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Chapter 2

Syntax

since feeling is first
who pays any attention
to the syntax of things
will never wholly kiss you;
. . .
for life’s not a paragraph

And death i think is no parenthesis

— e e cummings

In the area of programming languages, syntax refers to the form of programs
— how they are constructed from symbolic parts. A number of theoretical and
practical tools — including grammars, lexical analyzers, and parsers — have
been developed to aid in the study of syntax. By and large we will downplay
syntactic issues and tools. Instead, we will emphasize the semantics of programs;
we will study the meaning of language constructs rather than their form.

We are not claiming that syntactic issues and tools are unimportant in the
analysis, design, and implementation of programming languages. In actual pro-
gramming language implementations, syntactic issues are very important and a
number of standard tools (like Lex and Yacc) are available for addressing them.
But we do believe that syntax has traditionally garnered much more than its
fair share of attention, largely because its problems were more amenable to so-
lution with familiar tools. This state of affairs is reminiscent of the popular tale
of the person who searches all night long under a street lamp for a lost item
not because the item was lost there but because the light was better. Luckily,
many investigators strayed away from the street lamp of parsing theory in order
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18 CHAPTER 2. SYNTAX

to explore the much dimmer area of semantics. Along the way, they developed
many new tools for understanding semantics, some of which we will focus on in
later chapters.

Despite our emphasis on semantics, however, we can’t ignore syntax com-
pletely. Programs must be expressed in some form, preferably one that elucidates
the fundamental structure of the program and is easy to read, write, and reason
about. In this chapter, we introduce a set of syntactic conventions for describing
our mini-languages.

2.1 Abstract Syntax

We will motivate various syntactic issues in the context of EL, a mini-language
of expressions. EL describes functions that map any number of numerical inputs
to a single numerical output. Such a language might be useful on a calculator,
say, for automating the evaluation of commonly used mathematical formulae.

Figure 2.1 describes (in English) the abstract structure of a legal EL pro-
gram. EL programs contain numerical expressions, where a numerical expression
can be constructed out of various kinds of components. Some of the components,
like numerals, references to input values, and various kinds of operators, are
primitive — they cannot be broken down into subparts.1 Other components
are compound — they are constructed out of constituent components. The
components have names; e.g., the subparts of an arithmetic operation are the
rator (short for “operator”) and two rands, (short for “operands”) while the
subparts of the conditional expression are the test, the consequent, and the
alternate.

There are three major classes of phrases in an EL program: whole programs
that designate calculations on a given number of inputs, numerical expressions
that designate numbers, and boolean expressions that designate truth values
(i.e., true or false). The structural description in Figure 2.1 constrains the ways
in which these expressions may be “wired together”. For instance, the test
component of a conditional must be a boolean expression, while the consequent
and alternate components must be numerical expressions.

A specification of the allowed wiring patterns for the syntactic entities of a
language is called a grammar. Figure 2.1 is said to be an abstract grammar
because it specifies the logical structure of the syntax but does not give any
indication how individual expressions in the language are actually written.

The structure determined by an abstract grammar for an individual program
phrase can be represented by an abstract syntax tree (AST). Consider an EL

1Numerals can be broken down into digits, but we will ignore this detail.
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2.1. ABSTRACT SYNTAX 19

A legal EL program is a pair of (1) a numargs numeral specifying the number of
parameters and (2) a body that is a numerical expression, where a numerical expression
is either:

• an intlit — an integer numeral num;

• an input — a reference to one of the program inputs specified by an index
numeral.

• an arithmetic operation — an application of a rator, in this case a binary arith-
metic operator, to two numerical rand expressions, where an arithmetic operator
is either

– addition,

– subtraction,

– multiplication,

– division,

– remainder;

• a conditional expression— a choice between numerical consequent and alternate
expressions determined by a boolean test expression, where a boolean expression
is either

– a boollit — a boolean literal bool;

– a relational operation — an application of rator, in this case a binary
relational operator, to two numerical rand expressions, where a relational
operator is one of

∗ less-than,
∗ equal-to,
∗ greater-than;

– a logical operation — an application of a rator, in this case a binary logical
operator, to two boolean rand expressions, where a logical operator is one
of

∗ and,
∗ or.

