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Abstract

An efficient amortized data structure is one that ensures that the average time per
operation spent on processing any sequence of operations is small. Amortized data
structures typically have very non-uniform response times, i.e., individual operations
can be occasionally and unpredictably slow, although the average time over a se-
quence is kept small by completing most of the other operations quickly. This makes
amortized data structures unsuitable in many important contexts, such as real time
systems, parallel programs, persistent data structures and interactive software. On
the other hand, an efficient worst case data structure guarantees that every operation
will be performed quickly.

The construction of worst case efficient data structures from amortized ones is
a fundamental problem which is also of pragmatic interest. In this report, we have
studied two different problems in data structures, namely, the implementation of
priority queues and concatenable double ended queues with heap order. We have
eliminated amortization from the existing data structures and have proposed new
worst case efficient data structures for these problems.
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Chapter 1

Introduction

1.1 Amortization: What, Why and Why Not?

In an amortized analysis, the time required to perform a sequence of data structure
operations is averaged over all the operations performed. Amortized analysis can be
used to show that the average cost of an operation is small, if one averages over a
sequence of operations, even though a single operation might be expensive [19] [3].

1.1.1 An Example of Amortized Analysis

Consider the data type counter. A counter takes non-negative integer values. The
two operations are set to zero and increment.

We realize counters as a sequence of binary digits. Then set to zero returns a
string of zeros and increment has to add 1 to a number in binary representation. We
implement increment by first incrementing the least significant digit by 1 and then
calling a procedure propagate carry if the increased digit is 2. This procedure changes
the digit 2 into 0, increases the digit to the left by 1, and calls itself recursively, if
necessary.

Suppose we perform a sequence of one set to zero operation followed by n incre-
ment operations. The worst case cost of an increment operation is, of course, log n.
Hence, a naive analysis might lead to the conclusion that the total cost of the sequence
of operations is n×O(log n) = O(n log n).

However, it turns out that the above is a very weak upper bound on the total cost.
It can be easily shown that the total cost is bounded by 1 + 2n. Thus,the average
cost per operation is O(1).

1
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1.1.2 Applications Where Amortization is Inappropriate

Amortized efficiency is a weaker requirement for an algorithm to satisfy than worst
case efficiency. Not surprisingly, there are problems whose amortized complexity is
less than their worst case counterparts. However, in order for an algorithm to make
full use of the leeway offered to it by the weaker constraint of amortized efficiency,
it must exhibit large variations in response time, i.e., occasionally, there must be
some very expensive operations which are “paid for” by performing other operations
quickly. Unfortunately, it is difficult to control when the expensive operations occur;
they may choose to happen at extremely inconvenient moments. Therefore, there are
many situations where amortized algorithms are inappropriate. We discuss a few of
them below.

Real time systems In real time systems, the most valuable properties a system
component can have are predictability and speed. Amortized algorithms are not
predictable, unless we assume that every operation takes as long as any other op-
eration in the sequence and allocate time accordingly. This can be an extremely
wasteful assumption since there is normally a wide difference between the single
operation and average complexity of an amortized data structure. For example, in
the traditional mode of garbage collection in LISP, processing is temporarily halted
in order to garbage collect. Since this is an infrequent operation, the cost of garbage
collection is small if amortized over the operations performed since the last time the
garbage collection routines were invoked. However, the occasional suspensions of
processing could prove disastrous if employed in systems that need to react in real
time. Wadler [7] gives us the compelling example of a tennis playing robot halting
in mid-swing in order to garbage collect. Furthermore, it is clearly inefficient to
assume that garbage will be collected after every operation.

Parallel programs Amortization also interacts poorly with parallelization. If sev-
eral processors require shared access to an amortized data structure to perform
a task, then it is possible that all the operations of one processor are performed
slowly, causing this processor to finish well after others. Alternatively, if processors
are performing operations in lock-step and need to synchronize frequently, they may
have large amounts of idle time if some one processor executes operations that are
occasionally and unpredictably expensive. For example, Fredman and Tarjan [11]
invented an efficient amortized data structure called Fibonacci heaps and showed
how it could be used to speed up Dijkstra’s shortest path algorithm in the sequen-
tial setting. Driscoll et al. [10] observed that attempts to use Fibonacci heaps to
get a similar improvement in efficiency for a parallel setting failed because of these
reasons. Motivated by this, they developed the relaxed heaps.

Persistent data structures Worst case algorithms are also useful in making data
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structure persistent [5] [4]. Persistent data structures support queries and updates
on their older versions, in a “branching” model of time. Amortized data structures
perform poorly when made persistent, as an expensive operation can be repeatedly
requested.

Interactive software For algorithms that are to be used in interactive situations,
the occasional stoppage or slowdown is undesirable from the user’s point of view.
Modern interactive LISP systems use on-the-fly incremental garbage collection (which
is the worst case algorithm from our viewpoint) rather than the simpler traditional
method (an amortized algorithm) [7] [6]. In some cases such slow downs are com-
pletely unacceptable. For example, in flight simulators, it is vital that the view
changes smoothly in response to the pilot’s movements.

1.2 Eliminating Amortization: Worst Case Effi-

cient Data Structures

In worst case analysis, one derives worst case time bounds for each single operation.

While the notion of amortization is a natural and reasonable measure of efficiency
in some settings, it proves inadequate in others. Apart from these considerations, the
question of where amortization can be eliminated without a significant degradation in
efficiency is interesting in its own right, and indeed this problem has been extensively
studied in the context of language recognition by automata of various kinds, though
the literature is much less extensive in the areas of data structures and algorithms.

1.3 Overview of the Report

We have studied two different problems in data structures. We have eliminated
amortization from the existing data structures and proposed new worst case efficient
data structures for these problems.

In Chapter 2, we have proposed a new data structure called relaxed Fibonacci
heaps for implementing priority queues with worst case performance bounds. The
new data structure has primarily been designed by relaxing some of the constraints
in Fibonacci heaps, hence the name relaxed Fibonacci heaps.

In Chapter 3, we first proposed a new amortized data structure for implementing
concatenable deques with heap order. We then modified it to eliminate amortization
from all the operations except the meld operation.



Chapter 2

Priority Queues

2.1 Introduction

The implementation of priority queues is a classical problem in data structures. Prior-
ity queues find applications in a variety of network problems like single source shortest
paths, all pairs shortest paths, minimum spanning tree, weighted bipartite matching
etc. [8] [10] [11] [12] [19]

In the amortized sense, the best performance is achieved by the well known Fi-
bonacci heaps. They support delete and delete min in amortized O(log n) time
and find min, insert, decrease key and meld in amortized constant time.

