
EECS 482 1 Peter M. Chen

Address spaces and memory management

Review of processes
• process = one or more threads in an address space
• thread: stream of execution

unit of concurrency
• address space: memory space that threads use

unit of data

Address space abstraction
• address space: all the data the process can use as it runs.

Includes program code, stack, data segment

• hardware interface (physical reality): one memory of
small size, shared between processes

• application interface (abstraction provided by OS): each
process has its own memory, as large as the virtual
address space

Illusions provided by address spaces
• addressindependence:samenumericaddresscanbeused

in different address spaces (i.e. different processes), yet
remain logically distinct

• virtual memory: an address space can be larger than the
amount of physical memory on the machine

• protection: one address spaces can’t access data in
another address space (actually controlled sharing)

Uni-programming

1 process runs at a time (viz. one process occupies memory at
a time)

Always load process into the same spot in memory (and
reserve some space for the OS)

fffff (high memory)
 .
 . operating system
 .
80000
7ffff
 .
 . user process
 .
00000 (low memory)

Achievesaddressindependenceby alwaysloadingprocessinto
same physical memory location

Problems with uni-programming?



EECS 482 2 Peter M. Chen

Multi-programming and address translation

Multi-programming: more than 1 process is in memory at a
time
• need to support address translation
• need to support protection

Must translateaddressesissuedby aprocesssothey don’t con-
flict with addresses issued by other processes
• static address translation: translate addresses before exe-

cution (translation remains constant during execution)
• dynamic address translation: translate addresses during

execution (translation may change during execution)

Is it possibleto runtwo processesat thesametime(botharein
memory) and provide address independence with only
static address translation?

Does this achieve the other address space abstractions?

Achieving all the address space abstractions requires doing
some work on every memory reference



EECS 482 3 Peter M. Chen

Dynamic address translation

Translate every memory reference from virtual address to
physical address
• virtual address: an address viewed by the user process

(the abstraction provided by the OS)
• physical address: an address viewed by the physical

memory

Translation enforces protection
• one process can’t even refer to another process’s address

space

Translation enables virtual memory
• a virtual address only needs to be in physical memory

when it’s being accessed
• change translations on the fly as different virtual

addresses occupy physical memory

Many ways to implement translator

Does dynamic address translation require hardware support?

Address translation

Lots of ways to implement the translator. Remember big pic-
ture:

Tradeoffs:
• flexibility (e.g. sharing, growth, virtual memory)
• size of translation data
• speed of translation

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address



EECS 482 4 Peter M. Chen

Base & bounds

Load each process into contiguous regions of physical mem-
ory, prevent each process from accessing data outside its
region

if (virtual address > bound) {
kill process (core dump)

} else {
physical address = virtual address + base

}

Process has illusion of running on its own dedicated machine,
with memory [0, bound)

This is similar to linker-loader, but also protect processes from
each other.

As with all translation data, only kernel can change base and
bounds

During context switch, must change all translation data (base
and bounds registers)

What to do when address space grows?

Low hardware cost (2 registers, adder, comparator), low over-
head (add and compare on each memory reference)

virtual
memory

0

bound

physical
memory

0

physical memory size

base + bound

base



EECS 482 5 Peter M. Chen

Hard for a single address space to be larger than physical
memory

But sumof all addressspacescanbelargerthanphysicalmem-
ory
• swap an entire address space out to disk, swap address

space for new process in

Can’t share part of an address space between processes

External fragmentation
• processes come and go, leaving a mishmash of available

memory regions

process 1 start:100 KB (phys. mem. 0-99 KB)
process 2 start:200 KB (phys. mem. 100-299 KB)
process 3 start:300 KB (phys. mem. 300-599 KB)
process 4 start:400 KB (phys. mem. 600-999 KB)

process 3 exits (frees phys. mem. 300-599 KB)
process 5 start:100 KB (phys. mem. 300-399 KB)
process 1 exits (frees phys. mem. 0-99 KB)
process 6 start:300 KB

300 KB are free (400-599 KB; 0-99 KB), but
not contiguous

• this is called “external fragmentation”: wasted memory
between allocated regions. Can waste lots of memory.