Figure 2.1: An abstract grammar for EL programs.
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20 CHAPTER 2. SYNTAX

program that returns zero if its first input is between 1 and 10 (exclusive) and
otherwise returns the product of the second and third inputs. The abstract
syntax tree for this program appears in Figure 2.2. Each node of the tree
corresponds to a numerical or boolean expression. The leaves of the tree stand
for primitive phrases, while the intermediate nodes represent compound phrases.
The labeled edges from a parent node to its children show the relationship
between a compound phrase and its components. The AST is defined purely in
terms of these relationships; the particular way that the nodes and edges of a
tree are arranged on the page is immaterial.
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Figure 2.2: An abstract syntax tree for an EL program.

2.2 Concrete Syntax

Abstract grammars and ASTs aren’t very helpful when it comes to representing
programs in a textual fashion.2 The same abstract structure can be expressed in

2It is also possible to represent programs more pictorially, and visual programming languages
are an active area of research. But textual representations enjoy certain advantages over visual
ones: they tend to be more compact than visual representations; the technology for processing
them and communicating them is well-established; and, most importantly, they can effectively
make use of our familiarity with natural language.
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many different concrete forms. The sample EL conditional expression considered
above, for instance, could be written down in some strikingly different textual
forms. Here are three examples:

• if $1 > 1 && $1 < 10 then 0 else $2 * $3 endif

• (cond ((and (> (arg 1) 1) (< (arg 1) 10))

0)

(else (* (arg 2) (arg 3))))

• 1 input 1 gt 1 input 10 lt and {0} {2 input 3 input mul} choose

The above forms differ along a variety of dimensions:

• Keywords and operation names. The keywords if, cond, and choose all
indicate a conditional expression, while multiplication is represented by
the names * and mul. Accessing the ith input to the program is written
in three different ways: $i, (arg i), and i input.

• Operand order. The example forms use infix, prefix, and postfix opera-
tions, respectively.

• Means of grouping. Grouping can be determined by precedence (&& has
a lower precedence than > and < in the first example), keywords (then,
else, and endif delimit the test, consequent, and alternate of the first
conditional), or explicit matched delimiter pairs (such as the parentheses
and braces in the last two examples).

These are only some of the possible dimensions; many more are imaginable. For
instance, numbers could be written in many different numeral formats: e.g.,
decimal, binary, or octal numerals, scientific notation, or even roman numerals!

The above examples illustrate that the nature of concrete syntax necessitates
making representational choices that are arbitrary with respect to the abstract
syntactic structure. These choices are explicitly encoded in a concrete gram-
mar that specifies how to parse a linear text string into a concrete syntax
tree (CST). A concrete syntax tree has the structural relationships of an ab-
stract syntax tree embedded within it, but it is complicated by the handling of
details needed to make the textual layout readable and unambiguous.

2.3 S-Expression Grammars Specify ASTs

While we will dispense with many of the complexities of concrete syntax, we
still need some concrete notation for representing abstract syntax trees. Such
a representation should be simple, yet permit us to precisely describe abstract
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syntax trees and operations on such trees. Throughout this book, we need to
operate on abstract syntax trees to determine the meaning of a phrase, the type
of a phrase, the translation of a phrase, and so on. To perform such operations,
we need a far more compact representation for abstract syntax trees than the
English description in Figure 2.1 or the graphical one in Figure 2.2.

We have chosen to represent abstract syntax trees using s-expression gram-
mars. An s-expression grammar unites Lisp’s fully parenthesized prefix nota-
tion with traditional grammar notations to describe the structure of abstract
syntax trees via parenthesized sequences of symbols and meta-variables. Not
only are these grammars very flexible for definining unambiguous program lan-
guage syntax, but it is easy to construct programs that process s-expression no-
tation. This facilitates writing interpreters and compilers for the mini-languages
we will study.

