
Safe Concurrent Programming in Java

Chandrasekhar Boyapati CHANDRA@LCS.MIT.EDU

Robert Lee RHLEE@LCS.MIT.EDU

Martin Rinard RINARD@LCS.MIT.EDU

MIT Laboratory for Computer Science, 200 Technology Square, Cambridge MA, 02139 USA

1. Introduction

Multithreaded programming is difficult and error prone.
Multithreaded programs typically synchronize operations
on shared mutable data to ensure that the operations exe-
cute atomically. Failure to correctly synchronize such op-
erations can lead todata racesor deadlocks. A data race
occurs when two threads concurrently access the same data
without synchronization, and at least one of the accesses
is a write. A deadlock occurs when there is a cycle of the
form: ∀i ∈ {0..n− 1}, Threadi holds Locki and Threadi
is waiting for Lock(i+1) mod n.

This paper presents a new static type system for multi-
threaded programs; well-typed programs in our system are
guaranteed to be free of data races and deadlocks. In recent
previous work, we presented a static type system to prevent
data races. In this paper, we extend the race-free type sys-
tem to prevent both data races and deadlocks. The basic
idea behind our system is as follows. When programmers
write multithreaded programs, they already have a lock-
ing discipline in mind. Our system allows programmers
to specify this locking discipline in their programs. The
resulting specifications take the form of type declarations.

To prevent data races, programmers associate every object
with a protection mechanismthat ensures that accesses to
the object never create data races. The protection mecha-
nism of an object can specify either the mutual exclusion
lock that protects the object from unsynchronized concur-
rent accesses, or that threads can safely access the object
without synchronization because either 1) the object is im-
mutable, 2) the object is accessible to a single thread, or
3) the variable contains the unique pointer to the object.
Unique pointers are useful to support object migration be-
tween threads. The type checker statically verifies that
a program uses objects only in accordance with their de-
clared protection mechanisms.

To prevent deadlocks, programmers partition all the locks
into a fixed number of lock levels and specify a partial order
among the lock levels. The type checker statically verifies
that whenever a thread holds more than one lock, the thread

acquires the locks in the descending order. Our system also
allows programmers to use recursive tree-based data struc-
tures to further order the locks that belong to the same lock
level. For example, programmers can specify that nodes in
a tree must be locked in thetree-order. Our system allows
mutations to the data structure that change the partial order
at runtime. The type checker uses an intra-procedural intra-
loop flow-sensitive analysis to statically verify that the mu-
tations do not introduce cycles in the partial order, and that
the changing of the partial order does not lead to deadlocks.

Although our type system is explicitly typed in principle, it
would be onerous to fully annotate every method with the
extra type information that our system requires. Instead,
we use a combination of intra-procedural type inference
and well-chosen defaults to significantly reduce the num-
ber of annotations needed in practice. Our approach per-
mits separate compilation. We have a prototype implemen-
tation of our type system that handles all the features of
the Java language. We also modified several multithreaded
Java programs and implemented them in our system. These
programs exhibit a variety of sharing patterns. Our expe-
rience shows that our system is sufficiently expressive and
requires little programming overhead.

2. The Type System

This section introduces our type system with two examples.
Figure 1 presents an example program that has anAccount
class and aCombinedAccount class. To prevent data
races, programmers associate every object with aprotec-
tion mechanism. In the example, theCombinedAccount
class is declared to be immutable. ACombinedAccount
may not be modified after initialization. TheAccount
class is generic—differentAccount objects may have dif-
ferent protection mechanisms. TheCombinedAccount
class contains twoAccount fields—savingsAccount and
checkingAccount. The key wordself indicates that these
two Account objects are protected by their own locks. The
type checker statically ensures that a thread holds the locks
on theseAccount objects before accessing theAccount
objects.