Allocation strategies to minimize external fragmentation
• best fit: allocate the smallest memory region that can sat-

isfy the request (least amount of wasted space)
• first fit: allocatethememoryregionthatyoufind first that

can satisfy the request
• in worst case, must re-allocate existing memory regions

(by copying them to another area)

virtual
memory

physical
memory

0code

data

code

code

data (P1)

virtual address
(process 1)

virtual
memory

code

data

code

virtual address
(process 2)

data (P2)



EECS 482 6 Peter M. Chen

Hard to grow address space
• might have to move to different region of physical mem-

ory (which is slow)
• whatpartsof theaddressspacemightgrow astheprocess

runs?



EECS 482 7 Peter M. Chen

Segmentation

Segment: a region of contiguous memory

Base & bounds used a single segment. Let’s generalize this to
allow multiple segments, described by a table of base &
bound pairs.

In segmentation, a virtual address takes the form:
(virtual segment #, offset)
• could specify virtual segment # via the high bits of the

address, or via a special register, or implicit to the
instruction opcode

segment # base bound description

0 4000 700 code segment

1 0 500 data segment

2 unused

3 2000 1000 stack segment

virtual
memory

0

4ff

physical
memory

2fff

2000
segment 1

virtual
memory

0

fff segment 3

stack

stack

data

0

4ff
data

virtual
memory

0

6ff
segment 0

code

code
4000

46ff



EECS 482 8 Peter M. Chen

Note that not all virtual addresses arevalid
• e.g.novalid datain segment2; novalid datain segment1

above 4ff
• valid means the region is part of the process’s virtual

address space. Invalid means this virtual address is ille-
gal for theprocessto access(andwill causeacoredump
if accessed).

• possible to deliberately allow invalid addresses to auto-
maticallyextendtheaddressspace(e.g.in Unix, access-
ing invalid stack address right above stack bound will
trap to the kernel and automatically increase the stack
size).

Protection: different segments can have different protection
• e.g.codecanberead-only(allows instructionfetch,load)
• e.g. data is read/write (allows fetch, load, store)
• in contrast, base&bounds gives same protection to entire

address space

What must be changed on a context switch?

Pros and cons
+ works well for sparse address spaces (with big gaps of
invalid areas)

+ easy to share whole segments without sharing entire
address space

- complex memory allocation

Can a single address space be larger than physical memory?

How to make memory allocation easy and allow an address
space easily be larger than physical memory?



EECS 482 9 Peter M. Chen

Paging

Allocate physical memory in terms offixed-size chunks of
memory (called pages)
• fixed unit makes it easier to allocate
• any free physical page can store any virtual page

Virtual address
• virtual page # (high bits of address, e.g. bits 31-12)
• offset (low bits of address, e.g. bits 11-0 for 4 KB page)

Translation data is the page table data

Translation process
if (virtual page is invalid) {

trap to OS fault handler
} else {

physical page # = pageTable[virtual page #]
.physPageNum

}

What must be changed on a context switch?

Each virtual page can be in physical memory or paged out to
disk (just like segments could be “swapped” out to disk)

virtual page # physical page #

0 10

1 15

2 20

3 invalid

... invalid

1048575 invalid



EECS 482 10 Peter M. Chen

How does processor know that virtual page is not in physical
memory?

Like segments, pages can have different protections
• e.g. read, write, execute

Valid vs. resident

Residentmeansavirtual pageis in memory. It is NOT anerror
for a program to access a non-resident page

Valid means a virtual page is not currently legal for the pro-
gram to access

Who makes a virtual page resident/non-resident?

Who makes a virtual page valid/invalid?