Fast meldable priority queues described in [8] achieve all the above time bounds
in worst case rather than amortized time, except for the decrease key operation
which takes O(log n) worst case time. On the other hand, relaxed heaps described
in [10] achieve in the worst case all the time bounds of the Fibonacci heaps except
for the meld operation, which takes O(log n) worst case time. The problem that was
posed in [8] was to consider if it is possible to support both decrease key and meld
simultaneously in constant worst case time.

In this chapter, we solve this open problem by presenting relaxed Fibonacci heaps
as a new priority queue data structure for a Random Access Machine (RAM). (The
new data structure is primarily designed by relaxing some of the constraints in Fi-
bonacci heaps, hence the name relaxed Fibonacci heaps.) Our data structure supports
the operations find minimum, insert, decrease key and meld, each in O(1) worst
case time and delete and delete min in O(log n) worst case time. The following
table summarizes the discussion so far.

Please see Errata at the end of the thesis.
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delete delete find insert decrease meld
min min key

Fibonacci
heaps O(log n) O(log n) O(1) O(1) O(1) O(1)
(amortized)
Fast
meldable O(log n) O(log n) O(1) O(1) O(log n) O(1)
heaps
Relaxed O(log n) O(log n) O(1) O(1) O(1) O(log n)
heaps
Relaxed
Fibonacci O(log n) O(log n) O(1) O(1) O(1) O(1)
heaps

For simplicity we assume that all priority queues have at least three elements. We
use the symbol Q to denote a relaxed Fibonacci heap and n to denote the size of
a priority queue it represents. Unless otherwise mentioned, all the time bounds we
state are for the worst case.

In Section 2.3, we prove some results regarding binomial trees which will be central
to establishing the O(log n) time bound for the delete min operation. In Section
2.4.1, we describe the relaxed Fibonacci heaps. In Section 2.5, we describe the various
operations on relaxed Fibonacci heaps.

2.2 Preliminaries: Operations Supported

The operations that should be supported by priority queues are as follows:

MakeQueue Creates an empty priority queue.

FindMin(Q) Returns the minimum element contained in Q.

Insert(Q,e) Inserts element e into priority queue Q.

Meld(Q1, Q2) Melds the priority queues Q1 and Q2 to form one priority queue and
returns the new priority queue.

DeleteMin(Q) Deletes the minimum element of Q and returns the minimum ele-
ment.

Delete(Q, e) Deletes element e from Q provided that it is known where e is stored
in Q (priority queues do not support the searching for an element).

DecreaseKey(Q, e, v) Decrease the value of element e in Q to v provided that it
is known where e is stored in Q.
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2.3 Some Results Regarding Binomial Trees

Consider the following problem. We are given a binomial tree B whose root has
degree d. The children of any node N in B are arranged in the increasing order of
their degrees. That is, if the children of N are N0, N1, ... Nd−1, then Ni.degree = i.

We are to remove some nodes from this tree. Every time a node gets removed,
the entire subtree rooted at that node also gets removed. Suppose the resulting tree
is B′, which is not necessarily a binomial tree. For any node N ∈ B′, N.lost denotes
the number of children lost by N . For any node N ∈ B′, define WN as the weight
of node N as follows: WN = 0, if N.lost = 0. Else, WN = 2N.lost−1. Define weight
W =

∑
WN for all nodes N ∈ B′.

Given an upper bound on weight W that B can lose, let B′ be the tree obtained
by removing as many nodes from B as possible.

Lemma 2.1 B′ defined above has the following properties:

1. Let N be any node in B′. If N.lost = 0 and if N ′ is a descendant of N then
N ′.lost = 0.

2. Let N be any node in B′ such that N.lost = l. Then the children lost by N are its
last l children (which had the highest degrees in B).

3. Let Ni and Nj be two nodes that have the same parent such that Ni.degree >
Nj.degree, in B. Then, in B′, Ni.lost ≥ Nj.lost.

4. Let a node N have four consecutive children Ni, Ni+1, Ni+2 and Ni+3 belonging to
B′. Then it cannot be true that Ni.lost = Ni+1.lost = Ni+2.lost = Ni+3.lost > 0.

Proof: If any of the 4 statements above are violated, then we can easily show that
by reorganizing the removal of nodes from B, we can increase the number of nodes
removed from B without increasing the weight W removed. In particular, if statement
4 is violated, then we can reorganize the removal of nodes by increasing Ni+3.lost by
one and decreasing Ni.lost and Ni+1.lost by one each.

Lemma 2.2 Let B be a binomial tree whose root has degree d. Let d > 4d0+3, where
d0 = dlog n0e, for some n0. Let the upper bound on the weight that B can loose be
2n0. Then, B′ will have more than n0 nodes in it.

Proof: Let the children of the root of B be B0, B1, ..., Bd−1. We first claim that
Bd0 .lost = 0. Or else, it follows trivially from the previous lemma that B4d0+3.lost ≥
d0 +2, because statement 4 implies that there can be at most three consecutive nodes
which have lost the same number of children. This in turn implies that the weight
lost by B is greater than 2d0+1 ≥ 2n0, which is not possible. Thus our claim holds.
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Since Bd0 .lost = 0, no nodes are deleted from the subtree rooted at Bd0 , according
to statement 1 of the previous lemma. Thus the number of nodes in B′ is greater
than 2d0 ≥ n0.

2.4 The Relaxed Fibonacci Heaps

Our basic representation of a priority queue is a heap ordered tree where each
node contains one element. This is slightly different from binomial heaps [12] and
Fibonacci heaps [11] where the representation is a forest of heap ordered trees.

2.4.1 Properties of the Relaxed Fibonacci Heaps

We partition the children of a node into two types, type I and type II. A relaxed
Fibonacci heap Q must satisfy the following constraints.

1. A node of type I has at most one child of type II. A node of type II cannot have
any children of type II.

2. With each node N we associate a field degree which denotes the number of children
of type I that N has. (Thus the number of children of any node N is either degree+1
or degree depending on whether N has a child of type II or not.)

(a) The root R is of type I and has degree zero. R has a child R′ of type II.

(b) Let R′.degree = k. Let the children of R′ be R0, R1, ..., Rk−1 and let
R0.degree ≤ R1.degree ≤ ... ≤ Rk−1.degree. Then, R′.degree ≤ Rk−1.degree+
1.

3. With each node N of type I we associate a field lost which denotes the number of
children of type I lost by N since its lost field was last reset to zero.

For any node N of type I in Q, define WN as the weight of node N as follows:
WN = 0, if N.lost = 0. Else, WN = 2N.lost−1.

