
Laboratory for Computer ScienceLaboratory for Computer Science
Massachusetts Institute of TechnologyMassachusetts Institute of Technology

Ownership Types for Safe RegionOwnership Types for Safe Region--Based Based 
Memory Management in RealMemory Management in Real--Time JavaTime Java

Chandrasekhar BoyapatiChandrasekhar Boyapati
Alexandru SalcianuAlexandru Salcianu
William BeebeeWilliam Beebee
Martin RinardMartin Rinard



Ownership typesOwnership types

�� Clarke et al. (Clarke et al. (OOPSLA OOPSLA ’’9898) () (OOPSLA OOPSLA ’’0202))

�� Boyapati et al. (Boyapati et al. (OOPSLA OOPSLA ’’0101)  ()  (OOPSLA OOPSLA ’’0202))

�� Boyapati et al. (Boyapati et al. (POPL POPL ’’0303) () (OOPSLA OOPSLA ’’0303))

�� Aldrich et al. (Aldrich et al. (OOPSLA OOPSLA ’’0202))

Region typesRegion types

�� Tofte, Talpin (Tofte, Talpin (POPL POPL ’’9494))

�� Christiansen et al. (Christiansen et al. (DIKU DIKU ’’9898))

�� Crary et al. (Crary et al. (POPL POPL ’’9999))

�� Grossman et al. (Grossman et al. (PLDI PLDI ’’0202))

Unified type system for OO languagesUnified type system for OO languages

�� Object encapsulation  Object encapsulation  ANDAND Memory safetyMemory safety

�� Foundation for enforcing other safety propertiesFoundation for enforcing other safety properties

�� Data race and deadlock freedomData race and deadlock freedom

�� Safe software upgradesSafe software upgrades

�� Safe realSafe real--time programming (Realtime programming (Real--Time Java)Time Java)

ContributionContribution

(Object encapsulation)(Object encapsulation) (Memory safety)(Memory safety)



Talk OverviewTalk Overview

�� Type system for OO programsType system for OO programs

�� Ownership typesOwnership types

�� Region typesRegion types

�� SimilaritiesSimilarities

�� Unified type systemUnified type system

�� Extensions for RealExtensions for Real--Time JavaTime Java

�� ExperienceExperience



Ownership TypesOwnership Types



Ownership TypesOwnership Types

datadata

nextnext

headhead

datadata

nextnext

datadata

nextnext

…… …………

StackStack

NodeNode

DataData

datadata

nextnext

……

�� Say Stack s is implemented with linked listSay Stack s is implemented with linked list



Ownership TypesOwnership Types

ss

�� Say Stack s is implemented with linked listSay Stack s is implemented with linked list



Ownership TypesOwnership Types

ssoo ~~~~

�� Say Stack s is implemented with linked listSay Stack s is implemented with linked list

�� Outside objects must not access list nodesOutside objects must not access list nodes



Ownership TypesOwnership Types

�� Program can declare s owns list nodesProgram can declare s owns list nodes

�� System ensures list is encapsulated in sSystem ensures list is encapsulated in s

ssoo ~~~~

�� Say Stack s is implemented with linked listSay Stack s is implemented with linked list

�� Outside objects must not access list nodesOutside objects must not access list nodes



RegionRegion--Based Memory ManagementBased Memory Management



�� Provides control over memoryProvides control over memory

�� For efficiencyFor efficiency

�� For predictabilityFor predictability

�� While ensuring memory safetyWhile ensuring memory safety

RegionRegion--Based Memory ManagementBased Memory Management



�� Programs can create a regionPrograms can create a region

�� Allocate objects in a regionAllocate objects in a region

�� Delete a region & free all objects in itDelete a region & free all objects in it

RegionRegion--Based Memory ManagementBased Memory Management



�� Programs can create a regionPrograms can create a region

�� Allocate objects in a regionAllocate objects in a region

�� Delete a region & free all objects in itDelete a region & free all objects in it

�� Region lifetimes are nestedRegion lifetimes are nested

RegionRegion--Based Memory ManagementBased Memory Management



�� Ensure memory safetyEnsure memory safety

�� Disallow pointers from outside to insideDisallow pointers from outside to inside

Region TypesRegion Types

~~~~



�� Ownership types ensure object encapsulationOwnership types ensure object encapsulation

�� Disallow pointers from outside to insideDisallow pointers from outside to inside

�� Region types ensure memory safetyRegion types ensure memory safety

�� Disallow pointers from outside to insideDisallow pointers from outside to inside

SimilaritiesSimilarities



Unified Type SystemUnified Type System



�� Disallows pointers from outside to insideDisallows pointers from outside to inside

�� Ensures object encapsulationEnsures object encapsulation

�� Ensures memory safetyEnsures memory safety

Unified Type SystemUnified Type System



Unified Type SystemUnified Type System



�� Every object has an ownerEvery object has an owner

�� Owner can be anotherOwner can be another objectobject or aor a regionregion

�� Ownership relation forms a forest of treesOwnership relation forms a forest of trees

Unified Type SystemUnified Type System



�� An object owned by anotherAn object owned by another objectobject

�� Is an encapsulated subobject of its ownerIs an encapsulated subobject of its owner

Unified Type SystemUnified Type System



�� An object owned by anotherAn object owned by another objectobject

�� Is an encapsulated subobject of its ownerIs an encapsulated subobject of its owner

�� An object owned by a An object owned by a regionregion

�� Is allocated in that regionIs allocated in that region

Unified Type SystemUnified Type System



�� An object owned by anotherAn object owned by another objectobject

�� Is an encapsulated subobject of its ownerIs an encapsulated subobject of its owner

�� Is allocated in the same region as its ownerIs allocated in the same region as its owner

�� An object owned by a An object owned by a regionregion

�� Is allocated in that regionIs allocated in that region

Unified Type SystemUnified Type System



Unified Type SystemUnified Type System

�� Programmers specifyProgrammers specify

�� Owner of every objectOwner of every object

�� In types of variables pointing to objectsIn types of variables pointing to objects

�� Type checker statically verifiesType checker statically verifies

�� No pointers from outside to insideNo pointers from outside to inside



class Stack {class Stack {

Node head;Node head;

void push(Data data) {void push(Data data) {……}}

Data pop() {Data pop() {……}}

}}

class Node {class Node {

Node next; Node next; 

Data data;Data data;

……

}}

Unified Type SystemUnified Type System

datadata

nextnext

headhead

datadata

nextnext

datadata

nextnext

…… …………

StackStack

NodeNode

DataData



Unified Type SystemUnified Type System

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}



Unified Type SystemUnified Type System

Classes are parameterized with ownersClasses are parameterized with owners

First owner owns the corresponding objectFirst owner owns the corresponding object

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}



class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈 this , dataOwner, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}

Unified Type SystemUnified Type System

Stack owns the head NodeStack owns the head Node



class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈 nodeOwner , dataOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}

Unified Type SystemUnified Type System

All Nodes have the same ownerAll Nodes have the same owner



Ownership Types for Safe RegionsOwnership Types for Safe Regions

s is an encapsulated stack with encapsulated elementss is an encapsulated stack with encapsulated elements

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}

class Clientclass Client {{

StackStack〈〈〈〈〈〈〈〈this, thisthis, this〉〉〉〉〉〉〉〉 s;s;

}}



Unified Type SystemUnified Type System

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}



Unified Type SystemUnified Type System

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

} } 

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈rr〉〉〉〉〉〉〉〉 h) {h) {

……

}}

r  is the region name.   It is a compile time entity.r  is the region name.   It is a compile time entity.

h is the region handle. It is a runtime value.h is the region handle. It is a runtime value.



Unified Type SystemUnified Type System

Region r2 is nested inside region r1Region r2 is nested inside region r1

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r1r1〉〉〉〉〉〉〉〉 h1) {h1) {

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r2r2〉〉〉〉〉〉〉〉 h2) {h2) {

StackStack〈〈〈〈〈〈〈〈r1, r1r1, r1〉〉〉〉〉〉〉〉 s1;s1;

StackStack〈〈〈〈〈〈〈〈r2, r1r2, r1〉〉〉〉〉〉〉〉 s2;s2;

}}}}



Unified Type SystemUnified Type System

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r1r1〉〉〉〉〉〉〉〉 h1) {h1) {

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r2r2〉〉〉〉〉〉〉〉 h2) {h2) {

StackStack〈〈〈〈〈〈〈〈r1, r1r1, r1〉〉〉〉〉〉〉〉 s1;s1;

StackStack〈〈〈〈〈〈〈〈r2, r1r2, r1〉〉〉〉〉〉〉〉 s2;s2;

}}}}

Stack and its elements are in the same regionStack and its elements are in the same region



Unified Type SystemUnified Type System

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r1r1〉〉〉〉〉〉〉〉 h1) {h1) {

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r2r2〉〉〉〉〉〉〉〉 h2) {h2) {

StackStack〈〈〈〈〈〈〈〈r1, r1r1, r1〉〉〉〉〉〉〉〉 s1;s1;

StackStack〈〈〈〈〈〈〈〈r2, r1r2, r1〉〉〉〉〉〉〉〉 s2;s2;

}}}}

Stack and its elements are in different regionsStack and its elements are in different regions



Unified Type SystemUnified Type System

class Stackclass Stack〈〈〈〈〈〈〈〈stackOwner, dataOwnerstackOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈this, dataOwnerthis, dataOwner〉〉〉〉〉〉〉〉 head;head;

}}

class Nodeclass Node〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 {{

NodeNode〈〈〈〈〈〈〈〈nodeOwner, dataOwnernodeOwner, dataOwner〉〉〉〉〉〉〉〉 next; next; 

DataData〈〈〈〈〈〈〈〈dataOwnerdataOwner〉〉〉〉〉〉〉〉 data;data;

}}

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r1r1〉〉〉〉〉〉〉〉 h1) {h1) {

(RegionHandle(RegionHandle〈〈〈〈〈〈〈〈r2r2〉〉〉〉〉〉〉〉 h2) {h2) {

StackStack〈〈〈〈〈〈〈〈r1, r1r1, r1〉〉〉〉〉〉〉〉 s1;s1;

StackStack〈〈〈〈〈〈〈〈r2, r1r2, r1〉〉〉〉〉〉〉〉 s2;s2;

StackStack〈〈〈〈〈〈〈〈r1, r2r1, r2〉〉〉〉〉〉〉〉 s3;    s3;    // illegal// illegal

}}}}

Scoping alone does not ensure safety in presence of subtypingScoping alone does not ensure safety in presence of subtyping

First owner must be same as or nested in other ownersFirst owner must be same as or nested in other owners



�� Other detailsOther details

�� Special regionsSpecial regions

�� Garbage collected heapGarbage collected heap

�� Immortal regionImmortal region

�� Runtime providesRuntime provides

�� Region handle of most nested regionRegion handle of most nested region

�� Region handle of an objectRegion handle of an object

�� Type checker statically infersType checker statically infers

�� If a region handle is in scopeIf a region handle is in scope

Unified Type SystemUnified Type System



�� Enforces object encapsulationEnforces object encapsulation

�� Boyapati, Liskov, Shrira (Boyapati, Liskov, Shrira (POPL POPL ’’0303))

�� Enable safe regionEnable safe region--based memory managementbased memory management

�� Boyapati, Salcianu, Beebee, Rinard (Boyapati, Salcianu, Beebee, Rinard (PLDI PLDI ’’0303))

�� Prevents data races and deadlocksPrevents data races and deadlocks

�� Boyapati, Rinard         (Boyapati, Rinard         (OOPSLA OOPSLA ’’0101) ) 

�� Boyapati, Lee, Rinard (Boyapati, Lee, Rinard (OOPSLA OOPSLA ’’0202))

�� Enables upgrades in persistent object storesEnables upgrades in persistent object stores

�� Boyapati, Liskov, Shrira, Moh, Richman (Boyapati, Liskov, Shrira, Moh, Richman (OOPSLA OOPSLA ’’0303))

Unified Type SystemUnified Type System



Talk OverviewTalk Overview

�� Unified type system for OO programsUnified type system for OO programs

�� Extensions for RealExtensions for Real--time Javatime Java

�� Multithreaded programsMultithreaded programs

�� RealReal--time programstime programs

�� RealReal--time Java programstime Java programs

�� ExperienceExperience



Regions for Multithreaded ProgramsRegions for Multithreaded Programs

�� Shared regionsShared regions with reference countingwith reference counting
�� Grossman (Grossman (TLDI TLDI ’’0101))



Regions for Multithreaded ProgramsRegions for Multithreaded Programs

�� Shared regionsShared regions with reference countingwith reference counting
�� Grossman (Grossman (TLDI TLDI ’’0101))

�� Sub regionsSub regions within shared regionswithin shared regions

�� To avoid memory leaks in shared regionsTo avoid memory leaks in shared regions



Regions for Multithreaded ProgramsRegions for Multithreaded Programs

�� Shared regionsShared regions with reference countingwith reference counting
�� Grossman (Grossman (TLDI TLDI ’’0101))

�� Sub regionsSub regions within shared regionswithin shared regions

�� To avoid memory leaks in shared regionsTo avoid memory leaks in shared regions

~~ ~~



Regions for Multithreaded ProgramsRegions for Multithreaded Programs

�� Shared regionsShared regions with reference countingwith reference counting
�� Grossman (Grossman (TLDI TLDI ’’0101))

�� Sub regionsSub regions within shared regionswithin shared regions

�� To avoid memory leaks in shared regionsTo avoid memory leaks in shared regions

�� Typed portal fieldsTyped portal fields in sub regionsin sub regions

�� To start interTo start inter--thread communicationthread communication



Regions for Multithreaded ProgramsRegions for Multithreaded Programs

�� Shared regionsShared regions with reference countingwith reference counting
�� Grossman (Grossman (TLDI TLDI ’’0101))

�� Sub regionsSub regions within shared regionswithin shared regions

�� To avoid memory leaks in shared regionsTo avoid memory leaks in shared regions

�� Typed portal fieldsTyped portal fields in sub regionsin sub regions

�� To start interTo start inter--thread communicationthread communication

�� Region kindsRegion kinds to make it all workto make it all work



Talk OverviewTalk Overview

�� Unified type system for OO programsUnified type system for OO programs

�� Extensions for RealExtensions for Real--time Javatime Java

�� Multithreaded programsMultithreaded programs

�� RealReal--time programstime programs

�� RealReal--time Java programstime Java programs

�� ExperienceExperience



Regions for RealRegions for Real--Time ProgramsTime Programs

�� RealReal--time (RT) threadstime (RT) threads with realwith real--time constraintstime constraints

�� RT threads cannot use garbage collected heapRT threads cannot use garbage collected heap

�� RT threads can use RT threads can use immortal memoryimmortal memory

�� RT threads can use RT threads can use regionsregions



Regions for RealRegions for Real--Time ProgramsTime Programs

�� RealReal--time (RT) threadstime (RT) threads with realwith real--time constraintstime constraints

�� RT threads cannot use garbage collected heapRT threads cannot use garbage collected heap

�� RT threads can use RT threads can use immortal memoryimmortal memory

�� RT threads can use RT threads can use regionsregions

