Safe Runtime Downcasts With Ownership Types

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology
200 Technology Square, Cambridge, MA 02139
{chandra,rhlee,rinard}@lcs.mit.edu

Abstract. This paper describes an efficient technique for supporting
safe runtime downcasts in a system with ownership types. This tech-
nique uses the type passing approach, but avoids the associated signif-
icant space overhead by storing only the runtime ownership informa-
tion that is potentially needed to support safe downcasts. Moreover, this
technique does not use any inter-procedural analysis, so it preserves the
separate compilation model of Java. We implemented our technique in
the context of Safe Concurrent Java, which is an extension to Java that
uses ownership types to statically guarantee the absence of data races
and deadlocks. Our approach is JVM-compatible: our implementation
translates programs to bytecodes that can be run on regular JVMs.

1 Introduction

Ownership types [4,5,7,12,13] provide a statically enforceable way of specify-
ing object encapsulation. The idea is that an object can own subobjects that
it depends on, thus preventing them from being accessible outside. Object en-
capsulation enables local reasoning about program correctness in object-oriented
programs. Ownership-based type systems have also been used for preventing data
races [7] and deadlocks [4] in multithreaded programs, for preventing memory er-
rors in programs that use region-based memory management [8], for supporting
modular software upgrades in persistent object stores [6], for modular specifica-
tion of effects clauses in the presence of subtyping [5,7,12] (so that they can be
used as an alternative to data groups [16]), and for program understanding [2].
In ownership type systems, programmers parameterize classes and methods
by owners. This enables the writing of generic code that can be used in many
different contexts. The parameterization is somewhat similar to the proposals
for parametric types for Java [1,9,18,20]. Ownership type systems are primar-
ily static type systems. The type checker uses the ownership type annotations
to statically ensure the absence of certain classes of errors (e.g., data races in
PRFJ [7]), but it is usually unnecessary to preserve the ownership information
at runtime. However, languages like Java [15] are not purely statically typed
languages. Java allows downcasts that are checked at runtime. To support safe
runtime downcasts, the system must preserve some ownership information at
runtime when ownership types are used in the context of a language like Java.

2 Chandrasekhar Boyapati et al.

There are primarily three techniques for implementing parametric polymor-
phism in a language like Java. The type erasure approach [9,10] is based on the
idea of deleting type parameters (so Stack(T) erases to Stack). But this approach
will not preserve ownership information at runtime, so it is unsuitable for sup-
porting safe runtime downcasts with ownership types. In the code duplication ap-
proach [1], polymorphism is supported by creating specialized classes/methods,
each supporting a different instantiation of a parametric class/method. But since
the parameters in ownership types are usually objects, this approach will lead
to an unacceptably large number of classes/methods. In the type passing ap-
proach [18, 20, 19], information on type parameters is explicitly stored in objects
and passed to code requiring them. But if the system stores the owners of every
object at runtime, this approach has the potential drawback of adding a per-
object space overhead. Java objects are typically small, so adding even a single
field to every object increases the size of most objects by a significant fraction.

This paper describes an efficient technique for supporting safe runtime down-
casts with ownership types. This technique uses the type passing approach, but
avoids the associated significant space overhead by storing only the runtime own-
ership information that is potentially needed to support safe downcasts. More-
over, this technique does not use any inter-procedural analysis, so it preserves
the separate compilation model of Java. We implemented our technique in Safe
Concurrent Java [4, 7], which is an extension to Java that uses ownership types
to guarantee the absence of data races and deadlocks in well-typed programs.
Our approach is JVM-compatible: our implementation translates programs to
bytecodes that can be run on regular JVMs [17].

We note that a similar approach has been used in [2] to implement safe
runtime downcasts with ownership types.

The rest of this paper is organized as follows. Section 2 gives an overview of
ownership types in subset of Safe Concurrent Java (SCJ). Section 3 describes
how we support safe runtime downcasts. Section 4 concludes.

