
Relaxed Fibonacci heaps: An alternative to
Fibonacci heaps with worst case rather than

amortized time bounds∗

Chandrasekhar Boyapati C. Pandu Rangan

Department of Computer Science and Engineering

Indian Institute of Technology, Madras 600036, India

Email: rangan@iitm.ernet.in

November 1995

Abstract

We present a new data structure called relaxed Fibonacci heaps for
implementing priority queues on a RAM. Relaxed Fibonacci heaps support
the operations find minimum, insert, decrease key and meld, each in
O(1) worst case time and delete and delete min in O(log n) worst case
time.

Introduction

The implementation of priority queues is a classical problem in data structures.
Priority queues find applications in a variety of network problems like single
source shortest paths, all pairs shortest paths, minimum spanning tree, weighted
bipartite matching etc. [1] [2] [3] [4] [5]

In the amortized sense, the best performance is achieved by the well known
Fibonacci heaps. They support delete and delete min in amortized O(log n)
time and find min, insert, decrease key and meld in amortized constant time.

Fast meldable priority queues described in [1] achieve all the above time
bounds in worst case rather than amortized time, except for the decrease key
operation which takes O(log n) worst case time. On the other hand, relaxed
heaps described in [2] achieve in the worst case all the time bounds of the Fi-
bonacci heaps except for the meld operation, which takes O(log n) worst case

∗Please see Errata at the end of the paper.

1

time. The problem that was posed in [1] was to consider if it is possible to support
both decrease key and meld simultaneously in constant worst case time.

In this paper, we solve this open problem by presenting relaxed Fibonacci
heaps as a new priority queue data structure for a Random Access Machine
(RAM). (The new data structure is primarily designed by relaxing some of the
constraints in Fibonacci heaps, hence the name relaxed Fibonacci heaps.) Our
data structure supports the operations find minimum, insert, decrease key
and meld, each in O(1) worst case time and delete and delete min in O(log n)
worst case time. The following table summarizes the discussion so far.

delete delete find insert decrease meld
min min key

Fibonacci
heaps O(log n) O(log n) O(1) O(1) O(1) O(1)
(amortized)
Fast
meldable O(log n) O(log n) O(1) O(1) O(log n) O(1)
heaps
Relaxed O(log n) O(log n) O(1) O(1) O(1) O(log n)
heaps
Relaxed
Fibonacci O(log n) O(log n) O(1) O(1) O(1) O(1)
heaps

For simplicity we assume that all priority queues have at least three elements.
We use the symbol Q to denote a relaxed Fibonacci heap and n to denote the
size of a priority queue it represents. Unless otherwise mentioned, all the time
bounds we state are for the worst case.

In Section 1, we prove some results regarding binomial trees which will be
central to establishing the O(log n) time bound for the delete min operation. In
Section 2.1, we describe the relaxed Fibonacci heaps. In Section 3, we describe
the various operations on relaxed Fibonacci heaps.

1 Some results regarding binomial trees

Consider the following problem. We are given a binomial tree B [5] whose root
has degree d. The children of any node N in B are arranged in the increasing
order of their degrees. That is, if the children of N are N0, N1, ... Nd−1, then
Ni.degree = i.

We are to remove some nodes from this tree. Every time a node gets removed,
the entire subtree rooted at that node also gets removed. Suppose the resulting
tree is B′, which is not necessarily a binomial tree. For any node N ∈ B′, N.lost
denotes the number of children lost by N . For any node N ∈ B′, define WN as

2

the weight of node N as follows: WN = 0, if N.lost = 0. Else, WN = 2N.lost−1.
Define weight W =

∑
WN for all nodes N ∈ B′.

Given an upper bound on weight W that B can lose, let B′ be the tree
obtained by removing as many nodes from B as possible.

Lemma 1 B′ defined above has the following properties:

1. Let N be any node in B′. If N.lost = 0 and if N ′ is a descendant of N then
N ′.lost = 0.

2. Let N be any node in B′ such that N.lost = l. Then the children lost by N
are its last l children (which had the highest degrees in B).

3. Let Ni and Nj be two nodes that have the same parent such that Ni.degree >
Nj.degree, in B. Then, in B′, Ni.lost ≥ Nj.lost.

4. Let a node N have four consecutive children Ni, Ni+1, Ni+2 and Ni+3 be-
longing to B′. Then it cannot be true that Ni.lost = Ni+1.lost = Ni+2.lost =
Ni+3.lost > 0.