Why would a process want one of its virtual pages to be
invalid?



EECS 482 11 Peter M. Chen

Page size

What happens if page size is small?

What happensif page size is really big?

Could we use a large page size but let other processes use the
leftover space in the page?

Page size is typically a compromise, e.g. 4 KB or 8 KB

Fixed vs. variable size partitions
• fixed size (pages) must be compromise (e.g. 4 or 8 KB).

Too small a size leads to a large translation table, while
too large a size leads to internal fragmentation

• variable size (segments) can adapt to the need, but it’s
hard to pack these variable size partitions into physical
memory (leading to external fragmentation)

What happens to paging if the virtual address space is sparse
(most of the address space is invalid, with scattered valid
regions)?

Paging pros and cons
+ simple memory allocation
+ can share lots of small pieces of an address space

+ easy to grow the address space. Simply add a virtual
pageto thepagetable,andfind afreephysicalpageto hold
the virtual page before accessing it.

- big page tables



EECS 482 12 Peter M. Chen

Comparing basic translation schemes
• base&bound: unit of translation (and swapping) is an

entire address space
• segments:unit of translation(andswapping)is asegment

(a few large, variable-sized segments per address space)
• page:unit of translation(andswapping/paging)is apage

(lots of small, fixed-sized pages per address space)

How to modify paging to take less space?

Multi-level translation

Standard page table is a simple array (one degree of indirec-
tion). Multi-level translation changes this into a tree (mul-
tiple degrees of indirection).

E.g. two-level page table
• index into thelevel 1 pagetableusingvirtual addressbits

31-22
• index into thelevel 2 pagetableusingvirtual addressbits

21-12
• page offset: bits 11-0 (4 KB page)

What information is stored in the level 1 page table?

What information is stored in the level 2 page table?



EECS 482 13 Peter M. Chen

This is a two-level tree

How does this allow the translation data to take less space?

How to use share memory when using multi-level page tables?

What must be changed on a context switch?

Another alternative: use segments in place of the level-1 page
table. This uses pages on level 2 (i.e. break each segment
into pages)

level 1 0 1 3

level 2

page table

page tables

virtual
address
bits 21-

12

physical
page #

0 10

1 15

2 20

3 2

virtual
address
bits 21-

12

physical
page #

0 30

1 4

2 8

3 3

NULL

2

NULL



EECS 482 14 Peter M. Chen

Pros and cons
+ space-efficient for sparse address spaces
+ easy memory allocation
+ lots of ways to share memory
- two extra lookups per memory reference

Translation lookaside buffer (TLB)

Translation when using paging involves 1 or more additional
memory references. How to speed up the translation pro-
cess?

TLB caches translation from virtual page # to physical page #
(TLB conceptually caches the entire page table entry, e.g.
dirty bit, reference bit, protection)

If TLB contains the entry you’re looking for, can skip all the
translation steps above

On TLB miss, figure out the translation by getting the user’s
page table entry, store in the TLB, then restart the instruc-
tion.

Does this change what happens on a context switch?



EECS 482 15 Peter M. Chen

Replacement

One design dimension in virtual memory (and any cache) is
which page to replace (i.e. evict) when you need a free
page

Goal is to reduce the number of page faults

Random replacement
• easy to implement, but poor results

FIFO
• replace the page that was brought into memory the long-

est time ago
• unfortunately, this can replace popular pages that are

brought into memory a long time ago (and used fre-
quently since then)

OPT
• replace the page that won’t be used for the longest time
• this yields the minimum number of misses, but requires

knowledge of the future

LRU (least recently used)
• use past references to predict the future (temporal local-

ity)
• if a page hasn’t been used for a long time, it probably

won’t be used again for a long time
• this yields low miss rate (similar to OPT), but is hard to

implement exactly

• LRU is an approximation to OPT. Can we approximate
LRU to make it easier to implement without increasing
miss rate by too much? Basic idea is to replace an old
page (not necessarily the oldest page).