Also for any node N of type I, define wN as the increase in WN due to N losing
its last child. That is, wN = 0 or 1 or 2N.lost−2 respectively depending on whether
N.lost = 0 or 1 or greater than one.

Define weight W =
∑

WN for all N of type I in Q.

Every relaxed Fibonacci heap has a special variable P , which is equal to one of the
nodes of the tree. Initially, P = R.

(a) R.lost = R0.lost = R1.lost = ... = Rk−1.lost = 0.
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Figure 2.1: A relaxed Fibonacci heap

(b) Let N be any node of type I. Let N.degree = d and let the children of N of
type I be N0, N1, ..., Nd−1. Then, for any Ni, Ni.degree + Ni.lost ≥ i.

(c) W ≤ n + wP .

4. Associated with Q we have a list LM = (M1,M2, ..., Mm) of all nodes of type II in
Q other than R′. Each node Mi was originally the R′ of some relaxed Fibonacci
heap Qi till some meld operation. Let ni denote the number of nodes in Qi just
before that meld operation.

(a) Mi.degree ≤ 4dlog nie+ 4

(b) ni + i ≤ n

Example: A Relaxed Fibonacci Heap

Figure 2.1 shows a relaxed Fibonacci heap. The nodes of type I are represented by
circles and the nodes of type II are represented by squares. Each node N contains
either N.element, N.lost or just N.element if N.lost = 0. The node P and the list
LM are also shown.

Lemma 2.3 The heap order implies that the minimum element is at the root.
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Lemma 2.4 For any node N of type I, N.degree ≤ 4d0 + 3, where d0 = dlog ne.

Proof: On the contrary, say N.degree = d > 4d0 + 3. If P.lost > 1, then W ,
when expanded, will contain the term WP = 2P.lost−1. Thus according to property
3c, 2P.lost−1 ≤ W ≤ n + wP = n + 2P.lost−2. That is, 2P.lost−2 ≤ n. Hence, W ≤ 2n.
This inequality obviously holds true even if P.lost ≤ 1. Thus the weight lost by the
subtree rooted at N , say TN , is not more than 2n.

Let us now try to estimate the minimum number of nodes present in TN . Let us
first remove all the children of type II in TN and their descendants. In the process,
we might be decreasing the number of nodes in the tree but we will not be increasing
N.degree.

In the resulting TN , we know from property 3b that for any (i + 1)th child of any
node N ′, N ′

i .degree + N ′
i .lost ≥ i. But for the binomial tree problem described in

Section 2.3, N ′
i .degree + N ′

i .lost = i. Thus the minimum number of nodes present
in TN is at least equal to the minimum number of nodes present in a binomial tree
of degree d after it loses a weight less than or equal to 2n. But according to Lemma
2.2, this is more than n. Thus, TN has more than n nodes, which is obviously not
possible.

Lemma 2.5 For any node N in Q, the number of children of N ≤ 4d0 + 4, where
d0 = dlog ne.

Proof: If N is a node of type I, the number of children of N ≤ N.degree+1 ≤ 4d0+4,
according to the previous lemma.

From property 2b, R′.degree = k ≤ Rk−1.degree + 1 ≤ 4d0 + 4, according to the
previous lemma, since Rk−1 is of type I. Thus, number of children of R′ = R′.degree ≤
4d0 + 4.

If N is any node of type II other than R′, N is equal to some Mi in LM , according
to property 4. According to property 4a, Mi.degree ≤ 4dlog nie + 4. But according
to property 4b, ni < n. Thus the number of children of N = Mi.degree ≤ 4d0 + 4.

Remarks

The restrictions imposed by property 3c are much weaker than those in fast meldable
queues [8] or in relaxed heaps [10]. But according to the above lemma, the number
of children of any node is still O(log n). We believe that the introduction of property
3c is the most important contribution of this chapter.
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2.4.2 Representation

The representation is similar to that of Fibonacci heaps as described in [19]. The
children of type I of every node are stored in a doubly linked list, sorted according to
their degrees. Besides, each node of type I has an additional child pointer which can
point to a child of type II.

To preserve the sorted order, every node that is inserted as a child of R′ must be
inserted at the appropriate place. To achieve this in constant time, we maintain an
auxiliary array A such that A[i] points to the first child of R′ of degree i.

We will also need to identify two children of R′ of same degree, if they exist. To
achieve this in constant time, we maintain a linked list LP of pairs of nodes that are
children of R′ and have same degree and a boolean array B such that B[i] is true if
and only if the number of children of R′ of degree i is even.

Besides, we will also require to identify some node N in Q such that N.lost > 1,
if such a node exists. To implement this in constant time, we maintain a list LL of
all nodes N in Q such that N.lost > 1.

2.5 Operations on Relaxed Fibonacci Heaps

In this section, we will describe how to implement the various operations on relaxed
Fibonacci heaps. But before we do that, we will describe a few basic operations
namely, link, add, reinsert and adjust.

Though we will not be mentioning it explicitly every time, we will assume that
whenever a node of type I loses a child, its lost field is automatically incremented by
one unless the node is R or a child of R′. Similarly, whenever a node is inserted a
child of R′, its lost field is automatically reset to zero. We also assume that if node
P gets deleted from the tree after a delete min operation, then P is reset to R to
ensure that node P still belongs to Q.

2.5.1 Some Basic Operations

The link operation is similar to the linking of trees in binomial heaps and Fibonacci
heaps.

Algorithm 2.1 : Link(Q, Ri, Rj)
/* Link the two trees rooted at Ri and Rj into one tree */
/* Ri and Rj are children of R′ and have equal degrees, say d */

1. Delete the subtrees rooted at Ri and Rj from Q
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2. If Ri.element > Rj.element then Swap(Ri, Rj)
3. Make Rj the last child of Ri

4. Make Ri (whose degree now = d + 1) a child of R′ of Q

Algorithm 2.2 : Add(Q, N)
/* Add the tree rooted at N to the relaxed Fibonacci heap Q */

1. Make N a child of R′ of Q
2. If N.element < R′.element then Swap(N.element, R′.element)
3. If R′.element < R.element then Swap(R′.element,R.element)
4. If among the children of R′ there exist any two different nodes Ri and Rj

such that Ri.degree = Rj.degree then Link(Q,Ri, Rj)

Algorithm 2.3 : ReInsert(Q, N)
/* Remove N from Q and insert it as a child of R′ */
/* N is of type I and N 6= R */
/* Return the original parent of N */

1. Parent ← N.parent
2. Delete the subtree rooted at N from Q
3. Add(Q,N)
4. Return Parent

The algorithm adjust is called by decrease key, meld and delete min operations.
Adjust restores property 3c provided some preconditions are satisfied, which will be
explained shortly.