2.3.1 S-Expressions

An s-expression (short for symbolic expression) is a Lisp notation for rep-
resenting trees by parenthesized linear text strings. The leaves of the trees are
symbolic tokens, where (to first approximation) a symbolic token is any se-
quence of characters that does not contain a left parenthesis (‘(’), a right paren-
thesis (‘)’), or a whitespace character. Examples of symbolic tokens include x,
foo, this-is-a-token, 17, 6.821, and 4/3*pi*r^2.3

An intermediate node in a tree is represented by a pair of parentheses sur-
rounding the s-expressions that represent the subtrees. Thus, the s-expression

((this is) an ((example) (s-expression tree)))

designates the structure depicted in Figure 2.3. Whitespace is necessary for
separating tokens that appear next to each other, but can be used liberally to
enhance the readability of the structure. Thus, the above s-expression could also
be written as

((this is)

an

((example)

(s-expression

tree)))

without changing the structure of the tree.

3We always write s-expressions in teletype-font.
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this is

an

example s-expression tree

Figure 2.3: Viewing ((this is) an ((example) (s-expression tree))) as
a tree.

2.3.2 The Structure of S-Expression Grammars

An s-expression grammar combines the domain notation of Appendix A with
s-expressions to specify the syntactic structure of a language. It has two parts:

1. A listing of syntactic domains, one for each kind of phrase.

2. A set of production rules that define the structure of compound phrases.

Figure 2.4 presents a sample s-expression grammar for EL.
A syntactic domain is a class of program phrases. Primitive syntactic do-

mains are collections of phrases with no substructure. The primitive syntactic
domains of EL are Intlit, BooleanLiteral, ArithmeticOperator, RelationalOp-
erator, and LogicalOperator. Primitive syntactic domains are specified by an
enumeration of their elements or by an informal description with examples. For
instance, the details of what constitutes a numeral in EL are pretty much left
to the reader’s intuition.

Compound syntactic domains are collections of phrases built out of other
phrases. Because compound syntactic domains are defined by a grammar’s pro-
duction rules, the syntactic domain listing does not explicitly indicate their
structure. All syntactic domains are annotated with domain variables (such as
NE , BE , and N) that range over their elements; these play an important role
in the production rules.

The production rules specify the structure of compound domains. There is
one rule for each compound domain. A production rule has the form

domain-variable ::= pattern [phrase-type]
| pattern [phrase-type]
. . .
| pattern [phrase-type]

where
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Syntactic Domains:

P ∈ Program
NE ∈ NumExp
BE ∈ BoolExp
N ∈ Intlit = {-2, -1, 0, 1, 2, . . .}
B ∈ BooleanLiteral = {true, false}
A ∈ ArithmeticOperator = {+, -, *, /, %}
R ∈ RelationalOperator = {<, =, >}
L ∈ LogicalOperator = {and, or}

Production Rules:

P ::= (el Nnumargs NE body) [Program]

NE ::= Nnum [IntLit]
| (arg Nindex) [Input]
| (Arator NE rand1 NE rand2) [Arithmetic Operation]
| (if BE test NE consequent NEalternate) [Conditional]

BE bool ::= B [BoolLit]
| (Rrator NE rand1 NE rand2) [Relational Operation]
| (Lrator BE rand1 BE rand2) [Logical Operation]

Figure 2.4: An s-expression grammar for EL.
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• domain-variable is the domain variable for the compound syntactic domain
being defined,

• pattern is an s-expression pattern (defined below), and

• phrase-type is a mnemonic name for the subclass of phrases in the domain
that match the pattern. It corresponds to the labels of intermediate nodes
in an AST.

