
Ownership Types for Object Ownership Types for Object
EncapsulationEncapsulation

Barbara LiskovBarbara Liskov
Chandrasekhar BoyapatiChandrasekhar Boyapati

Liuba ShriraLiuba Shrira

Laboratory for Computer ScienceLaboratory for Computer Science
Massachusetts Institute of TechnologyMassachusetts Institute of Technology

{liskov, chandra, liuba}@lcs.mit.edu{liskov, chandra, liuba}@lcs.mit.edu

OutlineOutline

�� Object EncapsulationObject Encapsulation

�� Ownership TypesOwnership Types

�� Upgrades in Persistent Object StoresUpgrades in Persistent Object Stores

Modular ReasoningModular Reasoning

�� Goal is local reasoning about correctnessGoal is local reasoning about correctness

�� Prove a class meets its specification, Prove a class meets its specification,
using only specifications but not code using only specifications but not code
of other classesof other classes

�� Crucial when dealing with large programsCrucial when dealing with large programs

�� Requires no interference from code Requires no interference from code
outside the classoutside the class

�� Objects must be encapsulatedObjects must be encapsulated

�� Consider a Set object s implemented Consider a Set object s implemented
using a Vector object vusing a Vector object v

Object EncapsulationObject Encapsulation

vv ~~~~

ss oo

�� Local reasoning about s is possibleLocal reasoning about s is possible

�� If objects outside s do not access vIf objects outside s do not access v

�� That is, if v is encapsulated within sThat is, if v is encapsulated within s

EncapsulationEncapsulation

�� In general, all objects that s In general, all objects that s depends ondepends on
must be encapsulated within smust be encapsulated within s

�� s s depends ondepends on x if mutations of x affect x if mutations of x affect
behavior of s behavior of s

�� Leino, Nelson (Leino, Nelson (SCR SCR ’’0000))

�� Detlefs, Leino, Nelson (Detlefs, Leino, Nelson (SRC SRC ’’9898))

ExamplesExamples

�� Rep invariant for Set: Rep invariant for Set: nono--dupsdups

�� Then, size of vector is size of setThen, size of vector is size of set

�� Then, remove stops at matchThen, remove stops at match

�� Clearly, v must be inside sClearly, v must be inside s

ss
vv

ExamplesExamples

�� What does What does nono--dupsdups mean?mean?

�� ! e1.equals(e2), for any elements e1 & e2! e1.equals(e2), for any elements e1 & e2

�� So set does not depend on elements if So set does not depend on elements if
elements are immutableelements are immutable

ss
vv

Iterators and EncapsulationIterators and Encapsulation

�� Iterators require access to representation Iterators require access to representation

�� Okay if violations of encapsulation limited Okay if violations of encapsulation limited
to the same moduleto the same module

ss
vv

ii

Ownership TypesOwnership Types

�� Goal is to enforce encapsulation staticallyGoal is to enforce encapsulation statically

ss
vv

�� Programmer can declare s owns vProgrammer can declare s owns v

�� System ensures v is encapsulated in sSystem ensures v is encapsulated in s

Ownership TypesOwnership Types

�� Every object has an ownerEvery object has an owner

�� Owner can be another object or worldOwner can be another object or world

�� Ownership relation forms a treeOwnership relation forms a tree

�� Owner of an object cannot changeOwner of an object cannot change

worldworld

Ownership Types for EncapsulationOwnership Types for Encapsulation

�� If an object owns objects it depends onIf an object owns objects it depends on

�� Then type system enforces encapsulationThen type system enforces encapsulation

�� If v is inside s and o is outsideIf v is inside s and o is outside

�� Then o cannot access vThen o cannot access v

vv ~~~~

ss oo

Ownership TypesOwnership Types

worldworld

class TStack {class TStack {

TNode head;TNode head;

void push(T value) {void push(T value) {……}}

T pop() {T pop() {……}}

}}

class TNode {class TNode {

TNode next; TNode next;

T value;T value;

……

}}

class T {class T {……}}

TStack Example (No Owners)TStack Example (No Owners)

valuevalue

nextnext

headhead

valuevalue

nextnext

valuevalue

nextnext

…… …………

TStackTStack

TNodeTNode

TT

TStack Example (With Owners)TStack Example (With Owners)