Algorithm 2.4 : Adjust(Q, P1, P2)

1. If M.lost ≤ 1 for all nodes M in Q then return
2. If P1.lost > P2.lost then M ← P1 else M ← P2

3. If M.lost ≤ 1 then M ← M ′ for some node M ′ in Q such that M ′.lost > 1
4. P ← ReInsert(Q, M)

Lemma 2.6 All the operations described above take constant time in the representa-
tion described in Section 2.4.2.

Proof: The add operation needs to identify two children of R′ of same degree, if they
exist. This can be done using the list LP and the array B in constant time. After
removing those children and linking them into one tree, we can use the array A to
insert it at the appropriate place in the child list of R′. LP , B and A can obviously
be maintained in constant time.
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The adjust operation needs to identify some node N in Q such that N.lost > 1,
if such a node exists. This can be done in constant time using the list LL.

The rest of the operations trivially take constant time.

Lemma 2.7 Property 2b described in Section 2.4.1 is preserved under the add oper-
ation.

Proof: After every add operation in which Step 4 executed, the number of children of
R′ does not change. Also, after every add operation in which Step 4 is not executed,
there is at most one child of R′ of each degree. Thus property 2b is preserved under
the add operation.

Lemma 2.8 Property 3b is preserved under the reinsert operation.

Proof: Let the children of a node N be N0, N1, ..., Nd−1. Whenever N loses its
(i + 1)th child Ni, then for all j > i, Nj now becomes Nj−1, even though its degree
and lost fields are not changed. Thus, property 3b is never violated.

For any variable V , let V − denote the value of the variable before an operation and
let V + denote the value of the variable after the operation.

Lemma 2.9 In operation adjust, if P1 6= P2 and if W− ≤ n + wP1 + wP2, then
W+ ≤ n + wP+.

Proof: If the condition in Step 1 of adjust holds, then W+ = number of nodes N in
Q such that N.lost = 1. Thus W+ ≤ n.

Else, Steps 2 and 3 ensure that WM = max(WP1 ,WP2 , 2). Now, if P1.lost ≤ 1
then wP1 ≤ 1. Thus WM ≥ 2wP1 . Otherwise P1.lost > 1. Then WM ≥ WP1 =
2P1.lost−1 = 2× 2P1.lost−2 = 2wP1 . Similarly, WM ≥ 2wP2 . Thus, WM ≥ wP1 + wP2 .

Thus we have, W+ = W− − WM + wP+ ≤ (n + wP1 + wP2) − WM + wP+ =
n + wP+ − (WM − wP1 − wP2) ≤ n + wP+

Lemma 2.10 In operation adjust, if P1 = P2 = P− and if W− ≤ (n + 1) + wP−,
then W+ ≤ n + wP+.

Proof: As before, if the condition in Step 1 holds, then W+ = number of nodes N
in Q such that N.lost = 1. Thus W+ ≤ n.

Else, if P−.lost ≤ 1 then wP− ≤ 1. Thus WM ≥ 2 > wP− . Otherwise, P−.lost >
1. Then, WM = W−

P = 2P−.lost−1 = 2× 2P−.lost−2 = 2wP− . Thus, WM > wP− , which
implies that, WM ≥ wP− + 1

Thus we have, W+ = W− − WM + wP+ ≤ (n + 1 + wP−) − WM + wP+ =
n + wP+ − (WM − wP− − 1) ≤ n + wP+ .
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2.5.2 The Find Min Operation

Algorithm 2.5 : FindMin(Q)
/* Return the minimum element in the relaxed Fibonacci heap Q */

1. Return R.element

Lemma 2.11 The find min operation described above returns the minimum element
in Q in constant time.

2.5.3 The Insert Operation

Binomial heaps have a very restrictive property that there will be at most one node
of each degree in the root list. Hence an insert operation can degenerate to take
O(log n) time. On the other hand, the insert operation in the Fibonacci heaps just
puts the node in the root list and leaves all the work to delete min, which can take
O(n) worst case time as a result.

Instead, we have introduced property 2b so that the insert operation can be
performed in O(1) time and the number of children of R′ still remains O(log n).

Algorithm 2.6 : Insert(Q, e)
/* Insert the element e into the relaxed Fibonacci heap Q */

1. Form a tree with a single node N of type I consisting of element e
2. Add(Q, N)

Lemma 2.12 All the properties described in Section 2.4.1 are maintained under the
insert operation.

Proof: Since insert works by calling add, property 2b is preserved under the insert
operation, according to Lemma 2.7. The rest of the properties are trivially preserved
under insert.

Lemma 2.13 The insert operation takes constant time in the representation de-
scribed in Section 2.4.2.

Proof: Follows from Lemma 2.6.

2.5.4 The Decrease Key Operation

Our implementation of the decrease key operation is somewhat similar to that of
the Fibonacci heaps. With every decrease key operation in the Fibonacci heaps,



14

the corresponding node is deleted and is put in the root list. Similarly, we also delete
the corresponding node and insert it as a child of R′. However, care is to be taken to
see to it that too many children are not deleted, otherwise the delete min operation
might degenerate to take O(n) time in the worst case. Fibonacci heaps handle this
by marking a node whenever it loses its first child and deleting the node itself (and
putting it in the root list) whenever it loses a second child. However, in a particular
decrease key operation, this effect might cascade up due to which the operation
might take O(h) time in the worst case, where h is the height of the tree.

Instead of imposing a local restriction as in the Fibonacci heaps (that a node can
lose at most one child), we have relaxed this into a global restriction on the number
of children deleted by introducing property 3c instead.

Algorithm 2.7 : DecreaseKey(Q, N , e)
/* Decrease the value of the element in node N of Q by e(> 0) */

1. N.element ← N.element− e
2. If (N = R or R′) and (R′.element < R.element) then

Swap(R′.element,R.element); return
3. If (N is of type II) and (N.element < N.parent.element) then

Swap(N.element,N.parent.element); N ← N.parent
4. If N.element ≥ N.parent.element then return
5. P ′ ← ReInsert(Q,N)
6. Adjust(Q,P, P ′)

Example: Decreasing the Value of the Element 24 to 19 in the
Tree in Figure 2.1

This is shown in figures 2.2 and 2.3.

Lemma 2.14 All the properties described in Section 2.4.1 are maintained under the
decrease key operation.

