/O and file systems Device independence

Whatabstractionsloesthe OSprovide above I/O devices(viz. | Problem: lots of dierent brands of disks, disk intades, and

disks)? disk controllers, each with theimm custom control inter-
face. Same is true of wiO device (netvork card, video
card, leyboard, mouse, etc.)

Add a “device driver” layer to hide this dersity/compleity

rest of operating system
-«— Vvirtual interface

device drvers

<«— physical interce
millions of hardvare deices

An abstraction mads things “better” for things that use the

abstraction

* threads: user doesriave to worry about sharing CPU

» addresses spaces: user dadsave to worry about shar-
ing physical memory (or pysical memory size)

» TCP:userdoesnt have to worry aboutthe unreliablenet-
work

* device drivers: frees the user (the rest of the OS) from
worrying about diferences in daces (e.g. the dece
registers used to control theuee)

EECS 482 1 Peter M. Chen

Byte-oriented access -> block-oriented access

Disks are accessed in terms of blocks (sectors), e.g. 512 k
But programs deal in bytes

How to read less than a block

How to write less than a block

EECS 482 2

Disk geometry and access

)yiisk geometry

Inner Track Sector
Outer Track

-a—Actuator

» disk is made of a stack of spinnipkatters

* the top and bottom sade of each platter has concentric
circles of data (callett acks). The set of tracks at the
same radial distance is calledyinder.

 each track is made of a numbersedtors

Accessing a disk
 queueing time (ait for disk to be free): O-infinity
* position disk arm and head (seek and rotate): 0-12 ms
« access disk data: size/transfer rate (e.g. disk transfer rate
of 49 MB/s on Seagje Barracuda 118167W)

Peter M. Chen

Optimizing disk performance

Disk is slav!
Best option is to eliminate the disk I/O (e.qg. via file caching
If you do hae to go to disk, try todep positioning time smal

If youdo haveto re-position try to getlots of datato amortize
the positioning verhead

efficiency = transfer tinme /
(positioning tine + transfer tine)

e.g. on Seagate Barracuda 1181677LW
transferring 300 KB takes 6 ns
(50% efficiency)

EECS 482 3

Reducing positioning time

Optimize when writing data to disk
* placeitemsthatwill beaccessetbgethemeareachother
on disk

* how to know in adwance that tw items will be accessed
together?

Optimize when reading data from disk (minimize positioning
time at time of access, rather than at time of creation)

Peter M. Chen

Disk scheduling

Re-orderasetof diskaccesse® decreaséhetotal positioning

time
 can be implemented in the OS, or in the disk hardw

FCFS (first come, first sexd)

* e.g. (start at track 53): 98, 183, 37, 122, 14, 124, 65
* total head meement: 640 tracks yarage 80 per seek)

SSTF (shortest seek time first)
* e.g. 53->65->67->37->14->98->122->124->183
* total head meement: 236 tracks yarage 30 per seek)

e ary problems with SSTF?

EECS 482

SCAN: sweep the disk from one end to the qttlean back
acain (sometimes called “Blator algorithms”)

* e.g. 53->37->14->65->67->98->122->124->183
« total head meement: 208 tracks yarage 26 per seek)
57

Variants of SCAN

» C-SCAN: alvays sweep the disk from dgpaning to end,
then seek all the ay back to the lggnning and repeat.

* LOOK, C-LOOK: whensweepingowardtheend,stopif
there are no requestsylead the current point.

Disk schedulingonly improvespositioningtime with multiple
outstanding requests (otherwise service the sole request)

Peter M. Chen

File systems

A file system is an OS abstraction to madke disk easier to
use

user
-«— Virtual interface
file system
-<«— physical interbce
disk

How to map file space onto disk space?
» file system structure on disk; disk allocation
* this will be similar to issues in memory management

How to use symbolic (english) names instead of disk secta
* naming; directories

* no equvalentissuein memorymanagemenbecausehe

virtual and plysical address spaces used the same ty

of “names” (i.e. addresses)

pe

EECS 482 5

File system structure

Overall question: he to omganize files on disk
» what data structure is the right one to use when storing a
file on disk?