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class T class T 〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 {{……}}

TStackTStack

TNodeTNode

TT

Classes are parameterized with ownersClasses are parameterized with owners

TStack ExampleTStack Example

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class T class T 〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 {{……}}

TStackTStack

TNodeTNode

TT

First owner owns the First owner owns the ““thisthis”” objectobject

TStack ExampleTStack Example

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class T class T 〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 {{……}}

TStackTStack

TNodeTNode

TT

TStack owns the TStack owns the ““headhead”” TNodeTNode

TStack ExampleTStack Example

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class T class T 〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 {{……}}

TStackTStack

TNodeTNode

TT

The The ““nextnext”” TNode has the same owner as the TNode has the same owner as the ““thisthis”” TNodeTNode

All TNodes have the same ownerAll TNodes have the same owner

TStack ExampleTStack Example

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class Clientclass Client〈〈〈〈〈〈〈〈clientOwnerclientOwner〉〉〉〉〉〉〉〉 {{

TStackTStack〈〈〈〈〈〈〈〈this, thisthis, this〉〉〉〉〉〉〉〉 s1;s1;

TStackTStack〈〈〈〈〈〈〈〈this, worldthis, world〉〉〉〉〉〉〉〉 s2;s2;

TStackTStack〈〈〈〈〈〈〈〈world, worldworld, world〉〉〉〉〉〉〉〉 s3;s3;

}}

TStackTStack

TNodeTNode

TT

s1 is an encapsulated stack with encapsulated elementss1 is an encapsulated stack with encapsulated elements

ClientClient

TStack ExampleTStack Example

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class Clientclass Client〈〈〈〈〈〈〈〈clientOwnerclientOwner〉〉〉〉〉〉〉〉 {{

TStackTStack〈〈〈〈〈〈〈〈this, thisthis, this〉〉〉〉〉〉〉〉 s1;s1;

TStackTStack〈〈〈〈〈〈〈〈this, worldthis, world〉〉〉〉〉〉〉〉 s2;s2;

TStackTStack〈〈〈〈〈〈〈〈world, worldworld, world〉〉〉〉〉〉〉〉 s3;s3;

}}

TStackTStack

TNodeTNode

TT

s2 is an encapsulated stack with public elementss2 is an encapsulated stack with public elements

ClientClient

worldworld

TStack ExampleTStack Example

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class Clientclass Client〈〈〈〈〈〈〈〈clientOwnerclientOwner〉〉〉〉〉〉〉〉 {{

TStackTStack〈〈〈〈〈〈〈〈this, thisthis, this〉〉〉〉〉〉〉〉 s1;s1;

TStackTStack〈〈〈〈〈〈〈〈this, worldthis, world〉〉〉〉〉〉〉〉 s2;s2;

TStackTStack〈〈〈〈〈〈〈〈world, worldworld, world〉〉〉〉〉〉〉〉 s3;s3;

}}

TStackTStack

TNodeTNode

TT

s3 is a public stack with public elementss3 is a public stack with public elements

worldworld

TStack ExampleTStack Example

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

}}

class TNodeclass TNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈nodeOwner, TOwnernodeOwner, TOwner〉〉〉〉〉〉〉〉 next; next;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value;value;

}}

class Clientclass Client〈〈〈〈〈〈〈〈clientOwnerclientOwner〉〉〉〉〉〉〉〉 {{

TStackTStack〈〈〈〈〈〈〈〈this, thisthis, this〉〉〉〉〉〉〉〉 s1;s1;

TStackTStack〈〈〈〈〈〈〈〈this, worldthis, world〉〉〉〉〉〉〉〉 s2;s2;

TStackTStack〈〈〈〈〈〈〈〈world, worldworld, world〉〉〉〉〉〉〉〉 s3;s3;

TStackTStack〈〈〈〈〈〈〈〈world, thisworld, this〉〉〉〉〉〉〉〉 s4; s4; // illegal // illegal

}}

TStackTStack

TNodeTNode

TT

Other owners must be same as or more public than first owner [CDOther owners must be same as or more public than first owner [CD02]02]