2 Mini Safe Concurrent Java

This section presents Mini Safe Concurrent Java (MSCJ), which is a subset of
SCJ that prevents data races in well-typed programs. To simplify the presenta-
tion of key ideas behind our approach, the rest of the discussion in this paper
will be in the context of MSCJ. Our implementation, however, works for the
whole of SCJ and handles all the features of the Java language. The key to the
MSCJ type system is the concept of object ownership. Every object in MSCJ has
an owner. An object can be owned by another object, by itself, or by a special
per-thread owner called thisThread. Objects owned by thisThread, either directly
or transitively, are local to the corresponding thread and cannot be accessed by
any other thread. Figure 1 presents an example ownership relation. We draw an
arrow from object = to object y if x owns y. Our type system statically verifies
that a program respects the ownership properties shown in Figure 2.

Safe Runtime Downcasts With Ownership Types 3

thisThread thisThread
05
/\b é 09
ol 02 06 o8
o4 010
o7

03

Threadl Objects Thread2 Objects Potentially Shared Objects

Fig. 1. An Ownership Relation

1. The owner of an object does not change over time.

2. The ownership relation forms a forest of rooted trees. The roots can have self loops.

3. To safely access an object, a thread must hold the lock on the root owner of that
object (the root of the ownership tree that the object belongs to).

4. Every thread implicitly holds the lock on its corresponding thisThread owner. A
thread can thus access objects owned by its thisThread without synchronization.

Fig. 2. Ownership Properties

Figure 3 shows the grammar for MSCJ. Figure 4 shows a TStack program in
MSCJ. For simplicity, all the examples in this paper use an extended language
that is syntactically closer to Java. A TStack is a stack of T objects. A TStack
is implemented using a linked list. A class definition in MSCJ is parameterized
by a list of owners. This parameterization helps programmers write generic code
to implement a class, then create different objects of the class that have dif-
ferent protection mechanisms. In Figure 4, the TStack class is parameterized by
thisOwner and TOwner. thisOwner owns the this TStack object and TOwner owns
the T objects contained in the TStack. In general, the first formal parameter of a
class always owns the this object. In case of s1, the owner thisThread is used for
both the parameters to instantiate the TStack class. This means that the main
thread owns TStack sl as well as all the T objects contained in the TStack. In
case of s2, the main thread owns the TStack but the T objects contained in the

P = defn* e
defn ::= class cn{owner f*) extends c {field* meth*}
¢ := cn({owner+) | Object(owner)
owner ::= f | self | thisThread | eg 41
meth ::= t mn(arg*) accesses (eqn,1*) {e}
field == [finallopy t fd = e
arg == [finallopt t ©
tu=c|int
ex=newc |z |z=c¢€|efd|efd=-c]|emn(e*)| ee|let (arg=e)in {e} |
synchronized (e) in {e} | fork (z*) {e}
ffinal = €

cn € class names, fd € field names, mn € method names, z € variable names, f € owner names

Fig. 3. MSCJ Grammar

4 Chandrasekhar Boyapati et al.

1 // thisOwner owns the TStack object, TOwner owns the T objects in the stack.
2 class TStack<thisOwner, TOwner> {

3 TNode<this, TOwner> head = null;

4 TStack() {}

5 void push(T<TOwner> value) accesses (this) {

6 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head); head = newNode;
7 }

8 T<TOwner> pop() accesses (this) {

9 T<TOwner> value = head.value(); head = head.next(); return value;
10 T

11 T

12 class TNode<thisOwner, TOwner> {

13 T<TOwner> value; TNode<thisOwner, TOwner> next;

14 TNode (T<TOwner> v, TNode<thisOwner, TOwner> n) accesses (this) {

15 this.value = v; this.next = n;

16 T

17 T<TOwner> value() accesses (this) { return value; }

18 TNode<thisOwner, TOwner> next() accesses (this) { return next; }

19 }
20 class T<thisOwner> { int x=0; }
21
22 TStack<thisThread, thisThread> sl = new TStack<thisThread, thisThread>;
23 TStack<thisThread, self> s2 = new TStack<thisThread, self>;