Proof: If any of the 4 statements above are violated, then we can easily show
that by reorganizing the removal of nodes from B, we can increase the number of
nodes removed from B without increasing the weight W removed. In particular, if
statement 4 is violated, then we can reorganize the removal of nodes by increasing
Ni+3.lost by one and decreasing Ni.lost and Ni+1.lost by one each.

Lemma 2 Let B be a binomial tree whose root has degree d. Let d > 4d0 + 3,
where d0 = dlog n0e, for some n0. Let the upper bound on the weight that B can
loose be 2n0. Then, B′ will have more than n0 nodes in it.

Proof: Let the children of the root of B be B0, B1, ..., Bd−1. We first claim
that Bd0 .lost = 0. Or else, it follows trivially from the previous lemma that
B4d0+3.lost ≥ d0 + 2, because statement 4 implies that there can be at most
three consecutive nodes which have lost the same number of children. This in
turn implies that the weight lost by B is greater than 2d0+1 ≥ 2n0, which is not
possible. Thus our claim holds.

Since Bd0 .lost = 0, no nodes are deleted from the subtree rooted at Bd0 ,
according to statement 1 of the previous lemma. Thus the number of nodes in
B′ is greater than 2d0 ≥ n0.

2 The relaxed Fibonacci heaps

Our basic representation of a priority queue is a heap ordered tree where each
node contains one element. This is slightly different from binomial heaps [4] and
Fibonacci heaps [3] where the representation is a forest of heap ordered trees.

3

2.1 Properties of the relaxed Fibonacci heaps

We partition the children of a node into two types, type I and type II. A relaxed
Fibonacci heap Q must satisfy the following constraints.

1. A node of type I has at most one child of type II. A node of type II cannot
have any children of type II.

2. With each node N we associate a field degree which denotes the number of
children of type I that N has. (Thus the number of children of any node N
is either degree + 1 or degree depending on whether N has a child of type
II or not.)

(a) The root R is of type I and has degree zero. R has a child R′ of type
II.

(b) Let R′.degree = k. Let the children of R′ be R0, R1, ..., Rk−1 and let
R0.degree ≤ R1.degree ≤ ... ≤ Rk−1.degree. Then, R′.degree = k ≤
Rk−1.degree + 1.

3. With each node N of type I we associate a field lost which denotes the
number of children of type I lost by N since its lost field was last reset to
zero.

For any node N of type I in Q, define WN as the weight of node N as
follows: WN = 0, if N.lost = 0. Else, WN = 2N.lost−1.

Also for any node N of type I, define wN as the increase in WN due to N
losing its last child. That is, wN = 0 or 1 or 2N.lost−2 respectively depending
on whether N.lost = 0 or 1 or greater than one.

Define weight W =
∑

WN for all N of type I in Q.

Every relaxed Fibonacci heap has a special variable P , which is equal to
one of the nodes of the tree. Initially, P = R.

(a) R.lost = R0.lost = R1.lost = ... = Rk−1.lost = 0.

(b) Let N be any node of type I. Let N.degree = d and let the children
of N of type I be N0, N1, ..., Nd−1. Then, for any Ni, Ni.degree +
Ni.lost ≥ i.

(c) W ≤ n + wP .

4. Associated with Q we have a list LM = (M1,M2, ..., Mm) of all nodes of
type II in Q other than R′. Each node Mi was originally the R′ of some
relaxed Fibonacci heap Qi till some meld operation. Let ni denote the
number of nodes in Qi just before that meld operation.

(a) Mi.degree ≤ 4dlog nie+ 4.

(b) ni + i ≤ n.

4

21,1

8

24,1

12,1 9

14

20 30

23

13 17

15 25

5

2

P

R

R’

R0R1R2

L M

M1

= (M1)

Figure 1: A relaxed Fibonacci heap

Example

Figure 1 shows a relaxed Fibonacci heap. The nodes of type I are represented
by circles and the nodes of type II are represented by squares. Each node N
contains either N.element, N.lost or just N.element if N.lost = 0. The node P
and the list LM are also shown.

Lemma 3 The heap order implies that the minimum element is at the root.

Lemma 4 For any node N of type I, N.degree ≤ 4d0 + 3, where d0 = dlog ne.

