
EECS 482 1 Peter M. Chen

I/O and file systems

WhatabstractionsdoestheOSprovideaboveI/O devices(viz.
disks)?

Device independence

Problem: lots of different brands of disks, disk interfaces, and
disk controllers, each with their own custom control inter-
face. Same is true of any I/O device (network card, video
card, keyboard, mouse, etc.)

Add a “device driver” layer to hide this diversity/complexity

An abstraction makes things “better” for things that use the
abstraction
• threads: user doesn’t have to worry about sharing CPU
• addresses spaces: user doesn’t have to worry about shar-

ing physical memory (or physical memory size)
• TCP:userdoesn’t have to worry abouttheunreliablenet-

work
• device drivers: frees the user (the rest of the OS) from

worrying about differences in devices (e.g. the device
registers used to control the device)

millions of hardware devices

device drivers

rest of operating system

virtual interface

physical interface

EECS 482 2 Peter M. Chen

Byte-oriented access -> block-oriented access

Disks are accessed in terms of blocks (sectors), e.g. 512 bytes

But programs deal in bytes

How to read less than a block

How to write less than a block

Disk geometry and access

Disk geometry

• disk is made of a stack of spinningplatters
• the top and bottom surface of each platter has concentric

circles of data (calledtracks). The set of tracks at the
same radial distance is called acylinder.

• each track is made of a number ofsectors

Accessing a disk
• queueing time (wait for disk to be free): 0-infinity
• position disk arm and head (seek and rotate): 0-12 ms
• access disk data: size/transfer rate (e.g. disk transfer rate

of 49 MB/s on Seagate Barracuda 1181677LW)

Inner Track
Outer Track

Sector

Actuator

Head

Platter

Arm

EECS 482 3 Peter M. Chen

Optimizing disk performance

Disk is slow!

Best option is to eliminate the disk I/O (e.g. via file caching)

If you do have to go to disk, try to keep positioning time small

If youdohave to re-position,try to getlotsof datato amortize
the positioning overhead

efficiency = transfer time /
(positioning time + transfer time)

e.g. on Seagate Barracuda 1181677LW,
transferring 300 KB takes 6 ms
(50% efficiency)

Reducing positioning time

Optimize when writing data to disk
• placeitemsthatwill beaccessedtogetherneareachother

on disk

• how to know in advance that two items will be accessed
together?

Optimize when reading data from disk (minimize positioning
time at time of access, rather than at time of creation)

EECS 482 4 Peter M. Chen

Disk scheduling

Re-orderasetof diskaccessesto decreasethetotalpositioning
time
• can be implemented in the OS, or in the disk hardware

FCFS (first come, first served)
• e.g. (start at track 53): 98, 183, 37, 122, 14, 124, 65, 67
• total head movement: 640 tracks (average 80 per seek)

SSTF (shortest seek time first)
• e.g. 53->65->67->37->14->98->122->124->183
• total head movement: 236 tracks (average 30 per seek)

• any problems with SSTF?

SCAN: sweep the disk from one end to the other, then back
again (sometimes called “Elevator algorithms”)

• e.g. 53->37->14->65->67->98->122->124->183
• total head movement: 208 tracks (average 26 per seek)

Variants of SCAN
• C-SCAN: always sweep the disk from beginning to end,

then seek all the way back to the beginning and repeat.

• LOOK, C-LOOK: whensweepingtowardtheend,stopif
there are no requests beyond the current point.

Disk schedulingonly improvespositioningtimewith multiple
outstanding requests (otherwise service the sole request)

EECS 482 5 Peter M. Chen

File systems

A file system is an OS abstraction to make the disk easier to
use

How to map file space onto disk space?
• file system structure on disk; disk allocation
• this will be similar to issues in memory management

How to use symbolic (english) names instead of disk sectors?
• naming; directories
• noequivalentissuein memorymanagement,becausethe

virtual and physical address spaces used the same type
of “names” (i.e. addresses)

File system structure

Overall question: how to organize files on disk
• what data structure is the right one to use when storing a

file on disk?