Fig. 4. Stack of T Objects in MSCJ

<2 (TStack)
o/i\o

lext.next s2.head s2 head.next 2 head.next.next

thisThread

sl.head

(TNode) ode) (TNode) (TNode) (TNode)
- g d
sl.head.value O sl.head.next.next.value Q

(M sLhead.next.value M s2.head.value s2.head.next.next.value
m (M 2 head.next.value)
m

Fig. 5. Ownership Relation for TStacks s1 and s2

TStack own themselves. The ownership relation for the TStack objects s1 and
s2 is depicted in Figure 5 (assuming the stacks contain three elements each). In
MSCJ, a method can contain an accesses clause that specifies the objects the
method accesses that must be protected by externally acquired locks. Callers
are required to hold the locks on the root owners of the objects specified in the
accesses clause before they invoke a method. In the example, the value and next
methods in the TNode class assume that the callers hold the lock on the root
owner of the this TNode object.

2.1 Static Type Checking

This section describes some of the important type checking rules. The full set
of rules can be found in [4]. The core of our type system is a set of rules for
reasoning about the typing judgment: P; E; ls F e : t. P, the program being
checked, is included here to provide information about class definitions. F is an
environment providing types for the free variables of e. [s describes the set of
locks that are statically known to be held when e is evaluated. ¢ is the type of e.

Safe Runtime Downcasts With Ownership Types 5

The rule for accessing field e.fd checks that e is a well-typed expression of
some class type cn{o1.), where 01 _, are actual owner parameters. It verifies
that the class cn with formal parameters f; , declares or inherits a field fd
of type t and that the thread holds the lock on the root owner of e. Since t is
declared inside the class, it might contain occurrences of this and the formal class
parameters. When ¢ is used outside the class, we rename this with the expression
e, and the formal parameters with their corresponding actual parameters.

[EXPRESSION REFERENCE]
P; E;lste:cn(oi.n) PF(tfd) €cen(fi.n) P;EF RootOwner(e) € s
P; E; ls F e.fd : tle/this][o1/ f1]--[on/ [n]

The rule for invoking a method checks that the arguments are of the right
type and that the thread holds the locks on the root owners of all expressions
in the accesses clause of the method. The expressions and types used inside the
method are renamed appropriately when used outside their class.

[EXPRESSION INVOKE]

Renamed(«) dlef ale/this][o1/ f1].-[on/ fr]le1/y1]..[ex /yx]

P;Ejlske:cn{or.n,) PF (tmn(t;y; 7€F) accesses(e'*) {...}) € en{fi..n)
P; E; Is - e; : Renamed(t;)
P; E + RootOwner(Renamed(e})) € ls
P; E; ls - eemn(e1..x) : Renamed(t)

The rule for checking a method assumes that the locks on the root owners of
all the expressions specified in the accesses clause are held. The rule then type
checks the method body under this assumption.

[METHOD]

E' =E,argi.n. P;FE Ffingl €t ti P E' F RootOwner(e;) = r;
P; E'; thisThread, r1.. Fe:t
P; E+ t mn(argi..n) accesses(ei..r) {e}

The subtyping rule ensures that the parameters of the supertype are instanti-
ated either with constants (self or thisThread) or with owners that are in scope,
preserving the owner in the first position. The first owner must be preserved
because the first owner in our system is special, in that it owns the this object.

[SUBTYPE]

P; EtFcni{o1.n) P class cni(fi.n) extends cna(f1 o'*) {...}
Vo'. (o =self) Vv (o) =thisThread) V (3 j. o = f;)
P; E F cni{o1..n) <: cna(f1 0'*) [o1/ f1]--[on/ fn]

3 Safe Runtime Downcasts

This section describes how we support safe runtime downcasts efficiently. We
describe our technique in the context of Mini Safe Concurrent Java (MSCJ).

