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ABSTRACT
This paper presents the first scalable context-sensitive, inclusion-
based pointer alias analysis for Java programs. Our approach to
context sensitivity is to create a clone of a method for every con-
text of interest, and run acontext-insensitivealgorithm over the ex-
panded call graph to getcontext-sensitiveresults. For precision,
we generate a clone for every acyclic path through a program’s call
graph, treating methods in a strongly connected component as a sin-
gle node. Normally, this formulation is hopelessly intractable as a
call graph often has1014 acyclic paths or more. We show that these
exponential relations can be computed efficiently using binary de-
cision diagrams (BDDs). Key to the scalability of the technique is
a context numbering scheme that exposes the commonalities across
contexts. We applied our algorithm to the most popular applications
available on Sourceforge, and found that the largest programs, with
hundreds of thousands of Java bytecodes, can be analyzed in under
20 minutes.

This paper shows that pointer analysis, and many other queries
and algorithms, can be described succinctly and declaratively using
Datalog, a logic programming language. We have developed a sys-
tem calledbddbddb that automatically translates Datalog programs
into highly efficient BDD implementations. We used this approach
to develop a variety of context-sensitive algorithms including side
effect analysis, type analysis, and escape analysis.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers; E.2
[Data]: Data Storage Representations

General Terms
Algorithms, Performance, Design, Experimentation, Languages

Keywords
context-sensitive, inclusion-based, pointer analysis, Java, scalable,
cloning, binary decision diagrams, program analysis, Datalog, logic
programming
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1. INTRODUCTION
Many applications of program analysis, such as program opti-

mization, parallelization, error detection and program understand-
ing, need pointer alias information. Scalable pointer analyses
developed to date are imprecise because they are eithercontext-
insensitive[3, 17, 19, 33] orunification-based[15, 16]. A context-
insensitive analysis does not distinguish between different calling
contexts of a method and allows information from one caller to
propagate erroneously to another caller of the same method. In
unification-based approaches, pointers are assumed to be either un-
aliased or are pointing to the same set of locations[28]. In contrast,
inclusion-basedapproaches are more efficient but also more expen-
sive, as they allow two aliased pointers to point to overlapping but
different sets of locations.

We have developed a context-sensitive and inclusion-based
pointer alias analysis that scales to hundreds of thousands of Java
bytecodes. The analysis isfield-sensitive, meaning that it tracks
the individual fields of individual pointers. Our analysis is mostly
flow-insensitive, using flow sensitivity only in the analysis of local
pointers in each function. The results of this analysis, as we show in
this paper, can be easily used to answer users’ queries and to build
more advanced analyses and programming tools.

1.1 Cloning to Achieve Context Sensitivity
Our approach to context sensitivity is based on the notion of

cloning. Cloning conceptually generates multiple instances of a
method such that every distinct calling context invokes a different
instance, thus preventing information from one context to flow to
another. Cloning makes generating context-sensitive results algo-
rithmically trivial: We can simply apply acontext-insensitivealgo-
rithm to the cloned program to obtaincontext-sensitiveresults. Note
that our analysis does not clone the code per se; it simply produces
a separate answer for each clone.

The context of a method invocation is often distinguished by its
call path, which is simply the call sites, or return addresses, on the
invocation’s call stack. In the case of a recursive program, there
are an unbounded number of calling contexts. To limit the number
of calling contexts, Shivers proposed the concept ofk-CFA (Con-
trol Flow Analysis) whereby one remembers only the lastk call
sites[26]. Emami et al. suggested distinguishing contexts by their
full call paths if they are acyclic. For cyclic paths, they suggested
including each call site in recursive cycles only once[14]. Our ap-
proach also uses entire call paths to distinguish between contexts
in programs without recursion. To handle recursion, call paths are
reducedby eliminating all invocations whose callers and callees be-
long to the same strongly connected component in the call graph.
These reduced call paths are used to identify contexts.



It was not obvious, at least to us at the beginning of this project,
that a cloning-based approach would be feasible. The number of re-
duced call paths in a program grows exponentially with the number
of methods, and a cloning-based approach must compute the result
of every one of these contexts. Emami et al. have only reported
context-sensitive points-to results on small programs[14]. Realistic
programs have many contexts; for example, themegamekapplica-
tion has over1014 contexts (see Section 6.1). The size of the final
results alone appears to be prohibitive.

We show that we can scale a cloning-based points-to analysis
by representing the context-sensitive relations using ordered binary
decision diagrams (BDDs)[6]. BDDs, originally designed for hard-
ware verification, have previously been used in a number of pro-
gram analyses[2, 23, 38], and more recently for points-to analy-
sis[3, 39]. We show that it is possible to compute context-sensitive
points-to results for over1014 contexts.

In contrast, most context-sensitive pointer alias analyses devel-
oped to date are summary-based[15, 34, 37]. Parameterized sum-
maries are created for each method and used in creating the sum-
maries of its callers. It is not necessary to represent the results for
the exponentially many contexts explicitly with this approach, be-
cause the result of a context can be computed independently using
the summaries. However, to answer queries as simple as “which
variables point to a certain object” would require all the results
to be computed. The readers may be interested to know that, de-
spite much effort, we tried but did not succeed in creating a scalable
summary-based algorithm using BDDs.

1.2 Contributions
The contributions of this paper are not limited to just an algorithm

for computing context-sensitive and inclusion-based points-to infor-
mation. The methodology, specification language, representation,
and tools we used in deriving our pointer analysis are applicable to
creating many other algorithms. We demonstrate this by using the
approach to create a variety of queries and algorithms.

Scalable cloning-based context-sensitive points-to analysis
using BDDs.The algorithm we have developed is remarkably sim-
ple. We first create a cloned call graph where a clone is created
for every distinct calling context. We then run a simple context-
insensitive algorithm over the cloned call graph to get context-
sensitive results. We handle the large number of contexts by rep-
resenting them in BDDs and using an encoding scheme that al-
lows commonalities among similar contexts to be exploited. We
improve the efficiency of the algorithm by using an automatic tool
that searches for an effective variable ordering.

Datalog as a high-level language for BDD-based program
analyses. Instead of writing our program analyses directly in terms
of BDD operations, we store all program information and results as
relations and express our analyses in Datalog, a logic programming
language used in deductive databases[30]. Because Datalog is suc-
cinct and declarative, we can express points-to analyses and many
other algorithms simply and intuitively in just a few Datalog rules.

We use Datalog because its set-based operation semantics
matches the semantics of BDD operations well. To aid our al-
gorithm research, we have developed a deductive database system
calledbddbddb (BDD Based Deductive DataBase) that automati-
cally translates Datalog programs into BDD algorithms. We provide
a high-level summary of the optimizations in this paper; the details
are beyond the scope of this paper[35].

Our experience is that programs generated bybddbddb are faster
than their manually optimized counterparts. More importantly, Dat-
alog programs are orders-of-magnitude easier to write. They are so
succinct and easy to understand that we use them to explain all our

algorithms here directly. All the experimental results reported in
this paper are obtained by running the BDD programs automatically
generated bybddbddb.

Context-sensitive queries and other analyses. The context-
sensitive points-to results, the simple cloning-based approach to
context sensitivity, and thebddbddb system make it easy to write
new analyses. We show some representative examples in each of
the following categories:

1. Simple queries. The results from our context-sensitive pointer
analysis provide a wealth of information of interest to pro-
grammers. We show how a few lines of Datalog can help
programmers debug a memory leak and find potential secu-
rity vulnerabilities.

2. Algorithms using context-sensitive points-to results. We show
how context-sensitive points-to results can be used to cre-
ate advanced analyses. We include examples of a context-
sensitive analysis to compute side effects (mod-ref) and an
analysis to refine declared types of variables.

3. Other context-sensitive algorithms. Cloning can be used to
trivially generate other kinds of context-sensitive results be-
sides points-to relations. We illustrate this with a context-
sensitive type analysis and a context-sensitive thread escape
analysis. Whereas previous escape analyses require thou-
sands of lines of code to implement[34], the algorithm here
has only seven Datalog rules.

Experimental Results. We present the analysis time and mem-
ory usage of our analyses across 21 of the most popular Java appli-
cations on Sourceforge. Our context-sensitive pointer analysis can
analyze even the largest of the programs in under 19 minutes. We
also compare the precision of context-insensitive pointer analysis,
context-sensitive pointer analysis and context-sensitive type analy-
sis, and show the effects of merging versus cloning contexts.

1.3 Paper Organization
Here is an overview of the rest of the paper. Section 2 ex-

plains our methodology. Using Berndl’s context-insensitive points-
to algorithm as an example, we explain how an analysis can be
expressed in Datalog and, briefly, howbddbddb translates Dat-
alog into efficient BDD implementations. Section 3 shows how
we can easily extend the basic points-to algorithm to discover
call graphs on the fly by adding a few Datalog rules. Section 4
presents our cloning-based approach and how we use it to compute
context-sensitive points-to results. Section 5 shows the represen-
tative queries and algorithms built upon our points-to results and
the cloning-based approach. Section 6 presents our experimental
results. We report related work in Section 7 and conclude in Sec-
tion 8.