This constraint is necessary to enforce encapsulation with subtyThis constraint is necessary to enforce encapsulation with subtypingping

class Clientclass Client〈〈〈〈〈〈〈〈cOwner, sOwner, tOwnercOwner, sOwner, tOwner〉〉〉〉〉〉〉〉 where (sOwner <= tOwner)where (sOwner <= tOwner) {{

……

TStackTStack〈〈〈〈〈〈〈〈sOwner, tOwnersOwner, tOwner〉〉〉〉〉〉〉〉 head;head;

}}

Constraints on OwnersConstraints on Owners

Programmers can constrain owners using where clausesProgrammers can constrain owners using where clauses

This is legal only if tOwner is same as or more public than sOwnThis is legal only if tOwner is same as or more public than sOwnerer

IteratorsIterators

�� Consider an Iterator i over Stack sConsider an Iterator i over Stack s

�� If i is encapsulated within sIf i is encapsulated within s

�� Then i cannot be used outside sThen i cannot be used outside s

�� If i isIf i is notnot encapsulated within sencapsulated within s

�� Then i cannot access representation of sThen i cannot access representation of s

TStackTStack
TStackEnumTStackEnum

SolutionSolution

�� Use inner classesUse inner classes

�� Gives desired access to representationGives desired access to representation

�� Yet, satisfies our modularity goalYet, satisfies our modularity goal

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

……..

class TStackEnumclass TStackEnum〈〈〈〈〈〈〈〈enumOwner, TOwnerenumOwner, TOwner〉〉〉〉〉〉〉〉 implementsimplements

TEnumTEnum〈〈〈〈〈〈〈〈enumOwner, TOwnerenumOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈TStack.this, TOwnerTStack.this, TOwner〉〉〉〉〉〉〉〉 current = TStack.this.head; current = TStack.this.head;

……..

}}

}}

IteratorsIterators

Inner class objects can access Inner class objects can access

rep of outer class objectsrep of outer class objects

TStackTStack
TStackEnumTStackEnum

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

……..

class TStackEnumclass TStackEnum〈〈〈〈〈〈〈〈enumOwner, TOwnerenumOwner, TOwner〉〉〉〉〉〉〉〉 implementsimplements

TEnumTEnum〈〈〈〈〈〈〈〈enumOwner, TOwnerenumOwner, TOwner〉〉〉〉〉〉〉〉 {{……}}

TStackEnum TStackEnum 〈〈〈〈〈〈〈〈enumOwner, TOwnerenumOwner, TOwner〉〉〉〉〉〉〉〉 elements elements 〈〈〈〈〈〈〈〈enumOwnerenumOwner〉〉〉〉〉〉〉〉 ()()

where (enumOwner <= TOwner)where (enumOwner <= TOwner) {{……} }

}}

IteratorsIterators

TStackTStack
TStackEnumTStackEnum

Ownership Types for EncapsulationOwnership Types for Encapsulation

�� If an object owns objects it depends onIf an object owns objects it depends on

�� Then type system enforces encapsulationThen type system enforces encapsulation

�� If v is inside s and o is outsideIf v is inside s and o is outside

�� Then o cannot access vThen o cannot access v

�� Unless o is inner class object of sUnless o is inner class object of s

vv ~~~~

ss oo

class TStackclass TStack〈〈〈〈〈〈〈〈stackOwner, TOwnerstackOwner, TOwner〉〉〉〉〉〉〉〉 {{

TNodeTNode〈〈〈〈〈〈〈〈this, TOwnerthis, TOwner〉〉〉〉〉〉〉〉 head;head;

……

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 pop() pop() writes (this)writes (this) {{

if (head == null) return null;if (head == null) return null;

TT〈〈〈〈〈〈〈〈TOwnerTOwner〉〉〉〉〉〉〉〉 value = head.value();value = head.value();

head = head.next();head = head.next();

return value;return value;

}}

}}

Effects ClausesEffects Clauses

Methods can specify read and write effectsMethods can specify read and write effects

reads(x) means method can read x and its encapsulated objectsreads(x) means method can read x and its encapsulated objects

writes(x) means method can read/write x and its encapsulated objwrites(x) means method can read/write x and its encapsulated objectsects

Related WorkRelated Work

�� Types augmented with ownersTypes augmented with owners

�� Clarke, Potter, Noble (Clarke, Potter, Noble (OOPSLA OOPSLA ’’9898))

