
On O(1) concatenation of deques with heap order

Chandrasekhar Boyapati C. Pandu Rangan

Department of Computer Science and Engineering
Indian Institute of Technology, Madras 600036, India

Email: rangan@iitm.ernet.in

March 1995

Abstract

We present a data structure to implement deques with heap order
that supports the operations find minimum, push, pop, inject, eject and
concatenate two deques, each in O(1) time.

1 Introduction

A deque with heap order is a deque (double-ended queue) such that each item
has a real-valued key and the operation of finding an item of minimum key is
allowed as well as the usual deque operations. Queues with heap order have
applications in paging and river routing [3] [4] [2].

Gajeuska and Tarjan [3] have described a data structure that supports in
O(1) worst case time the usual deque operations push, pop, inject, eject and
the find minimum operation. They also mentioned that Kosaraju’s methods [5]
extend to support O(1) time concatenation of deques when the number of
deques is fixed. However, for the case of a variable number of deques, they
left the same as an open problem. In [1], Buchsbaum, Rajamani and Tarjan
partially answered this question by describing a data structure that supports
all the operations mentioned above in O(1) amortized time using the technique
of bootstrapping and path compression.

In this paper we first present a simple data structure that also supports all
the above mentioned operations in O(1) amortized time even when the number
of deques is arbitrarily large, without using the technique of bootstrapping or
path compression. Also, this data structure is flexible enough to support oper-
ations like given the actual position of a key, insert a key next to it, or delete
it, or change its value in O(log n) worst case time, while the data structure
in [3] or [1] takes O(n) worst case time for each of these operations. Finally,

1



6

½
½

½½= Z
Z

ZZ}

¡
¡

¡µ

@
@

@I

¡
¡

¡µ@
@

@R

¡
¡

¡µ

@
@

@I

£
£
£±

J
J

J]

£
£
£±

J
J

J]

£
£
£±

J
J

J]

£
£
£±

J
J

J]

£
£
£±

J
J

J]

³³³³³³³³³³³³³)

6HHHHHHHHHHj

�
�	

�
�	

@
@R

R

N1 N2 N3 N4 N5 N6

N7 N8 N9

15

10 25 15 27

15

15

15

10

10

19 30 17 10 22 80 25 15 36 27 42 20 51

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

External Access

Figure 1

we present an improved version of our data structure that supports push, pop,
inject and eject in O(1) worst case time without changing the complexity of the
other operations.

2 The Amortized O(1) Time Data Structure

2.1 Structural Properties

Our data structure shares the following structural properties of 2-4 trees :

1. Every internal node has 2 or 3 or 4 sons. We will say that a node satisfies
the degree property if it satisfies this condition.

2. All the leaves are at the same level.

2.2 Organisation of the Leaves

Every data item is present in some leaf and every leaf contains one data item.
The tree is so arranged that if we go through all the leaves of the tree from left
to right, we get the order in which the data items are present in the deque, with
the item in the left-most leaf corresponding to the head of the sequence and the
item in the right-most leaf corresponding to the tail.

2



2.3 Organisation of the Internal Nodes

2.3.1 Classification of the Internal Nodes

For convinience of discussion, we will first classify the internal nodes of our tree
into three categories :

1. The root. (R in figure 1)

2. The exterior nodes, which are the internal nodes in the right-most and
left-most paths other than the root. (N1, N6, N7 and N9 in figure 1)

3. The interior nodes, which are the rest of the internal nodes. (N2, N3, N4, N5

and N8 in figure 1)

2.3.2 Graphical Representation

Consider the graph representation of this tree. We will define a direction1 for
every edge of this graph. We will say that a node M points to a node N if there
is a directed edge from M to N . We define that —

1. Every leaf points to its parent.

2. Every interior node points to its parent.

3. The root points to its left-most and right-most sons, if they are not leaves.

4. Every exterior node, except the left-most one and the right-most one,
points to its exterior son.

For example, these directions are explicitly shown in figure 1. The graph thus
defined above is obviously a directed acyclic graph.

2.3.3 Contents of the Internal Nodes

For an internal node N , let SN be the set of nodes that point to N . In every
internal node N of the tree, we will store (a pointer to) an item as follows :

item(N) = min {item(M) M ∈ SN}, if SN is not empty,

= infinity, if SN is empty.