6 Chandrasekhar Boyapati et al.

The type system for MSCJ described in Section 2 is a purely static type system.
In fact, one way to compile and run a MSCJ program is to convert it into a
Java program after type checking, by removing the type parameters and the
accesses clauses. However, a language like Java is not a purely statically typed
language. Java allows downcasts that are checked at runtime. To support safe
downcasts, the system must preserve some ownership information at runtime
when ownership types are used in the context of a language like Java. To express
runtime casts, we extend the MSCJ grammar as follows.

e = ... | (en(o1..n)) €
Fig. 6. Grammar Extensions to Support Runtime Casts

We next present the static type checking rules for casts. Casting an object
to a supertype of its declared type is always safe. Casting to a subtype of the
declared type requires runtime checking. Section 2.1 contains the subtyping rule.

[EXPRESSION UPCAST]

P; E;lske:co P,EFca<ica
P;E;lsk (c1)e:

[EXPRESSION DOWNCAST (REQUIRES RUNTIME CHECK)]

P, E;lske:c P,EtFca<icar
P; E;lst (c2) e:ca

To support downcasts, we store information on type parameters explicitly
in objects and pass the information to code requiring the information. But if
the system stores the owners of every object at runtime, this approach has the
potential drawback of adding a per-object space overhead. Java objects are typ-
ically small, so adding even a single field to every object increases the size of
most objects by a significant fraction. Our technique avoids the associated sig-
nificant space overhead by storing only the runtime ownership information that
is potentially needed to support safe downcasts. Our technique is based on two
key observations about the nature of parameterization in ownership types.

The remainder of this section is organized as follows. Sections 3.1 and 3.2
describe the key observations that enable us to support downcasts efficiently.
Sections 3.3 and 3.4 present our technique for supporting safe downcasts.

3.1 Downcasts to Types With Single Owners

A key observation that enables efficient implementation of downcasts is as fol-
lows. Consider the code in Figure 7. In Line 16, object ol of declared type
Object(thisThread) is downcast to type T(thisThread). For this downcast, the
owner of the declared type of ol matches the owner of the type that ol is being

Safe Runtime Downcasts With Ownership Types 7

1 class T<thisOwner> {...}

2 class TStack<thisOwner, TOwner> {...}

3 class TStack2<thisOwner, TOwner> extends TStack<thisOwner, TOwner> {...}

4

5 Object<thisThread> ol, 02, 03;

6 .

7 T<thisThread> t1;

8 T<self> t2;

9 .

10 TStack<thisThread, thisThread> si1;

11 TStack<thisThread, self> s2;

12 .

13 TStack2<thisThread, thisThread> qi;

14 TStack2<thisThread, self> q2;

15 .

16 t1 = (T<thisThread>) ol; // Safe iff ol belongs to class T

17 t2 = (T<self>) 02; // Compile time error

18 .

19 sl = (TStack<thisThread, thisThread>) 03; // Requires checking runtime ownership
20 s2 = (TStack<thisThread, self>) 03; // Requires checking runtime ownership
21 .
22 ql = (TStack2<thisThread, thisThread>) s1; // Safe iff si belongs to class TStack2
23 g2 = (TStack2<thisThread, self>) si; // Compile time error

Fig. 7. Runtime Downcasts

downcast into. Hence, this downcast is safe iff ol belongs to class T at runtime.
It is unnecessary to check ownership information at runtime for this downcast.

In general, for any subtype declaration where all the formal owner parame-
ters in the subtype are included in the supertype, it is not necessary to check
ownership information at runtime when an object is downcast from the super-
type to the subtype. If the owners of the supertype match the owners of the
subtype, then the downcast will be safe iff the object belongs to the appropriate
class at runtime (e.g., Lines 16 and 22 in Figure 7). If the owners do not match,
the downcast will always fail (e.g., Lines 17 and 23 in Figure 7).

The primary benefit of this observation is that whenever an object is down-
cast into a type with a single owner, it is unnecessary to check ownership infor-
mation at runtime to ensure that the downcast is safe. Since a vast majority of
classes in a system with ownership types have single owners, this implies that it
is unnecessary to check ownership information at runtime for most of the down-
casts. The only classes that usually have multiple owners are collection classes.
The only times when it might be necessary to check ownership information at
runtime to ensure that the downcast is safe is when an object is downcast into
a type with multiple owners (e.g., Lines 19 and 20 in Figure 7).