�� Support for subtypingSupport for subtyping

�� Clarke, Drossopoulou (Clarke, Drossopoulou (OOPSLA OOPSLA ’’0202))

�� Owners combined with effects clausesOwners combined with effects clauses

�� Boyapati, Rinard (Boyapati, Rinard (OOPSLA OOPSLA ’’0101))

SummarySummary

�� Ownership types capture dependenciesOwnership types capture dependencies

�� Extension for inner class objects allows Extension for inner class objects allows
iterators and wrappersiterators and wrappers

�� Approach provides expressive power, yet Approach provides expressive power, yet
ensures modular reasoningensures modular reasoning

�� Effects clauses enhance modular Effects clauses enhance modular
reasoningreasoning

ApplicationsApplications

�� Safe upgrades in persistent object storesSafe upgrades in persistent object stores

�� Preventing data races and deadlocksPreventing data races and deadlocks

�� Boyapati, Lee, Rinard (Boyapati, Lee, Rinard (OOPSLA OOPSLA ’’0101) () (OOPSLA OOPSLA ’’0202))

�� Safe regionSafe region--based memory managementbased memory management

�� Boyapati, Salcianu, Beebee, Rinard (Boyapati, Salcianu, Beebee, Rinard (MIT MIT ’’0202))

�� Program understandingProgram understanding

�� Aldrich, Kostadinov, Chambers (Aldrich, Kostadinov, Chambers (OOPSLA OOPSLA ’’0202))

Upgrades in Persistent Object StoresUpgrades in Persistent Object Stores

�� Persistent Object Stores store objectsPersistent Object Stores store objects

Persistent RootPersistent Root

Upgrades in Persistent Object StoresUpgrades in Persistent Object Stores

�� Objects are accessed within transactionsObjects are accessed within transactions

�� Transactions support modular reasoning in Transactions support modular reasoning in
spite of concurrency and failuresspite of concurrency and failures

Persistent RootPersistent Root

Uses of UpgradesUses of Upgrades

�� Upgrades are needed toUpgrades are needed to

�� Correct errorsCorrect errors

�� Improve performanceImprove performance

�� Meet changing requirementsMeet changing requirements

�� Upgrades can be Upgrades can be

�� Compatible or incompatibleCompatible or incompatible

�� Upgrades must be Upgrades must be completecomplete

�� Encapsulation enables safe upgradesEncapsulation enables safe upgrades

Defining an UpgradeDefining an Upgrade

�� An upgrade is a set of classAn upgrade is a set of class--upgradesupgrades

�� Upgrades must be completeUpgrades must be complete

�� A class upgrade is A class upgrade is

〈〈〈〈〈〈〈〈oldold--class, newclass, new--class, TFclass, TF〉〉〉〉〉〉〉〉

�� TF: oldTF: old--class class �������� newnew--classclass

�� TF changes representation of objectsTF changes representation of objects

�� System preserves identity of objectsSystem preserves identity of objects

Executing an UpgradeExecuting an Upgrade

�� Requires: transforming all oldRequires: transforming all old--class class
objectsobjects

�� Goal: DonGoal: Don’’t interfere with applicationst interfere with applications

�� DonDon’’t stop the worldt stop the world

�� Goal: Be efficient in space and timeGoal: Be efficient in space and time

�� DonDon’’t copy the databaset copy the database

Solution: Lazy, Just in TimeSolution: Lazy, Just in Time

�� Applications continue to runApplications continue to run

�� Objects are transformed just before first Objects are transformed just before first
accessaccess

�� Upgrades can run in parallelUpgrades can run in parallel

Desired SemanticsDesired Semantics

�� Upgrades appear to run when installedUpgrades appear to run when installed

�� Serialized before all later application Serialized before all later application
transactionstransactions

�� Upgrades appear to run in upgrade orderUpgrades appear to run in upgrade order

�� Within an upgrade, transforms run as if Within an upgrade, transforms run as if
each were the first to runeach were the first to run

Related WorkRelated Work

�� PJama: PJama: Atkinson, Dmitriev, Hamilton (Atkinson, Dmitriev, Hamilton (POS POS ’’0000))

�� Orion: Orion: Banerjee, Kim, Kim, Korth (Banerjee, Kim, Kim, Korth (Sigmod Sigmod ’’8787))