Observe that SN can be empty only when N is the root and has only two
exterior sons. We will say that an internal node satisfies the content property if
it satisfies the above equation.

1These directions are just for our conceptual understanding and have nothing to do with
the way the nodes are hooked up in the tree.

3



2.4 External Access

Our tree itself is accessible from outside via three pointers, one for the root, and
one each for the left-most and right-most exterior nodes.
For example, the tree in figure 1 is accessed through pointers to N1, N6 and R.

The Algorithms and their Analysis

We shall present algorithms for the non-degenerate cases only, that is, when the
tree has more then three internal nodes. The degenerate cases can be handled
individually, since the number of such cases is finite.

2.5 The Potential Function

Corresponding to each configuration of our data structure, we define a potenial2

Φ as follows :

Φ = Θ(# nodes with 2 sons + 2×# nodes with 4 sons)
+ Θ(height of the tree)

The amortized cost of an operation is defined as the sum of its actual cost and
the increase in potential of the data structure due to the operation.
Since the potential is initially zero and is always positive, the total amortized
cost after n operations is an upper bound on the total actual cost.

2.6 Find Minimum

Since the only nodes in the graph with out-degree zero are the left-most and
the right-most exterior nodes, at least one of them has to contain the minimum
item. Hence, it takes at most one comparision to find the minimum. Thus the
time complexity of this operation is O(1), in the worst case.

2.7 Push, Pop, Inject, Eject

From the left-right symmetry in the properties of our tree, we know that both
push and inject are identical operations, and so are pop and eject. Hence, we
will discuss the operations of insertion and deletion from the right end of the
deque only.

2Note that our potential function is only a slight modification of the potential function of
the 2-4 trees, to accomodate the analysis of the concatenate operation.

4



For convinience of discussion, we will be using the following function :

Algorithm 1 : Update N , where N is an internal node

1. Update the item stored in N such that it satisfies the content property, as dis-
cussed in Section 2.3.3.

The structural adjustments performed on our tree are exactly identical to
those performed on a 2-4 tree following every insertion or deletion. However,
with every node split, or node merge, or borrowing of a child by a node from a
brother, we will also do a constant time updating of internal nodes as discussed
below :

1. When an exterior node N is split into an interior node N1 and an exterior node
N2, then update N1, P and N2, in that order, where P is the parent of N1 and
N2.

2. When an exterior node is merged with its brother to form a node N , then update
P and N , in that order, where P is the parent of N .

3. When an exterior node N2 borrows a son from a brother N1, then update N1

and P , in that order, where P is the parent of N1 and N2.

It is easy to see the correctness of the following lemma from the above
discussion.

Lemma 1 If every internal node of the tree satisfies the content property before
an internal node N splits or merges or borrows a son, then we can restore
the content property of every internal node by doing a constant time updating
of internal nodes (as discussed above) after the split or merge or borrowing,
provided that neither N nor its parent is the root.

We will now present the algorithm for insertion and deletion from the right
end.

Algorithm 2 : Insert (or delete) an item at the right end

1. Insert the data item as the right-most leaf L of the tree.
(Or, delete the right-most leaf L of the tree.)

2. Perform structural adjustments on the tree just as is done in 2-4 trees, accom-
panied with the updating of internal nodes as discussed above.

3. If no structural adjustments were required in the above step, then let N be the
right-most exterior node. Else let N be the parent of the last node that was
split, in case of insertion. (In case of deletion, let N be the parent of the last
node that was merged, or parent of the last node that borrowed a son. If the
last merged node happens to be the root, then let N be the root itself).
If N is the root then

(a) Update all the internal nodes in the left-most path, starting from the root
till the left-most exterior node.

(b) Update all the internal nodes in the right-most path, starting from the
root till the right-most exterior node.

5



Time Complexity Analysis

Let there be k node splits or node merges in Step 2. Since the first step takes
O(1) time and the rest of the steps take O(k) time each, the actual cost of the
operation is O(k).

But, the corresponding decrease in potential is Θ(k), just as in case of 2-
4 trees. Thus, choosing appropiate values for the constants in the potential
function, the amortized costs of each of these operations turn out to be O(1).

However, the worst case cost is O(log n).