2. FROM DATALOG TO BDDS
In this section, we start with a brief introduction to Datalog.

We then show how Datalog can be used to describe the context-
insensitive points-to analysis due to Berndl et al. at a high level. We
then describe how ourbddbddb system translates a Datalog pro-
gram into an efficient implementation using BDDs.

2.1 Datalog
We represent a program and all its analysis results as relations.

Conceptually, arelation is a two-dimensional table. The columns
are theattributes, each of which has adomaindefining the set of
possible attribute values. The rows are the tuples of attributes that
share the relation. If tuple(x, y, z) is in relationA, we say that
predicateA(x, y, z) is true.



A Datalog program consists of a set of rules, written in a Prolog-
style notation, where a predicate is defined as a conjunction of other
predicates. For example, the Datalog rule

D(w, z) : − A(w, x), B(x, y), C(y, z).

says that “D(w, z) is true if A(w, x), B(x, y), andC(y, z) are all
true.” Variables in the predicates can be replaced with constants,
which are surrounded by double-quotes, or don’t-cares, which are
signified by underscores. Predicates on the right side of the rules
can be inverted.

Datalog is more powerful than SQL, which is based on relational
calculus, because Datalog predicates can be recursively defined[30].
If none of the predicates in a Datalog program is inverted, then there
is a guaranteed minimal solution consisting of relations with the
least number of tuples. Conversely, programs with inverted pred-
icates may not have a unique minimal solution. Ourbddbddb
system accepts a subclass of Datalog programs, known asstrati-
fiedprograms[7], for which minimal solutions always exist. Infor-
mally, rules in such programs can be grouped into strata, each with
a unique minimal solution, that can be solved in sequence.

2.2 Context-Insensitive Points-to Analysis
We now review Berndl et al.’s context-insensitive points-to anal-

ysis[3], while also introducing the Datalog notation. This algorithm
assumes that a call graph, computed using simple class hierarchy
analysis[13], is available a priori. Heap objects are named by their
allocation sites. The algorithm finds the objects possibly pointed to
by each variable and field of heap objects in the program. Shown in
Algorithm 1 is the exact Datalog program, as fed tobddbddb, that
implements Berndl’s algorithm. To keep the first example simple,
we defer the discussion of using types to improve precision until
Section 2.3.

ALGORITHM 1. Context-insensitive points-to analysis with a
precomputed call graph.

DOMAINS

V 262144 variable.map
H 65536 heap.map
F 16384 field.map

RELATIONS

input vP0 (variable : V, heap : H)
input store (base : V,field : F, source : V)
input load (base : V,field : F, dest : V)
input assign (dest : V, source : V)
output vP (variable : V, heap : H)
output hP (base : H,field : F, target : H)

RULES

vP(v, h) : − vP0(v, h). (1)

vP(v1, h) : − assign(v1, v2), vP(v2, h). (2)

hP(h1, f, h2) : − store(v1, f, v2),
vP(v1, h1), vP(v2, h2). (3)

vP(v2, h2) : − load(v1, f, v2),
vP(v1, h1), hP(h1, f, h2). (4)
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A Datalog program has three sections: domains, relations, and
rules. Adomain declarationhas a name, a sizen, and an optional
file name that provides a name for each element in the domain, inter-
nally represented as an ordinal number from 0 ton − 1. The latter

allows bddbddb to communicate with the users with meaningful
names. Arelation declarationhas an optional keyword specifying
whether it is an input or output relation, the name of the relation,
and the name and domain of every attribute. A relation declared
as neither input nor output is a temporary relation generated in the
analysis but not written out. Finally, the rules follow the standard
Datalog syntax. The rule numbers, introduced here for the sake of
exposition, are not in the actual program.

We can express all information found in the intermediate repre-
sentation of a program as relations. To avoid inundating readers
with too many definitions all at once, we define the relations as they
are used. The domains and relations used in Algorithm 1 are:

V is the domain of variables. It represents all the allocation sites,
formal parameters, return values, thrown exceptions, cast op-
erations, and dereferences in the program. There is also a
specialglobalvariable for use in accessing static variables.

H is the domain of heap objects. Heap objects are named by the
invocation sites of object creation methods. To increase pre-
cision, we also statically identify factory methods and treat
them as object creation methods.

F is the domain of field descriptors in the program. Field descrip-
tors are used when loading from a field (v2 = v1.f; ) or
storing to a field (v1.f = v 2; ). There is a special field de-
scriptor to denote an array access.

vP0: V × H is the initial variable points-to relation extracted
from object allocation statements in the source program.
vP0(v, h) means there is an invocation siteh that assigns
a newly allocated object to variablev.

store: V × F × V represents store statements.store(v1, f, v2)
says that there is a statement “v1.f = v 2; ” in the program.

load : V × F× V represents load statements.load(v1, f, v2) says
that there is a statement “v2 = v1.f; ” in the program.

assign: V × V is the assignments relation due to passing of argu-
ments and return values.assign(v1, v2) means that variable
v1 includes the points-to set of variablev2. Although we do
not cover exceptions here, they work in an analogous manner.

vP : V × H is the output variable points-to relation.vP(v, h)
means that variablev can point to heap objecth.

hP : H × F × H is the output heap points-to relation.
hP(h1, f, h2) means that fieldf of heap objecth1 can point
to heap objecth2.

Note that local variables and their assignments are factored away
using a flow-sensitive analysis[33]. Theassignrelation is derived
by using a precomputed call graph. The sizes of the domains are
determined by the number of variables, heap objects, and field de-
scriptors in the input program.

Rule (1) incorporates the initial variable points-to relations into
vP . Rule (2) finds the transitive closure over inclusion edges. If
v1 includesv2 and variablev2 can point to objecth, thenv1 can
also point toh. Rule (3) models the effect of store instructions on
heap objects. Given a statement “v1.f = v 2; ”, if v1 can point
to h1 andv2 can point toh2, thenh1.f can point toh2. Rule (4)
resolves load instructions. Given a statement “v2 = v1.f; ”, if v1

can point toh1 andh1.f can point toh2, thenv2 can point toh2.
Applying these rules until the results converge finds all the possible
context-insensitive points-to relations in the program.

2.3 Improving Points-to Analysis with Types
Because Java is type-safe, variables can only point to objects of

assignabletypes. Assignabilityis similar to the subtype relation,



ALGORITHM 2. Context-insensitive points-to analysis with
type filtering.

DOMAINS

Domains from Algorithm 1, plus:

T 4096 type.map

RELATIONS

Relations from Algorithm 1, plus:

input vT (variable : V, type : T)
input hT (heap : H, type : T)
input aT (supertype : T, subtype : T)

vPfilter (variable : V, heap : H)

RULES

vPfilter(v, h) : − vT (v, tv), hT (h, th), aT (tv, th). (5)

vP(v, h) : − vP0(v, h). (6)

vP(v1, h) : − assign(v1, v2), vP(v2, h),
vPfilter(v1, h). (7)

hP(h1, f, h2) : − store(v1, f, v2),
vP(v1, h1), vP(v2, h2). (8)

vP(v2, h2) : − load(v1, f, v2), vP(v1, h1),
hP(h1, f, h2), vPfilter(v2, h2). (9)
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with allowances for interfaces, null values, and arrays[22]. By drop-
ping targets of unassignable types in assignments and load state-
ments, we can eliminate many impossible points-to relations that
result from the imprecision of the analysis.1

Adding type filtering to Algorithm 1 is simple in Datalog. We
add a new domain to represent types and new relations to repre-
sent assignability as well as type declarations of variables and heap
objects. We compute the type filter and modify the rules in Algo-
rithm 1 to filter out unsafe assignments and load operations.

T is the domain of type descriptors (i.e. classes) in the program.
vT : V × T represents the declared types of variables.vT (v, t)

means that variablev is declared with typet.
hT : H × T represents the types of objects created at a particular

creation site. In Java, the type created by anew instruction
is usually known statically.2 hT (h, t) means that the object
created ath has typet.

aT : T × T is the relation of assignable types.aT (t1, t2) means
that typet2 is assignable to typet1.

vPfilter : V × H is the type filter relation.vPfilter(v, h) means
that it is type-safe to assign heap objecth to variablev.

Rule (5) in Algorithm 2 defines thevPfilter relation: It is type-
safe to assign heap objecth of typeth to variablev of typetv if tv

is assignable fromth. Rules (6) and (8) are the same as Rules (1)
and (3) in Algorithm 1. Rules (7) and (9) are analogous to Rules (2)
and (4), with the additional constraint that only points-to relations
that match the type filter are inserted.

1We could similarly perform type filtering on stores into heap ob-
jects. However, because all stores must go through variables, such a
type filter would only catch one extra case — when the base object
is a null constant.
2The type of a created object may not be known precisely if, for
example, the object is returned by a native method or reflection is
used. Such types are modeled conservatively as all possible types.

2.4 Translating Datalog into Efficient BDD
Implementations

We first describe how Datalog rules can be translated into opera-
tors from relational algebra such as “join” and “project”, then show
how to translate these operations into BDD operations.

