Ownership Types for Safe Region-Based
Memory Management in Real-Time Java

Chandrasekhar Boyapati
Alexandru Salcianu
William Beebee
Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology

Contribution

Ownership types Region types
(Object encapsulation) (Memory safety)

Clarke et al. (OOPSLA ’98) (OOPSLA ’02) > Tofte, Talpin (POPL ’94)
Boyapati et al. (OOPSLA 01) (OOPSLA ’02) » Christiansen et al. (DIKU ’98)
Boyapati et al. (POPL °03) (OOPSLA ’03) » Crary et al. (POPL ’99)
Aldrich et al. (OOPSLA ’02) > Grossman et al. (PLDI ’02)

\ /

Unified type system for OO languages

> Object encapsulation AND Memory safety

» Foundation for enforcing other safety properties
- Data race and deadlock freedom
- Safe software upgrades
= Safe real-time programming (Real-Time Java)

Talk Overview

e Type system for OO programs
» Ownership types
> Region types

» Similarities
» Unified type system

e Extensions for Real-Time Java

e EXperience

Ownership Types

Ownership Types

e Say Stack s is implemented with linked list

Stack @

Ownership Types

e Say Stack s is implemented with linked list

I

Ownership Types

e Say Stack s is implemented with linked list
e Outside objects must not access list nodes

- Soge’

Ownership Types

Say Stack s is iImplemented with linked list
Outside objects must not access list nodes

Q-

Program can declare s owns list nodes
System ensures list is encapsulated in s

Region-Based Memory Management

Region-Based Memory Management

e Provides control over memory
> For efficiency
> For predictability

e While ensuring memory safety

Region-Based Memory Management

?

SN

e Programs can create a region
e Allocate objects in a region
e Delete a region & free all objects in it

Region-Based Memory Management

Programs can create a region
Allocate objects in a region
Delete a region & free all objects in it

Region lifetimes are nested

Region Types

‘_ .

e Ensure memory safety
e Disallow pointers from outside to inside

Similarities

e Ownership types ensure object encapsulation
e Disallow pointers from outside to inside

e Region types ensure memory safety
e Disallow pointers from outside to inside

Unified Type System

Unified Type System

e Disallows pointers from outside to inside
e Ensures object encapsulation
e Ensures memory safety

Unified Type System

Unified Type System

e Every object has an owner
e Owner can be another object or a region

e Ownership relation forms a forest of trees

Unified Type System

e An object owned by another object
> Is an encapsulated subobject of its owner

Unified Type System

e An object owned by another object
> Is an encapsulated subobject of its owner

e An object owned by a region
> Is allocated in that region

Unified Type System

e An object owned by another object
> Is an encapsulated subobject of its owner
> Is allocated in the same region as its owner

e An object owned by a region
> Is allocated In that region

Unified Type System

e Programmers specify
> Owner of every object
> In types of variables pointing to objects

e Type checker statically verifies
> No pointers from outside to inside

Unified Type System

class Stack {
Node head; otaey @

void push(Data data) {...}
Data pop() {...}

class Node {
Node next;
Data data;

Unified Type System

class Stack({stackOwner, dataOwner) {

}

Node(this, dataOwner) head;

class Node{nodeOwner, dataOwner) {

}

Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

D
) 4
D

O

Unified Type System

mp class Stack(stackOwner, dataOwner) {
Node(this, dataOwner) head;
]
class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

}

Classes are parameterized with owners
First owner owns the corresponding object

D
) 4
D

O

Unified Type System

class Stack({stackOwner, dataOwner) {
= Node([i], dataOwner) head;
]
class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

}

Stack owns the head Node

Unified Type System

class Stack({stackOwner, dataOwner) {
Node(this, dataOwner) head;
]

class Node{nodeOwner, dataOwner) {

= Node([iEEONEE, dataOwner) next;
Data(dataOwner) data;

}

All Nodes have the same owner

Ownership Types for Safe Regions

class Stack({stackOwner, dataOwner) {
Node(this, dataOwner) head;

]

class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

}

class Client {

=) Stack(this, this) s;
}

s is an encapsulated stack with encapsulated elements

Unified Type System

class Stack({stackOwner, dataOwner) {
Node(this, dataOwner) head;

]

class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

}

Unified Type System

class Stack({stackOwner, dataOwner) {
Node(this, dataOwner) head;

]

class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

=) (RegionHandle(r) h) {

r is the region name. Itis a compile time entity.
h is the region handle. It is a runtime value.