Need an initial structure that describes the object
* this is a “file header”; called an inode (ird®ode) in
Unix
« file headerlsocontaingniscellaneousformationabout
the file, e.g. file size, modification date, permissions

Many ways to oganize data on disk

Usage patterns guide our design choices
» 80% of file accesses are reads
» most programs that access a file sequentially access the
whole file (the alternate is random access)

» most files are small; most bytes on disk are frogelar
files

Peter M. Chen

Contiguous allocation

Store a file in one contiguousgseent on disk (sometimes
called an “a&tent”)

User must declare the size of the file inatbe

Use some kind of fitting algorithm (e.g. first fit, best fit) to

locate an area of disk that can store the file
File header isery simple: starting block #, file size
Equialent to base & bounds for memory management

Pros and cons

+ fast sequential access (no seeks between congecuti

disk blocks)

+ easy random access (can easily calculate the disk lo

tion of ary file block)
- external fragmentation
- wastes space if user declares a bigger size

- hard to gruv files

EECS 482

Indexed files

User (or system) declares max # of blocks in file; system allo-
cates a file header with an array of pointers big enough to
point to that number of blocks

File header
file block# disk block #
0 18
1 50
2 8
3 15

Equwalent to a page table for memory management

ca2ros and cons
+ caneasilygrow file upto the# of blocksallocatedn file
header
+ easy random access
- how to grow file bigger than initially allocated in the file
header?

- lots of seeks for sequential access

6 Peter M. Chen

Multi-le vel indexed files

Indexed files are lik a shallov tree

disl/ di§< c}sk

disk
block block block block
18 50 8 15

Could change this to a multivel tree

level 1
node
level 2 evel 2
node node ...
gis di§< c}sk \‘disk
block block block block
18 50 8 15

This allows really big files without asting header space for
small files

EECS 482

How mary accesses to get 1 block of data?

* how to sohe?

Non-uniform depth multi-teel indexed files

level 1
node |
dis _ level 2
block g:skk node
18 ocC
50 disl/ di§< c}sk disk
block block block block
8 15 75 40
Peter M. Chen

Pros and cons
+ files can easily»@and
+ small files dort’ pay full overhead of deep trees
- lots of indirect blocks for big files
- lots of seeks for sequential access

How to reduce seeks for sequential access, and\siitl a
needing to pre-allocate a contiguougraent?

EECS 482

Naming

How to specify which file you ant to access?
 eventually OS must find out which file header yoamw
(viz. the disk location of the file header)

Typically, the user pnades a symbolic name (e.g. english
name, icon); OS translates name to a numeric file header
(or disk location of the file header)
« alternatve is to describe the contents of the fileyehtne
OS find the name by looking through the files for that
content. This is usually done by databases on top of file
systems.

Lots of ways to translate from symbolic name to file header’
disk block #
* e.g. hash tablexpandable arrgyetc.
* the data structure that does the mapping is cakecee-
tory

Peter M. Chen

Directories

A directory contains a mapping for all files in that directory
* name => file headex'disk block # for that file
« often a simple array of (name, file headelisk block #)
entries
« this table is stored in a normal file as normal data. E.g
“Is” canbeimplementedy readingthisfile andparsing
its contents.

Directories are typically ganized into hierarchical structure
« directoryA hasa mappingfor abunchof filesand direc-
toriesin directory A

A~ —1

EECS 482 9

E.g. /pmchen/482/names

/ is root directory

« contains a list of files and other directories

« for each file/directory in /, / has a mapping from name to
file headers disk block #

* one of these entries is “pmchen”

pmchen is a directory entry within the / directory

» contains a list of files and directories
« one of the directories in /[pmchen is 482

/pmchen/482 is a directory within the /pmchen directory

e contains a list of files and other directories
* one of the files it lists is “names”

How mary disk I/Os to access the first byte of /pmchen/482/

names?

Peter M. Chen

Current working directory: a shortcut for the user and the sys-

tem

» cache the file header # for the “current” directory

« allows a userto specifyafile namerelative to the current
directory

« allows the system to access a file withouteéraing the
entire directory from /

Reducing positioningwerhead by taking adwntage of usage
patterns

EECS 482 10

Combining (mounting) multiple disks into a
single file system

Each disk has a file system
» each disks file system starts at itsva root (/)

Can tie seeral disks together into a single file system
* have an entry in one directory point to the root directory
of another disk’s file system (this entry is called a
“mount point”)

E.g. CAEN workstation

%ls /

af s/ kernel / shi n/

bi n@ lib@ tenpl at e-server @
core | ost +f ound/ tenpl ate-server-ro@
dev/ nf s/ t np/

devi ces/ opt/ usr/

etc/ pl at f or nl var/

export/ proc/ vol /

hone/ root/

/binis a normal directory in/

/usr points to the root file systemof disk 1

points to the root file system of disk 2
points to the root file systemof a
distributed file system

[var
[afs

Windows: disks are made visible under my_computer/
{C,D,E}

Unix: can mount disks at grplace in the directory hierargh

Peter M. Chen

File caching

File systems hae lots of data structures on disk
* data blocks
» metadatabitmapof freeblocks,directoriesfile headers,
indirect blocks, etc.

