypted?

EECS 482 Final (Fall 1998) 4

Uniqname:__

B. The above protocol doesnot meet its goal of assuring both customer and teller of the
other’s identity. Describe the attack(s) a villain could use to break the protocol. After the protocol
completes, can the teller be sure the customer is who he/she claims to be? Can the customer be
sure the teller is the real teller? Justify your answers (be specific).

EECS 482 Final (Fall 1998) 5

Uniqname:__

C. Fix the protocol so that it does assure both customer and teller of the other’s identity. The
fixed protocol must continue to use only private-key encryption and must use no more than two
messages. Both the teller and the customer may keep additional state, but they should keep as lit-
tle as possible.

EECS 482 Final (Fall 1998) 6

Uniqname:__

2. Remote Procedure Call (approx. 20 minutes)

You have a program that consists of two functions:main andcompute. main callscom-
pute with two parameters. The first argument is a single character; the second argument is a
pointer to a single character. The return value of compute is a single character. Here is the func-
tion prototype for compute:

char compute(char a, char *b);

You would like to modify the program somain andcompute run on separate computers.
You will use RPC to hide the fact that the program is running on two computers.

Your job for this question is to write (in C) the client-side and server-side RPC stub functions
for compute. Assume the two computers are already connected via TCP sockets (the socket
number on both client and server issock). Assume the two computers are both Sun workstations.
Your functions should be as simple as possible (don’t worry about performance).

Usesend andrecv to communicate (you may assumesend andrecv will not return an
error). Here are the function prototypes forsend andrecv (flags should be 0).

int send(int s, const char *msg, int len, int flags);
int recv(int s, char *buf, int len, int flags);

EECS 482 Final (Fall 1998) 7

Uniqname:__

Client-side stub function:

Server-side stub function:

EECS 482 Final (Fall 1998) 8

Uniqname:__

3. File Systems (parts A-E) (approx. 40 minutes)

Your job is to write a file system for a magnetic tape drive. The block size of the tape is 256
bytes. The tape drive supports the following operations:

• Seek: Seek moves the tape to a new position and must be used before every non-sequential
access. All seeks take 10 seconds. Seeking beyond the current end of the tape will return an
end-of-tape error.

• Read: Once the tape is at the right position, it can be read at a transfer rate of 1 MB/s. Reading
beyond the current end of the tape will return an end-of-tape error.

• Append: The only way to write new data to the tape is by adding data to the end of the tape.
Data can be written at 1 MB/s.

The file system you wish to store on this device has the following characteristics:

• The maximum file size is 12 KB. The file system has a fixed number of files (216), all of which
are initially zero-length. Files are named by a number between 0 and 216-1.

• The file system supports the following operations: (1) read an existing block of a file, (2) mod-
ify an existing block of a file, (3) append a block to a file. Keep only the metadata you need to
support these operations. Assume the computer has enough memory to cache all metadata.

• Reads and modifies show no temporal or spatial locality.

• Performance is the most important metric; you can assume that the workload will never fill the
tape.

• The file system may not lose data on a crash, but the speed of post-crash recovery is of no con-
cern. Assume that individual block writes are atomic, and that physical memory is lost on a
crash.

Answer the following questions about your file system. Justify all your answers. Read the
entire question before you answer any portion. You may find it helpful to use your answers for
earlier parts of the question as components to answers of later parts.

EECS 482 Final (Fall 1998) 9

Uniqname:__

A. Consider the initial state where all files are zero-length. Suppose the machine crashes
before appending to any files. Describe the contents of the tape and the recovery process.

B. What allocation scheme does your file system use, and why? Hint: remember the alloca-
tion schemes we covered in class (contiguous, indexed, multi-level indexed). Describe the struc-
ture of a single file header. How many blocks are required to store the file header for a maximum-
size file?

EECS 482 Final (Fall 1998) 10

Uniqname:__

C. Suppose your file system is in the initial state (where all files are zero-length). Now, a user
requests a one-block append to one of the files. What, exactly, must be written to the tape, and in
what order? Suppose the system crashes any time during or after this operation, but before the
next operation begins. Describe the recovery process for each possible case.