Unified Type System

class Stack({stackOwner, dataOwner) {
Node(this, dataOwner) head;

]

class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

mp (RegionHandle(r1) h1) {

m) (RegionHandle(r2) h2) {
Stack(r1, r1) s1;
Stack(r2, r1) s2;

Region r2 is nested inside region r1

Unified Type System

class Stack({stackOwner, dataOwner) {
Node(this, dataOwner) head;

]

class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

(RegionHandle(r1) h1) {
(RegionHandle(r2) h2) {
Stack(r1, r1) s1;
Stack(r2, r1) s2;

Stack and its elements are in the same region

Unified Type System

class Stack({stackOwner, dataOwner) {

Node(this, dataOwner) head;

]

class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

(RegionHandle(r1) h1) {
(RegionHandle(r2) h2) {
Stack(r1, r1) s1;
Stack(r2, r1) s2;

Stack and its elements are in different regions

Unified Type System

class Stack({stackOwner, dataOwner) {
Node(this, dataOwner) head;

]

class Node{nodeOwner, dataOwner) {
Node(nodeOwner, dataOwner) next;
Data(dataOwner) data;

(RegionHandle(r1) h1) {
(RegionHandle(r2) h2) {
Stack(r1, r1) s1;
Stack(r2, r1) s2;
=) Stack(r1, r2) s3;
I3

Scoping alone does not ensure safety in presence of subtyping
First owner must be same as or nested in other owners

Unified Type System
e Other details

> Special regions
= Garbage collected heap
- Immortal region

» Runtime provides
- Region handle of most nested region
= Region handle of an object

» Type checker statically infers
= If a region handle is in scope

Unified Type System

Enforces object encapsulation
> Boyapati, Liskov, Shrira (POPL ’03)

Enable safe region-based memory management
» Boyapati, Salcianu, Beebee, Rinard (PLDI ’03)

Prevents data races and deadlocks
> Boyapati, Rinard (OOPSLA ’01)
» Boyapati, Lee, Rinard (OOPSLA ’02)

Enables upgrades in persistent object stores
> Boyapati, Liskov, Shrira, Moh, Richman (OOPSLA ’03)

Talk Overview

Unified type system for OO programs

Extensions for Real-time Java
> Multithreaded programs

> Real-time programs

> Real-time Java programs

Experience

Regions for Multithreaded Programs

e Shared regions with reference counting
> Grossman (TLDI ’01)

Regions for Multithreaded Programs

e Shared regions with reference counting
> Grossman (TLDI ’01)

e Sub regions within shared regions
e To avoid memory leaks in shared regions

Regions for Multithreaded Programs

e Shared regions with reference counting
> Grossman (TLDI ’01)

e Sub regions within shared regions
e To avoid memory leaks in shared regions

-~ F555

Regions for Multithreaded Programs

Shared regions with reference counting
> Grossman (TLDI ’01)

Sub regions within shared regions
To avoid memory leaks In shared regions

Typed portal fields in sub regions
To start inter-thread communication

Regions for Multithreaded Programs

Shared regions with reference counting
> Grossman (TLDI ’01)

Sub regions within shared regions
To avoid memory leaks In shared regions

Typed portal fields in sub regions
To start inter-thread communication

Region kinds to make it all work

Talk Overview

Unified type system for OO programs

Extensions for Real-time Java
> Multithreaded programs

> Real-time programs

> Real-time Java programs

Experience

Regions for Real-Time Programs

Real-time (RT) threads with real-time constraints

RT threads cannot use garbage collected heap
RT threads can use immortal memory
RT threads can use regions

Regions for Real-Time Programs

Real-time (RT) threads with real-time constraints

RT threads cannot use garbage collected heap
RT threads can use immortal memory
RT threads can use regions

RT threads cannot read heap references
RT threads cannot overwrite heap references