1 class Account {
2 int balance = 0;
3
4 int balance() accesses (this) { return balance; }
5 void deposit(int x) accesses (this) { balance += x; }
6 void withdraw(int x) accesses (this) { balance -= x; }
7 }
8
9 class CombinedAccount<readonly> {

10 LockLevel savingsLevel = new;
11 LockLevel checkingLevel < savingsLevel;
12 final Account<self:savingsLevel> savingsAccount
13 = new Account;
14 final Account<self:checkingLevel> checkingAccount
15 = new Account;
16
17 void transfer(int x) locks(savingsLevel) {
18 synchronized (savingsAccount) {
19 synchronized (checkingAccount) {
20 savingsAccount.withdraw(x);
21 checkingAccount.deposit(x);
22 }}}
23 int creditCheck() locks(savingsLevel) {
24 synchronized (savingsAccount) {
25 synchronized (checkingAccount) {
26 return savingsAccount.balance() +
27 checkingAccount.balance();
28 }}}
29 ...
30 }

Figure 1.Combined Account Example

To prevent deadlocks, programmers associate every lock
in our system with a lock level. In the example,
the CombinedAccount class declares two lock levels—
savingsLevel andcheckingLevel. Lock levels are purely
compile-time entities—they are not preserved at runtime.
In the example,checkingLevel is declared to rank lower
than savingsLevel in the partial order of lock levels.
The checkingAccount belongs tocheckingLevel, while
the savingsAccount belongs tosavingsLevel. The type
checker statically ensures that threads acquire these locks
in the descending order of lock levels.

Methods in our system may containaccesses clauses to
specify assumptions that hold at method boundaries. The
methods of theAccount class each have anaccesses
clause that specifies that the methods access thethis Ac-
count object without synchronization. To prevent data
races, our type checker requires that the callers of anAc-
count method must hold the lock that protects the corre-
spondingAccount object before the callers can invoke the
Account method.

Methods in our system may also containlocks clauses. The
methods of theCombinedAccount class contain alocks
clause to indicate to callers that they may acquire locks that
belong to lock levelssavingsLevel or lower. To prevent
deadlocks, the type checker statically ensures that callers
of CombinedAccount methods only hold locks that are of
greater lock levels thansavingsLevel.

Figure 2 presents part of aBalancedTree implemented in
our type system. ABalancedTree is a tree ofNodes. Ev-

1 class BalancedTree {
2 LockLevel l = new;
3 Node<self:l> root = new Node;
4 }
5
6 class Node<self:v> {
7 tree Node<self:v> left;
8 tree Node<self:v> right;
9

10 // this this
11 // / \ / \
12 // ... x ... v
13 // / \ --> / \
14 // v y u x
15 // / \ / \
16 // u w w y
17
18 synchronized void rotateRight() locks(this) {
19 final Node x = this.right; if (x == null) return;
20 synchronized (x) {
21 final Node v = x.left; if (v == null) return;
22 synchronized (v) {
23 final Node w = v.right;
24 v.right = null;
25 x.left = w;
26 this.right = v;
27 v.right = x;
28 }}}
29 ...
30 }

Figure 2.Tree Example

eryNode object is declared to be protected by its own lock.
To prevent data races, the type checker statically ensures
that a thread holds the lock on aNode object before ac-
cessing theNode object. TheNode class is parameterized
by the formal lock levelv. TheNode class has twoNode
fields—left and aright. TheNodes left andright also be-
long to the same lock levelv.

Our system also allows programmers to use recursive tree-
based data structures to further order the locks that belong
to the same lock level. In the example, the key wordtree
indicates that theNodes left and right are ordered lower
than thethis Node object in the partial order. To prevent
deadlocks, the type checker statically verifies that therota-
teRight method acquires the locks onNodes this, x andv
in the tree-order. TherotateRight method in the example
performs a standard rotation operation on the tree to restore
the tree balance. The type checker uses an intra-procedural
intra-loop flow-sensitive analysis to statically verify that
the changing of the partial order does not lead to deadlocks.

Our type system statically verifies the absence of both data
races and deadlocks in the above examples. More de-
tails about the type system will appear in (Boyapati et al.,
November 2002).

References

Boyapati, C., Lee, R., & Rinard, M. (November 2002).
Ownership types for safe programming: Preventing data
races and deadlocks.Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).


