A Parameterized Type System for
Race-Free Java Programs

Chandrasekhar Boyapati Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology
{chandra, rinard}@Ics.mit.edu

Data races in multithreaded programs

» Two threads concurrently access same data
* At least one access is a write
* No synchronization to separate accesses

Thread 1: Thread 2:

X=x+1; B - X=X+2

Why data races are a problem

+ Some correct programs contain data races

» But most races are programming errors
* Code intended to execute atomically
» Synchronization omitted by mistake

- Consequences can be severe
* Non-deterministic, tfiming-dependent bugs
» Difficult to detect, reproduce, eliminate

Avoiding data races

Thread 1: Thread 2:

X=x+1; - K X=X+2;

Avoiding data races

Thread 1. Thread 2:
lock(l); lock(l);

X=x+1; - K X=X+2;
unlock(); unlock();

*Associate a lock with every shared mutable data
Acquire lock before data access
‘Release lock after data access

Avoiding data races

Thread 1. Thread 2:
lock(l); lock(l);

X=x+1; - K X=X+2;
unlock(); unlock();

Problem: Locking is not enforced!
Inadvertent programming errors...

Our solution

* A static type system for OO programs
» Well-typed programs are free of races

Our solution

* A static type system for OO programs
» Well-typed programs are free of races

* Programmers specify
* How each object is protected from races
* In types of variables pointing to objects

+ Type checkers statically verify
» That objects are used only as specified

Protection mechanism of an object

+ Specifies the lock protecting the object, or

» Specifies that object needs no locks b'cos
* The object is immutable, or
* The object is not shared, or
* There is a unique pointer to the object

Types are proofs

{ Type Translator
checker (Removes extra types)

A 4

Compiler

by’recodesl

JVM

Outline

- Motivation

-+ Type system

+ Experience

- Related work

- Conclusions

Race-free Account program

class Account {
int balance = O;
int deposit(int x) {
this.balance += x;
}
}

Account al = new Account;
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

Account a2 = new Account;
a2.deposit(10);

Race-free Account program

class Account { Java: Concurrent Java:

int balance = O; Thread t; fork (t) { t.start(); }
int deposit(int x) { t.start();

this.balance += x;

}
}

Account al = new Account;
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

Account a2 = new Account;
a2.deposit(10);

Race-free Account program

class Account {
int balance = O;
int deposit(int x) {
this.balance += x;
}
}

Account al = new Account;
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

Account a2 = new Account;
a2.deposit(10);

Statically verifiable race-free program

class Account(thisOwner) {
int balance = O;
int deposit(int x) requires (this) {
this.balance += x;
}
}

final Account(self) al = new Account(self);
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

Account(thisThread) a2 = new Account(thisThread);
a2.deposit(10);

Statically verifiable race-free program

mp class Account(thisOwner) { thisOwner protects the Account
int balance = O;

int deposit(int x) requires (this) {
this.balance += x;

}
}

final Account(self) al = new Account(self);
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

Account(thisThread) a2 = new Account(thisThread);
a2.deposit(10);

Statically verifiable race-free program

class Account(thisOwner) { al is protected by its lock
int balance = O; a2 is thread-local

int deposit(int x) requires (this) {
this.balance += x;

}
}

= final Account(self) al = new Account(self);
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

= Account(thisThread) a2 = new Account(thisThread);
a2.deposit(10);

Statically verifiable race-free program

class Account(thisOwner) { deposit requires lock on “this”

int balance = O;

S int deposit(int x) requires (this) {
this.balance += x;

}
}

final Account(self) al = new Account(self);
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

Account(thisThread) a2 = new Account(thisThread);
a2.deposit(10);

Statically verifiable race-free program

class Account(thisOwner) { al is locked before calling deposit
int balance = O: a2 need not be locked

int deposit(int x) requires (this) {
this.balance += x;

}
}

final Account(self) al = new Account(self);
fork (al) { synchronized (al) in { al.deposit(10); } };
fork (al) { synchronized (al) in { al.deposit(10); } };

Account(thisThread) a2 = new Account(thisThread);
a2.deposit(10);

Type system

* Basic type system: Locks, thread-local objects
*+ Object ownership
- Type system
- Type inference

+ Extensions: Unique pointers, read-only objects

Object ownership

+ Every object has an owner
+ An object can be owned by
+ Itself
* Another object
- Special per-thread owner called thisThread

thisThread thisThread I& ?