Proof: On the contrary, say N.degree = d > 4d0 + 3. If P.lost > 1, then W ,
when expanded, will contain the term WP = 2P.lost−1. Thus according to property
3c, 2P.lost−1 ≤ W ≤ n+wP = n+2P.lost−2. That is, 2P.lost−2 ≤ n. Hence, W ≤ 2n.
This inequality obviously holds true even if P.lost ≤ 1. Thus the weight lost by
the subtree rooted at N , say TN , is not more than 2n.

Let us now try to estimate the minimum number of nodes present in TN . Let
us first remove all the children of type II in TN and their descendants. In the
process, we might be decreasing the number of nodes in the tree but we will not
be increasing N.degree.

In the resulting TN , we know from property 3b that for any (i + 1)th child
of any node N ′, N ′

i .degree + N ′
i .lost ≥ i. But for the binomial tree problem

described in Section 1, N ′
i .degree + N ′

i .lost = i. Thus the minimum number of
nodes present in TN is at least equal to the minimum number of nodes present in

5

a binomial tree of degree d after it loses a weight less than or equal to 2n. But
according to Lemma 2, this is more than n. Thus, TN has more than n nodes,
which is obviously not possible.

Lemma 5 For any node N in Q, the number of children of N ≤ 4d0 + 4, where
d0 = dlog ne.

Proof: If N is a node of type I, the number of children of N ≤ N.degree + 1 ≤
4d0 + 4, according to the previous lemma.

From property 2b, R′.degree = k ≤ Rk−1.degree + 1 ≤ 4d0 + 4, according
to the previous lemma, since Rk−1 is of type I. Thus, number of children of
R′ = R′.degree ≤ 4d0 + 4.

If N is any node of type II other than R′, N is equal to some Mi in LM ,
according to property 4. According to property 4a, Mi.degree ≤ 4dlog nie + 4.
But according to property 4b, ni < n. Thus the number of children of N =
Mi.degree ≤ 4d0 + 4.

Remarks

The restrictions imposed by property 3c are much weaker than those in fast
meldable queues [1] or in relaxed heaps [2]. But according to the above lemma, the
number of children of any node is still O(log n). We believe that the introduction
of property 3c is the most important contribution of this paper.

2.2 Representation

The representation is similar to that of Fibonacci heaps as described in [5]. The
children of type I of every node are stored in a doubly linked list, sorted according
to their degrees. Besides, each node of type I has an additional child pointer which
can point to a child of type II.

To preserve the sorted order, every node that is inserted as a child of R′

must be inserted at the appropriate place. To achieve this in constant time, we
maintain an auxiliary array A such that A[i] points to the first child of R′ of
degree i.

We will also need to identify two children of R′ of same degree, if they exist.
To achieve this in constant time, we maintain a linked list LP of pairs of nodes
that are children of R′ and have same degree and a boolean array B such that
B[i] is true if and only if the number of children of R′ of degree i is even.

Besides, we will also require to identify some node N in Q such that N.lost >
1, if such a node exists. To implement this in constant time, we maintain a list
LL of all nodes N in Q such that N.lost > 1.

6

3 Operations on relaxed Fibonacci heaps

In this section, we will describe how to implement the various operations on
relaxed Fibonacci heaps. But before we do that, we will describe a few basic
operations namely, link, add, reinsert and adjust.

Though we will not be mentioning it explicitly every time, we will assume that
whenever a node of type I loses a child, its lost field is automatically incremented
by one unless the node is R or a child of R′. Similarly, whenever a node is inserted
a child of R′, its lost field is automatically reset to zero. We also assume that if
node P gets deleted from the tree after a delete min operation, then P is reset
to R to ensure that node P still belongs to Q.

3.1 Some basic operations

The link operation is similar to the linking of trees in binomial heaps and Fi-
bonacci heaps.