Proof: Since any node is finally inserted as a child of R′ only through the add
operation, property 2b is preserved, according to Lemma 2.7. Also, since decrease
key works by calling reinsert, property 3b is preserved according to Lemma 2.8.

Just before Step 5, the weight W ≤ n+wP , according to property 3c. Hence, just
after Step 5, weight W ≤ n + wP −WN + wP ′ ≤ n + wP + wP ′ . Therefore according
to Lemma 2.9, just after Step 6, weight W ≤ n + wP . Thus property 3c is preserved
under the decrease key operation.

The rest of the properties are trivially preserved under the decrease key opera-
tion.
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Lemma 2.15 The decrease key operation takes constant time in the representation
described in Section 2.4.2.

Proof: Follows from Lemma 2.6.

2.5.5 The Meld Operation

The meld operation essentially adds the root R of one relaxed Fibonacci heap, say
Q2, as a child of R′ of the other relaxed Fibonacci heap Q1. Whenever a variable
name might cause confusion as to whether the variable belongs to Q1 or Q2 or Q, we
will prefix it appropriately.

Algorithm 2.8 : Meld(Q1, Q2)
/* Meld the two relaxed Fibonacci heaps Q1 and Q2 into Q */
/* Return Q */

1a. If Q1.R
′.element > Q2.R

′.element then Swap(Q1, Q2)
1b. Add(Q1, Q2.R)
1c. If Q2.R.element < Q1.R

′.element then Swap(Q2.R.element, Q1.R
′.element)

1d. If Q1.R
′.element < Q1.R.element then Swap(Q1.R

′.element, Q1.R.element)

2a. Add the node Q2.R
′ to the tail of Q1.LM

2b. Concatenate Q2.LM with Q1.LM by adding the head of Q2.LM after the tail of Q1.LM

3. Adjust(Q1, Q1.P, Q2.P )
4. Return Q1

Example: After Melding with a Priority Queue containing
only 1, 7 and 10

This is shown in figure 2.4.

Lemma 2.16 Property 4b is preserved under the meld operation.

Proof: Let Q1.LM = (M1
1 ,M1

2 , ..., M1
m1

). Since each Mi and its parent form unique
nodes in Q, there are at least two unique nodes in Q per Mi. Thus, Q1.n > 2m1 ≥ m1.
Or, Q1.n ≥ m1 + 1.

Also, let Q2.LM = (M2
1 ,M2

2 , ..., M2
m2

). Then, Q.LM = (M1
1 , ...,M1

m1
, Q2.R

′,
M2

1 , ..., M2
m2

) = (M1, ..., Mm1+m2+1).

We will prove the lemma by considering the three separate cases namely 1 ≤ i ≤
m1, i = m1 + 1 and m1 + 2 ≤ i ≤ m1 + m2 + 1.
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If 1 ≤ i ≤ m1 then Q.ni + i ≤ Q1.n < Q.n, since these elements originally
belonged to Q1 and they still remain in the same position in LM .

If i = m1 + 1 then Q.nm1+1 + (m1 + 1) = Q2.n + (m1 + 1) ≤ Q2.n + Q1.n = Q.n.

If m1 + 2 ≤ i ≤ m1 + m2 + 1 then let j = i − (m1 + 1). Then Q.ni + i =
Q2.nj. + j + (m1 + 1) ≤ Q2.n + (m1 + 1) ≤ Q2.n + Q1.n = Qn.

Lemma 2.17 All the properties described in Section 2.4.1 are maintained under the
meld operation.

Proof: Since Q2.R is inserted as a child of Q1.R
′ through the add operation, property

2b is preserved, according to Lemma 2.7.

According to property3c, just before Step 3, the weight W = Q1.W + Q2.W ≤
Q1.n + wQ1.P + Q2.n + wQ2.P ≤ n + wQ1.P + wQ2.P . Therefore according to Lemma
2.9, just after Step 3, weight W ≤ n + wP . Thus property 3c is preserved under the
meld operation.

According to the previous lemma, property 4b is preserved under the meld op-
eration.The rest of the properties are trivially preserved under the meld operation.

Lemma 2.18 The meld operation takes constant time in the representation described
in Section 2.4.2.
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Proof: Follows from Lemma 2.6.

2.5.6 The Delete Min Operation

Algorithm 2.9 : DeleteMin(Q)
/* Delete and return the minimum element in the relaxed Fibonacci heap Q */

1a. MinElement ← R.element
1b. R.element ← R′.element
1c. R

′′ ← The child of R′ containing the minimum element among the children of R′

1d. R′.element ← R
′′
.element

2a. Delete the subtree rooted at R
′′

from Q
2b. For all children N of type I of R

′′
do make N a child of R′ of Q

3a. If R
′′

has no child of type II then goto Step 4.
3b. Let M ′ be the child of type II of R

′′
. Insert(Q,M ′.element)

3c. For all children N of M do make N a child of R′ of Q

4. Adjust(Q,P, P )

5a. If LM is empty then goto Step 6
5b. M ← Head(LM); LM ← Tail(LM)
5c. Delete M from Q
5d. Insert(Q, M.element)
5e. For all children N of M do make M a child of R′ of Q

6. While among the children of R′ there exist any two different nodes Ri and Rj

such that Ri.degree = Rj.degree do Link(Q,Ri, Rj)

7. Return MinElement

Example: Doing a Delete Min

This is shown in figures 2.5, 2.6 and 2.7.

Lemma 2.19 Property 4b is preserved under the delete min operation.

Proof: Property 4b requires that ni + i ≤ n. After each decrease key operation,
the value of n decreases by one. But each Mi also at least becomes Mi−1. Thus, the
property is preserved under the delete min operation.
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Lemma 2.20 All the properties described in Section 2.4.1 are maintained under the
delete min operation.

Proof: Since after any delete min operation R′ has at most one child of each degree,
property 2b holds after a delete min operation.

In a delete min operation, the number of nodes n decreases by one. Thus just
before Step 4, W ≤ (n + 1) + wP , according to property 3c. Therefore according to
Lemma 2.9, just after Step 3, weight W ≤ n + wP . Thus property 3c is preserved
under the delete min operation.

According to the previous lemma, property 4b is preserved under the delete min
operation. The rest of the properties are trivially preserved under the delete min
operation.

Lemma 2.21 It is easy to see that in the representation described in Section 2.4.2,
the delete min operation takes O(R′.degree + R′′.degree + M ′.degree + M.degree) =
O(log n) time, according to lemma 2.5.
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2.5.7 The Delete Operation

Algorithm 2.10 : Delete(Q, N)
/* Delete the node N from the priority queue Q and return N.element */

1. Element ← N.element
2. DecreaseKey(Q, N,∞)
3. DeleteMin(Q)
4. Return Element

Lemma 2.22 It follows from the proofs of correctness and complexity of the decrease
key and delete min operations that the delete operation described above deletes the
node N from Q in O(log n) time.