2.4.1 Query Resolution
We can find the solution to an unstratified query, or a stratum of

a stratified query, simply by applying the inference rules repeatedly
until none of the output relations change. We can apply a Datalog
rule by performing a series of relational natural join, project and re-
name operations. A natural join operation combines rows from two
relations if the rows share the same value for a common attribute.
A project operation removes an attribute from a relation. A rename
operation changes the name of an attribute to another one.

For example, the application of Rule (2) can be implemented as:

t1 = rename(vP , variable, source);
t2 = project(join(assign, t1), source);
vP = vP ∪ rename(t2, dest, variable);

We first rename the attribute in relationvP from variableto source
so that it can be joined with relationassignto create a new points-to
relation. The attributedestof the resulting relation is changed to
variableso that the tuples can be added to thevP tuples accumu-
lated thus far.

The bddbddb system uses the three following optimizations to
speed up query resolution.

Attributes naming. Since the names of the attributes must match
when two relations are joined, the choice of attribute names can
affect the costs of rename operations. Since the renaming cost is
highly sensitive to how the relations are implemented, thebddbddb
system takes the representation into account when minimizing the
renaming cost.

Rule application order. A rule needs to be applied only if the
input relations have changed.bddbddb optimizes the ordering of
the rules by analyzing the dependences between the rules. For ex-
ample, Rule 1 in Algorithm 1 does not depend on any of the other
rules and can be applied only once at the beginning of the query
resolution.

Incrementalization. We only need to re-apply a rule on those
combinations of tuples that we have not seen before. Such a tech-
nique is known as incrementalization in the BDD literature and
semi-näıve fixpoint evaluation in the database literature[1]. Our
system also identifies loop-invariant relations to avoid unnecessary
difference and rename operations. Shown below is the result of in-
crementalizing the repeated application of Rule (2):

d = vP ;
repeat

t1 = rename(d, variable, source);
t2 = project(join(assign, t1), source);
d′ = rename(t2, dest, variable);
d = d′ − vP ;
vP = vP ∪ d;

until d == ∅;

2.4.2 Relational Algebra in BDD
We now explain how BDDs work and how they can be used to

implement relations and relational operations. BDDs (Binary Deci-
sion Diagrams) were originally invented for hardware verification to
efficiently store a large number of states that share many common-
alities[6]. They are an efficient representation of boolean functions.



A BDD is a directed acyclic graph (DAG) with a single root node
and two terminal nodes, representing the constants one and zero.
Each non-terminal node in the DAG represents an input variable
and has exactly two outgoing edges: a high edge and a low edge.
The high edge represents the case where the input variable for the
node is true, and the low outgoing edge represents the case where
the input variable is false. On any path in the DAG from the root
to a terminal node, the value of the function on the truth values on
the input variables in the path is given by the value of the terminal
node. To evaluate a BDD for a specific input, one simply starts at
the root node and, for each node, follows the high edge if the input
variable is true, and the low edge if the input variable is false. The
value of the terminal node that we reach is the value of the BDD for
that input.

The variant of BDDs that we use are calledordered binary de-
cision diagrams, or OBDDs[6]. “Ordered” refers to the constraint
that on all paths through the graph the variables respect a given lin-
ear order. In addition, OBDDs aremaximally reducedmeaning that
nodes with the same variable name and low and high successors are
collapsed as one, and nodes with identical low and high successors
are bypassed. Thus, the more commonalities there are in the paths
leading to the terminals, the more compact the OBDDs are. Accord-
ingly, the amount of the sharing and the size of the representation
depends greatly on the ordering of the variables.

We can use BDDs to represent relations as follows. Each element
d in ann-element domainD is represented as an integer between
0 andn − 1 usinglog2(n) bits. A relationR : D1 × . . . × Dn is
represented as a boolean functionf : D1×. . .×Dn → {0, 1} such
that(d1, . . . , dn) ∈ R iff f(d1, . . . , dn) = 1, and(d1, . . . , dn) /∈
R iff f(d1, . . . , dn) = 0.

A number of highly-optimized BDD packages are available[21,
27]; the operations they provide can be used directly to implement
relational operations efficiently. For example, the “replace” oper-
ation in BDD has the same semantics as the “rename” operation;
the “relprod” operation in BDD finds the natural join between two
relations and projects away the common domains.

Let us now use a concrete example to illustrate the signif-
icance of variable ordering. Suppose relationR1 contains tu-
ples (1, 1), (2, 1), . . . , (100, 1) and relationR2 contains tuples
(1, 2), (2, 2), . . . , (100, 2). If in the variable order the bits for the
first attribute come before the bits for the second, the BDD will
need to represent the sequence1, . . . , 100 separately for each rela-
tion. However, if instead the bits for the second attribute come first,
the BDD can share the representation for the sequence1, . . . , 100
betweenR1 andR2. Unfortunately, the problem of finding the best
variable ordering is NP-complete[5]. Ourbddbddb system auto-
matically explores different alternatives empirically to find an ef-
fective ordering[35].

3. CALL GRAPH DISCOVERY
The call graph generated using class hierarchy analysis can have

many spurious call targets, which can lead to many spurious points-
to relations[19]. We can get more precise results by creating the call
graph on the fly using points-to relations. As the algorithm gener-
ates points-to results, they are used to identify the receiver types of
the methods invoked and to bind calls to target methods; and as call
graph edges are discovered, we use them to find more points-to re-
lations. The algorithm converges when no new call targets and no
new pointer relations are found.

Modifying Algorithm 2 to discover call graphs on the fly is sim-
ple. Instead of an inputassign relation computed from a given call
graph, we derive it from method invocation statements and points-to
relations.

ALGORITHM 3. Context-insensitive points-to analysis that
computes call graph on the fly.

DOMAINS

Domains from Algorithm 2, plus:

I 32768 invoke.map
N 4096 name.map
M 16384 method.map
Z 256

RELATIONS

Relations from Algorithm 2, with the modification thatassign is
now a computed relation, plus:

input cha (type : T,name : N, target : M)
input actual (invoke : I, param : Z, var : V)
input formal (method : M, param : Z, var : V)
input IE0 (invoke : I, target : M)
input mI (method : M, invoke : I)
output IE (invoke : I, target : M)

RULES

Rules from Algorithm 2, plus:

IE(i, m) : − IE0(i, m). (10)

IE(i, m2) : − mI (m1, i, n), actual(i, 0, v),
vP(v, h), hT (h, t), cha(t, n, m2). (11)

assign(v1, v2) : − IE(i, m), formal(m, z, v1),
actual(i, z, v2). (12)

2

I is the domain of invocation sites in the program. An invocation
site is a method invocation of the formr = p 0.m(p 1 . . .
pk) . Note thatH ⊆ I.

N is the domain of method names used in invocations. In an invo-
cationr = p 0.n(p 1 . . . pk) , n is the method name.

M is the domain of implemented methods in the program. It does
not include abstract or interface methods.

Z is the domain used for numbering parameters.
cha: T × N × M encodes virtual method dispatch information

from the class hierarchy.cha(t, n, m) means thatm is the
target of dispatching the method namen on typet.

actual : I × Z × V encodes the actual parameters for invocation
sites. actual(i, z, v) means thatv is passed as parameter
numberz at invocation sitei.

formal : M × Z × V encodes formal parameters for methods.
formal(m, z, v) means that formal parameterz of method
m is represented by variablev.

IE0: I ×M are the initial invocation edges. They record the invo-
cation edges whose targets are statically bound. In Java, some
calls are static or non-virtual. Additionally, local type analy-
sis combined with analysis of the class hierarchy allows us to
determine that some calls have a single target[13].IE0(i, m)
means that invocation sitei can be analyzed statically to call
methodm.

mI : M × I × N represents invocation sites.mI (m, i, n) means
that methodm contains an invocation sitei with virtual
method namen. Non-virtual invocation sites are given a spe-
cial null method name, which does not appear in thecha re-
lation.

IE : I × M is an output relation encoding all invocation edges.
IE(i, m) means that invocation sitei calls methodm.



The rules in Algorithm 3 compute theassign relation used in
Algorithm 2. Rules (10) and (11) find the invocation edges, with
the former handling statically bound targets and the latter handling
virtual calls. Rule (11) matches invocation sites with the type of
the “this” pointer and the class hierarchy information to find the
possible target methods. If an invocation sitei with method namen
is invoked on variablev, andv can point toh andh has typet, and
invokingn on typet leads to methodm, thenm is a possible target
of invocationi.

Rule (12) handles parameter passing.3 If invocation sitei has a
target methodm, variablev2 is passed as argument numberz, and
the formal parameterz of methodm is v1, then the points-to set
of v1 includes the points-to set ofv2. Return values are handled
in a likewise manner, only the inclusion relation is in the opposite
direction. We see that as the discovery of more variable points-
to (vP ) can create more invocation edges (IE ), which in turn can
create more assignments (assign) and more points-to relations. The
algorithm converges when all the relations stabilize.

4. CONTEXT SENSITIVE POINTS-TO
A context-insensitive ormonomorphicanalysis produces just one

set of results for each method regardless how many ways a method
may be invoked. This leads to imprecision because information
from different calling contexts must be merged, so information
along one calling context can propagate to other calling contexts.
A context-sensitive orpolymorphicanalysis avoids this imprecision
by allowing different contexts to have different results.