Each line of the rule is called a production; it specifies a collection of phrases
that are considered to belong to the compound syntactic domain being defined.
The second production rule in Figure 2.4, for instance, has four productions
specifying that a NumExp can be an integer literal, an indexed input, an arith-
metic operation, or a conditional.

An s-expression pattern appearing in a production stands for the domain of
all s-expressions that have the form of the pattern. S-expression patterns are like
s-expressions except that domain variables may appear as tokens. For example,
the pattern (if BE test NE consequent NEalternate) contains the domain variables
BE test , NE consequent , and NEalternate . Such a pattern specifies the structure of a
compound phrase — a phrase that is built from other phrases. Subscripts on
the domain variables indicate their role in the phrase. This helps to distinguish
positions within a phrase that have the same domain variable — e.g., the con-
sequent and alternate of a conditional, which are both numerical expressions.
This subscript appears as an edge label in the AST node corresponding to the
pattern, while the phrase type of the production appears as the node label. So
the if pattern denotes an AST node pattern of the form:

Conditional

BE

test

NE

consequent

NE

alternate

An s-expression pattern P is said tomatch an s-expression SX if P’s domain
variables d1, . . ., dn can be replaced by matching s-expressions SX 1 , . . ., SX n

to yield SX . Each SX i must be an element of the domain over which di ranges.
A compound syntactic domain contains exactly those s-expressions that match
the patterns of its productions in an s-expression grammar.

For example, Figure 2.5 shows the steps by which the NumExp production

(if BE test NE consequent NEalternate)

matches the s-expression

(if (= (arg 1) 3) (arg 2) 4).
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Matching is a recursive process: BE test matches (= (arg 1) 3), NE consequent

matches (arg 2), and NE alternate matches 4. The recursion bottoms out at
primitive syntactic domain elements (in this case, elements of the domain Intlit).
Figure 2.5 shows how an AST for the sample if expression is constructed as the
recursive matching process backs out of the recursion.

Note that the pattern (if BE test NE consequent NEalternate) would not match
any of the s-expressions (if 1 2 3), (if (arg 2) 2 3), or (if (+ (arg 1) 1) 2 3),

because none of the test expressions 1, (arg 2), or (+ (arg 1) 1) match any
of the patterns in the productions for BoolExp.

More formally, the rules for matching an s-expression pattern to an s-
expression are as follows:

• A symbolic token T in the pattern matches only T.

• A domain variable for a primitive syntactic domain D matches an s-
expression SX only if SX is an element of D.

• A domain variable for a compound syntactic domain D matches an s-
expression SX only if one of the patterns in the rule for D matches SX .

• A pattern (P1 . . .Pn)matches an s-expression (SX 1 . . .SX n) only if each
subpattern Pi matches the corresponding subexpression SX i .

We shall use the notation s-expD to designate the domain element in D that
an s-expression designates. When D is a compound domain, s-expD corresponds
to an abstract syntax tree that indicates how s-exp matches one of the rule
patterns for the domain. For example,

(if (and (> (arg 1) 1) (< (arg 1) 10)) 0 (* (arg 2) (arg 3)))NumExp

can be viewed as the abstract syntax tree depicted in Figure 2.2 on page 20.
Each node of the AST indicates the production that successfully matches the
corresponding s-expression, and each edge indicates a domain variable that ap-
peared in the production pattern. The nodes are labeled by the phrase type of
the production and the edges are labeled by the subscript names of the domain
variables used in the production pattern.

In the notation s-expD , domain subscript D serves to disambiguate cases
where s-exp belongs to more than one syntactic domain. For example, 1Intlit is
1 as a primitive numeral, while 1NumExp is 1 as a numerical expression. The
subscript will be omitted when the domain is clear from context.
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Figure 2.5: The steps by which (if (= (arg 1) 3) (arg 2) 4) is determined
to be a member of the syntactic domain NumExp. In each row, an s-expression
matches a domain by a production to yield an abstract syntax tree.
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2.3.3 Phrase Tags

S-expression grammars for our mini-languages will generally follow the Lisp-style
convention that compound phrases begin with a phrase tag that unambiguously
indicates the phrase type. In EL, if is an example of a phrase tag. The fact
that all compound phrases are delimited by explicit parentheses eliminates the
need for syntactic keywords in the middle of or at the end of phrases (e.g., then,
else, and endif in a conditional).