Need an initial structure that describes the object
• this is a “file header”; called an inode (index node) in

Unix
• file headeralsocontainsmiscellaneousinformationabout

the file, e.g. file size, modification date, permissions

Many ways to organize data on disk

Usage patterns guide our design choices
• 80% of file accesses are reads
• most programs that access a file sequentially access the

whole file (the alternative is random access)

• most files are small; most bytes on disk are from large
files

disk

file system

user

virtual interface

physical interface

EECS 482 6 Peter M. Chen

Contiguous allocation

Store a file in one contiguous segment on disk (sometimes
called an “extent”)

User must declare the size of the file in advance

Use some kind of fitting algorithm (e.g. first fit, best fit) to
locate an area of disk that can store the file

File header is very simple: starting block #, file size

Equivalent to base & bounds for memory management

Pros and cons
+ fast sequential access (no seeks between consecutive
disk blocks)

+ easy random access (can easily calculate the disk loca-
tion of any file block)

- external fragmentation

- wastes space if user declares a bigger size

- hard to grow files

Indexed files

User (or system) declares max # of blocks in file; system allo-
cates a file header with an array of pointers big enough to
point to that number of blocks

File header

Equivalent to a page table for memory management

Pros and cons
+ caneasilygrow file up to the# of blocksallocatedin file
header
+ easy random access
- how to grow file bigger than initially allocated in the file
header?

- lots of seeks for sequential access

file block# disk block #

0 18

1 50

2 8

3 15

EECS 482 7 Peter M. Chen

Multi-le vel indexed files

Indexed files are like a shallow tree

Could change this to a multi-level tree

This allows really big files without wasting header space for
small files

How many accesses to get 1 block of data?

• how to solve?

Non-uniform depth multi-level indexed files

disk
block
18

disk
block
50

disk
block
8

disk
block
15

disk
block
18

disk
block
50

disk
block
8

disk
block
15

level 2

level 1
node

node
level 2
node ...

disk
block
8

disk
block
15

disk
block
75

disk
block
40

level 2

level 1
node

node
disk
block
18

disk
block
50

EECS 482 8 Peter M. Chen

Pros and cons
+ files can easily expand
+ small files don’t pay full overhead of deep trees
- lots of indirect blocks for big files
- lots of seeks for sequential access

How to reduce seeks for sequential access, and still avoid
needing to pre-allocate a contiguous segment?

Naming

How to specify which file you want to access?
• eventually, OS must find out which file header you want

(viz. the disk location of the file header)

Typically, the user provides a symbolic name (e.g. english
name, icon); OS translates name to a numeric file header
(or disk location of the file header)
• alternative is to describe the contents of the file, have the

OS find the name by looking through the files for that
content. This is usually done by databases on top of file
systems.

Lots of ways to translate from symbolic name to file header’s
disk block #
• e.g. hash table, expandable array, etc.
• the data structure that does the mapping is called adirec-

tory

EECS 482 9 Peter M. Chen

Directories

A directory contains a mapping for all files in that directory
• name => file header’s disk block # for that file
• often a simple array of (name, file header’s disk block #)

entries
• this table is stored in a normal file as normal data. E.g.

“ls” canbeimplementedby readingthisfile andparsing
its contents.

Directories are typically organized into hierarchical structure
• directoryA hasamappingfor abunchof files and direc-

tories in directory A

E.g. /pmchen/482/names

/ is root directory
• contains a list of files and other directories
• for each file/directory in /, / has a mapping from name to

file header’s disk block #
• one of these entries is “pmchen”

pmchen is a directory entry within the / directory
• contains a list of files and directories
• one of the directories in /pmchen is 482

/pmchen/482 is a directory within the /pmchen directory
• contains a list of files and other directories
• one of the files it lists is “names”

How many disk I/Os to access the first byte of /pmchen/482/
names?

EECS 482 10 Peter M. Chen

Current working directory: a shortcut for the user and the sys-
tem
• cache the file header # for the “current” directory
• allowsauserto specifyafile namerelative to thecurrent

directory
• allows the system to access a file without traversing the

entire directory from /

Reducing positioning overhead by taking advantage of usage
patterns

Combining (mounting) multiple disks into a
single file system

Each disk has a file system
• each disk’s file system starts at its own root (/)

Can tie several disks together into a single file system
• have an entry in one directory point to the root directory

of another disk’s file system (this entry is called a
“mount point”)

E.g. CAEN workstation
% ls /
afs/ kernel/ sbin/
bin@ lib@ template-server@
core lost+found/ template-server-ro@
dev/ nfs/ tmp/
devices/ opt/ usr/
etc/ platform/ var/
export/ proc/ vol/
home/ root/

/bin is a normal directory in /
/usr points to the root file system of disk 1
/var points to the root file system of disk 2
/afs points to the root file system of a

distributed file system

Windows: disks are made visible under my_computer/
{C,D,E}

Unix: can mount disks at any place in the directory hierarchy

EECS 482 11 Peter M. Chen

File caching

File systems have lots of data structures on disk
• data blocks
• metadata:bitmapof freeblocks,directories,file headers,

indirect blocks, etc.