We can make a context-sensitive version of a context-insensitive
analysis as follows. We make a clone of a method for each path
through the call graph, linking each call site to its own unique clone.
We then run the original context-insensitive analysis over the ex-
ploded call graph. However, this technique can require an exponen-
tial (and in the presence of cycles, potentially unbounded) number
of clones to be created.

It has been observed that different contexts of the same method
often have many similarities. For example, parameters to the same
method often have the same types or similar aliases. This obser-
vation led to the concept of partial transfer functions (PTF), where
summaries for each input pattern are created on the fly as they are
discovered[36, 37]. However, PTFs are notoriously difficult to im-
plement and get correct, as the programmer must explicitly calcu-
late the input patterns and manage the summaries. Furthermore, the
technique has not been shown to scale to very large programs.

Our approach is to allow the exponential explosion to occur and
rely on the underlying BDD representation to find and exploit the
commonalities across contexts. BDDs can express large sets of re-
dundant data in an efficient manner. Contexts with identical infor-
mation will automatically be shared at the data structure level. Fur-
thermore, because BDDs operate down at the bit level, it can even
exploit commonalities between contexts with different information.
BDD operations operate on entire relations at a time, rather than
one tuple at a time. Thus, the cost of BDD operations depends on
the size and shape of the BDD relations, which depends greatly on
the variable ordering, rather than the number of tuples in a relation.
Also, due to caching in BDD packages, identical subproblems only
have to be computed once. Thus, with the right variable ordering,
the results for all contexts can be computed very efficiently.

4.1 Numbering Call Paths
A call path is a sequence of invocation edges

(i1, m1), (i2, m2), . . . , such that i1 is an invocation site in
3We also match thread objects to their correspondingrun() meth-
ods, even though the edges do not explicitly appear in the call graph.
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Figure 1: Example of path numbering. The graph on the left is
the original graph. NodesM2 and M3 are in a cycle and there-
fore are placed in one equivalence class. Each edge is marked
with path numbers at the source and target of the edge. The
graph on the right is the graph with all of the paths expanded.

Call paths Reduced call paths
reachingM6 reachingM6

a(cd)∗eh aeh
b(dc)∗deh beh
a(cd)∗cfh afh
b(dc)∗fh bfh
a(cd)∗cgi agi
b(dc)∗gi bgi

Figure 2: The six contexts of functionM6 in Example 1

an entry method, typicallymain 4, andik is an invocation site in
methodmk−1 for all k > 1.

For programs without recursion, every call path to a method de-
fines a context for that method. To handle recursive programs,
which have an unbounded number of call paths, we first find the
strongly connected components (SCCs) in a call graph. By elimi-
nating all method invocations whose caller and callee belong to the
same SCC from the call paths, we get a finite set ofreduced call
paths. Each reduced call path to an SCC defines a context for the
methods in the SCC. Thus, information from different paths lead-
ing to the SCCs are kept separate, but the methods within the SCC
invoked with the same incoming call path are analyzed context-
insensitively.

EXAMPLE 1. Figure 1(a) shows a small call graph with just six
methods and a set of invocation edges. Each invocation edge has a
name, being one ofa throughi; its source is labeled by the context
number of the caller and its sink by the context number of the callee.
The numbers will be explained in Example 2. MethodsM2 and
M3 belong to a strongly connected component, so invocations along
edgesc and d are eliminated in the computation of reduced call
graphs. While there are infinitely many call paths reaching method
M6, there are only six reduced call paths reachingM6, as shown in
Figure 2. ThusM6 has six clones, one for each reduced call path.

Under this definition of context sensitivity, large programs can
have many contexts. For example,pmd from our test programs has
1971 methods and1023 contexts! In the BDD representation, we
give each reduced call path reaching a method a distinctcontext
4Other “entry” methods in typical programs are static class initial-
izers, object finalizers, and thread run methods.



number. It is important to find a context numbering scheme that
allows the BDDs to share commonalities across contexts. Algo-
rithm 4 shows one such scheme.

ALGORITHM 4. Generating context-sensitive invocation edges
from a call graph.

INPUT: A call multigraph.

OUTPUT: Context-sensitive invocation edgesIE C: C× I ×C×M,
where C is the domain of context numbers.IE C(c, i, cm, m) means
that invocation sitei in contextc calls methodm in contextcm.

METHOD:

1. A method withn clones will be given numbers1, . . . , n.
Nodes with no predecessors are given a singleton context
numbered 1.

2. Find strongly connected components in the input call graph.
Theith clone of a method always calls theith clone of another
method belonging to the same component.

3. Collapse all methods in a strongly connected component to a
single node to get an acyclic reduced graph.

4. For each noden in the reduced graph in topological order,

Set the counts of contexts created,c, to 0.
For each incoming edge,

If the predecessor of the edgep hask contexts,
createk clones of noden,
Add tuple(i, p, i + c, n) to IE C, for 1 ≤ i ≤ k,
c = c + k.
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EXAMPLE 2. We now show the results of applying Algorithm 4
to Example 1.M1, the root node, is given context number 1. We
shall visit the invocation edges from left to right. NodesM2 and
M3, being members of a strongly connected component, are repre-
sented as one node. The strongly connected component is reached
by two edges fromM1. SinceM1 has only one context, we create
two clones, one reached by each edge. For methodM4, the pre-
decessor on each of the two incoming edges has two contexts, thus
M4 has four clones. MethodM5 has two clones, one for each clone
that invokesM5. Finally, methodM6 has six clones: Clones 1-4
of methodM4 invoke clones 1-4 and clones 1-2 of methodM5 call
clones 5-6, respectively. The cloned graph is shown in Figure 1(b).

The numbering scheme used in Algorithm 4 plays up the
strengths of BDDs. Each method is assigned a contiguous range of
contexts, which can be represented efficiently in BDDs. The con-
texts of callees can be computed simply by adding a constant to the
contexts of the callers; this operation is also cheap in BDDs. Be-
cause the information for contexts that share common tail sequences
are likely to be similar, this numbering allows the BDD data struc-
ture to share effectively across common contexts. For example, the
sequentially-numbered clones 1 and 2 ofM6 both have a common
tail sequenceeh. Because of this, the contexts are likely to be sim-
ilar and therefore the BDD can take advantage of the redundancies.

To optimize the creation of the cloned invocation graph, we have
defined a new primitive that creates a BDD representation of con-
tiguous ranges of numbers in O(k) operations, wherek is the num-
ber of bits in the domain. In essence, the algorithm creates one BDD
to represent numbers below the upper bound, and one to represent
numbers above the lower bound, and computes the conjunction of
these two BDDs.

4.2 Context-Sensitive Pointer Analysis with a
Pre-computed Call Graph

We are now ready to present our context-sensitive pointer analy-
sis. We assume the presence of a pre-computed call graph created,
for example, by using a context-insensitive points-to analysis (Al-
gorithm 3). We apply Algorithm 4 to the call graph to generate
the context-sensitive invocation edgesIE C. Once that is created,
we can simply apply a context-insensitive points-to analysis on the
exploded call graph to get context-sensitive results. We keep the
results separate for each clone by adding a context number to meth-
ods, variables, invocation sites, points-to relations, etc.

ALGORITHM 5. Context-sensitive points-to analysis with a pre-
computed call graph.

DOMAINS

Domains from Algorithm 2, plus:

C 9223372036854775808

RELATIONS

Relations from Algorithm 2, plus:

input IE C (caller : C, invoke : I, callee : C, tgt : M)
assignC (destc : C, dest : V, srcc : C, src : V)

output vP C (context : C, variable : V, heap : H)

RULES

vPfilter(v, h) : − vT (v, tv), hT (h, th), aT (tv, th). (13)

vP C(c, v, h) : − vP0(v, h), IE C(c, h, , ). (14)

vP C(c1, v1, h) : − assignC(c1, v1, c2, v2),
vP C(c2, v2, h), vPfilter(v1, h). (15)

hP(h1, f, h2) : − store(v1, f, v2),
vP C(c, v1, h1), vP C(c, v2, h2). (16)

vP C(c, v2, h2) : − load(v1, f, v2), vP C(c, v1, h1),
hP(h1, f, h2), vPfilter(v2, h2). (17)

assignC(c1, v1, c2, v2)
: − IE C(c2, i, c1, m), formal(m, z, v1),

actual(i, z, v2). (18)

2

C is the domain of context numbers. Our BDD library uses signed
64-bit integers to represent domains, so the size is limited to
263.

IE C: C × I × C × M is the set of context-sensitive invocation
edges.IE C(c, i, cm, m) means that invocation sitei in con-
text c calls methodm in contextcm. This relation is com-
puted using Algorithm 4.

assignC: C× V × C× V is the context-sensitive version of the
assign relation.assignC(c1, v1, c2, v2) means variablev1 in
contextc1 includes the points-to set of variablev2 in context
v2 due to parameter passing. Again, return values are handled
analogously.

vP C: C × V × H is the context-sensitive version of the variable
points-to relation (vP ). vP C(c, v, h) means variablev in con-
text c can point to heap objecth.