2.8 Concatenate two deques

Let us assume, we have to concatenate two deques D1 and D2, with the head of
D2 following the tail of D1 in the final deque. Let T1 and T2 be the corresponding
trees of heights h1 and h2 and with roots R1 and R2 respectively, where T1 is
to be attached to the left of T2. There might be two possibilities :

Case 1 : h1 6= h2

Without loss of generality, say h1 > h2. In this case, concatenation can also be
treated as an insertion, not at the leaf level, but at a higher level such that the
leaves in the final tree are all at the same level. However, since the nodes in
the left-most path of T2 and some of the nodes in the right-most path of T1 are
converted from exterior nodes to interior nodes, certain nodes in the new tree
must be updated. Also, the tree has to be adjusted, to satisfy the structural
properties.

Algorithm 3 : Concatenate T2 to the right of T1, where h1 > h2

1. Insert the root R2 of T2 as the son of a node M in the right-most path of T1

such that the leaves in the final tree are all of the same level.

2. Update all the internal nodes in the left-most path of T2, starting from the
left-most exterior node till the root.

3. Update all the internal nodes in the right-most path of T1 starting from the
right-most exterior node till the node M .

4. If M is the root of T1 then update all the internal nodes in the left-most path
of T1, starting from the root till the left-most exterior node.

5. If M violates the degree property, then execute Algorithm 2 from Step 2 onwards
to structurally adjust the new tree.

6. Update all the internal nodes in the right-most path of the new tree starting
from the node R2 till the right-most exterior node.

6



Case 2: h1 = h2

In this case, we create a new root R with a dummy item such that value(R) = ∞,
and make the roots of T1 and T2 sons of R. As in the previous case, we also
have to update the right-most and left-most paths of T1 and T2.

Algorithm 4 : Concatenate T2 to the right of T1, where h1 = h2

1. Create a new root R, with value(R) = ∞.

2. Make the roots R1 and R2 of T1 and T2 sons of R.

3. Update all the internal nodes in the right-most path of T1, starting from the
right-most exterior node till the root R.

4. Update all the internal nodes in the left-most path of T2, starting from the
left-most exterior node till the root R.

5. Update all the internal nodes in the left-most path of T1, starting from the root
R till the left-most exterior node.

6. Update all the internal nodes in the right-most path of T2, starting from the
root R till the right-most exterior node.

Time Complexity Analysis

Let k be the number of node splits, if any, for structurally adjusting the tree.
Then, the actual cost of the operation is obviously O(h2) + O(k).

But, the corresponding decrease in potential is Θ(h2) + Θ(k), since in place
of two trees of heights h1 and h2, we finally have only one tree of height h1 (or
h1 +1). Thus the amortized cost of concatenate opeartion turns out to be O(1).

However, the worst case cost is O(log n).

Theorem 1 Deques with heap order can be implemented to support each of the
operations push, pop, inject, eject and concatenate two deques in O(1) amortized
case time and the operation find minimum in O(1) worst case time, even when
the number of deques is arbitrarily large.

3 Improved Data Structure to support Push,
Pop, Inject and Eject in O(1) Worst Case Time

Since the operations push, pop, inject, and eject cause insertions or deletions
only at the right or left end of the tree, we can improve the efficiency of the
data structure by performing the necessary structural adjustments and updating
of internal nodes lazily over the next few operations.

To effect this, we will allow the exterior nodes to temporarily have at least
one and at most five sons. We will also allow one internal node each in the
right-most and left-most paths to violate the content property.

7



Algorithm 5 : Insert (or delete) an item at the right (or left) end

1. Do the insertion (or deletion) at the right (or left) end of the tree.

2. Structurally adjust the lowest node N in the right-most (or left-most) path that
violates the degree property.

3. // NL and NR are the two nodes that may violate the content property.
// Initially, NL and NR are respectively the left-most and right-most leaves.
If the parent of node N is the root then

(a) Structurally adjust the other exterior son of the root, if it is violates the
degree property.

(b) Structurally adjust the root, if it is violates the degree property.

(c) Set NL ← left son of root and NR ← right son of root.

4. If NL and NR are not leaves then

(a) Update NL and NR

(b) Set NL ← left son of NL and NR ← right son of NR.

As an illustration of the above algorithm, consider a tree in which the right-
most exterior node N1 and some of its immediate ancestors have four sons each.
Let Ni+1 represent the parent of Ni. Let there be a series of insertions from the
right end into this tree. The following table shows the number of sons of some
of the right exterior nodes of the tree after each insertion. Note how we do not
immediately split all the ancestors but instead ‘lazily’ split only the lowest node
with every insertion.