Algorithm 1 : Link(Q, Ri, Rj)
/* Link the two trees rooted at Ri and Rj into one tree */
/* Ri and Rj are children of R′ and have equal degrees, say d */

1. Delete the subtrees rooted at Ri and Rj from Q
2. If Ri.element > Rj.element then Swap(Ri, Rj)
3. Make Rj the last child of Ri

4. Make Ri (whose degree now = d + 1) a child of R′ of Q

Algorithm 2 : Add(Q, N)
/* Add the tree rooted at N to the relaxed Fibonacci heap Q */

1. Make N a child of R′ of Q
2. If N.element < R′.element then Swap(N.element, R′.element)
3. If R′.element < R.element then Swap(R′.element,R.element)
4. If among the children of R′ there exist any two different nodes Ri and Rj

such that Ri.degree = Rj.degree then Link(Q,Ri, Rj)

Algorithm 3 : ReInsert(Q, N)
/* Remove N from Q and insert it as a child of R′ */
/* N is of type I and N 6= R */
/* Return the original parent of N */

1. Parent ← N.parent
2. Delete the subtree rooted at N from Q
3. Add(Q,N)
4. Return Parent

7

The algorithm adjust is called by decrease key, meld and delete min oper-
ations. Adjust restores property 3c provided some preconditions are satisfied,
which will be explained shortly.

Algorithm 4 : Adjust(Q, P1, P2)

1. If M.lost ≤ 1 for all nodes M in Q then return
2. If P1.lost > P2.lost then M ← P1 else M ← P2

3. If M.lost ≤ 1 then M ← M ′ for some node M ′ in Q such that M ′.lost > 1
4. P ← ReInsert(Q, M)

Lemma 6 All the operations described above take constant time in the represen-
tation described in Section 2.2.

Proof: The add operation needs to identify two children of R′ of same degree,
if they exist. This can be done using the list LP and the array B in constant
time. After removing those children and linking them into one tree, we can use
the array A to insert it at the appropriate place in the child list of R′. LP , B
and A can obviously be maintained in constant time.

The adjust operation needs to identify some node N in Q such that N.lost >
1, if such a node exists. This can be done in constant time using the list LL.

The rest of the operations trivially take constant time.

Lemma 7 Property 2b described in Section 2.1 is preserved under the add oper-
ation.

Proof: After every add operation in which Step 4 executed, the number of
children of R′ does not change. Also, after every add operation in which Step 4
is not executed, there is at most one child of R′ of each degree. Thus property
2b is preserved under the add operation.

Lemma 8 Property 3b is preserved under the reinsert operation.

Proof: Let the children of a node N be N0, N1, ..., Nd−1. Whenever N loses
its (i + 1)th child Ni, then for all j > i, Nj now becomes Nj−1, even though its
degree and lost fields are not changed. Thus, property 3b is never violated.

For any variable V , let V − denote the value of the variable before an operation
and let V + denote the value of the variable after the operation.

Lemma 9 In operation adjust, if P1 6= P2 and if W− ≤ n + wP1 + wP2, then
W+ ≤ n + wP+.

8

Proof: If the condition in Step 1 of adjust holds, then W+ = number of nodes
N in Q such that N.lost = 1. Thus W+ ≤ n.

Else, Steps 2 and 3 ensure that WM = max(WP1 ,WP2 , 2). Now, if P1.lost ≤ 1
then wP1 ≤ 1. Thus WM ≥ 2wP1 . Otherwise P1.lost > 1. Then WM ≥ WP1 =
2P1.lost−1 = 2×2P1.lost−2 = 2wP1 . Similarly, WM ≥ 2wP2 . Thus, WM ≥ wP1 +wP2 .

Thus we have, W+ = W− −WM + wP+ ≤ (n + wP1 + wP2) −WM + wP+ =
n + wP+ − (WM − wP1 − wP2) ≤ n + wP+

Lemma 10 In operation adjust, if P1 = P2 = P− and if W− ≤ (n + 1) + wP−,
then W+ ≤ n + wP+.

Proof: As before, if the condition in Step 1 holds, then W+ = number of nodes
N in Q such that N.lost = 1. Thus W+ ≤ n.

Else, if P−.lost ≤ 1 then wP− ≤ 1. Thus WM ≥ 2 > wP− . Otherwise,
P−.lost > 1. Then, WM = W−

P = 2P−.lost−1 = 2 × 2P−.lost−2 = 2wP− . Thus,
WM > wP− , which implies that, WM ≥ wP− + 1

Thus we have, W+ = W− − WM + wP+ ≤ (n + 1 + wP−) − WM + wP+ =
n + wP+ − (WM − wP− − 1) ≤ n + wP+ .

3.2 The find min operation

Algorithm 5 : FindMin(Q)
/* Return the minimum element in the relaxed Fibonacci heap Q */

1. Return R.element

Lemma 11 The find min operation described above returns the minimum ele-
ment in Q in constant time.