Rule (18) interprets the context-sensitive invocation edges to find
the bindings between actual and formal parameters. The rest of
the rules are the context-sensitive counterparts to those found in
Algorithm 2.

Algorithm 5 takes advantage of a pre-computed call graph to cre-
ate an efficient context numbering scheme for the contexts. We can



compute the call graph on the fly while enjoying the benefit of the
numbering scheme by numbering all thepossible contextswith a
conservative call graph, and delaying the generation of the invoca-
tion edges only if warranted by the points-to results. We can reduce
the iterations necessary by exploiting the fact that many of the in-
vocation sites of a call graph created by a context-insensitive anal-
ysis have single targets. Such an algorithm has an execution time
similar to Algorithm 5, but is of primarily academic interest as the
call graph rarely improves due to the extra precision from context-
sensitive points-to information.

5. QUERIES AND OTHER ANALYSES
The algorithms in sections 2, 3 and 4 generate vast amounts of re-

sults in the form of relations. Using the same declarative program-
ming interface, we can conveniently query the results and extract
exactly the information we are interested in. This section shows a
variety of queries and analyses that make use of pointer information
and context sensitivity.

5.1 Debugging a Memory Leak
Memory leaks can occur in Java when a reference to an object

remains even after it will no longer be used. One common approach
of debugging memory leaks is to use a dynamic tool that locates the
allocation sites of memory-consuming objects. Suppose that, upon
reviewing the information, the programmer thinks objects allocated
in line 57 in filea.java should have been freed. He may wish to
know which objects may be holding pointers to the leaked objects,
and which operations may have stored the pointers. He can consult
the static analysis results by supplying the queries:

whoPointsTo57 (h, f) : − hP(h, f, “a.java : 57”).

whoDunnit(c, v1, f, v2) : − store(v1, f, v2),
vP C(c, v2, “a.java : 57”).

The first query finds the objects and their fields that may point
to objects allocated at ”a.java :57”; the second finds the store
instructions, and the contexts under which they are executed, that
create the references.

5.2 Finding a Security Vulnerability
The Java Cryptography Extension (JCE) is a library of crypto-

graphic algorithms[29]. Misuse of the JCE API can lead to security
vulnerabilities and a false sense of security. For example, many
operations in the JCE use a secret key that must be supplied by the
programmer. It is important that secret keys be cleared after they are
used so they cannot be recovered by attackers with access to mem-
ory. SinceString objects are immutable and cannot be cleared,
secret keys should not be stored inString objects but in an array
of characters or bytes instead.

To guard against misuse, the function that accepts the secret key,
PBEKeySpec.init(), only allows arrays of characters or bytes as
input. However, a programmer not versed in security issues may
have stored the key in aString object and then use a routine
in the String class to convert it to an array of characters. We
can write a query to audit programs for the presence of such id-
ioms. LetMret(m, v) be an input relation specifying that vari-
able v is the return value of methodm. We define a relation
fromString(h) which indicates if the objecth was directly derived
from a String . Specifically, it records the objects that are re-
turned by a call to a method in theString class. An invocation
i to methodPBEKeySpec.init() is a vulnerability if the first argu-
ment points to an object derived from aString .

fromString(h) : − cha(“String” , , m),Mret(m, v),
vP C( , v, h).

vuln(c, i) : − IE(i, “PBEKeySpec.init()”),
actual(i, 1, v), vP C(c, v, h),
fromString(h).

Notice that this query does not only find cases where the
object derived from aString is immediately supplied to
PBEKeySpec.init(). This query will also identify cases where the
object has passed through many variables and heap objects.

5.3 Type Refinement
Libraries are written to handle the most general types of objects

possible, and their full generality is typically not used in many ap-
plications. By analyzing the actual types of objects used in an ap-
plication, we canrefinethe types of the variables and object fields.
Type refinement can be used to reduce overheads in cast operations,
resolve virtual method calls, and gain better understanding of the
program.

We say that variablev can be legally declared ast, written
varSuperTypes(v, t), if t is a supertype of the types of all the ob-
jectsv can point to. The type of a variable is refinable if the variable
can be declared to have a more precise type. To compute the super
types ofv, we first findvarExactTypes(v, t), the types of objects
pointed to byv. We then intersect the supertypes of all the exact
types to get the desired solution; we do so in Datalog by finding the
complement of the union of the complement of the exact types.

varExactTypes(v, t) : − vP C( , v, h), hT (h, t).

notVarType(v, t) : − varExactTypes(v, tv),¬aT (t, tv).

varSuperTypes(v, t) : − ¬notVarType(v, t).

refinable(v, tc) : − vT (v, td), varSuperTypes(v, tc),
aT (td, tc), td 6= tc.

The above shows a context-insensitive type refinement query. We
find, for each variable, the type to which it can be refined regardless
of the context. Even if the end result is context-insensitive, it is more
precise to take advantage of the context-sensitive points-to results
available to determine the exact types, as shown in the first rule.
In Section 6.3, we compare the accuracy of this context-insensitive
query with a context-sensitive version.

5.4 Context-Sensitive Mod-Ref Analysis
Mod-ref analysis is used to determine what fields of what objects

may be modified or referenced by a statement or call site[18]. We
can use the context-sensitive points-to results to solve a context-
sensitive version of this query. We definemV (m, v) to mean thatv
is a local variable inm. ThemV ∗

C relation specifies the set of vari-
ables and contexts of methods that are transitively reachable from
a method.mV ∗

C(c1, m, c2, v) means that calling methodm with
contextc1 can transitively call a method with local variablev under
contextc2.

mV ∗
C(c, m, c, v) : − mV (m, v).

mV ∗
C(c1, m1, c3, v3) : − mI (m1, i), IE C(c1, i, c2, m2),

mV ∗
C(c2, m2, c3, v3).

The first rule simply says that a methodm in contextc can reach
its local variable. The second rule says that if methodm1 in context
c1 calls methodm2 in contextc2, thenm1 in contextc1 can also
reach all variables reached by methodm2 in contextc2.

We can now define the mod and ref set of a method as follows:

mod(c, m, h, f) : − mV ∗
C(c, m, cv, v),

store(v, f, ), vP C(cv, v, h).

ref (c, m, h, f) : − mV ∗
C(c, m, cv, v),

load(v, f, ), vP C(cv, v, h).



The first rule says that if methodm in contextc can reach a vari-
ablev in contextcv, and if there is a store through that variable to
field f of objecth, thenm in contextc can modify fieldf of object
h. The second rule for defining the ref relations is analogous.

5.5 Context-Sensitive Type Analysis
Our cloning technique can be applied to add context sensitivity

to other context-insensitive algorithms. The example we show here
is the type inference of variables and fields. By not distinguish-
ing between instances of heap objects, this analysis does not gener-
ate results as precise as those extracted from running the complete
context-sensitive pointer analysis as discussed in Section 5.3, but is
much faster.

The basic type analysis is similar to0-CFA[26]. Each variable
and field in the program has a set of concrete types that it can re-
fer to. The sets are propagated through calls, returns, loads, and
stores. By using the path numbering scheme in Algorithm 4, we
can convert this basic analysis into one which is context-sensitive—
in essence, making the analysis into ak-CFA analysis wherek is
the depth of the call graph and recursive cycles are collapsed.

ALGORITHM 6. Context-sensitive type analysis.

DOMAINS

Domains from Algorithm 5

RELATIONS

Relations from Algorithm 5, plus:

output vT C (context : C, variable : V, type : T)
output fT (field : F, target : T)

vTfilter (variable : V, type : T)

RULES

vTfilter(v, t) : − vT (v, tv), aT (tv, t). (19)

vT C(c, v, t) : − vP0(v, h), IE C(c, h, , ), hT (h, t).(20)

vT C(cv1 , v1, t) : − assignC(cv1 , v1, cv2 , v2),
vT C(cv2 , v2, t), vTfilter(v1, t). (21)

fT (f, t) : − store( , f, v2), vT C( , v2, t). (22)

vT C( , v, t) : − load( , f, v), fT (f, t),
vTfilter(v, t). (23)

assignC(c1, v1, c2, v2)
: − IE C(c2, i, c1, m), formal(m, z, v1),

actual(i, z, v2). (24)
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vT C: C × V × T is the context-sensitive variable type relation.
vT C(c, v, t) means that variablev in contextcv can refer to
an object of typet. This is the analogue ofvP C in the points-
to analysis.

fT : F × T is the field type relation.fT (f, t) means that fieldf
can point to an object of typet.

vTfilter : V × T is the type filter relation.vTfilter(v, t) means
that it is type-safe to assign an object of typet to variablev.

Rule (20) initializes thevT C relation based on the initial local
points-to information contained invP0, combining it withhT to get
the type andIE C to get the context numbers. Rule (21) does tran-
sitive closure on thevT C relation, filtering withvTfilter to enforce
type safety. Rules (22) and (23) handle stores and loads, respec-
tively. They differ from their counterparts in the pointer analysis in
that they do not use the base object, only the field. Rule (24) models
the effects of parameter passing in a context-sensitive manner.