N1 N2 N3 N4 N5

Initial 4 4 4 4 4

Insert 5 4 4 4 4

Split 3 5 4 4 4

Insert 4 5 4 4 4

Split 4 3 5 4 4

Insert 5 3 5 4 4

Split 3 4 5 4 4

Insert 4 4 5 4 4

Split 4 4 3 5 4

We will demonstrate the correctness of the above algorithm through the
following lemmas :

Lemma 2 Every exterior node will have at least 1 son and at most 5 sons after
every operation.

To prove this, we can think of the above algorithm as follows. After every
insertion or deletion at the right end, the right-most exterior node gets a chance

8



to adjust itself. If required, it uses the chance to adjust itself. Else it passes the
chance to its parent, which in turn either uses the chance or passes it upwards,
and so on. To prove the lemma, it suffices to prove that every node in the right-
most path and the left-most path gets at least one chance to adjust itself between
two consecutive insertion or deletion operations on it.

Let the above statement be true for an exterior node Nh at a height h in the
tree. We will then prove the statement for its parent Nh+1.

Observe that an insertion into Nh+1 corresponds to splitting of Nh and a
deletion from Nh+1 corresponds to merging of Nh with its brother. But after
every node split or node merge, Nh will have exactly 3 sons. Hence, before the
next node split or node merge of Nh, there have to be at least two insertions or
deletions on Nh. Between these two insertions or deletions, Nh will get a chance
to adjust itself which it does not require since it will have at least 2 sons and
at most 4 sons. Hence, it will pass this chance to Nh+1 which can thus adjust
itself between every two operations on it. And since the above statement the
trivially true for the right-most and left-most exterior nodes, it follows that it
is true for all exterior nodes.

Lemma 3 The lowest exterior node that violates the degree property in the
right-most or left-most path can be located in constant time by maintaining for
each of the two exterior paths, a stack of all the exterior nodes in that path that
violate the degree property, with the lowest such node at the top of the stack.
This ensures that the above algorithm takes O(1) worst case time.

Lemma 4 Once the parent of node N in the above algorithm becomes the root,
it takes only h operations for NL and NR to become leaves while it takes O(2h)
operations for the root to be disturbed again, where h is the height of the tree.
This ensures that at any time there are at most two internal nodes (namely NL

and NR) that violate the content property, and hence, find minimum can still
be implemented in O(1) worst case time.

Lemma 5 Concatenate operation can still be implemented in O(1) amortized
time with the following algorithm.

Algorithm 6 : Concatenate two deques T1 and T2

1. Structurally adjust both the trees so that all the internal nodes satisfy the degree
property. Also, update the exterior nodes in both the trees, starting from NR

or NL to right-most or left-most exterior nodes.

2. Execute the algorithm discussed in Section 2.8.

Since total work done in m operations by the algorithms for the improved
data structure is no more than the total work done by the algorithms for the
amortized data structure, the same amortized O(1) bound holds here also.

9



Theorem 2 Deques with heap order can be implemented to support each of the
operations push, pop, inject, eject and find minimum in O(1) worst case time
and the operation concatenate two deques in O(1) amortized time, even when
the number of deques is arbitrarily large. Moreover the operations like given
the actual position of a key, insert a key next to it, or delete it, or change its
value can also be implemented in O(log n) worst case time with the same data
structure.

References

[1] Adam L. Buchsbaum, Rajamani Sundar and Robert E.Tarjan. “Data structural
bootstrapping, linear path compression and concatenable heap ordered double ended
queues”. Proc. 33rd Ann. Symp. on Foundations of Computer Science, 40-49
(1992)

[2] G. Diehr and B. Faaland, “Optimal pagination of B-trees with variable length
items”. Comm. ACM 27, 241-247 (1984)

[3] Hanai Gajeuska and Robert E. Tarjan. “Deque with heap order”. IPL 22, 197-200
(1986)

[4] R. Cole and A. Siegel, “River routing every which way, but loose”. Proc. 25th
Ann. IEEE Symp. on Foundations of Computer Science, 65-73 (1984)

[5] S. R. Kosaraju, “Real-time simulation of concatenatable double-ended queues by
double-ended queues. Proc. 11th Ann. ACM Symp. on Theory of Computing,
346-351 (1979)

10