3.3 The insert operation

Binomial heaps have a very restrictive property that there will be at most one
node of each degree in the root list. Hence an insert operation can degenerate
to take O(log n) time. On the other hand, the insert operation in the Fibonacci
heaps just puts the node in the root list and leaves all the work to delete min,
which can take O(n) worst case time as a result.

Instead, we have introduced property 2b so that the insert operation can be
performed in O(1) time and the number of children of R′ still remains O(log n).

Algorithm 6 : Insert(Q, e)
/* Insert the element e into the relaxed Fibonacci heap Q */

1. Form a tree with a single node N of type I consisting of element e
2. Add(Q, N)

9

Lemma 12 All the properties described in Section 2.1 are maintained under the
insert operation.

Proof: Since insert works by calling add, property 2b is preserved under the
insert operation, according to Lemma 7. The rest of the properties are trivially
preserved under insert.

Lemma 13 The insert operation takes constant time in the representation de-
scribed in Section 2.2.

Proof: Follows from Lemma 6.

3.4 The decrease key operation

Our implementation of the decrease key operation is somewhat similar to that
of the Fibonacci heaps. With every decrease key operation in the Fibonacci
heaps, the corresponding node is deleted and is put in the root list. Similarly,
we also delete the corresponding node and insert it as a child of R′. However,
care is to be taken to see to it that too many children are not deleted, otherwise
the delete min operation might degenerate to take O(n) time in the worst case.
Fibonacci heaps handle this by marking a node whenever it loses its first child
and deleting the node itself (and putting it in the root list) whenever it loses a
second child. However, in a particular decrease key operation, this effect might
cascade up due to which the operation might take O(h) time in the worst case,
where h is the height of the tree.

Instead of imposing a local restriction as in the Fibonacci heaps (that a node
can lose at most one child), we have relaxed this into a global restriction on the
number of children deleted by introducing property 3c instead.

Algorithm 7 : DecreaseKey(Q, N , e)
/* Decrease the value of the element in node N of Q by e(> 0) */

1. N.element ← N.element− e
2. If (N = R or R′) and (R′.element < R.element) then

Swap(R′.element,R.element); return
3. If (N is of type II) and (N.element < N.parent.element) then

Swap(N.element,N.parent.element); N ← N.parent
4. If N.element ≥ N.parent.element then return
5. P ′ ← ReInsert(Q,N)
6. Adjust(Q,P, P ′)

Lemma 14 All the properties described in Section 2.1 are maintained under the
decrease key operation.

10

Proof: Since any node is finally inserted as a child of R′ only through the add
operation, property 2b is preserved, according to Lemma 7. Also, since decrease
key works by calling reinsert, property 3b is preserved according to Lemma 8.

Just before Step 5, the weight W ≤ n+wP , according to property 3c. Hence,
just after Step 5, weight W ≤ n + wP −WN + wP ′ ≤ n + wP + wP ′ . Therefore
according to Lemma 9, just after Step 6, weight W ≤ n + wP . Thus property 3c
is preserved under the decrease key operation.

The rest of the properties are trivially preserved under the decrease key
operation.

Lemma 15 The decrease key operation takes constant time in the representation
described in Section 2.2.

Proof: Follows from Lemma 6.

3.5 The meld operation

The meld operation essentially adds the root R of one relaxed Fibonacci heap,
say Q2, as a child of R′ of the other relaxed Fibonacci heap Q1. Whenever a
variable name might cause confusion as to whether the variable belongs to Q1 or
Q2 or Q, we will prefix it appropriately.

Algorithm 8 : Meld(Q1, Q2)
/* Meld the two relaxed Fibonacci heaps Q1 and Q2 into Q */
/* Return Q */

1a. If Q1.R
′.element > Q2.R

′.element then Swap(Q1, Q2)
1b. Add(Q1, Q2.R)
1c. If Q2.R.element < Q1.R

′.element then Swap(Q2.R.element, Q1.R
′.element)

1d. If Q1.R
′.element < Q1.R.element then Swap(Q1.R

′.element, Q1.R.element)

2a. Add the node Q2.R
′ to the tail of Q1.LM

2b. Concatenate Q2.LM with Q1.LM by adding the head of Q2.LM after the tail of Q1.LM

3. Adjust(Q1, Q1.P, Q2.P)
4. Return Q1

Lemma 16 Property 4b is preserved under the meld operation.