3.2 Anonymous Owners

Another key observation that enables efficient implementation of downcasts is as
follows. Consider the code in Figure 4. The TStack class in the figure is param-
eterized by thisOwner and TOwner. However, the owner parameter thisOwner is
not used in the static scope where it is visible. Similarly, the owner parameter
thisOwner for class T is not used in the body of class T. If an owner parameter is

8 Chandrasekhar Boyapati et al.

not used, it is unnecessary to name the parameter. Our system allows program-
mers to use (-) for such anonymous owner parameters. Figure 8 shows how we
extend the MSCJ grammar to support anonymous owner parameters. Figure 11
shows the TStack example in Figure 4 implemented using anonymous owners.

defn := ... | class cn(- f*) extends c {field* meth*}

Fig. 8. Grammar Extensions to Support Anonymous Owners

The primary benefit of having anonymous owners is that if an owner param-
eter of a class is not named, it is unnecessary to store the owner parameter of
the class at runtime, or pass the owner parameter to code that uses the class
at runtime. In a system with ownership types, the only classes that usually
have named owners are collection classes with multiple owners. Examples in-
clude Vector(-,elementOwner), Hashtable(-,keyOwner,valueOwner), etc. But most
classes have single owners that are anonymous. It is unnecessary to store own-
ership information for those classes, or pass ownership information to code that
uses those classes. Thus, our system incurs a runtime space and time overhead
only for code that uses classes with named owner parameters like the collection
classes. The rest of the code has no overhead in our system.

3.3 Preserving Ownership Information at Runtime

This section describes how our system preserves ownership information at run-
time for classes with named owner parameters in the context of MSCJ. We
presented the grammar for MSCJ in Figure 3 with extensions in Figures 6 and
8. This section presents the rules for translating a MSCJ program into an equiv-
alent program in a Java-like language without ownership types. If we did not
have to support safe runtime downcasts, the translation process would have been
simple. We could have converted a MSCJ program into an equivalent Java-like
program by simply removing the owner parameters and the accesses clauses.
However, to support safe runtime downcasts, we must preserve some ownership
information in the translation process.

The core of our translation is a set of rules of the form: (T[C] P E) = C".
The rule translates a code fragment C' to a code fragment C’. P, the program
being checked, is included here to provide information about class definitions.
FE is an environment containing the formal owner parameters in scope in C.
The translated code uses the $Owner class shown in Figure 9. The $Owner class

public class $0wner {
public static Object self = "self";

public static Object THISTHREAD() { return Thread.currentThread(); }

1
2
3
4 public static Object SELF() { return self; }
5
6 }

Fig. 9. The $Owner Class

Q.9 0 0

00000000

Safe Runtime Downcasts With Ownership Types

(T1PD = (T[defn* e])
= (T[defn] P)* (T[e] P 0)

(T [defn] P) = (T [class cn(f1..n) extends cn’(o; /) {field* meth*}] P)
= class cn extends cn’

{Object $f1..» (T[field] P [f1..n])* (T [method] P [f1...])*}

(T [defn] P) = (7 [class cn(- fa..n) extends cn’(o; /) {field* meth*}] P)
= class cn extends cn’
{Object $f2..,, (T[field] P [f2..n])* (T[method] P [f2..n])*}
(T [meth] P E) (Tt mn(arg*) accesses (eqna1*) {e}] P E)
(TTt] P E) mn ((Tlarg] P E)*) {(T[e] P E)}

(T[field] P E) (T[[finallopt, t fd = €] P E)

[finallopt (71¢] P E) fd = (T[e] P E)

(T[arg] P E) (T [lfinallopt, t fd] P E)