�� O2: O2: Deux et al (Deux et al (IEEE TKDE IEEE TKDE ’’9090))

�� OTGen: OTGen: Lerner, Habermann (Lerner, Habermann (OOPSLA OOPSLA ’’9090))

�� Gemstone: Gemstone: Penney, Stein (Penney, Stein (OOPSLA OOPSLA ’’8787))

How System WorksHow System Works

�� Objects are transformed just before first Objects are transformed just before first
accessaccess

�� Interrupt the applicationInterrupt the application

�� Run earliest pending transformRun earliest pending transform

�� Transform runs in its owns transactionTransform runs in its owns transaction

�� Application continues after transform Application continues after transform
commitscommits

�� Transforms can be interrupted tooTransforms can be interrupted too

ExampleExample

……;U1;A1;TF1(x);A2;;U1;A1;TF1(x);A2;……

U1 is installedU1 is installed

A1 commitsA1 commits

A2 accesses x and is interruptedA2 accesses x and is interrupted

TF1(x) commitsTF1(x) commits

A2 commitsA2 commits

ExampleExample

……;U1;A1;TF1(x);A2;;U1;A1;TF1(x);A2;……

U1 is installedU1 is installed

A1 commitsA1 commits

A2 accesses x and is interruptedA2 accesses x and is interrupted

TF1(x) commitsTF1(x) commits

A2 commitsA2 commits

Suppose A1 modifies z and TF1(x) uses zSuppose A1 modifies z and TF1(x) uses z

ExampleExample

……;U1;A1;TF1(x);A2;TF1(y);A3; ;U1;A1;TF1(x);A2;TF1(y);A3; ……

U1 is installedU1 is installed

A1 commitsA1 commits

A2 accesses x and is interruptedA2 accesses x and is interrupted

TF1(x) commitsTF1(x) commits

A2 commitsA2 commits

A3 accesses y and is interruptedA3 accesses y and is interrupted

TF1(y) commitsTF1(y) commits

A3 commitsA3 commits

ExampleExample

……;U1;A1;TF1(x);A2;TF1(y);A3; ;U1;A1;TF1(x);A2;TF1(y);A3; ……

U1 is installedU1 is installed

A1 commitsA1 commits

A2 accesses x and is interruptedA2 accesses x and is interrupted

TF1(x) commitsTF1(x) commits

A2 commitsA2 commits

A3 accesses y and is interruptedA3 accesses y and is interrupted

TF1(y) commitsTF1(y) commits

A3 commitsA3 commits

Suppose TF1(y) uses xSuppose TF1(y) uses x

Insuring Correct BehaviorInsuring Correct Behavior

�� S1: TF(x) only accesses objects x ownsS1: TF(x) only accesses objects x owns

�� Statically enforced by type systemStatically enforced by type system

Insuring Correct BehaviorInsuring Correct Behavior

�� S1: TF(x) only accesses objects x ownsS1: TF(x) only accesses objects x owns

�� Statically enforced by type systemStatically enforced by type system

�� S2: x is transformed before objects x ownsS2: x is transformed before objects x owns

�� No access to owned objects from outsideNo access to owned objects from outside

�� Shared access to owned objects from inner Shared access to owned objects from inner
class objects (e.g., iterator)class objects (e.g., iterator)

ss
vvii

Insuring Correct BehaviorInsuring Correct Behavior

�� S1: TF(x) only accesses objects x ownsS1: TF(x) only accesses objects x owns

�� S2: x is transformed before objects x ownsS2: x is transformed before objects x owns

�� Plus basic lazy schemePlus basic lazy scheme

�� Applications donApplications don’’t interfere with t interfere with
transformstransforms

�� Transforms of unrelated objects donTransforms of unrelated objects don’’t t
interfereinterfere

�� Transforms of related objects run in Transforms of related objects run in
proper order (owner before owned)proper order (owner before owned)

Modular ReasoningModular Reasoning

�� S1: TF(x) only accesses objects x ownsS1: TF(x) only accesses objects x owns

�� S2: x is transformed before objects x ownsS2: x is transformed before objects x owns