5.6 Thread Escape Analysis
Our last example is a thread escape analysis, which determines

if objects created by one thread may be used by another. The re-
sults of the analysis can be used for optimizations such as synchro-
nization elimination and allocating objects in thread-local heaps, as
well as for understanding programs and checking for possible race
conditions due to missing synchronizations[8, 34]. This example
illustrates how we can vary context sensitivity to fit the needs of the
analysis.

We say that an object allocated by a thread hasescapedif it may
be accessedby another thread. This notion is stronger than most
other formulations where an object is said to escape if it can be
reachedby another thread[8, 34].

Java threads, being subclasses ofjava.lang.Thread , are
identified by their creation sites. In the special case where a thread
creation can execute only once, a thread can simply be named by
the creation site. The thread that exists at virtual machine startup
is an example of a thread that can only be created once. A creation
site reached via different call paths or embedded in loops or recur-
sive cycles may generate multiple threads. To distinguish between
thread instances created at the same site, we create two thread con-
texts to represent two separate thread instances. If an object created
by one instance is not accessed by its clone, then it is not accessed
by any other instances created by the same call site. This scheme
creates at most twice as many contexts as there are thread creation
sites.

We clone the threadrun() method, one for each thread context,
and place these clones on the list of entry methods to be analyzed.
Methods (transitively) invoked by a context’srun() method all
inherit the same context. A clone of a method not only has its own
cloned variables, but also its own cloned object creation sites. In
this way, objects created by separate threads are distinct from each
other. We run a points-to analysis over this slightly expanded call
graph; an object created in a thread context escapes if it is accessed
by variables in another thread context.

ALGORITHM 7. Thread-sensitive pointer analysis.

DOMAINS

Domains from Algorithm 5

RELATIONS

Relations from Algorithm 2, plus:

input HT (c : C, heap : H)
input vP 0T (cv : C, variable : V, ch : C, heap : H)
output vP T (cv : C, variable : V, ch : C, heap : H)
output hP T (cb : C, base : H,field : F, ct : C, target : H)

RULES

vPfilter(v, h) : −vT (v, tv), hT (h, th), aT (tv, th). (25)

vP T(c1, v, c2, h) : −vP 0T(c1, v, c2, h). (26)

vP T(c, v, c, h) : −vP0(v, h),HT(c, h). (27)

vP T(c2, v1, ch, h) : −assign(v1, v2), vP T(c2, v2, ch, h),
vPfilter(v1, h). (28)

hP T(c1, h1, f, c2, h2): −store(v1, f, v2), vP T(c, v1, c1, h1),
vP T(c, v2, c2, h2). (29)

vP T(c, v2, c2, h2) : −load(v1, f, v2), vP T(c, v1, c1, h1),
hP T(c1, h1, f, c2, h2),
vPfilter(v2, h2). (30)
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HT: C × H encodes the non-thread objects created by a thread.
HT(c, h) means that a thread with contextc may execute non-
thread allocation siteh; in other words, there is a call path
from therun() method in contextc to allocation siteh.

vP 0T: C × V × C × H is the set of initial inter-thread points-to
relations. This includes the points-to relations for thread cre-
ation sites and for the global object.vP 0T(c1, v, c2, h) means
that threadc1 has an thread allocation siteh, andv points to
the newly created thread contextc2. (There are usually two
contexts assigned to each allocation site). All global objects
across all contexts are given the same context.

vP T: C×V ×C×H is the thread-sensitive version of the variable
points-to relationvP C. vP T(c1, v, c2, h) means variablev in
contextc1 can point to heap objecth created under context
c2.

hP T: C × H × F × C × H is the thread-sensitive version of the
heap points-to relationhP . hP T(c1, h1, f, c2, h2) means that
field f of heap objecth1 created under contextc1 can point
to heap objecth2 created under contextc2.

Rule (26) incorporates the initial points-to relations for thread
creation sites. Rule (27) incorporates the points-to information
for non-thread creation sites, which have the context numbers of
threads that can reach the method. The other rules are analogous
to those of the context-sensitive pointer analysis, with an additional
context attribute for the heap objects.

From the analysis results, we can easily determine which objects
have escaped. An objecth created by thread contextc has escaped,
written escaped(c, h), if it is accessed by a different contextcv.
Complications involving unknown code, such as native methods,
could also be handled using this technique.

escaped(c, h) : − vP T(cv, , c, h), cv 6= c.

Conversely, an objecth created by contextc is captured, written
captured(c, h), if it has not escaped. Any captured object can be
allocated on a thread-local heap.

captured(c, h) : − vP T(c, v, c, h),¬escaped(c, h).

We can also use escape analysis to eliminate unnecessary syn-
chronizations. We define a relationsyncs(v) indicating if the pro-
gram contains a synchronization operation performed on variablev.
A synchronization for variablev under contextc is necessary, writ-
tenneededSyncs(c, v), if syncs(v) andv can point to an escaped
object.

neededSyncs(c, v) : − syncs(v), vP T(c, v, ch, h),
escaped(ch, h)

Notice thatneededSyncs is context-sensitive. Thus, we can
distinguish when a synchronization is necessary only for certain
threads, and generate specialized versions of methods for those
threads.

6. EXPERIMENTAL RESULTS
In this section, we present some experimental results of usingbd-

dbddb on the Datalog algorithms presented in this paper. We de-
scribe our testing methodology and benchmarks, present the anal-
ysis times, evaluate the results of the analyses, and provide some
insight on our experience of developing these analyses and thebd-
dbddb tool.

6.1 Methodology
The input tobddbddb is more or less the Datalog programs ex-

actly as they are presented in this paper. (We added a few rules

to handle return values and threads, and added annotations for the
physical domain assignments of input relations.) The input rela-
tions were generated with the Joeq compiler infrastructure[32]. The
entire bddbddb implementation is only 2500 lines of code.bd-
dbddb uses the JavaBDD library[31], an open-source library based
on the BuDDy library[21]. The entire system is available as open-
source[35], and we hope that others will find it useful.

All experiments were performed on a 2.2GHz Pentium 4 with
Sun JDK 1.4.204 running on Fedora Linux Core 1. For the context-
insensitive and context-sensitive experiments, respectively: we used
initial BDD table sizes of 4M and 12M; the tables could grow by
1M and 3M after each garbage collection; the BDD operation cache
sizes were 1M and 3M.

To test the scalability and applicability of the algorithm, we ap-
plied our technique to 21 of the most popular Java projects on
Sourceforge as of November 2003. We simply walked down the
list of 100% Java projects sorted by activity, selecting the ones that
would compile directly as standalone applications. They are all
real applications with tens of thousands of users each. As far as
we know, these are the largest benchmarks ever reported for any
context-sensitive Java pointer analysis. As a point of comparison,
the largest benchmark in the specjvm suite, javac, would rank only
13th in our list.

For each application, we chose an applicablemain() method as
the entry point to the application. We included all class initializers,
thread run methods, and finalizers. We ignored null constants in the
analysis—every points-to set is automatically assumed to include
null. Exception objects of the same type were merged. We treated
reflection and native methods as returning unknown objects. Some
native methods and special fields were modeled explicitly.

A short description of each of the benchmarks is included in Fig-
ure 3, along with their vital statistics. The number of classes, meth-
ods, and bytecodes were those discovered by the context-insensitive
on-the-fly call graph construction algorithm, so they include only
the reachable parts of the program and the class library.

The number of context-sensitive (C.S.) paths is for the most part
correlated to the number of methods in the program, with the excep-
tion of pmd. pmd has an astounding5×1023 paths in the call graph,
which requires 79 bits to represent. pmd has different characteristics
because it contains code generated by the parser generator JavaCC.
Many machine-generated methods call the same class library rou-
tines, leading to a particularly egregious exponential blowup. The
JavaBDD library only supports physical domains up to 63 bits; con-
texts numbered beyond263 were merged into a single context. The
large number of paths also caused the algorithm to require many
more rule applications to reach a fixpoint solution.

6.2 Analysis Times
We measured the analysis times and memory usage for each of

the algorithms presented in this paper (Figure 4). The algorithm
with call graph discovery, in each iteration, computes a call graph
based on the points-to relations from the previous iteration. The
number of iterations taken for that algorithm is also included here.

All timings reported are wall-clock times from a cold start, and
include the various overheads for Java garbage collection, BDD
garbage collection, growing the node table, etc. The memory num-
bers reported are the sizes of the peak number of live BDD nodes
during the course of the algorithm. We measured peak BDD mem-
ory usage by setting the initial table size and maximum table size
increase to 1MB, and only allowed the table to grow if the node
table was more than 99% full after a garbage collection.5

5To avoid garbage collections, it is recommended to use more mem-
ory. Our timing runs use the default setting of 80%.