[finallopt (T[t] P E) fd

(T[] P E) = (T [en{owner+)] P E)
(T[t] P E) = (T[int] P E)
= int
(Tle] P E) = (T[(enfo1..n)) €] P E)
= {$temp = (cn) (T[e] P E);
if ($temp.$f2 != (Ofoz2] P E)) throw new ClassCastException;
i.f“’($temp.$fn != (O[on] P E)) throw new ClassCastException;
$temp}
(Tle] P E) = (7T [new cn{o1..»n)] P E)
= {$temp = new cn;
$temp.$f1 = (Ofo1] P E); ...; $temp.$f,, = (Ofo,] P E);
$temp}
where (class ecn{fi.n) ...) € P
(Tle] P E) = (7 [new cn(o1..n)] P E)
= {$temp = new cn;
$temp.$fo = (Ofo2] P E); ...; $temp.$f, = (Ofo,] P E);
$temp}
where (class cn{- f2..n) ...) € P
P E) = (O[thisThread] P E) = $Owner. THISTHREAD()
P E) = (O[self] P E) = $Owner.SELF()
PE)=(O[fl P[.. f.]) = $f
P E) = (O[e] P E) = (T[e] P E)
PE)=(T[z] P E) =z
PE)=(T[x=¢€¢] P E) =z = (T[e] P E)
P E) = (T[e.fd] P E) = (T[e] P E).fd
P E) = (T[ei.fd = €] P E) = (T[ei] P E).fd = (T[e] P E)
P E) = (T]ex.mn(e*)] P E) = (T[e1] P E).mn((T[e] P E)*)
P E) = (T 81;&2]] P E) = (Tﬂelﬂ P E);(T[[EQH P E)
P E) = (T[let (arg=e1) in {e}] P E) = let (arg=(T[e1] P E)) in {(T[e] P Elarg])}
P E) = (T [synchronized (e1) in {e}] P E) = synchronized ((T[e1] P E)) in {(T[e] P E)}
P E) = (T[fork (z*) {e}] P E) = fork (z*) {(T[e] P E)}

Fig. 10. Translation Function

10 Chandrasekhar Boyapati et al.

1 // TStack has an anonymous owner, TOwner owns the T objects in the stack.
2

3 class TStack<-, TOwner> {

4

5 TNode<this, TOwner> head = null;

6

7 TStack() {}

8 void push(T<TOwner> value) accesses (this) {

9 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head); head = newNode;
10 }

11 T<TOwner> pop() accesses (this) {

12 T<TOwner> value = head.value(); head = head.next(); return value;
13 ¥

14 ¥

15

16 class TNode<thisOwner, TOwner> {

17

18 T<TOwner> value; TNode<thisOwner, TOwner> next;

19
20 TNode (T<TOwner> v, TNode<thisOwner, TOwner> n) accesses (this) {
21 this.value = v; this.next = n;
22 T
23 T<TOwner> value() accesses (this) { return value; }
24 TNode<thisOwner, TOwner> next() accesses (this) { return next; }
25}
26

27 class T<-> { int x=0; }

Fig. 11. TStack With Anonymous Owners

1 class T<-> {...}

2 class TStack<-, TOwner> {...}

3 class TStack2<-, TOwner> extends TStack<-, TOwner> {...}

4

5 Object<thisThread> o1l;

6 Object<thisThread> o02;

7 .

8 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>;
9 TStack<thisThread, self> s2 = new TStack<thisThread, self>;
10 .

11 TStack2<thisThread, thisThread> qil;

12 TStack2<thisThread, self> q2;

13 .

14 sl = (TStack<thisThread, thisThread>) o1;

15 s2 = (TStack<thisThread, self>) o02;

16 .

