Ownership Types for Object
Encapsulation

Barbara Liskov
Chandrasekhar Boyapati
Liuba Shrira

Laboratory for Computer Science
Massachusetts Institute of Technology
{liskov, chandra, liuba}@Ilcs.mit.edu

Outline

e Object Encapsulation

e Ownership Types

e Upgrades in Persistent Object Stores

Modular Reasoning

Goal Is local reasoning about correctness

> Prove a class meets its specification,
using only specifications but not code
of other classes

Crucial when dealing with large programs

Requires no interference from code
outside the class

» Objects must be encapsulated

Object Encapsulation

e Consider a Set object s implemented
using a Vector object v

e

Local reasoning about s is possible
> If objects outside s do not access v
> That s, if v is encapsulated within s

Encapsulation

e In general, all objects that s depends on
must be encapsulated within s

e s depends on x if mutations of x affect
behavior of s

> Leino, Nelson (SCR’00)
» Detlefs, Leino, Nelson (SRC ’'98)

Examples

Rep invariant for Set: no-dups
> Then, size of vector is size of set
> Then, remove stops at match

S

Clearly, v must be inside s

Examples

What does no-dups mean?
> lel.equals(e2), for any elements e1 & e2

)

@Rc O @

So set does not depend on elements if
elements are immutable

Iterators and Encapsulation

e [terators require access to representation

@Rc O @

e Okay if violations of encapsulation limited
to the same module

Ownership Types

e Goal is to enforce encapsulation statically

@Rc O @

e Programmer can declare s owns v
e System ensures v is encapsulated in s

Ownership Types

world

Every object has an owner

Owner can be another object or world
Ownership relation forms a tree
Owner of an object cannot change

Ownership Types for Encapsulation

If an object owns objects it depends on
Then type system enforces encapsulation
> If vis inside s and o is outside

> Then o cannot access v

O)°

Ownership Types

TStack Example (No Owners)

class TStack {
TNode head; ot @

void push(T value) {...}
T pop() {...}

class TNode {
TNode next;
T value;

class T {...}

TStack Example (With Owners)

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

}

class TNode{nodeOwner, TOwner) { ol
acC ‘
TNode(nodeOwner, TOwner) next;

T(TOwner) value; TNode @ @ @
}
class T (TOwner) {...} I OO

Classes are parameterized with owners

TStack Example

mp class TStack(stackOwner, TOwner) {
TNode(this, TOwner) head;

}

class TNode{nodeOwner, TOwner) { ol
acC ‘
TNode(nodeOwner, TOwner) next;

T(TOwner) value; TNode @ @ @
}
class T (TOwner) {...} E ©SO0Oo

First owner owns the “this” object

TStack Example

class TStack({stackOwner, TOwner) {
> TNode(this, TOwner) head;

}

class TNode{nodeOwner, TOwner) { T
acC
TNode(nodeOwner, TOwner) next;
T(TOwner) value; TNode OO
}

class T (TOwner) {...} U OO

TStack owns the “head” TNode

TStack Example

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

}

class TNode{nodeOwner, TOwner) {

TStack
> TNode(nodeOwner, TOwner) next; %5
T(TOwner) value; TNode

}
class T (TOwner) {...} U

The “next” TNode has the same owner as the “this” TNode
All TNodes have the same owner

TStack Example

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

} Client

class TNode{nodeOwner, TOwner) {
TNode(nodeOwner, TOwner) next;
T(TOwner) value; TNode

TStack

}

class Client{clientOwner) {

> TStack(this, this) s1;
TStack({this, world) s2;
TStack({world, world) s3;

}

T

s1 is an encapsulated stack with encapsulated elements

TStack Example

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

} Client

class TNode{nodeOwner, TOwner) {
TNode(nodeOwner, TOwner) next;
T(TOwner) value; TNode

TStack

}

class Client{clientOwner) {
TStack(this, this) s1;

) TStack({this, world) s2;
TStack({world, world) s3;

}

T

s2 is an encapsulated stack with public elements

TStack Example

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

]

class TNode{nodeOwner, TOwner) {
TNode(nodeOwner, TOwner) next;
T(TOwner) value; TNode

TStack

}

class Client{clientOwner) {
TStack(this, this) s1;
TStack({this, world) s2;

> TStack({world, world) s3;