EECS 482 16 Peter M. Chen

Clock

MostMMUs maintain“referenced”bit for eachresidentpage,
which is set automatically when the page is referenced.
Reference bit can be cleared by OS.

Why is hardwaresupportneededto maintainthereferencebit?

How can you identify an “old” page?

Try to do this work incrementally (rather than all at once)

To find a page to evict:
• look at page being pointed to by clock hand
• reference=0 means page hasn’t been accessed in a long

time (since last sweep), so this is your victim.
• reference=1 means page has been accessed since your

last sweep. What to do?

Can this infinite loop? What if it finds all pages referenced
since the last sweep?

New pages are put behind the clock hand, with reference=1

A

BF

CE

D



EECS 482 17 Peter M. Chen

Pageout

What to do with page when it’s evicted?

Why not write pages to disk on every store?

While evicted page is being written to disk, the page being
brought into memory must wait
• may be able to reduce total work by giving preference to

dirty pages (e.g. could evict clean pages before dirty
pages)

• if system is idle, might spend time profitably by writing
back dirty pages



EECS 482 18 Peter M. Chen

Page table contents

Data stored in the hardware page table
• residentbit: trueif thevirtual pageis in physicalmemory
• physical page # (if in physical memory)
• dirty bit: set by MMU when page is written
• reference bit: set by MMU when page is read or written
• protection bits (readable, writable): set by operating sys-

tem to control access to page. Checked by hardware on
each access.

MMU (memory management unit) of the CPU is responsible
for checking if the page is resident, checking if the page
protections allow this access, and setting the dirty/refer-
ence bits
• if page is resident and access is allowed, then MMU

translates the virtual address into a physical address
(usinginfo from theTLB andpagetable)andissuesthe
physical memory address to the memory controller

• if page is not resident, or protection bits disallow the
access, the MMU generates an exception (page fault)

Operating system maintains additional information for each
virtual page
• disk block # (if on disk)
• which virtual pages are valid

Do we really need hardware to maintain a “dirty” bit?

How to reduce # of faults required to do this?

Do we really need hardware to maintain a “reference” bit?



EECS 482 19 Peter M. Chen

Kernel vs. user mode

Who sets up the data used by translator?

Kernelis allowedto modify any memory(includingtranslation
tables)

How can kernel refer to translation table? Translation table is
not really in any process’s address space. It is often in
physical (i.e. untranslated) memory.
• kernel can issue untranslated addresses (i.e. bypass the

translator)
• kernel can map physical memory into a portion of its

address space

How does machine know that the kernel is running?
• machine must know to allow kernel to bypass translator,

and to allow kernel to execute privileged instructions
(e.g. halt, I/O)

• needhardwaresupport:two processormodes(kerneland
user)

How have we handled the problem of protection so far?
• implement protection by translating all addresses. But

who can modify data used by translator?
• only kernel can modify translator’s data, but how does

processor know if kernel is running?
• modebit distinguishesbetweenkernelanduser. But who

is allowed to modify mode bit?



EECS 482 20 Peter M. Chen

Switching from user process into kernel

What causes a switch from a user process into the kernel?

Sequence of events that take place when C++ program calls
cin
• C++ code calls cin
• cin is a standard library function that calls read()
• read() is a standard library function that executes the

assembly-language instruction “syscall”, with parame-
ters (SYS_read, file number, size) in registers or on the
stack

• whenprocessorexecutes“syscall” instruction, it traps
to the kernel at a pre-specified location

• kernel syscall handler receives the trap, and calls the ker-
nel’s read() function

Details of what happens when trapping to kernel
• set processor mode bit to kernel
• save current registers (SP, PC, general purpose registers)
• set SP to the kernel’s stack
• change address spaces to the kernel’s address space (by

changing some data used by the translator)
• jump to kernel exception handler

Does this look familiar?

How does processor know exception handler’s address?