Because phrase tags can sometimes be cumbersome, we will often omit them
when no ambiguity results. Figure 2.6 shows an alternative syntax for EL in
which every production is marked with a distinct phrase tag. In this alternative
syntax, the addition of 1 and 2 would be written (arith + (num 1) (num 2))

— quite a bit more verbose than (+ 1 2)! But most of the phrase tags can be
removed without introducing ambiguity. Because numerals are clearly distin-
guished from other s-expressions, there is no need for the num tag. Likewise, we
can dispense with the bool tag. Since the arithmetic operators are disjoint from
the other operators, the arith tag is superfluous; similarly for the rel and log

tags. The result of these optimizations is the original EL syntax in Figure 2.4.

P ::= (el Nnumargs NE body) [Program]

NE ::= (num Nnum) [IntLit]
| (arg Nindex) [Input]
| (arith Arator NE rand1 NE rand2) [Arithmetic Operation]
| (if BE test NE consequent NE alternate) [Conditional]

BE ::= (bool B) [Truth Value]
| (rel Rrator NE rand1 NE rand2) [Relational Operation]
| (log Lrator BE rand1 BE rand2) [Logical Operation]

Figure 2.6: An alternative syntax for EL in which every production has a phrase
tag.

2.3.4 Sequence Patterns

As defined above, each component of an s-expression pattern matches only s-
expressions. But sometimes it is desirable for a pattern component to match se-
quences of s-expressions. For example, suppose we want to extend the + operator
of EL to accept an arbitrary number of numeric operands (making (+ 1 2 3 4)

and (+ 2 (+ 3 4 5) (+ 6 7)) legal numerical expressions in EL). Using the
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simple patterns introduced above, this extension requires an infinite number of
productions:

NE ::= . . .
| (+) [Addition-0]
| (+ NE rand1) [Addition-1]
| (+ NE rand1 NE rand2) [Addition-2]
| (+ NE rand1 NE rand2 NE rand3) [Addition-3]
| . . .

Here we introduce a concise way of handling this kind of syntactic flexibility
within s-expression grammars. We extend s-expression patterns so that any
pattern can be annotated with a postfix ‘*’ character. Such a pattern is called a
sequence pattern. A sequence pattern P* matches any consecutive sequence
of zero or more s-expressions SX 1 . . . SX n such that each SX i matches the
pattern P.

For instance, the extended addition expression can be specified concisely by
the pattern (+ NE rand*). Here are some phrases that match this new pattern,
along with the sequence matched by NE rand* in each case:

(+ 1 2 3 4) NE rand*= [1, 2, 3, 4]NumExp
(+ 2 (+ 3 4 5) (+ 6 7)) NE rand*= [2, (+ 3 4 5), (+ 6 7)]NumExp
(+ 1) NE rand*= [1]NumExp
(+) NE rand*= [ ]NumExp

Note that a sequence pattern can match any number of elements, including zero
or one. To specify that an addition should have a minimum of two operands,
we could use the following pattern:

(+ NE rand1 NE rand2 NE rest*).

A postfix ‘+’ is similar to ‘*,’ except the pattern matches a sequence with at
least one element. Thus, (+ NE rand

+) is equivalent to (+ NE rand NE rest*).
A postfix ‘*’ or ‘+’ can be attached to any s-expression pattern, not just a

domain variable. For example, in the s-expression pattern

(cond (BE test NEaction)* (else NE default)),

the subpattern (BE test NEaction)* matches any sequence of parenthesized clauses
containing a boolean expression followed by a numerical expression.