Regions for Real-Time Programs

Real-time (RT) threads with real-time constraints

RT threads cannot use garbage collected heap
RT threads can use immortal memory
RT threads can use regions

RT threads cannot read heap references
RT threads cannot overwrite heap references

Ownership types augmented with effects clauses
To statically verify above properties

Real-Time Java (RTJ)

Extension to Java for real-time programs

Java Specification Request (JSR) 1
http://lwww.rtj.org

Real-Time Java (RTJ)

Extension to Java for real-time programs

Java Specification Request (JSR) 1
http://lwww.rtj.org

Real-time (RT) threads
Region-based memory management

Threads cant violate memory safety
RT threads cant interact with garbage collector

Real-Time Java (RTJ)

e Uses dynamic checks to ensure
» No pointers from outer to inner regions
> Nesting of regions forms a hierarchy
» RT threads do not read heap refs
» RT threads do not overwrite heap refs

e Introduces new failure modes
e Programming model is difficult to use

Region Types as Front-End for RTJ

Real-time Java

Jaua . qee 2 Translattort
Mhecker emoves extratypes) ——
+ Extra (Generates real-time Java)
types

Y

Compiler

bytecodesl

JVM

Benefits of Using Region Types

Java Type Translator Real-time Java
= (Removes extra types) ———

heck
+ Extra S (Generates real-time Java)
types

Safety
Checks errors at compile time

Efficiency
Avoids runtime checking overhead

Experience

Reducing Programming Overhead

Type inference for method local variables
Default types for method signatures & fields
User defined defaults as well

Significantly reduces programming overhead

Approach supports separate compilation

Programming Overhead

Program

Lines
of code

Lines
annotated

HTTP Server

603

20

Game Server

97

10

Database Server

244

24

java.util.Vector

992

35

java.util.Hashtable

1011

93

Image Recognition

9567

8

Water

1850

31

Barnes

1850

16

RTJ Dynamic Checking Overhead

Execution Time (sec)

Program Dynamic Static | SPpeed Up
Checks Checks

Water 2.55 2.06 24%
Barnes 21.6 19.1 13%

Image Recognition 8.10 6.70 21%
load 0.813 0.667 25%
cross 0.014 0.014
thinning 0.026 0.023 10%
save 0.731 0.617 18%

Related Work

Related Work

e Ownership types
» Clarke, Potter, Noble (OOPSLA ’98), (ECOOP ’01)
» Clarke, Drossopoulou (OOPSLA ’02)
> Boyapati, Lee, Rinard (OOPSLA ’01) (OOPSLA ’02)
» Boyapati, Liskov, Shrira, Moh, Richman (POPL '03) (OOPSLA ’03)
» Aldrich, Kostadinov, Chambers (OOPSLA ’02)

e Region types
Tofte, Talpin (POPL ’94)
Christiansen, Henglein, Niss, Velschow (DIKU ’98)
Crary, Walker, Morrisett (POPL ’99)
Grossman, Morrisett, Jim, Hicks, Wang, Cheney (PLDI ’02)
Grossman (TLDI ’03)

Our work unifies these areas

Related Work

Systems that allow regions to be freed early
> Aiken, Fahndrich, Levien (PLDI ’95)
> Gay, Aiken (PLDI ’98) (PLDI '01)
> Crary, Walker, Morrisett (POPL ’99)

Dynamic analysis to infer RTJ regions
> Deters, Cytron (ISMM ’02)

Static analysis to remove RTJ dynamic checks
» Salcianu, Rinard (PPoPP '01)

Static analysis to help infer size of RTJ regions
» Gheorghioiu, Salcianu, Rinard (POPL ’03)

Real-time garbage collection
> Baker (CACM ’78)
> Bacon, Cheng, Rajan (POPL ’03)

Conclusions
Unified type system for OO languages

e Statically enforces several properties
Object encapsulation
Memory safety
Data race and deadlock freedom
Safe software upgrades
Safe real-time programming

e Type checking is fast and scalable
e Requires little programming overhead

e Promising way to make programs reliable

Ownership Types for Safe Region-Based
Memory Management in Real-Time Java

Chandrasekhar Boyapati
Alexandru Salcianu
William Beebee
Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology

