
Lazy Modular Upgrades in 

Persistent Object Stores

Barbara Liskov

MIT CSAIL

October 2003



Persistent Object Store

• Stores objects with methods

– Objects belong to classes

– Classes implement types

Persistent RootPersistent Root



Transactions

• Objects are accessed within transactions

– Transactions mask concurrency and failures

Persistent RootPersistent Root

Client 1

Client 2



Upgrades 

• Upgrades are needed to

– Correct errors

– Improve performance

– Meet changing requirements



Outline 

• Defining upgrades

• Upgrade execution

• Upgrade modularity conditions

• Performance



Defining Upgrades 

• Upgrade must preserve persistent state

– E.g., set implementation changes from 
vector to hash table

• A class-upgrade is

<old-class, new-class, TF>

• TF: old-class � new-class

– TF changes representation of objects

– System preserves identity



Completeness

• Upgrades can be 

– Compatible

– Incompatible

• An upgrade is a set of class-upgrades 

– must contain all class-upgrades needed to 

maintain type correctness



System executes Upgrades

• Requires transforming all old-class objects

• Goal: don’t interfere with applications

– Don’t stop the world

• Goal: be efficient in space and time

– Don’t copy the database or use versions

• Goal: be expressive

– Don’t limit expressive power of TFs



Solution: Lazy, Just in Time

• Applications continue to run

– Objects are transformed just before first use

• Later upgrades run in parallel with earlier 

ones

– If x has two pending transforms, they run in 

upgrade order



How System Works

• When application accesses x

– Interrupt the application

– Run earliest pending transform for x

– Each transform runs in its own transaction

• Application continues after transform 

commits

• Transforms can be interrupted too



Example 

…; U1; … TF(x); A1; … TF(y); A2; …

U1 is installed

A1 starts to run, accesses x

TF(x) runs and commits

A1 continues and commits

A2 starts to run, accesses y

TF(y) runs and commits

A2 continues and commits



Example 

…; U1; … TF(x); A1; … TF(y); A2; …
U1 is installed

A1 starts to run, accesses x

TF(x) runs and commits

A1 continues and commits

A2 starts to run, accesses y

TF(y) runs and commits

A2 continues and commits

Problem: suppose TF(y) accesses x



Modular Reasoning

• Want to support modular reasoning:

– Programmer can reason about TF as if it were 

an extra method of the old-class

– Programmer can assume same old-class 

interfaces and invariants 

X

TF



Desired Semantics

• Upgrades appear to run when installed

– Serialized before all later application 

transactions

• Upgrades appear to run in upgrade order

• Within an upgrade, transforms run as if 

each was the first to run



Order within an Upgrade

• Consider x and y due to be upgraded

• If TF(y) uses x (transitively) then if [TF(x); 

TF(y)], this must have same effect as 

[TF(y); TF(x)]

Y X



Ensuring Correct Behavior

• Based on encapsulation: An object must 

encapsulate every object it depends on

• A TF is well-behaved if it uses only 
encapsulated sub-objects

X



Approach 

• Analyze TFs

• Usually they will be well-behaved

• Otherwise notify user

– User can use triggers to control order

– Or, we maintain versions

Z

X Y



Performance 

• Implemented in Thor

• Analyzed overhead

FE

Clients

OR OR

FE

App App



Baseline Overhead

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T1 T2b

Traversal

E
la
p
s
e
d
 T
im
e
 (
s
)

ThorBase Full ROT

ThorUpgrades Full ROT

ThorBase Empty ROT

ThorUpgrades Empty ROT



Transform Overhead

1.019.9Commit

11.511.3Transform

T2bT1Time per object (µs)



Conclusions 

• Correctness conditions for any upgrade 
system

– Support modular reasoning

• Our lazy implementation approach

– Correct and efficient

• Future work: upgrades in distributed 
systems



Lazy Modular Upgrades in 

Persistent Object Stores
• Joint work with 

– C. Boyapati

– L. Shrira

– C-H. Moh

– S. Richman

• http://pmg.csail.mit.edu/



Execution Goals

• Goal: don’t interfere with applications

– Don’t stop the world

• Goal: be efficient in space and time

– Don’t copy the database or use versions

• Goal: be expressive

– Don’t limit expressive power of TFs



The Right Time

• Upgrades are transactions

– Serialized at moment of “installation”

• Upgrades must be serialized w.r.t 

– Application transactions

– Other upgrades