Name Description Classes Methods Bytecodes Vars Allocs C.S. Paths
freetts speech synthesis system 215 723 48K 8K 3K 4 × 104

nfcchat scalable, distributed chat client 283 993 61K 11K 3K 8 × 106

jetty HTTP Server and Servlet container 309 1160 66K 12K 3K 9 × 105

openwfe java workflow engine 337 1215 74K 14K 4K 3 × 106

joone Java neural net framework 375 1531 92K 17K 4K 1 × 107

jboss J2EE application server 348 1554 104K 17K 4K 3 × 108

jbossdep J2EE deployer 431 1924 119K 21K 5K 4 × 108

sshdaemon SSH daemon 485 2053 115K 24K 5K 4 × 109

pmd Java source code analyzer 394 1971 140K 19K 4K 5 × 1023

azureus Java bittorrent client 498 2714 167K 24K 5K 2 × 109

freenet anonymous peer-to-peer file sharing system 667 3200 210K 38K 8K 2 × 107

sshterm SSH terminal 808 4059 241K 42K 8K 5 × 1011

jgraph mathematical graph-theory objects and algorithms 1041 5753 337K 59K 10K 1 × 1011

umldot makes UML class diagrams from Java code 1189 6505 362K 65K 11K 3 × 1014

jbidwatch auction site bidding, sniping, and tracking tool 1474 8262 489K 90K 16K 7 × 1013

columba graphical email client with internationalization 2020 10574 572K 111K 19K 1 × 1013

gantt plan projects using Gantt charts 1834 10487 597K 117K 20K 1 × 1013

jxplorer ldap browser 1927 10702 645K 133K 22K 2 × 109

jedit programmer’s text editor 1788 10934 667K 124K 20K 6 × 107

megamek networked BattleTech game 1265 8970 668K 123K 21K 4 × 1014

gruntspud graphical CVS client 2277 12846 687K 145K 24K 2 × 109

Figure 3: Information about the benchmarks we used to test our analyses.

The context-insensitive analyses (Algorithms 1 and 2) are re-
markably fast; the type-filtering version was able to complete in
under 45 seconds on all benchmarks. It is interesting to notice that
introducing type filtering actually improved the analysis time and
memory usage. Along with being more accurate, the points-to sets
are much smaller in the type-filtered version, leading to faster anal-
ysis times.

For Algorithm 3, the call graph discovery sometimes took over
40 iterations to complete, but it was very effective in reducing the
size of the call graph as compared to CHA[19]. The complexity of
the call graph discovery algorithm seems to vary with the number
of virtual call sites that need resolving—jedit and megamek have
many methods declared as final, but jxplorer has none, leading to
more call targets to resolve and longer analysis times.

The analysis times and memory usages of our context-sensitive
points-to analysis (Algorithm 5) were, on the whole, very reason-
able. It can analyze most of the small and medium size benchmarks
in a few minutes, and it successfully finishes analyzing even the
largest benchmarks in under 19 minutes. This is rather remarkable
considering that the context-sensitive formulation is solving up to
1014 times as many relations as the context-insensitive version! Our
scheme of numbering the contexts consecutively allows the BDD to
efficiently represent the similarities between calling contexts. The
analysis times are most directly correlated to the number of paths
in the call graph. From the experimental data presented here, it ap-
pears that the analysis time of the context-sensitive algorithm scales
approximately withO(lg2 n) wheren is the number of paths in
the call graph; more experiments are necessary to determine if this
trend persists across more programs.

The context-sensitive type analysis (Algorithm 6) is, as expected,
quite a bit faster and less memory-intensive than the context-
sensitive points-to analysis. Even though it uses the same number of
contexts, it is an order of magnitude faster than the context-sensitive
points-to analysis. This is because in the type analysis the number
of objects that can be pointed to is much smaller, which greatly
increases sharing in the BDD. The thread-sensitive pointer analy-
sis (Algorithm 7) has analysis times and memory usages that are
roughly comparable to those of the context-insensitive pointer anal-
ysis, even though it includes thread context information. This is

because the number of thread creation sites is relatively small, and
we use at most two contexts per thread.

6.3 Evaluation of Results
An in-depth analysis of the accuracy of the analyses with respect

to each of the queries in Section 5 is beyond the scope of this paper.
Instead, we show the results of two specific queries: thread escape
analysis (Section 5.6) and type refinement (Section 5.3).

The results of the escape analysis are shown in Figure 5. The
first two columns give the number of captured and escaped object
creation sites, respectively. The next two columns give the number
of unneeded and needed synchronization operations. The single-
threaded benchmarks have only one escaped object: the global ob-
ject from which static variables are accessed. In the multi-threaded
benchmarks, the analysis is effective in finding 30-50% of the al-
location sites to be captured, and 15-30% of the synchronization
operations to be unnecessary. These are static numbers; to fully
evaluate the results would require dynamic execution counts, which
is outside of the scope of this paper.

The results of the type refinement query are shown in Figure 6.
We tested the query across six different analysis variations. From
left to right, they are context-insensitive pointer analysis with-
out and with type filtering, context-sensitive pointer analysis and
context-sensitive type analysis with the context projected away,
and context-sensitive pointer and type analysis on the fully cloned
graph. Projecting away the context in a context-sensitive analysis
makes the result context-insensitive; however, it can still be more
precise than context-insensitive analysis because of the extra pre-
cision at the intermediate steps of the analysis. We measured the
percentages of variables that can point to multiple types and vari-
ables whose types can be refined.

Including the type filtering makes the algorithm strictly more
precise. Likewise, the context-sensitive pointer analysis is strictly
more precise than both the context-insensitive pointer analysis and
the context-sensitive type analysis. We can see this trend in the
results. As the precision increases, the percentage of multi-typed
variables drops and the percentage of refinable variables increases.
The context-insensitive pointer analysis and the context-sensitive
type analysis are not directly comparable; in some cases the point-



Context-insensitive pointers Context-sensitive Thread-sensitive
Name no type filter with type filter with cg discovery pointer analysis type analysis pointer analysis

time mem time mem iter time mem time mem time mem time mem
freetts 1 3 1 3 20 2 4 1 6 1 6 1 4
nfcchat 1 4 1 4 23 4 6 2 12 2 12 1 6
jetty 1 5 1 5 22 4 7 3 12 2 10 1 6
openwfe 1 5 1 6 23 5 8 4 14 2 14 1 7
joone 2 7 1 7 24 7 10 4 18 3 18 1 9
jboss 2 7 2 7 30 8 10 7 24 4 22 2 9
jbossdep 2 9 2 9 26 7 12 9 30 5 26 3 11
sshdaemon 2 9 2 10 26 13 14 12 34 6 28 3 13
pmd 1 7 1 7 33 9 10 297 111 19 36 1 9
azureus 2 10 2 10 29 13 15 9 32 6 30 2 12
freenet 7 16 5 16 40 41 23 21 38 10 32 6 21
sshterm 8 17 5 17 31 37 25 50 86 18 60 7 23
jgraph 17 27 11 25 42 78 37 119 134 33 20 13 35
umldot 17 30 11 29 34 97 43 457 304 63 130 16 41
jbidwatch 31 43 20 40 32 149 58 580 394 68 140 25 56
columba 43 55 27 49 42 273 73 807 400 123 178 38 72
gantt 41 59 26 51 39 261 76 1122 632 113 174 34 71
jxplorer 57 68 39 60 41 390 88 337 198 78 118 51 83
jedit 61 61 38 54 37 278 80 113 108 60 82 50 76
megamek 40 57 26 51 34 201 76 1101 600 100 224 34 73
gruntspud 66 76 41 67 35 389 99 312 202 86 130 58 95

Figure 4: Analysis times and peak memory usages for each of the benchmarks and analyses. Time is in seconds and memory is in
megabytes.

ers are more precise, in other cases the context-sensitive types are
more precise.

When we do not project away the context, the context-sensitive
results are remarkably precise—the percentage of multi-typed vari-
ables is never greater than 1% for the pointer analysis and 2% for the
type analysis. Projecting away the context loses much of the benefit
of context sensitivity, but is still noticeably more precise than using
a context-insensitive analysis.

heap objects sync operations
Name captured escaped ¬needed needed
freetts 2349 1 43 0
nfcchat 1845 2369 52 46
jetty 2059 2408 47 89
openwfe 3275 1 57 0
joone 1640 1908 34 75
jboss 3455 2836 112 105
jbossdep 1838 2298 32 94
sshdaemon 12822 22669 468 1244
pmd 3428 1 47 0
azureus 8131 9183 226 229
freenet 5078 9737 167 309
sshterm 16118 24483 767 3642
jgraph 25588 48356 1078 5124
umldot 38930 69332 2146 8785
jbidwatch 97234 143384 2243 11438
columba 111578 174329 3334 18223
gantt 106814 156752 2377 11037
jxplorer 188192 376927 4127 18904
jedit 446896 593847 7132 36832
megamek 179221 353096 3846 22326
gruntspud 248426 497971 5902 25568

Figure 5: Results of escape analysis.

6.4 Experience
All the experimental results reported here are generated usingbd-

dbddb. At the early stages of our research, we hand-coded every
points-to analysis using BDD operations directly and spent a con-
siderable amount of time tuning their performance. Our context-

numbering scheme is the reason why the analysis would finish at all
on even small programs. Every one of the optimizations described
in Section 2.4 was first carried out manually. After considerable ef-
fort, megamek still took over three hours to analyze, and jxplorer
did not complete at all. The incrementalization was very difficult
to get correct, and we found a subtle bug months after the imple-
mentation was completed. We did not incrementalize the outermost
loops as it would have been too tedious and error-prone. It was also
difficult to experiment with different rule application orders.