17 ql = (TStack2<thisThread, thisThread>) si;

18 q2 = (TStack2<thisThread, self>) s2;

20 boolean bl = (ol instanceof TStack<thisThread, thisThread>);
21 boolean b2 = (02 instanceof TStack<thisThread, self>);

Fig. 12. Client Code for TStack

w N

~N oo

oo

10
11
12
13
14

16

17
18
19
20

21
22
23

25
26
27

0 ~NO U WN -

16

17

18

19

21

Safe Runtime Downcasts With Ownership Types

// TStack has an anonymous owner, TOwner owns the T objects in the stack.

class TStack {
Object $TOwner;

TNode head = null;

TStack(Object $TOwner) {
this.$TOwner = $TOwner;

}

void push(T value) {

TNode newNode = new TNode(this, $TOwner, value, head); head = newNode;

}

T pop() {

T value = head.value(); head = head.next(); return value;
}

}

class TNode {
Object $thisOwner, $TOwner;

T value; TNode next;

TNode (Object $thisOwner, Object $TOwner, T v, TNode n) {
this.$thisOwner = $thisOwner; this.$TOwner = $TOwner;
this.value = v; this.next = n;

}

T value() { return value; }

TNode next() { return next; }

}

class T { int x=0; }

Fig. 13. Translation of TStack in Figure 11

class T {...}
class TStack {...}
class TStack2 extends TStack {...}

Object ol;
Object 02;

TStack s1 = new TStack($0wner.THISTHREAD());
TStack s2 = new TStack($0wner.SELF());

TStack2 qi;
TStack2 q2;

sl = (TStack) ol;

if (s1.$TOwner != $0wner.THISTHREAD()) throw new ClassCastException();

s2 = (TStack) o02;

if (s2.$TOwner != $0wner.SELF()) throw new ClassCastException();

ql = (TStack2) si;

if (q1.$TOwner !'= $Owner.THISTHREAD()) throw new ClassCastException();

q2 = (TStack2) s2;

if (q2.$TOwner != $0wner.SELF()) throw new ClassCastException();

11

boolean bl = ((ol instanceof TStack) && (((TStack) ol).$TOwner == $0wner.THISTHREAD()));

boolean b2 = ((02 instanceof TStack) && (((TStack) 02).$TOwner == $Owner.SELF()));

Fig. 14. Translation of TStack Client Code in Figure 12

12 Chandrasekhar Boyapati et al.

contains two static methods that return objects that represent the thisThread
owner and the self owner respectively. The translation rules are presented in
Figure 10. Section 3.4 explains the translation process with examples.

3.4 Implementation

This section illustrates with examples how our implementation preserves own-
ership information at runtime for classes with named owner parameters. If a
Safe Concurrent Java (SCJ) program is well-typed with respect to the rules for
static type checking, our implementation translates the program into an equiv-
alent Java program. (Actually, our implementation translates a SCJ program
into Java bytecodes directly. But for ease of presentation, we will describe an
equivalent translation into Java code.) The translation mechanism is illustrated
in Figures 11, 12, 13, and 14. Figure 11 shows a TStack class with anonymous
owners. Figure 12 shows client code that uses the TStack class. Figures 13 and
14 show the translation of the TStack code and the client code.

Classes Classes in the translated code contain extra owner fields, one for each
named owner parameter. For example, in Figure 13, the translated TStack class
has an extra $TOwner field. The translated TNode class has two extra fields:
$thisOwner and $TOwner. The translated T class has no extra fields since the T
class does not have any named owner parameters.

Constructors Constructors in the translated code contain extra owner argu-
ments, one for each named owner parameter of the class. The constructors in the
translated code initialize the owner fields of the class with the owner arguments
of the constructor. For example, in Figure 13, the constructor for TStack has an
extra $TOwner argument. The constructor initializes the $TOwner field of the
TStack object from the $TOwner argument.

Allocation Sites Allocation sites in the translated code must pass extra owner
arguments to constructors, one for each named owner parameter of the corre-
sponding class. If the owner is an expression that evaluates to an object, the
client code passes the object to the constructor. For example, in Figure 13, the
push method in TStack passes the this object as the first argument to the TNode
constructor. If the owner is a formal parameter, the client code passes the value
of the formal parameter stored in one of its extra owner fields. For example, in
Figure 13, the push method in TStack passes the value stored in the $TOwner
field as the second argument to the TNode constructor. If the owner is thisThread
or self, the client code passes the object returned by $Owner. THISTHREAD() or
$Owner.SELF() to the constructor. For example, in Figure 14, the client code cre-
ates TStacks sl and s2 by passing $Owner. THISTHREAD() and $Owner.SELF()
to the TStack constructor respectively.