EECS 482 Final (Fall 1998) 11

Uniqname:__

D. Consider the case where N operations—a mix of reads, appends, and modifications—have
occured without an intervening crash. Suppose the next operation is a read. How is it satisfied?

E. Consider the case where N operations—a mix of reads, appends, and modifies—have
occurred without an intervening crash. Suppose the next operation is a modification. How is it sat-
isfied? Suppose the machine crashes at any point during this operation, but before the next one
begins. Describe the recovery process for each possible case.

EECS 482 Final (Fall 1998) 12

Uniqname:__

4. Systems Programming (approx. 10 minutes)

You want to add round-robin scheduling (with a quanta of 2 ms) to your Project 1 thread
library. To do this, you start by calling setitimer. Write the code you would add to your thread
library to cause a SIGALRM every 2 ms. We will grade both the correctness and the quality of
your code. Comments will not be graded but may help us understand your code. The manual
pages for the setitimer and gettimeofday library calls are included for your informa-
tion.

EECS 482 Final (Fall 1998) 13

Uniqname:__

NAME
 getitimer, setitimer - get or set value of interval timer

SYNOPSIS
 #include <sys/time.h>

 int getitimer(int which, struct itimerval *value);

 int setitimer(int which, const struct itimerval *value,
 struct itimerval *ovalue);

DESCRIPTION
 The system provides each process with two interval timers,
 defined in sys/time.h. The getitimer() function stores the
 current value of the timer specified by which into the
 structure pointed to by value. The setitimer() call sets
 the value of the timer specified by which to the value
 specified in the structure pointed to by value, and if
 ovalue is not NULL, stores the previous value of the timer
 in the structure pointed to by ovalue.

 A timer value is defined by the itimerval structure (see
 gettimeofday(3C) for the definition of timeval), which
 includes the following members:

 struct timeval it_interval; /* timer interval */
 struct timeval it_value; /* current value */

 The it_value member indicates the time to the next timer
 expiration. The it_interval member specifies a value to be
 used in reloading it_value when the timer expires. Setting
 it_value to 0 disables a timer, regardless of the value of
 it_interval. Setting it_interval to 0 disables a timer
 after its next expiration (assuming it_value is non-zero).

The two timers are:
 ITIMER_REAL Decrements in real time. A SIGALRM
 signal is delivered when this timer
 expires.

 ITIMER_VIRTUAL Decrements in process virtual time.
 It runs only when the process is exe-
 cuting. A SIGVTALRM signal is
 delivered when it expires

RETURN VALUES
 If the calls succeed, 0 is returned. If an error occurs, -1
 is returned, and an error code is placed in the global vari-
 able errno.

ERRORS
 The getitimer() and setitimer() functions will fail if:

 EINVAL The specified number of seconds is greater
 than 100,000,000, the number of microseconds
 is greater than or equal to 1,000,000, or the
 which argument is unrecognized.

 EACCES Either an unbound Solaris thread or a POSIX
 thread in local scheduling scope with a flag
 other than ITIMER_REAL called setitimer().

EECS 482 Final (Fall 1998) 14

Uniqname:__

NAME
 gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
 #include <sys/time.h>

 int gettimeofday(struct timeval *tp, void *);

 int settimeofday(struct timeval *tp, void *);

DESCRIPTION
 The gettimeofday() function gets and the settimeofday()
 function sets the system’s notion of the current time. The
 current time is expressed in elapsed seconds and
 microseconds since 00:00 Universal Coordinated Time, January
 1, 1970. The resolution of the system clock is hardware
 dependent; the time may be updated continuously or in clock
 ticks.

 The tp argument points to a timeval structure, which
 includes the following members:

 long tv_sec; /* seconds since Jan. 1, 1970 */
 long tv_usec; /* and microseconds */

 If tp is a null pointer, the current time information is not
 returned or set.

 The second argument to gettimeofday() and settimeofday()
 should be a NULL pointer.

 Only the super-user may set the time of day.

RETURN VALUES
 A -1 return value indicates that an error occurred and errno
 has been set.

ERRORS
 The following error codes may be set in errno:

 EINVAL tp specifies an invalid time.

 EPERM A user other than the privileged user
 attempted to set the time or time zone.