2.6 Conclusion

We can summarize the discussion in this chapter by the following theorem.

Theorem 2.1 An implementation of priority queues on a RAM exists that supports
the operations find minimum, insert, decrease key and meld, each in O(1) worst case
time and delete and delete min in O(log n) worst case time.

The central idea in designing this data structure has been the identification of the
weak global constraint on the number of children lost(property 3c). The classification
of the nodes into type I and type II has been done to facilitate the meld operation.

It is easy to see that these time bounds are optimal for any comparison based
algorithm that performs the meld operation in sub-linear time.



Chapter 3

Deques with Heap Order

3.1 Introduction

A deque with heap order is a deque (double-ended queue) such that each item has
a real-valued key and the operation of finding an item of minimum key is allowed
as well as the usual deque operations. Queues with heap order have applications in
paging and river routing [15] [17] [16].

Gajeuska and Tarjan [15] have described a data structure that supports in O(1)
worst case time the usual deque operations push, pop, inject, eject and the find mini-
mum operation. They also mentioned that Kosaraju’s methods [18] extend to support
O(1) time concatenation of deques when the number of deques is fixed. How-
ever, for the case of a variable number of deques, they left the same as an open
problem. In [14], Buchsbaum, Rajamani and Tarjan partially answered this question
by describing a data structure that supports all the operations mentioned above in
O(1) amortized time using the technique of bootstrapping and path compression.

In this chapter we first present a simple data structure that also supports all the
above mentioned operations in O(1) amortized time even when the number of deques
is arbitrarily large, without using the technique of bootstrapping or path compression.
Also, this data structure is flexible enough to support operations like given the actual
position of a key, insert a key next to it, or delete it, or change its value in O(log n)
worst case time, while the data structure in [15] or [14] takes O(n) worst case time
for each of these operations. Finally, we present an improved version of our data
structure that supports push, pop, inject and eject in O(1) worst case time without
changing the complexity of the other operations.

22
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3.2 The Amortized O(1) Time Data Structure

3.2.1 Structural Properties

Our data structure shares the following structural properties of 2-4 trees:

1. Every internal node has 2 or 3 or 4 sons. We will say that a node satisfies the degree
property if it satisfies this condition.

2. All the leaves are at the same level.

3.2.2 Organization of the Leaves

Every data item is present in some leaf and every leaf contains one data item. The
tree is so arranged that if we go through all the leaves of the tree from left to right,
we get the order in which the data items are present in the deque, with the item
in the left-most leaf corresponding to the head of the sequence and the item in the
right-most leaf corresponding to the tail.

3.2.3 Organization of the Internal Nodes

3.2.3.1 Classification of the Internal Nodes

For convenience of discussion, we will first classify the internal nodes of our tree into
three categories:

1. The root. (R in figure 3.1)

2. The exterior nodes, which are the internal nodes in the right-most and left-most
paths other than the root. (N1, N6, N7 and N9 in figure 3.1)

3. The interior nodes, which are the rest of the internal nodes. (N2, N3, N4, N5 and
N8 in figure 3.1)

3.2.3.2 Graphical Representation

Consider the graph representation of this tree. We will define a direction1 for every
edge of this graph. We will say that a node M points to a node N if there is a directed
edge from M to N . We define that —

1These directions are just for our conceptual understanding and have nothing to do with the way
the nodes are hooked up in the tree.
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1. Every leaf points to its parent.

2. Every interior node points to its parent.

3. The root points to its left-most and right-most sons, if they are not leaves.

4. Every exterior node, except the left-most one and the right-most one, points to its
exterior son.

For example, these directions are explicitly shown in figure 3.1. The graph thus
defined above is obviously a directed acyclic graph.

3.2.3.3 Contents of the Internal Nodes

For an internal node N , let SN be the set of nodes that point to N . In every internal
node N of the tree, we will store (a pointer to) an item as follows:

item(N) = min {item(M) M ∈ SN}, if SN is not empty,

= infinity, if SN is empty.

Observe that SN can be empty only when N is the root and has only two exterior
sons. We will say that an internal node satisfies the content property if it satisfies the
above equation.

3.2.4 External Access

Our tree itself is accessible from outside via three pointers, one for the root, and one
each for the left-most and right-most exterior nodes.
For example, the tree in figure 3.1 is accessed through pointers to N1, N6 and R.

3.3 The Algorithms and their Analysis

We shall present algorithms for the non-degenerate cases only, that is, when the tree
has more then three internal nodes. The degenerate cases can be handled individually,
since the number of such cases is finite.
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3.3.1 The Potential Function

Corresponding to each configuration of our data structure, we define a potential2 Φ
as follows:

Φ = Θ(# nodes with 2 sons + 2×# nodes with 4 sons)

+ Θ(height of the tree)

The amortized cost of an operation is defined as the sum of its actual cost and the
increase in potential of the data structure due to the operation.
Since the potential is initially zero and is always positive, the total amortized cost
after n operations is an upper bound on the total actual cost.

3.3.2 Find Minimum

Since the only nodes in the graph with out-degree zero are the left-most and the right-
most exterior nodes, at least one of them has to contain the minimum item. Hence,
it takes at most one comparison to find the minimum. Thus the time complexity of
this operation is O(1), in the worst case.

3.3.3 Push, Pop, Inject, Eject

From the left-right symmetry in the properties of our tree, we know that both push
and inject are identical operations, and so are pop and eject. Hence, we will discuss
the operations of insertion and deletion from the right end of the deque only.

For convenience of discussion, we will be using the following function:

Algorithm 3.1 : Update N , where N is an internal node

1. Update the item stored in N such that it satisfies the content property, as discussed
in Section 3.2.3.3.

The structural adjustments performed on our tree are exactly identical to those
performed on a 2-4 tree following every insertion or deletion. However, with every
node split, or node merge, or borrowing of a child by a node from a brother, we will
also do a constant time updating of internal nodes as discussed below:

1. When an exterior node N is split into an interior node N1 and an exterior node N2,
then update N1, P and N2, in that order, where P is the parent of N1 and N2.

2Note that our potential function is only a slight modification of the potential function of the 2-4
trees, to accommodate the analysis of the concatenate operation.
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2. When an exterior node is merged with its brother to form a node N , then update
P and N , in that order, where P is the parent of N .