EECS 482 21 Peter M. Chen

Passing arguments to system call (and getting return values)
• canstoreargumentsin registersor memory(accordingto

agreed-upon convention)
• if passargumentsvia memory, whichaddressspaceholds

the arguments?

• how does kernel access user’s address space?

• kernel cannot assume arguments are valid. It must be
paranoid and check them all. Otherwise process could
crash kernel with bogus arguments.

Process creation

Steps in creating and starting a process
• allocate process control block
• read code from disk and store into memory
• initialize machine registers
• initialize translator data, e.g. page table and PTBR
• set processor mode bit to “user”
• jump to start of program

Need hardware support for last few steps
• otherwise processor executing in user mode can’t access

the kernel’s jump instruction

Switching from kernel to user process (e.g. after a system call
completes) is the same as last 4 steps above



EECS 482 22 Peter M. Chen

Multi-process issues

How to allocate physical memory between processes?
• resource allocation is an issue whenever sharing a single

resource among multiple users (e.g. CPU scheduling)
• often a tradeoff between globally optimal (best overall

performance) and fairness

Global vs. local replacement policy
• global replacement: consider all pages equally when

looking for a page to evict
• local replacement: only consider pages belonging to the

process needing a new page when looking for a page to
evict. But how to set the # of pages assigned to a pro-
cess?

• generally, global has lower overall miss rate, but local is
more “fair”

Thrashing

What would happen with lots of big processes, all actively
using lots of virtual memory?

Usually, performance degrades rapidly as you go from having
all programs fit in memory to not quite fitting in memory.
This is called “thrashing”.

Average access time = hit rate * hit time + miss rate * miss
time
• e.g. hit time = .0001 ms, miss time = 10 ms
• 100% hit rate: average access time is .0001 ms
• 99% hit rate:

• 90% hit rate:

Solutions to thrashing
• if a single process is actively using more pages than can

fit, there’snosolution—thatprocess(at least)will thrash
• if problem is caused by the combination of several pro-

cesses, can alleviate thrashing by swapping all pages of
a process out to disk. That process won’t run at all, but
other processes will run much faster. Overall perfor-
mance improves.



EECS 482 23 Peter M. Chen

Working set

What’s meant by a process “actively using” a lot of virtual
pages?

Working set: all pages used in last T seconds (or T instruc-
tions)
• larger working set ==> process needs more physical

memory to run well (i.e. avoid thrashing)

Sum of all working sets should fit in memory, otherwise sys-
tem will thrash
• only run a set of processes whose working sets all fit in

memory (this is called a “balance set”)

How to pick T? What does larger T mean?

How to measure the size of a process’s working set?



EECS 482 24 Peter M. Chen

Examples of process creation

Unix separates process creation into two steps
• Unix fork: create a new process (with one thread).

Address space of new (child) process is acopy of the
parent process

• Unix exec: overlay the new process’s address space with
the specified program and jump to its starting PC (this
loads the new program)

E.g. parent process wants to fork a child to do a task. Any
problem with having the new process be an exact copy of
the parent?

Why does Unix fork copy the parent’s entire address space,
just to throw it out and start with the new address space?
• Unix providesthesemantic of copying theparent’sentire

address space, but does notphysically copy the data
until needed

• separating fork and exec gives maximum flexibility for
the parent process to pass information to the child

• common special case: fork a new process that runs the
same code as parent.

Alternative: Windows creates new processes with a single call
(CreateProcess)
• Unix’s approach gives the flexibility of sharing arbitrary

data with child process
• Window’sapproachallowstheprogramto sharethemost

common data via parameters



EECS 482 25 Peter M. Chen

Implementing a shell

Shellprovidestheuserinterface(sh,csh,tcsh,bash,zsh,etc.).
Windows Explorer is similar.
• lookslikepartof theoperatingsystem,but wenow know

enough to write a shell as a standard user program

How to write a shell?