Threadl objects Thread2 objects Potentially shared objects

Ownership properties

* Owner of an object does not change over time

* Ownership relation forms a forest of rooted frees
* Roots can have self loops

thisThread thisThread

&

Threadl objects Thread2 objects Potentially shared objects

Ownership properties

- Every object is protected by its root owner

» To gain exclusive access to an object, it is
* Necessary and sufficient to lock its root owner

* A thread implicitly holds the lock on its thisThread

thisThread thisThread I& ?

Threadl objects Thread2 objects Potentially shared objects

Basic type system

* Object ownership
- Type system

+ Type inference

TStack program

class TStack {
TNode head; TStack F

void push(T value) {...} TNode's

T pop() {..}
s [

}

class TNode {
TNode next;
T value;

TStack program

class TStack(thisOwner, TOwner) {
TNode(this, TOwner) head;

}
class TNode(thisOwner, TOwner) {

TNode(thisOwner, TOwner) next;
T(TOwner) value;

}
TStack(thisThread, thisThread) si;

TStack(thisThread, self) s2;

TStack

T™Node's @ @ @

T's

Parameterizing classes

mp class TStack(thisOwner, TOwner) {
TNode(this, TOwner) head;

}
class TNode(thisOwner, TOwner) {

TNode(thisOwner, TOwner) next;
T(TOwner) value;

}
TStack(thisThread, thisThread) si;

TStack(thisThread, self) s2;

TStack

T™Node's @ @ @

T's

First owner owns the “this” object

Classes are parameterized with one or more owners

Instantiating classes

class TStack(thisOwner, TOwner) {

TNode(this, TOwner) head;
TStack

} TNode's
class TNode(thisOwner, TOwner) {

TNode(thisOwner, TOwner) next; | T's
T(TOwner) value;

Soo

}
TStack(thisThread, thisThread) si;

TStack(thisThread, self) s2;

Classes can be instantiated with final expressions

E.g., with “this”

Instantiating classes

class TStack(thisOwner, TOwner) {

TNode(this, TOwner) head;
TStack

} TNode's
class TNode(thisOwner, TOwner) {

TNode(thisOwner, TOwner) next; | T's
T(TOwner) value;

Sow

}
TStack(thisThread, thisThread) si;

TStack(thisThread, self) s2;

Classes can be instantiated with formal parameters

E.g., with "thisOwner” or "TOwner”

Instantiating classes

class TStack(thisOwner, TOwner) { thisThread

TNode(this, TOwner) head;
TStack

} TNode's
class TNode(thisOwner, TOwner) {

TNode(thisOwner, TOwner) next; | T's
T(TOwner) value;

}
m» TStack(thisThread, thisThread) si;

TStack(thisThread, self) s2;

Classes can be instantiated with “thisThread”

Instantiating classes

class TStack(thisOwner, TOwner) {
TNode(this, TOwner) head;

}
class TNode(thisOwner, TOwner) {

TNode(thisOwner, TOwner) next;
T(TOwner) value;

TStack

TNode's

T's

thisThread

. —

oo

SESES

}
TStack(thisThread, thisThread) si;

mp TStack(thisThread, self) s2;

Classes can be instantiated with “self”

Requires clauses

class TStack(thisOwner, TOwner) { | Methods can require threads
TNode(this, TOwner) head; to have locks on root owners
of objects

> T(TOwner) pop() requires (this) {
if (head == null) return null;
T(TOwner) value = head.value();
head = head.next();
return value;

}

}
class TNode(thisOwner, TOwner) {

T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

=

Type checking pop method

class TStack(thisOwner, TOwner) {
TNode(this, TOwner) head;

T(TOwner) pop() requires (this) {
if (head == null) return null;
T(TOwner) value = head.value();
head = head.next();
return value;

}

}
class TNode(thisOwner, TOwner) {

TStack *

NN
-

T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

Type checking pop method

class TStack(thisOwner, TOwner) {

ks held
TNode(this, TOwner) head; —

thisThread,
Lo T(TOwner) pop() requires (this) { RootOwner(this)

if (head == null) return null;
T(TOwner) value = head.value();
head = head.next();

return value;

}

}
class TNode(thisOwner, TOwner) {

T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

Type checking pop method

class TStack(thisOwner, TOwner) {

ks held
TNode(this, TOwner) head; Lacks he

thisThread,
T(TOwner) pop() requires (this) { RootOwner(this)

=) if (head == null) return null;
T(TOwner) value = head.value();
head = head.next(); Locks required

return value;
) RootOwner(this)