File caches speed access to all these types of data

Changing random disk I/O to sequential I/O can help some-
what
• throughput increases dramatically
• response time for small requests doesn’t improve

Changing disk I/O to memory access helps a lot more
• throughput is better even than sequential disk I/O
• response time can improve by 100,000x

Should file cache be stored in virtual or physical memory?

Comparing file caching and virtual memory

Both use physical memory as a cache for disk
• VM: started with memory and added disk to get larger

memory
• file systems: started with disk and added memory to get

faster performance

Why have two mechanisms that both cache disk data in mem-
ory?

Memory-mapped files
• use the VM paging system to cache both virtual address

spacesand files
• map a file into a virtual address space, then mark the

backing store for the file as being allocated to the disk
blocks for that file

• VM knows how to cache address spaces; file cache
knowshow to cachefiles.Memory-mappingmakesfiles
look like an address space, so VM cache can deal with
it.

• e.g. how to load a program from disk into memory?

EECS 482 12 Peter M. Chen

Caching issues

Normaldesigndimensionsthatyouencounterwith all caches,
e.g. cache size, block size, replacement, etc.

Should the file cache use write-through or write-back?

Multiple updates and reliability

Reliability (durability) is especially important to file systems
• datain aprocessaddressspaceneednotsurviveasystem

crash
• user considers data in a file system as permanent

Multi-step updates cause problems if crash happens in the
middle

E.g. transfer $100 from my account to Janet’s account
1. deduct $100 from my account
2. add $100 to Janet’s account

E.g. move file from 1 directory to another
1. delete file from old directory
2. add file to new directory

E.g. create (empty) new file
1. update the directory to point to the

new file header
2. write new file header to disk

What happens if you crash between step 1 and 2?

EECS 482 13 Peter M. Chen

Careful ordering

How to fix the problem in the prior example?

Can careful ordering solve the problem of transferring money
from Peter’s account to Janet’s account?

What 482 concept does this remind you of?

Transactions

Used a lot in databases. For us, the main component is atomic-
ity (all or nothing)

begin
disk write
disk write
disk write ...

end (this is “commits” the transaction)

Basicatomicunit providedby thehardwareis writing asingle
sector to disk

How to make an arbitrary sequence of updates atomic using a
single sector update?

Shadowing
• keep two versions of the database (old and new), and

keep a pointer to which is the current version
• update the new version, then switch the pointer to the

new version when you want to commit the changes

EECS 482 14 Peter M. Chen

Logging
• write new data to a append-only log
• write “commit” sector to the end of the log after all the

changes
• copy the new data to the original copy

• what if the system crashes after writing the log record
(including commit) but before writing the in-place
copy?

Almost all file systems since 1985 use transactions (using log-
ging) to make atomic a group of updates to the file system
metadata

• why don’t file systems provide atomic transactions for
data updates?

Distrib uted file systems

Distributed file system: file system that distributes where data
is actually stored, but unifies the view of this distributed
storage.
• allows access to files stored on remote computers (with

same interface as to local files).

Benefits
• share data and resources between people
• enables uniform view from different machines

Basic implementation
• ask appropriate server for file (classic client/server

model)
• but poor performance. How to improve?

EECS 482 15 Peter M. Chen

Caching in a distributed file system

E.g. I am on azure and want to access the file /afs/
engin.umich.edu/class/perm/eecs482/bin/submit482,
which is on bighouse.engin.umich.edu

What happens to the file?

Transfer the sole copy from the server to my client? Does this
reduce network traffic?

Make a copy on my client (replication)
• what if I modify my copy?

• when do I have to give up the copy (called invalidation)

State of a client’s copy of a file

invalid

sharedexclusive

this client
reads the
file

another client reads the file

this client
writes the

file

another
client writes

the file

this client writes the file

another
client
writes

the
file