Casts Casts in the translated code not only check that the Java types match,
but also check that the owners match. For example, in Figure 14, in Line 15, the
translated code not only checks that ol is of Java type TStack, but also checks
that the owner of the T elements in the TStack is thisThread. In Line 16, the

Safe Runtime Downcasts With Ownership Types 13

translated code not only checks that 02 is of Java type TStack, but also checks
that the owner of the T elements in the TStack is self.

InstanceOf The instanceof operation in the translated code returns true iff the
Java types match and the owners match. For example, in Figure 14, in Line 20,
instanceof returns true iff ol is of Java type TStack and the owner of the T
elements in the TStack is thisThread. In Line 21, instanceof returns true iff 02 is
of Java type TStack and the owner of the T elements in the TStack is self.

Arrays The technique described in this paper does not support safe runtime
downcasts to array types. This is because we cannot add extra owner fields
to array objects in the translated code and yet remain JVM-compatible. If a
programmer wants to downcast from java.lang.Object to an array type in our
system, the programmer can create a wrapper object that contains the array
object and perform the downcast on the wrapper object.

Parameterized Methods Parameterized methods are handled similar to pa-
rameterized classes. For ease of presentation, the MSCJ language we described in
Section 2 has only parameterized classes but not parameterized methods. But our
implementation handles both parameterized classes and parameterized methods.
Named owner parameters of methods are explicitly passed as arguments to the
methods in the translated code.

4 Conclusions

This paper describes an efficient technique for supporting safe runtime downcasts
in a system with ownership types. This technique uses the type passing approach,
but avoids the associated significant space overhead by storing only the runtime
ownership information that is potentially needed to support safe downcasts.
The technique preserves the separate compilation model of Java and is JVM-
compatible: it translates programs to bytecodes that can be run on regular JVMs.

Acknowledgments

This research was supported by DARPA/AFRL Contract F33615-00-C-1692,
NSF Grant CCR00-86154, NSF Grant CCR00-73513, and the Singapore-MIT
Alliance.

References

1. O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type parameterization to
the Java language. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), October 1997.

2. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program under-
standing. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), November 2002.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chandrasekhar Boyapati et al.

C. Boyapati, R. Lee, and M. Rinard. Safe runtime downcasts with ownership types.
Technical Report TR-853, MIT Laboratory for Computer Science, June 2002.

C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), November 2002.

C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In Principles of Programming Languages (POPL), January 2003.

C. Boyapati, B. Liskov, L. Shrira, C. Moh, and S. Richman. Lazy modular upgrades
in persistent object stores. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 2003.

C. Boyapati and M. Rinard. A parameterized type system for race-free Java pro-
grams. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), October 2001.

C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership types for safe
region-based memory management in Real-Time Java. In Programming Language
Design and Implementation (PLDI), June 2003.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: Adding genericity to the Java programming language. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), October 1998.
R. Cartwright and G. Steele. Compatible genericity with run-time types for the
Java programming language. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), October 1998.

D. G. Clarke. Object ownership and containment. PhD thesis, University of New
South Wales, Australia, July 2001.

D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and disjointness
of type and effect. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), November 2002.

D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

D. G. Clarke and T. Wrigstad. External uniqueness is unique enough. In Furopean
Conference for Object-Oriented Programming (ECOOP), July 2003.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and
check side effects. In Programming Language Design and Implementation (PLDI),
June 2002.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1997.

A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for Java. In Principles
of Programming Languages (POPL), January 1997.

M. Viroli. Parametric polymorphism in Java: An efficient implementation for para-
metric methods. In Symposium on Applied Computing (SAC), March 2001.

M. Viroli and A. Natali. Parametric polymorphism in Java: An approach to trans-
lation based on reflective features. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), October 2000.