3. When an exterior node N2 borrows a son from a brother N1, then update N1 and
P , in that order, where P is the parent of N1 and N2.

It is easy to see the correctness of the following lemma from the above discussion.

Lemma 3.1 If every internal node of the tree satisfies the content property before
an internal node N splits or merges or borrows a son, then we can restore the content
property of every internal node by doing a constant time updating of internal nodes
(as discussed above) after the split or merge or borrowing, provided that neither N
nor its parent is the root.

We will now present the algorithm for insertion and deletion from the right end.

Algorithm 3.2 : Insert (or delete) an item at the right end

1. Insert the data item as the right-most leaf L of the tree.
(Or, delete the right-most leaf L of the tree.)

2. Perform structural adjustments on the tree just as is done in 2-4 trees, accompanied
with the updating of internal nodes as discussed above.

3. If no structural adjustments were required in the above step, then let N be the
right-most exterior node. Else let N be the parent of the last node that was split,
in case of insertion. (In case of deletion, let N be the parent of the last node that
was merged, or parent of the last node that borrowed a son. If the last merged node
happens to be the root, then let N be the root itself).
If N is the root then

(a) Update all the internal nodes in the left-most path, starting from the root till
the left-most exterior node.

(b) Update all the internal nodes in the right-most path, starting from the root
till the right-most exterior node.

3.3.3.1 Time Complexity Analysis

Let there be k node splits or node merges in Step 2. Since the first step takes O(1)
time and the rest of the steps take O(k) time each, the actual cost of the operation
is O(k).

But, the corresponding decrease in potential is Θ(k), just as in case of 2-4 trees.
Thus, choosing appropriate values for the constants in the potential function, the
amortized costs of each of these operations turn out to be O(1).

However, the worst case cost is O(log n).
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3.3.4 Concatenate Two Deques

Let us assume, we have to concatenate two deques D1 and D2, with the head of D2

following the tail of D1 in the final deque. Let T1 and T2 be the corresponding trees of
heights h1 and h2 and with roots R1 and R2 respectively, where T1 is to be attached
to the left of T2. There might be two possibilities:

3.3.4.1 Case 1 : h1 6= h2

Without loss of generality, say h1 > h2. In this case, concatenation can also be treated
as an insertion, not at the leaf level, but at a higher level such that the leaves in the
final tree are all at the same level. However, since the nodes in the left-most path of
T2 and some of the nodes in the right-most path of T1 are converted from exterior
nodes to interior nodes, certain nodes in the new tree must be updated. Also, the
tree has to be adjusted, to satisfy the structural properties.

Algorithm 3.3 : Concatenate T2 to the right of T1, where h1 > h2

1. Insert the root R2 of T2 as the son of a node M in the right-most path of T1 such
that the leaves in the final tree are all of the same level.

2. Update all the internal nodes in the left-most path of T2, starting from the left-most
exterior node till the root.

3. Update all the internal nodes in the right-most path of T1 starting from the right-
most exterior node till the node M .

4. If M is the root of T1 then update all the internal nodes in the left-most path of
T1, starting from the root till the left-most exterior node.
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5. If M violates the degree property, then execute Algorithm 3.2 from Step 2 onwards
to structurally adjust the new tree.

6. Update all the internal nodes in the right-most path of the new tree starting from
the node R2 till the right-most exterior node.

3.3.4.2 Case 2: h1 = h2

In this case, we create a new root R with a dummy item such that value(R) = ∞,
and make the roots of T1 and T2 sons of R. As in the previous case, we also have to
update the right-most and left-most paths of T1 and T2.

Algorithm 3.4 : Concatenate T2 to the right of T1, where h1 = h2

1. Create a new root R, with value(R) = ∞.

2. Make the roots R1 and R2 of T1 and T2 sons of R.

3. Update all the internal nodes in the right-most path of T1, starting from the right-
most exterior node till the root R.

4. Update all the internal nodes in the left-most path of T2, starting from the left-most
exterior node till the root R.

5. Update all the internal nodes in the left-most path of T1, starting from the root R
till the left-most exterior node.



30

6. Update all the internal nodes in the right-most path of T2, starting from the root
R till the right-most exterior node.

3.3.4.3 Time Complexity Analysis

Let k be the number of node splits, if any, for structurally adjusting the tree. Then,
the actual cost of the operation is obviously O(h2) + O(k).

But, the corresponding decrease in potential is Θ(h2) + Θ(k), since in place of
two trees of heights h1 and h2, we finally have only one tree of height h1 (or h1 + 1).
Thus the amortized cost of concatenate operation turns out to be O(1).

However, the worst case cost is O(log n).

Theorem 3.1 Deques with heap order can be implemented to support each of the
operations push, pop, inject, eject and concatenate two deques in O(1) amortized case
time and the operation find minimum in O(1) worst case time, even when the number
of deques is arbitrarily large.

3.4 Improved Data Structure to support Push, Pop,

Inject and Eject in O(1) Worst Case Time

Since the operations push, pop, inject, and eject cause insertions or deletions only at
the right or left end of the tree, we can improve the efficiency of the data structure
by performing the necessary structural adjustments and updating of internal nodes
lazily over the next few operations.

To effect this, we will allow the exterior nodes to temporarily have at least one
and at most five sons. We will also allow one internal node each in the right-most
and left-most paths to violate the content property.

Algorithm 3.5 : Insert (or delete) an item at the right (or left) end

1. Do the insertion (or deletion) at the right (or left) end of the tree.

2. Structurally adjust the lowest node N in the right-most (or left-most) path that
violates the degree property.

3. // NL and NR are the two nodes that may violate the content property.
// Initially, NL and NR are respectively the left-most and right-most leaves.
If the parent of node N is the root then

(a) Structurally adjust the other exterior son of the root, if it is violates the degree
property.
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(b) Structurally adjust the root, if it is violates the degree property.

(c) Set NL ← left son of root and NR ← right son of root.

4. If NL and NR are not leaves then

(a) Update NL and NR

(b) Set NL ← left son of NL and NR ← right son of NR.

As an illustration of the above algorithm, consider a tree in which the right-most
exterior node N1 and some of its immediate ancestors have four sons each. Let Ni+1

represent the parent of Ni. Let there be a series of insertions from the right end into
this tree. The following table shows the number of sons of some of the right exterior
nodes of the tree after each insertion. Note how we do not immediately split all the
ancestors but instead ‘lazily’ split only the lowest node with every insertion.