�� RT threads cannot read heap referencesRT threads cannot read heap references

�� RT threads cannot overwrite heap referencesRT threads cannot overwrite heap references



Regions for RealRegions for Real--Time ProgramsTime Programs

�� RealReal--time (RT) threadstime (RT) threads with realwith real--time constraintstime constraints

�� RT threads cannot use garbage collected heapRT threads cannot use garbage collected heap

�� RT threads can use RT threads can use immortal memoryimmortal memory

�� RT threads can use RT threads can use regionsregions

�� RT threads cannot read heap referencesRT threads cannot read heap references

�� RT threads cannot overwrite heap referencesRT threads cannot overwrite heap references

�� Ownership types augmented with Ownership types augmented with effects clauseseffects clauses

�� To statically verify above propertiesTo statically verify above properties



RealReal--Time Java (RTJ) Time Java (RTJ) 

�� Extension to Java for realExtension to Java for real--time programstime programs

�� Java Specification Request (JSR) 1Java Specification Request (JSR) 1

�� http://www.rtj.orghttp://www.rtj.org



RealReal--Time Java (RTJ) Time Java (RTJ) 

�� Extension to Java for realExtension to Java for real--time programstime programs

�� Java Specification Request (JSR) 1Java Specification Request (JSR) 1

�� http://www.rtj.orghttp://www.rtj.org

�� RealReal--time (RT) threadstime (RT) threads

�� RegionRegion--based memory managementbased memory management

�� Threads cant violate memory safetyThreads cant violate memory safety

�� RT threads cant interact with garbage collectorRT threads cant interact with garbage collector



RealReal--Time Java (RTJ) Time Java (RTJ) 

�� Uses dynamic checks to ensureUses dynamic checks to ensure

�� No pointers from outer to inner regionsNo pointers from outer to inner regions

�� Nesting of regions forms a hierarchyNesting of regions forms a hierarchy

�� RT threads do not read heap refsRT threads do not read heap refs

�� RT threads do not overwrite heap refsRT threads do not overwrite heap refs

�� Introduces new failure modesIntroduces new failure modes

�� Programming model is difficult to useProgramming model is difficult to use



Region Types as FrontRegion Types as Front--End for RTJEnd for RTJ

Type Type 

checkerchecker

TranslatorTranslator

(Removes extra types)(Removes extra types)

(Generates real(Generates real--time Java)time Java)

CompilerCompiler

JVMJVM

RealReal--time Javatime Java

bytecodesbytecodes

+ Extra + Extra 

typestypes

JavaJava



Benefits of Using Region TypesBenefits of Using Region Types

�� SafetySafety

�� Checks errors at compile timeChecks errors at compile time

�� EfficiencyEfficiency

�� Avoids runtime checking overheadAvoids runtime checking overhead

Type Type 

checkerchecker

TranslatorTranslator

(Removes extra types)(Removes extra types)

(Generates real(Generates real--time Java)time Java)

RealReal--time Javatime Java

+ Extra + Extra 

typestypes

JavaJava



ExperienceExperience



Reducing Programming OverheadReducing Programming Overhead

�� Type inference for method local variablesType inference for method local variables

�� Default types for method signatures & fieldsDefault types for method signatures & fields

�� User defined defaults as wellUser defined defaults as well

�� Significantly reduces programming overheadSignificantly reduces programming overhead

�� Approach supports separate compilationApproach supports separate compilation



Programming OverheadProgramming Overhead

# Lines# Lines

annotatedannotated

# Lines # Lines 

of codeof code

ProgramProgram

2424244244Database ServerDatabase Server

10109797Game ServerGame Server

2020603603HTTP ServerHTTP Server