Proof: Let Q1.LM = (M1
1 ,M1

2 , ..., M1
m1

). Since each Mi and its parent form
unique nodes in Q, there are at least two unique nodes in Q per Mi. Thus,
Q1.n > 2m1 ≥ m1. Or, Q1.n ≥ m1 + 1.

Also, let Q2.LM = (M2
1 ,M2

2 , ...,M2
m2

). Then, Q.LM = (M1
1 , ..., M1

m1
, Q2.R

′,
M2

1 , ..., M2
m2

) = (M1, ..., Mm1+m2+1).

11

We will prove the lemma by considering the three separate cases namely
1 ≤ i ≤ m1, i = m1 + 1 and m1 + 2 ≤ i ≤ m1 + m2 + 1.

If 1 ≤ i ≤ m1 then Q.ni + i ≤ Q1.n < Q.n, since these elements originally
belonged to Q1 and they still remain in the same position in LM .

If i = m1+1 then Q.nm1+1+(m1+1) = Q2.n+(m1+1) ≤ Q2.n+Q1.n = Q.n.
If m1 + 2 ≤ i ≤ m1 + m2 + 1 then let j = i − (m1 + 1). Then Q.ni + i =

Q2.nj. + j + (m1 + 1) ≤ Q2.n + (m1 + 1) ≤ Q2.n + Q1.n = Qn.

Lemma 17 All the properties described in Section 2.1 are maintained under the
meld operation.

Proof: Since Q2.R is inserted as a child of Q1.R
′ through the add operation,

property 2b is preserved, according to Lemma 7.
According to property3c, just before Step 3, the weight W = Q1.W +Q2.W ≤

Q1.n+wQ1.P +Q2.n+wQ2.P ≤ n+wQ1.P +wQ2.P . Therefore according to Lemma
9, just after Step 3, weight W ≤ n + wP . Thus property 3c is preserved under
the meld operation.

According to the previous lemma, property 4b is preserved under the meld
operation.The rest of the properties are trivially preserved under the meld op-
eration.

Lemma 18 The meld operation takes constant time in the representation de-
scribed in Section 2.2.

Proof: Follows from Lemma 6.

3.6 The delete min operation

Algorithm 9 : DeleteMin(Q)
/* Delete and return the minimum element in the relaxed Fibonacci heap Q */

1a. MinElement ← R.element
1b. R.element ← R′.element
1c. R

′′ ← The child of R′ containing the minimum element among the children of R′

1d. R′.element ← R
′′
.element

2a. Delete the subtree rooted at R
′′

from Q
2b. For all children N of type I of R

′′
do make N a child of R′ of Q

3a. If R
′′

has no child of type II then goto Step 4.
3b. Let M ′ be the child of type II of R

′′
. Insert(Q,M ′.element)

3c. For all children N of M do make N a child of R′ of Q

4. Adjust(Q,P, P)

12

5a. If LM is empty then goto Step 6
5b. M ← Head(LM); LM ← Tail(LM)
5c. Delete M from Q
5d. Insert(Q, M.element)
5e. For all children N of M do make M a child of R′ of Q

6. While among the children of R′ there exist any two different nodes Ri and Rj

such that Ri.degree = Rj.degree do Link(Q,Ri, Rj)

7. Return MinElement

Lemma 19 Property 4b is preserved under the delete min operation.

Proof: Property 4b requires that ni+i ≤ n. After each decrease key operation,
the value of n decreases by one. But each Mi also at least becomes Mi−1. Thus,
the property is preserved under the delete min operation.

Lemma 20 All the properties described in Section 2.1 are maintained under the
delete min operation.

Proof: Since after any delete min operation R′ has at most one child of each
degree, property 2b holds after a delete min operation.

In a delete min operation, the number of nodes n decreases by one. Thus
just before Step 4, W ≤ (n + 1) + wP , according to property 3c. Therefore
according to Lemma 9, just after Step 3, weight W ≤ n + wP . Thus property 3c
is preserved under the delete min operation.

According to the previous lemma, property 4b is preserved under the delete
min operation. The rest of the properties are trivially preserved under the delete
min operation.

Lemma 21 It is easy to see that in the representation described in Section 2.2,
the delete min operation takes O(R′.degree+R′′.degree+M ′.degree+M.degree)
= O(log n) time, according to Lemma 5.