�� Plus basic lazy schemePlus basic lazy scheme

�� Ensures modular reasoning: can reason Ensures modular reasoning: can reason
about TF(x) as an extra method of xabout TF(x) as an extra method of x’’s classs class

ConclusionsConclusions

�� Modular reasoning is keyModular reasoning is key

�� Ownership types support modular Ownership types support modular
reasoningreasoning

�� Software upgrades benefit tooSoftware upgrades benefit too

Ownership Types for Object Ownership Types for Object
EncapsulationEncapsulation

Barbara LiskovBarbara Liskov
Chandrasekhar BoyapatiChandrasekhar Boyapati

Liuba ShriraLiuba Shrira

Laboratory for Computer ScienceLaboratory for Computer Science
Massachusetts Institute of TechnologyMassachusetts Institute of Technology

{liskov, chandra, liuba}@lcs.mit.edu{liskov, chandra, liuba}@lcs.mit.edu

class IntVector {class IntVector {

int size() int size() reads (this)reads (this) {{……} } ……

}}

class IntStack {class IntStack {

IntVectorIntVector〈〈〈〈〈〈〈〈thisthis〉〉〉〉〉〉〉〉 vec;vec;

void push(int x) void push(int x) writes (this)writes (this) {{……} } ……

}}

void m (IntStack s, IntVector v) void m (IntStack s, IntVector v) writes (s) reads (v)writes (s) reads (v)

where !(v <= s) !(s <= v)where !(v <= s) !(s <= v) {{

int n = v.size(); s.push(3); assert(n == v.size());int n = v.size(); s.push(3); assert(n == v.size());

}}

Example of Local ReasoningExample of Local Reasoning

Is the condition in the assert true?Is the condition in the assert true?

Example of Local ReasoningExample of Local Reasoning

s is not encapsulated in v, and v is not encapsulated in ss is not encapsulated in v, and v is not encapsulated in s

class IntVector {class IntVector {

int size() int size() reads (this)reads (this) {{……} } ……

}}

class IntStack {class IntStack {

IntVectorIntVector〈〈〈〈〈〈〈〈thisthis〉〉〉〉〉〉〉〉 vec;vec;

void push(int x) void push(int x) writes (this)writes (this) {{……} } ……

}}

void m (IntStack s, IntVector v) void m (IntStack s, IntVector v) writes (s) reads (v)writes (s) reads (v)

where !(v <= s) !(s <= v)where !(v <= s) !(s <= v) {{

int n = v.size(); s.push(3); assert(n == v.size());int n = v.size(); s.push(3); assert(n == v.size());

}}

Example of Local ReasoningExample of Local Reasoning

size only reads v and its encapsulated objectssize only reads v and its encapsulated objects

push only writes s and its encapsulated objectspush only writes s and its encapsulated objects

class IntVector {class IntVector {

int size() int size() reads (this)reads (this) {{……} } ……

}}

class IntStack {class IntStack {

IntVectorIntVector〈〈〈〈〈〈〈〈thisthis〉〉〉〉〉〉〉〉 vec;vec;

void push(int x) void push(int x) writes (this)writes (this) {{……} } ……

}}

void m (IntStack s, IntVector v) void m (IntStack s, IntVector v) writes (s) reads (v)writes (s) reads (v)

where !(v <= s) !(s <= v)where !(v <= s) !(s <= v) {{

int n = v.size(); s.push(3); assert(n == v.size());int n = v.size(); s.push(3); assert(n == v.size());

}}

Example of Local ReasoningExample of Local Reasoning

So size and push cannot interfereSo size and push cannot interfere

So the condition in the assert must be trueSo the condition in the assert must be true

class IntVector {class IntVector {

int size() int size() reads (this)reads (this) {{……} } ……

}}

class IntStack {class IntStack {

IntVectorIntVector〈〈〈〈〈〈〈〈thisthis〉〉〉〉〉〉〉〉 vec;vec;

void push(int x) void push(int x) writes (this)writes (this) {{……} } ……

}}

void m (IntStack s, IntVector v) void m (IntStack s, IntVector v) writes (s) reads (v)writes (s) reads (v)

where !(v <= s) !(s <= v)where !(v <= s) !(s <= v) {{

int n = v.size(); s.push(3); assert(n == v.size());int n = v.size(); s.push(3); assert(n == v.size());

}}