N1 N2 N3 N4 N5

Initial 4 4 4 4 4

Insert 5 4 4 4 4
Split 3 5 4 4 4

Insert 4 5 4 4 4
Split 4 3 5 4 4

Insert 5 3 5 4 4
Split 3 4 5 4 4

Insert 4 4 5 4 4
Split 4 4 3 5 4

We will demonstrate the correctness of the above algorithm through the following
lemmas:

Lemma 3.2 Every exterior node will have at least 1 son and at most 5 sons after
every operation.

To prove this, we can think of the above algorithm as follows. After every insertion or
deletion at the right end, the right-most exterior node gets a chance to adjust itself.
If required, it uses the chance to adjust itself. Else it passes the chance to its parent,
which in turn either uses the chance or passes it upwards, and so on. To prove the
lemma, it suffices to prove that every node in the right-most path and the left-most
path gets at least one chance to adjust itself between two consecutive insertion or
deletion operations on it.

Let the above statement be true for an exterior node Nh at a height h in the tree.
We will then prove the statement for its parent Nh+1.
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Observe that an insertion into Nh+1 corresponds to splitting of Nh and a deletion
from Nh+1 corresponds to merging of Nh with its brother. But after every node split
or node merge, Nh will have exactly 3 sons. Hence, before the next node split or node
merge of Nh, there have to be at least two insertions or deletions on Nh. Between
these two insertions or deletions, Nh will get a chance to adjust itself which it does
not require since it will have at least 2 sons and at most 4 sons. Hence, it will pass
this chance to Nh+1 which can thus adjust itself between every two operations on
it. And since the above statement the trivially true for the right-most and left-most
exterior nodes, it follows that it is true for all exterior nodes.

Lemma 3.3 The lowest exterior node that violates the degree property in the right-
most or left-most path can be located in constant time by maintaining for each of
the two exterior paths, a stack of all the exterior nodes in that path that violate the
degree property, with the lowest such node at the top of the stack. This ensures that
the above algorithm takes O(1) worst case time.

Lemma 3.4 Once the parent of node N in the above algorithm becomes the root, it
takes only h operations for NL and NR to become leaves while it takes O(2h) operations
for the root to be disturbed again, where h is the height of the tree. This ensures that
at any time there are at most two internal nodes (namely NL and NR) that violate the
content property, and hence, find minimum can still be implemented in O(1) worst
case time.

Lemma 3.5 Concatenate operation can still be implemented in O(1) amortized time
with the following algorithm.

Algorithm 3.6 : Concatenate two deques T1 and T2

1. Structurally adjust both the trees so that all the internal nodes satisfy the degree
property. Also, update the exterior nodes in both the trees, starting from NR or NL

to right-most or left-most exterior nodes.

2. Execute the algorithm discussed in Section 3.3.4.

Since total work done in m operations by the algorithms for the improved data
structure is no more than the total work done by the algorithms for the amortized
data structure, the same amortized O(1) bound holds here also.

Theorem 3.2 Deques with heap order can be implemented to support each of the
operations push, pop, inject, eject and find minimum in O(1) worst case time and the
operation concatenate two deques in O(1) amortized time, even when the number of
deques is arbitrarily large. Moreover the operations like given the actual position of a
key, insert a key next to it, or delete it, or change its value can also be implemented
in O(log n) worst case time with the same data structure.
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3.5 Conclusion

We have presented a simple data structure that supports the operations find mini-
mum, push, pop, inject and eject in O(1) worst case time and the meld operation in
O(1) amortized time. Also, this data structure is flexible enough to support opera-
tions like given the actual position of a key, insert a key next to it, or delete it, or
change its value in O(log n) worst case time.

However, we later found out that Kosaraju [13] has also proposed a similar data
structure with identical complexity bounds. He used the red-black trees to develop
his data structure while we used the 2-4 trees. He even went on to further modify the
data structure to achieve an O(1) worst case time complexity for the meld operation
also, thus solving the problem completely.



Chapter 4

Conclusions and Directions for Future
Research

4.1 Summary of the Results

In this report, we have considered the problem of modifying several amortized data
structures to achieve worst case time bounds.

In Chapter 2, we have presented relaxed Fibonacci heaps as a new data structure
that supports the operations find minimum, insert, decrease key and meld, each
in O(1) worst case time and delete and delete min in O(log n) worst case time. The
central idea in designing this data structure has been the identification of the weak
global constraint on the number of children lost(property 3c).

In Chapter 3, we have presented a simple data structure that supports the op-
erations find minimum, push, pop, inject and eject in O(1) worst case time and the
meld operation in O(1) amortized time. Also, this data structure is flexible enough
to support operations like given the actual position of a key, insert a key next to it,
or delete it, or change its value in O(log n) worst case time.

4.2 Open Problems

4.2.1 The General Problem of Eliminating Amortization

In [3], Rajeev Raman has described a unified framework for obtaining new worst case
algorithms from existing amortized algorithms. He described two player combinatorial
games so that winning strategies translate fairly readily into worst case data structures
for some problems.

It would be very interesting to see how useful his techniques prove to be in elim-
inating amortization from data structures other than the ones he considered.

34
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It would also be quite challenging to develop other unified approaches to solve
the problem of eliminating amortization.

4.2.2 Use of Randomization for Eliminating Amortization

Though we do not have a concrete example yet, we conjecture that randomization
may prove to be a very useful tool in eliminating amortization. It would be interesting
to demonstrate the power of randomization in eliminating amortization in convincing
terms.
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Errata

We later discovered, in August 1996, that our result on priority queues contains a
bug. It turns out that the proof that out delete min operation takes O(log n) time
in the worst case is incorrect.

The proof consisted of two parts. The first part part showed that all the algo-
rithms presented in Chapter 2 preserve the data structure invariants described in
Section 2.4.1. The second part of the proof showed that the data structure invariants
imply that our delete min operation takes O(log n) time in the worst case. It turns
out that Statement 4 in Lemma 2.1 is incorrect, which in turn invalidates the sec-
ond part of the proof that the data structure invariants imply that our delete min
operation takes O(log n) time in the worst case.

We can still prove that the the data structure invariants in Section 2.4.1 imply
that our delete min operation takes O(log2 n/ log log n) time in the worst case. Thus,
the corrected version of the theorem presented in Chapter 2 is as follows.

Theorem 2.1 An implementation of priority queues on a RAM exists that supports
the operations find minimum, insert, decrease key and meld, each in O(1) worst case
time and delete and delete min in O(log2 n/ log log n) worst case time.

This would still have been a new result at the time our technical report on this
was published. However, Gerth Stoling Brodal later published a paper [20] that
describes a completely different data structure than ours that supports the delete
min operation in O(log n) time in the worst case.
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