}
class TNode(thisOwner, TOwner) {

T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

Type checking pop method

class TStack(thisOwner, TOwner) {

ks held
TNode(this, TOwner) head; s

thisThread,
T(TOwner) pop() requires (this) { RootOwner(this)

if (head == null) return null;
T(TOwner) value = head.value();
head = head.next(); Locks required
return value;
) ?
}
class TNode(thisOwner, TOwner) {
T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

Type checking pop method

class TStack(thisOwner, TOwner) {

ks held
TNode(this, TOwner) head; —

thisThread,
T(TOwner) pop() requires (this) { RootOwner(this)

if (head == null) return null;
T(TOwner) value = head.value();
head = head.next(); Locks required

return value;
) RootOwner(head)

}
class TNode(thisOwner, TOwner) {

=) T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

Type checking pop method

class TStack(thisOwner, TOwner) {

ks held
=) TNode(this, TOwner) head; —

thisThread,
T(TOwner) pop() requires (this) { RootOwner(this)

if (head == null) return null;
T(TOwner) value = head.value();
head = head.next(); Locks required

return value;
) RootOwner(head)

} = RootOwner(this)

class TNode(thisOwner, TOwner) {
=) T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

Type checking pop method

class TStack(thisOwner, TOwner) {

ks held
=) TNode(this, TOwner) head; Lacks he

thisThread,
T(TOwner) pop() requires (this) { RootOwner(this)

if (head == null) return null;
T(TOwner) value = head.value();
head = head.next(); Locks required

return value;
) RootOwner(this),

}
class TNode(thisOwner, TOwner) {

T(TOwner) value() requires (this) {...}
=) TNode(thisOwner, TOwner) next() requires (this) {...}

RootOwner(head)
= RootOwner(this)

Type checking pop method

class TStack(thisOwner, TOwner) {
TNode(this, TOwner) head;

T(TOwner) pop() requires (this) {
if (head == null) return null;
T(TOwner) value = head.value();
head = head.next();
return value;

}

}
class TNode(thisOwner, TOwner) {

T(TOwner) value() requires (this) {...}
TNode(thisOwner, TOwner) next() requires (this) {...}

Type checking client code

class TStack(thisOwner, TOwner) {
T(TOwner) pop() requires (this) {...}

}

final TStack(self, self)s = ...;

fork (s) {
synchronized (s) in {
s.pop();
}
k

Type checking client code

class TStack(thisOwner, TOwner) {

ks held
T(TOwner) pop() requires (this) {...} Locks he

thisThread, s

}

final TStack(self, self)s = ...;

fork (s) {
=) synchronized (s) in {
s.pop():
}
k

Type checking client code

class TStack(thisOwner, TOwner) {

ks held
=) T(TOwner) pop() requires (this) {...} Locks he

thisThread, s

}

=» final TStack(self, self)s = ..; Locks required

fork (s) { RootOwner(s) = s
synchronized (s) in {
= s.pop():
}
k

Basic type system

* Object ownership
- Type system

+ Type inference

Inferring owners of local variables

class A{oal, 0a2){...}
class B{ob1, ob2, ob3) extends A{obl, 0b3) {...}

class C {
void m(B(this, ocl, thisThread) b) {
= Aal;
= B bl;
bl = b;
al = bl;
}
}

Inferring owners of local variables

class A{oal, 0a2){...}
class B{ob1, ob2, ob3) extends A{obl, 0b3) {...}

class C {
void m(B(this, ocl, thisThread) b) {
m» A(xl, x2)al;
m» B(x3, x4, xb) bl;
bl = b;
al = bl;
}
}

Augment unknown types
with owners

Inferring owners of local variables

class A{oal, 0a2){...}
class B{ob1, ob2, ob3) extends A{obl, 0b3) {...}

class C {
void m(B(this, ocl, thisThread) b) {
A(x1, x2) al;
B(x3, x4, xb) bl;
= blzb; x3 = this
al = bl; x4 = ocl
} x5 = thisThread

}

Gather constraints

Inferring owners of local variables

class A{oal, 0a2){...}
class B{ob1, ob2, ob3) extends A{obl, 0b3) {...}

class C {
void m(B(this, ocl, thisThread) b) {
A(x1, x2) al;
B(x3, x4, xb) bl;
m» bl=b; x3
=» al = bl; x4
} x5
x1
) x2

Gather constraints

this

ocl
thisThread
X3

x5

Inferring owners of local variables

class A{oal, 0a2){...}
class B{ob1, ob2, ob3) extends A{obl, 0b3) {...}

class C {
void m(B(this, ocl, thisThread) b) {
A(this, thisThread) al;
B(this, ocl, thisThread) bl;
bl = b; x3
al = bl; x4
} x5
x1
) x2