88567567Image RecognitionImage Recognition

53531011 1011 java.util.Hashtablejava.util.Hashtable

3535992992java.util.Vectorjava.util.Vector

161618501850BarnesBarnes

313118501850WaterWater



RTJ Dynamic Checking OverheadRTJ Dynamic Checking Overhead

Execution Time (sec)Execution Time (sec)

Static Static 
ChecksChecks

Speed UpSpeed UpDynamic Dynamic 
ChecksChecks

ProgramProgram

13%13%19.119.121.621.6BarnesBarnes

24%24%2.062.062.552.55WaterWater

18%18%0.6170.6170.7310.731savesave

10%10%0.0230.0230.0260.026thinningthinning

0.0140.0140.0140.014crosscross

25%25%0.6670.6670.8130.813loadload

21%21%6.706.708.108.10Image RecognitionImage Recognition



Related WorkRelated Work



Related WorkRelated Work

Our work unifies these areasOur work unifies these areas

�� Ownership typesOwnership types
�� Clarke, Potter, Noble (Clarke, Potter, Noble (OOPSLA OOPSLA ’’9898), (), (ECOOP ECOOP ’’0101))

�� Clarke, Drossopoulou (Clarke, Drossopoulou (OOPSLA OOPSLA ’’0202))

�� Boyapati, Lee, Rinard (Boyapati, Lee, Rinard (OOPSLA OOPSLA ’’0101) () (OOPSLA OOPSLA ’’0202))

�� Boyapati, Liskov, Shrira, Moh, Richman (Boyapati, Liskov, Shrira, Moh, Richman (POPL POPL ’’0303)  ()  (OOPSLA OOPSLA ’’0303))

�� Aldrich, Kostadinov, Chambers (Aldrich, Kostadinov, Chambers (OOPSLA OOPSLA ’’0202))

�� Region typesRegion types
�� Tofte, Talpin (Tofte, Talpin (POPL POPL ’’9494))

�� Christiansen, Henglein, Niss, Velschow (Christiansen, Henglein, Niss, Velschow (DIKU DIKU ’’9898))

�� Crary, Walker, Morrisett (Crary, Walker, Morrisett (POPL POPL ’’9999))

�� Grossman, Morrisett, Jim, Hicks, Wang, Cheney (Grossman, Morrisett, Jim, Hicks, Wang, Cheney (PLDI PLDI ’’0202))

�� Grossman (Grossman (TLDI TLDI ’’0303))



Related WorkRelated Work
�� Systems that allow regions to be freed earlySystems that allow regions to be freed early

�� Aiken, Fahndrich, Levien (Aiken, Fahndrich, Levien (PLDI PLDI ’’9595))

�� Gay, Aiken (Gay, Aiken (PLDI PLDI ’’9898) () (PLDI PLDI ’’0101))

�� Crary, Walker, Morrisett (Crary, Walker, Morrisett (POPL POPL ’’9999))

�� Dynamic analysis to infer RTJ regionsDynamic analysis to infer RTJ regions
�� Deters, Cytron (Deters, Cytron (ISMM ISMM ’’0202))

�� Static analysis to remove RTJ dynamic checksStatic analysis to remove RTJ dynamic checks

�� Salcianu, Rinard (Salcianu, Rinard (PPoPP PPoPP ’’0101))

�� Static analysis to help infer size of RTJ regionsStatic analysis to help infer size of RTJ regions

�� Gheorghioiu, Salcianu, Rinard (Gheorghioiu, Salcianu, Rinard (POPL POPL ’’0303))

�� RealReal--time garbage collectiontime garbage collection

�� Baker (Baker (CACM CACM ’’7878))

�� Bacon, Cheng, Rajan (Bacon, Cheng, Rajan (POPL POPL ’’0303))



ConclusionsConclusions

Unified type system for OO languagesUnified type system for OO languages

�� Statically enforces several propertiesStatically enforces several properties

�� Object encapsulation  Object encapsulation  

�� Memory safetyMemory safety

�� Data race and deadlock freedomData race and deadlock freedom

�� Safe software upgradesSafe software upgrades

�� Safe realSafe real--time programmingtime programming

�� Type checking is fast and scalableType checking is fast and scalable

�� Requires little programming overheadRequires little programming overhead

�� Promising way to make programs reliablePromising way to make programs reliable



Laboratory for Computer ScienceLaboratory for Computer Science
Massachusetts Institute of TechnologyMassachusetts Institute of Technology

Ownership Types for Safe RegionOwnership Types for Safe Region--Based Based 
Memory Management in RealMemory Management in Real--Time JavaTime Java

Chandrasekhar BoyapatiChandrasekhar Boyapati
Alexandru SalcianuAlexandru Salcianu
William BeebeeWilliam Beebee
Martin RinardMartin Rinard