}

T

s3 is a public stack with public elements

TStack Example

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

}

class TNode{nodeOwner, TOwner) {

TStack
TNode(nodeOwner, TOwner) next; %5
T(TOwner) value; TNode

}

class Client{clientOwner) { T

TStack(this, this) s1;
TStack({this, world) s2;
TStack({world, world) s3;

> TStack(world, this) s4;
)}

OtJher owners must be same as or more public than first owner [CD02]
This constraint is necessary to enforce encapsulation with subtyping

Constraints on Owners

=p class Client(cOwner, sOwner, tOwner) where (sOwner <= tOwner) {

) TStack(sOwner, tOwner) head;
}

This is legal only if tOwner is same as or more public than sOwner

Programmers can constrain owners using where clauses

lterators

Consider an Iterator i over Stack s
If i iIs encapsulated within s

> Then i cannot be used outside s
If i is not encapsulated within s

> Then i cannot access representation of s

TStackEnum

TStack

Solution

e Use Inner classes

e Gives desired access to representation
e Yet, satisfies our modularity goal

lterators

class TStack(stackOwner, TOwner) { | Inner class objects can access
TNode(this, TOwner) head; rep of outer class objects

class TStackEnum(enumOwner, TOwner) implements
TEnum{enumOwner, TOwner) {
= TNode(TStack.this, TOwner) current = TStack.this.head;

T k
TStackEnum EiE

-
)
O

lterators

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

class TStackEnum(enumOwner, TOwner) implements
TEnum{(enumOwner, TOwner) {...}

- TStackEnum (enumOwner, TOwner) elements (enumOwner) (')
where (enumOwner <= TOwner) {...}

TStackEnum

TStack

Ownership Types for Encapsulation

e If an object owns objects it depends on

e Then type system enforces encapsulation
> If vis inside s and o is outside
> Then o cannot access v
»> Unless o is Inner class object of s

O)°

Effects Clauses

class TStack({stackOwner, TOwner) {
TNode(this, TOwner) head;

_ T(TOwner) pop() writes (this) {
if (head == null) return null;
T(TOwner) value = head.value();
head = head.next();
return value;

Methods can specify read and write effects
reads(x) means method can read x and its encapsulated objects
writes(x) means method can read/write x and its encapsulated objects

Related Work

Types augmented with owners
» Clarke, Potter, Noble (OOPSLA ’98)

Support for subtyping

» Clarke, Drossopoulou (OOPSLA °02)

Owners combined with effects clauses
» Boyapati, Rinard (OOPSLA ’01)

Summary

Ownership types capture dependencies

Extension for inner class objects allows
iterators and wrappers

Approach provides expressive power, yet
ensures modular reasoning

Effects clauses enhance modular
reasoning

Applications

Safe upgrades in persistent object stores

Preventing data races and deadlocks
> Boyapati, Lee, Rinard (OOPSLA °01) (OOPSLA °02)

Safe region-based memory management
» Boyapati, Salcianu, Beebee, Rinard (MIT ’02)

Program understanding
> Aldrich, Kostadinov, Chambers (OOPSLA ’02)

Upgrades in Persistent Object Stores

e Persistent Object Stores store objects

Persistent Root

Upgrades in Persistent Object Stores

e Objects are accessed within transactions

> Transactions support modular reasoning in
spite of concurrency and failures

Persistent Root

Uses of Upgrades

e Upgrades are needed to
> Correct errors
> Improve performance
> Meet changing requirements

Upgrades can be
» Compatible or incompatible
> Upgrades must be complete

e Encapsulation enables safe upgrades

Defining an Upgrade

An upgrade is a set of class-upgrades
> Upgrades must be complete

A class upgrade is
(old-class, new-class, TF)

TF: old-class § new-class
> TF changes representation of objects
> System preserves identity of objects

Executing an Upgrade

Requires: transforming all old-class
objects

Goal: Don’t interfere with applications
> Don’t stop the world

Goal: Be efficient in space and time
> Don’t copy the database

Solution: Lazy, Just in Time

Applications continue to run

Objects are transformed just before first
access

Upgrades can run in parallel

Desired Semantics

Upgrades appear to run when installed

> Serialized before all later application
transactions

Upgrades appear to run in upgrade order

Within an upgrade, transforms run as if
each were the first to run

Related Work

PJama: Atkinson, Dmitriev, Hamilton (POS ’00)
Orion: Banerjee, Kim, Kim, Korth (Sigmod ’87)
0O2: Deux et al (IEEE TKDE ’90)

OTGen: Lerner, Habermann (OOPSLA ’90)
Gemstone: Penney, Stein (OOPSLA ’87)

How System Works

e Objects are transformed just before first
access

> Interrupt the application
> Run earliest pending transform
»> Transform runs in its owns transaction

e Application continues after transform
commits

e Transforms can be interrupted too

Example

. UTAT;TF1(X);A2;...
U1 is installed
A1 commits
A2 accesses x and is interrupted
TF1(x) commits
A2 commits

Example

. UTAT;TF1(X);A2;...
U1 is installed
A1 commits
A2 accesses x and is interrupted
TF1(x) commits
A2 commits

Suppose A1 modifies z and TF1(x) uses z

Example

. UT;AT; TR1(Xx);A2; TF1(y);A3; ...
U1 is installed
A1 commits
A2 accesses x and is interrupted
TF1(x) commits
A2 commits
A3 accesses y and is interrupted
TF1(y) commits
A3 commits

Example

. UT;AT; TR1(Xx);A2; TF1(y);A3; ...
U1 is installed
A1 commits
A2 accesses x and is interrupted
TF1(x) commits
A2 commits
A3 accesses y and is interrupted
TF1(y) commits
A3 commits

Suppose TF1(y) uses x

Insuring Correct Behavior

e S1: TF(x) only accesses objects x owns
> Statically enforced by type system

Insuring Correct Behavior

e S1: TF(x) only accesses objects x owns
> OStatically enforced by type system

e S2: xis transformed before objects x owns
> No access to owned objects from outside

> Shared access to owned objects from inner
class objects (e.g., iterator)

S

iO /

Insuring Correct Behavior

S1: TF(x) only accesses objects x owns
S2: x Is transformed before objects x owns
Plus basic lazy scheme

> Applications don’t interfere with
transforms

» Transforms of unrelated objects don’t
interfere

> Transforms of related objects run in
proper order (owner before owned)

Modular Reasoning

S1: TF(x) only accesses objects x owns
S2: x Is transformed before objects x owns
Plus basic lazy scheme

Ensures modular reasoning: can reason
about TF(x) as an extra method of x’s class

Conclusions

Modular reasoning is key

Ownership types support modular
reasoning

Software upgrades benefit too

Ownership Types for Object
Encapsulation

Barbara Liskov
Chandrasekhar Boyapati
Liuba Shrira

Laboratory for Computer Science
Massachusetts Institute of Technology
{liskov, chandra, liuba}@Ilcs.mit.edu

Example of Local Reasoning

class IntVector {
int size() reads (this) {...} ...
]
class IntStack {
IntVector(this) vec;
void push(int x) writes (this) {...} ...
}
void m (IntStack s, IntVector v) writes (s) reads (v)
where l(v<=s) l(s<=v) {

int n = v.size(); s.push(3); assert(n == v.size());

Is the condition in the assert true?

Example of Local Reasoning

class IntVector {
int size() reads (this) {...} ...
]
class IntStack {
IntVector(this) vec;
void push(int x) writes (this) {...} ...
}
void m (IntStack s, IntVector v) writes (s) reads (v)
where l(v<=s) l(s<=v) {

int n = v.size(); s.push(3); assert(n == v.size());

s is not encapsulated in v, and v is not encapsulated in s

Example of Local Reasoning

class IntVector {
=) int size() reads (this) {...} ...
]
class IntStack {
IntVector(this) vec;
) void push(int x) writes (this) {...} ...
}
void m (IntStack s, IntVector v) writes (s) reads (v)
where l(v<=s) l(s<=v) {

=> int n = v.size(); s.push(3); assert(n == v.size());

}

size only reads v and its encapsulated objects
push only writes s and its encapsulated objects

Example of Local Reasoning

class IntVector {
int size() reads (this) {...} ...
]
class IntStack {
IntVector(this) vec;
void push(int x) writes (this) {...} ...
}
void m (IntStack s, IntVector v) writes (s) reads (v)
where l(v<=s) l(s<=v) {

=> int n = v.size(); s.push(3); assert(n == v.size());

}

So size and push cannot interfere
So the condition in the assert must be true