Solve constraints

this

ocl
thisThread
X3

x5

Inferring owners of local variables

class A{oal, 0a2){...}
class B{ob1, ob2, ob3) extends A{obl, 0b3) {...}

class C {
void m(B(this, ocl, thisThread) b) {
A(this, thisThread) al;
B(this, ocl, thisThread) bl;
bl = b; x3
al = bl; x4
} x5
x1
) X2

Solve constraints

this

ocl
thisThread
X3

x5

*Only equality constraints between owners
*Takes almost linear time to solve

Default types

» To further reduce programming overhead

» Single threaded programs require almost no
programming overhead

Outline

- Motivation

- Type system

» Experience

- Related work

- Conclusions

Multithreaded server programs

Program

Lines of code

Lines changed

http server

563

26

chat server

308

21

stock quote server

242

12

game server

87

10

phone (database) server

10

Java libraries

Program

‘ Lines of code

Lines changed

java.util.Vector

992

35

java.util.ArrayList

533

18

java.io.PrintStream

568

14

java.io.FilterOutput Stream

148

05

Java.io.OutputStream

134

03

java.io.BufferedWriter

253

09

Java.io.OutputStreamWriter

266

11

Java.io.Writer

177

06

Java libraries

- Java has two classes for resizable arrays
» java.util.Vector
» Self synchronized, do not create races
» Always incur synchronization overhead
+ java.util.ArrayList
* No unnecessary synchronization overhead
» Could be used unsafely to create races

+ We provide generic resizable arrays
» Safe, but no unnecessary overhead

Java libraries

- Java programs contain unnecessary locking

* Much analysis work to remove unnecessary locking
» Aldrich, Chambers, Sirer, Eggers (SAS '99)
* Whaley, Rinard (OOPSLA '99)
» Choi, Gupta, Serrano, Sreedhar, Midkiff (OOPSLA '99)
» Blanchet (O0OPSLA '99)
* Bogda, Holzle (OOPSLA '99)
» Ruf (PLDI '00)

* Our implementation
» Avoids unnecessary locking
+ Without sacrificing safety

Additional benefits of race-free types

+ Data races expose the effects of
- Weak memory consistency models
» Standard compiler optimizations

Initially:

x=0;
y=1.

Thread 1: Thread 2:

y:O; Z=X+Y,

x=1;

What is the value of z?

Possible Interleavings

Initially:

x=0;
y=1.

Thread 1: Thread 2:
y:O; Z=X+Y,

x=1;

What is the value of z?

Initially:

x=0;
y=1.

Thread 1: Thread 2:

y=0.

x=1;

What is the value of z?

Possible Interleavings

Above instruction reordering legal
in single-threaded programs

Violates sequential consistency in
multithreaded programs

Additional benefits of race-free types

+ Data races expose effects of
- Weak memory consistency models
» Standard compiler optimizations
* Data races complicate program analysis
* Data races complicate human understanding

* Race-free languages
» Eliminate these issues
* Make multithreaded programming more tractable

Outline

- Motivation

- Type system

+ Experience

+ Related work

- Conclusions

Tools to detect races

- Static race detection systems
- Sterling (USENIX '93)
- Detlefs, Leino, Nelson, Saxe (SRC '98)
- Engler, Chen, Hallem, Chou, Chelf (sOsP '01)

» Dynamic race detection systems
+ Steele (POPL '90)
» Dinning, Schonberg (PPoPP '90)
- Savage, Burrows, Nelson, Sobalvarro, Anderson (SOSP '97)
* Praun, Gross (OOPSLA '01)

Type systems to prevent races

* Race-free Java
» Flanagan and Freund (PLDI '00)

+ Guava
+ Bacon, Strom, Tarafdar (OOPSLA '00)

Other related type systems

* Ownership types
* Clarke, Potter, Noble (OOPSLA '98), (ECOOP '01)

* Region types

» Grossman, Morrisett, Jim, Hicks, Wang, Cheney (Cornell'01)

* Parameterized types for Java
* Myers, Bank, Liskov (POPL '97)
- Agesen, Freund, Mitchell (OOPSLA '97)
* Bracha, Odersky, Stoutamire, Wadler (OOPSLA '98)
- Cartwright, Steele (OOPSLA '98)

Conclusions

» Data races make programs hard to debug

+ We presented race-free static type system

» Our type system is expressive
* Programs can be reliable and efficient

A Parameterized Type System for
Race-Free Java Programs

Chandrasekhar Boyapati Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology
{chandra, rinard}@Ics.mit.edu