File caches speed access to all these types of data

Changing random disk 1/O to sequential I1/0O can help some

what
* throughput increases dramatically
* response time for small requests doesnprove

Changing disk I/0O to memory access helps a lot more
* throughput is betteven than sequential disk 1/0
* response time can impm® by 100,000x

Should file cache be stored in virtual oypical memory?

\

EECS 482

11

Comparing file caching and virtual memory

Both use piasical memory as a cache for disk
» VM: started with memory and added disk to gegéar
memory
« file systems: started with disk and added memory to get
faster performance

Why have two mechanisms that both cache disk data in mem-
ory?

Memory-mapped files

* use the VM paging system to cache both virtual address
spacesand files

* map a file into a virtual address space, then mark the
backing store for the file as being allocated to the disk
blocks for that file

* VM knows hav to cache address spaces; file cache
knows how to cachefiles. Memory-mappingnakesfiles
look like an address space, so VM cache can deal with
it.

* e.g. hav to load a program from disk into memory?

Peter M. Chen

Caching issues Multiple updates and reliability

Normaldesigndimensionghatyou encountewith all caches, | Reliability (durability) is especially important to file systems

e.g. cache size, block size, replacement, etc. » datain aprocessaddresspaceneednotsurvive asystem
crash
Should the file cache use Write-through or write-back? e user considers data in a file System as permanent

Multi-step updates cause problems if crash happens in the
middle

E.g. transfer $100 from my account to Ja;matcount

1. deduct $100 from my account
2. add $100 to Janet’s account

E.g. mae file from 1 directory to another

1. delete file from old directory
2. add file to new directory

E.g. create (empty) mefile

1. update the directory to point to the
new file header
2. write new file header to disk

What happens if you crash between step 1 and 27?

EECS 482 12 Peter M. Chen

Careful ordering

How to fix the problem in the prioxample?

Can careful ordering savthe problem of transferring mgne

from Peters account to Janstaccount?

What 482 concept does this remind you of?

EECS 482

13

Transactions

Used a lot in databasesrfus, the main component is atomic-
ity (all or nothing)

begin
disk write
disk write
disk write ...
end (this is “commits” the transaction)

Basicatomicunit providedby the hardwareis writing a single
sector to disk

How to male an arbitrary sequence of updates atomic using a
single sector update?

Shadaving
» keep two versions of the database (old an@vheand
keep a pointer to which is the curreetsion
 update the e version, then switch the pointer to the
new version when you ant to commit the changes

Peter M. Chen

Logging
* write nav data to a append-only log
 write “commit” sector to the end of the log after all the
changes
* copy the nev data to the original cop

» what if the system crashes after writing the log record
(including commit) It before writing the in-place
copy?

Almost all file systems since 1985 use transactions (using
ging) to male atomic a group of updates to the file syste
metadata

» why dont file systems pnade atomic transactions for
data updates?

Distrib uted file systems

Distributed file system: file system that distribs where data
Is actually stored,ut unifies the vie of this distriluted
storage.

» allows access to files stored on remote computers (with
same inteiice as to local files).

Benefits
* share data and resources between people
 enables uniform vig from different machines

Basic implementation
« ask appropriate sesvfor file (classic client/seev
log- model)
M« but poor performance. koto improve?

EECS 482 14 Peter M. Chen

Caching in a distributed file system

E.g. | am on azure andant to access the file /afs/
engin.umich.edu/class/perm/eecs482/bin/submit482,
which is on bighouse.engin.umich.edu

What happens to the file?

Transfer the sole cgdfrom the sergr to my client? Does this

reduce netwrk trafic?

Make a coy on my client (replication)
» what if | modify my cop?

» when do | hae to gve up the cop (called irvalidation)

EECS 482

15

State of a clien$ copy of a file

invalid

anothe .
enmoiher cient\, 1\ s clent
client writes this client writes

the file/ /\writes the the file

file file

this client writes the file

. -
)
another client reads the file

Peter M. Chen