3.7 The delete operation

Algorithm 10 : Delete(Q, N)
/* Delete the node N from the priority queue Q and return N.element */

1. Element ← N.element
2. DecreaseKey(Q, N,∞)
3. DeleteMin(Q)
4. Return Element

13

Lemma 22 It follows from the proofs of correctness and complexity of the de-
crease key and delete min operations that the delete operation described above
deletes the node N from Q in O(log n) time.

Conclusion

We can summarize the discussions in the previous sections by the following the-
orem.

Theorem 1 An implementation of priority queues on a RAM exists that sup-
ports the operations find minimum, insert, decrease key and meld, each in O(1)
worst case time and delete and delete min in O(log n) worst case time.

The central idea in designing this data structure has been the identification
of the weak global constraint on the number of children lost(property 3c). The
classification of the nodes into type I and type II has been done to facilitate the
meld operation.

It is easy to see that these time bounds are optimal for any comparison based
algorithm that performs the meld operation in sub-linear time.

References

[1] Gerth Stoling Brodal. “Fast meldable priority queues”. Proc. 4th Interna-
tional Workshop, WADS, 282-290 (1995)

[2] James R. Driscoll, Harold N. Gabow, Ruth Shrairman and Robert E. Tarjan.
“Relaxed heaps: An alternative approach to Fibbonacci heaps with applica-
tions to parallel computing”. Comm. ACM 31(11), 1343-1354 (1988)

[3] Michael L. Fredman and Robert E. Tarjan. “Fibonacci heaps and their uses
in improved network optimization algorithms”. Proc. 25th Ann. Symp. on
Foundations of Computer Science, 338-346 (1984)

[4] Jean Vuillemin. “A data structure for manipulating priority queues”. Comm.
ACM 21(4), 309-315 (1978)

[5] Thomas H. Corman, Charles E. Leiserson and Ronald R. Rivest. “Introduc-
tion to algorithms”. The MIT Press, Cambridge, Massachusetts. (1989)

14

A Decreasing the value of the element 24 to 19

in the tree in Figure 1

A.1 After Step 5 of decrease key operation

8

12,1 9

14

20 30

23

5

2R

R’

13

1517

25

19 P

L M = (M1)

M1

21,2

A.2 After the decrease key operation

17

25

13

15

8

12,1 9

14

20 30

23

5

2

19 21P

L M

M1

= (M1)

15

B After melding with a priority queue contain-

ing only 1, 7 and 10

17

25

13

15

8

12,1 9

14

20 30

23

19

21

5

2

1

7

10

P

M1

M2

L M = (M1 , M2)

C Doing a delete min

C.1 After Step 3c of delete min operation

17

25

13

15

8

12,1 9

14

20 30

23

19

21

P

M1

L M

2

5

7

= (M1)

10

16

C.2 After Step 5e of delete min operation

L M = ()

17

25

13

15

8

12,1 9

P

2

5

1420

23

7

10

19

21

30

C.3 After the delete min operation

L M = ()

17

25

13

15

12,1 9

8

20

23

10P 14

30

19

21

2

5

7

17

Errata

We later discovered, in August 1996, that the paper contains a bug. It turns out
that the proof that out delete min operation takes O(log n) time in the worst
case is incorrect.

The proof consisted of two parts. The first part part showed that all the
algorithms presented in the paper preserve the data structure invariants described
in Section 2.1. The second part of the proof showed that the data structure
invariants imply that our delete min operation takes O(log n) time in the worst
case. It turns out that Statement 4 in Lemma 1 is incorrect, which in turn
invalidates the second part of the proof that the data structure invariants imply
that our delete min operation takes O(log n) time in the worst case.

We can still prove that the the data structure invariants in Section 2.1 imply
that our delete min operation takes O(log2 n/ log log n) time in the worst case.
Thus, the corrected version of the theorem presented in the paper is as follows.

Theorem 1 An implementation of priority queues on a RAM exists that sup-
ports the operations find minimum, insert, decrease key and meld, each in O(1)
worst case time and delete and delete min in O(log2 n/ log log n) worst case time.

This would still have been a new result at the time this report was published.
However, Gerth Stoling Brodal later published a paper [6] that describes a com-
pletely different data structure than ours that supports the delete min operation
in O(log n) time in the worst case.

References

[6] Gerth Stoling Brodal. “Worst-case efficient priority queues”. Proc. 7th Ann.
ACM Symp. on Discrete Algorithms, 52-58 (1996)

18