To get even better performance, and more importantly to make it
easier to develop new queries and analyses, we createdbddbddb.
We automated and extended the optimizations we have used in our
manual implementation, and implemented a few new ones to em-
pirically choose the best BDD library parameters. The end result is
that code generated bybddbddb outperforms our manually tuned
context-sensitive pointer analysis by as much as an order of magni-
tude. Even better, we could usebddbddb to quickly and painlessly
develop new analyses that are highly efficient, such as the type anal-
ysis in Section 5.5 and the thread escape analysis in Section 5.6.

7. RELATED WORK
This paper describes a scalable cloning-based points-to analysis

that is context-sensitive, field-sensitive, inclusion-based and imple-
mented using BDDs. Our program analyses, expressed in Datalog,
are translated bybddbddb into a BDD implementation automati-
cally. We also presented example queries using our system to check
for vulnerabilities, infer types, and find objects that escape a thread.
Due to space constraints, we can only describe work that is very
closely related to ours.

Scalable pointer analyses. Most of the scalable algorithms pro-
posed are context-insensitive and flow-insensitive. The first scalable
pointer analysis proposed was a unification-based algorithm due to
Steensgaard[28]. Das et al. extended the unification-based approach
to include “one-level-flow”[10] and one level of context sensitiv-
ity[11]. Subsequently, a number of inclusion-based algorithms have
been shown to scale to large programs[3, 17, 19, 33].

A number of context-sensitive but flow-insensitive analyses have
been developed recently[15, 16]. The C pointer analysis due to



Context-insensitive pointers Projected context-sensitive Context-sensitive
Name no type filter with type filter pointer analysis type analysis pointer analysis type analysis

multi refine multi refine multi refine multi refine multi refine multi refine
freetts 5.1 41.1 2.3 41.6 2.0 41.9 2.5 41.3 0.1 44.4 0.3 44.0
nfcchat 12.4 36.4 8.6 37.0 8.2 37.4 8.6 36.9 0.1 45.9 0.7 45.3
jetty 12.6 36.2 7.7 37.1 7.3 37.4 7.7 37.1 0.1 45.4 0.6 44.8
openwfe 12.1 36.9 7.0 37.7 6.6 38.0 7.0 37.6 0.1 45.5 0.5 44.8
joone 11.9 37.5 6.8 38.1 6.4 38.4 6.7 38.1 0.1 45.8 0.5 45.0
jboss 13.4 37.8 7.9 38.7 7.4 39.3 7.8 38.7 0.1 47.3 0.7 46.4
jbossdep 10.2 40.3 7.4 39.5 7.0 40.0 7.5 39.4 0.2 47.6 0.8 46.6
sshdaemon 10.7 39.3 6.0 40.3 5.8 40.5 5.9 40.4 0.1 46.8 0.6 46.1
pmd 9.6 42.3 6.2 43.1 5.9 43.4 6.2 43.1 0.1 52.1 0.6 48.1
azureus 10.0 43.6 6.1 44.1 6.0 44.3 6.2 44.1 0.1 50.8 0.9 49.7
freenet 12.1 39.1 6.3 40.0 5.9 40.5 6.3 40.1 0.1 47.0 0.8 46.0
sshterm 14.7 40.8 8.9 42.0 8.5 42.5 9.0 42.1 0.6 51.3 1.6 49.9
jgraph 16.1 43.2 9.6 45.1 9.3 45.4 9.7 45.2 0.7 54.7 1.9 53.2
umldot 15.7 42.3 9.4 43.6 9.0 43.9 9.4 43.6 0.6 53.0 2.0 51.2
jbidwatch 14.9 42.3 8.6 43.4 8.2 43.7 8.6 43.4 0.6 52.0 1.7 50.5
columba 15.7 42.3 9.0 43.7 8.6 44.1 8.9 43.9 0.6 52.4 1.8 51.0
gantt 15.0 43.4 8.2 44.7 7.9 45.0 8.2 44.7 0.5 53.0 1.7 51.4
jxplorer 15.2 43.1 7.9 44.3 7.7 44.6 8.0 44.4 0.5 52.5 1.6 50.8
jedit 15.4 43.6 8.1 44.7 7.9 44.9 8.1 44.7 0.6 53.1 1.6 51.5
megamek 13.3 44.6 7.1 45.1 6.8 45.3 7.2 45.2 0.5 53.3 1.4 51.6
gruntspud 15.4 44.0 7.7 45.5 7.5 45.7 7.8 45.5 0.5 53.6 1.4 52.1

Figure 6: Results of the type refinement query. Numbers are percentages. Columns labeled multi and refine refer to multi-type
variables and refinable-type variables, respectively.

Fähndrich et al.[15] has been demonstrated to work on a 200K-line
gcc program. Unlike ours, their algorithm is unification-based and
field-independent, meaning that fields in a structure are modeled as
having the same location. Their context-sensitive analysis discov-
ers targets of function pointers on-the-fly. Our algorithm first com-
putes the call graph using a context-insensitive pointer alias analy-
sis; there are significantly more indirect calls in Java programs, the
target of our technique, due to virtual method invocations. Their al-
gorithm uses CFL-reachability queries to implement context sensi-
tivity[24]. Instead of computing context-sensitive solutions on de-
mand, we compute all the context-sensitive results and represent
them in a form convenient for further analysis.

Other context-sensitive pointer analysis. Some of the earlier
attempts of context-sensitive analysis are flow-sensitive[14, 18, 34,
37]. Our analysis is similar to the work by Emami et al. in that
they also compute context-sensitive points-to results directly for all
the different contexts. Their analysis is flow-sensitive; ours uses
flow sensitivity only in summarizing each method intraprocedurally.
While our technique treats all members of a strongly connected
component in a call graph as one unit, their technique only ignores
subsequent invocations in recursive cycles. On the other hand, their
technique has only been demonstrated to work for programs under
3000 lines.

As discussed in Section 1, using summaries is another common
approach to context sensitivity. It is difficult to compute a compact
summary if a fully flow-sensitive result is desired. One solution is
to use the concept of partial transfer functions, which create sum-
maries for observed calling contexts[36, 37]. The same summary
can be reused by multiple contexts that share the same relevant alias
patterns. This technique has been shown to handle C programs up
to 20,000 lines.

One solution is to allow only weak updates[34]; that is, a write to
a variable only adds a value to the contents of the variable without
removing the previously held value. This greatly reduces the power
of a flow-sensitive analysis. This approach has been used to handle
programs up to 70,000 lines of code. However, on larger programs
the representation still becomes too large to deal with. Because the
goal of the prior work was escape analysis, it was not necessary to

maintain precise points-to relations for locations that escape, so the
algorithm achieved scalability by collapsing escaped nodes.

BDD-based pointer analysis. BDDs have recently been used
in a number of program analyses such as predicate abstraction[2],
shape analysis[23, 38], and, in particular, points-to analysis[3, 39].
Zhu proposed a summary-based context-sensitive points-to analysis
for C programs, and reported preliminary experimental results on
C programs with less than 5000 lines[39]. Berndl et al. showed
that BDDs can be used to compute context-insensitive inclusion-
based points-to results for large Java programs efficiently. In the
same conference this paper is presented, Zhu and Calman describe
a cloning-based context-sensitive analysis for C pointers, assuming
that only the safe C subset is used. The largest program reported in
their experiment has about 25,000 lines and3× 108 contexts[40].

High-level languages and tools for program analysis. The
use of Datalog and other logic programming languages has previ-
ously been proposed for describing program analyses[12, 25, 30].
Ourbddbddb system implements Datalog using BDDs[35] and has
been used to compute context-sensitive points-to results and other
advanced analyses. Other examples of systems that translate pro-
gram analyses and queries written in logic programming languages
into implementations using BDDs include Toupie[9] and Croco-
Pat[4]. Jedd is a Java language extension that provides a relational
algebra abstraction over BDDs[20].

8. CONCLUSION
This paper shows that, by using BDDs, it is possible to obtain

efficient implementations of context-sensitive analyses using an ex-
tremely simple technique: We clone all the methods in a call graph,
one per context of interest, and simply apply a context-insensitive
analysis over the cloned graph to get context-sensitive results. By
numbering similar contexts contiguously, the BDD is able to handle
the exponential blowup of contexts by exploiting their commonal-
ities. We showed that this approach can be applied to type infer-
ence, thread escape analysis and even fully context-sensitive points-
to analysis on large programs.

This paper shows that we can create efficient BDD-based anal-
yses easily. By keeping data and analysis results as relations, we



can express queries and analyses in terms of Datalog. Thebddb-
ddb system we have developed automatically converts Datalog pro-
grams into BDD implementations that are even more efficient than
those we have painstakingly hand-tuned.

Context-sensitive pointer analysis is the cornerstone of deep pro-
gram analysis for modern programming languages. By combining
(1) context-sensitive points-to results, (2) a simple approach to con-
text sensitivity, and (3) a simple logic-programming based query
framework, we believe we have made it much easier to create ad-
vanced program analyses.
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