To avoid ambiguity, s-expression grammars are not allowed to use s-expression
patterns in which multiple sequence patterns enable a single s-expression to
match a pattern in more than one way. As an example of a disallowed pat-
tern, consider (op NE rand1 * NE rand2 *), which could match the s-expression
(op 1 2) in three different ways:

• NE rand1*= [1, 2]NumExp and NE rand2*= []NumExp
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• NE rand1*= [1]NumExp and NE rand2 *= [2]NumExp

• NE rand1*= []NumExp and NE rand2*= [1, 2]NumExp.

A disallowed pattern can always be transformed into a legal pattern by inserting
explicit parentheses to demarcate components. For instance, the following are
all unambiguous legal patterns:

(op (NE rand1*) (NE rand2*))

(op (NE rand1*) NE rand2*)

(op NE rand1* (NE rand2*)).

2.3.5 Notational Conventions

In addition to the s-expression patterns described above, we will employ a few
other notational conventions for syntax.

Domain Variables

In addition to being used in s-expression patterns, domain variables can appear
inside s-expressions when they denote particular s-expression. For example, if
NE1 is the s-expression (+ 1 2) and NE 2 is the s-expression (- 3 4), then
(* NE1 NE2) is the same syntactic entity as (* (+ 1 2) (- 3 4)).

Sequence Notation

Sequence notation, including the infix notations for the cons (‘.’) and append
(‘@’) sequence functions (see Section A.3.4), can be intermixed with s-expression
notation to designate sequence elements of compound syntactic domains. For
example, all of the following are alternative ways of writing the same extended
EL addition expression:

(+ 1 2 3)

(+ [1, 2, 3])

(+ [1, 2] @ [3])

(+ 1 . [2, 3])

Similarly, if NE 1 = 1, NE2*= [2, (+ 3 4)], and NE 3 *= [(* 5 6), (- 7 8)],
then (+ NE1 . NE 2*) designates the same syntactic entity as

(+ 1 2 (+ 3 4)),

and (+ NE2 * @ NE3*) designates the same syntactic entity as

(+ 2 (+ 3 4) (* 5 6) (- 7 8)).
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The sequence notation is only legal in positions where a production for a
compound syntactic domain contains a sequence pattern. For example, the fol-
lowing notations are illegal because if expressions do not contain any component
sequences:

(if [(< (arg 1) 1), 2, 3])

(if [(< (arg 1) 1), 2] @ [3])

(if (< (arg 1) 1) . [2, 3]).

Sequence notation can be used in s-expression patterns as well. For example,
the pattern

(+ NE rand1 . NE rest*)

matches any addition expression with at least one operrand. The pattern

(+ NE rands1* @ NE rands2*)

can match an addition expression with any number of operands. If the expression
has one or more arguments, the match is ambiguous (and therefore disallowed,
see page 29) since there are multiple ways to bind NE rands1 * and NE rands2 * to
sequences that append to the argument sequence.

Syntactic Functions

We will follow a convention (standard in the semantics literature) that functions
on compound syntactic domains are defined by a series of clauses, one for each
production. Figure 2.7 illustrates this style of definition for two functions on EL
expressions: nheight specifies the height of a numerical expression, while bheight
specifies the height of a boolean expression. Each clause consists of two parts:
a head that specifies an s-expression pattern from a production; and a body that
describes the meaning of the function for s-expressions that match the head
pattern. The double brackets, [[ ]], are traditionally used in syntactic functions
to demarcate a syntactic argument, and thus to clearly separate expressions in
the language being defined (program code, for example) from the language of the
semantics. These brackets may be viewed as part of the name of the syntactic
function.

Functions on syntactic domains are formally maps from s-expressions to a
result domain. However, for all intents and purposes, they can also be viewed as
maps from abstract syntax trees to the result domain. Each clause of a syntactic
function definition specifies how the function at the node of an AST is defined
in terms of the result of applying this function to the components of the AST.
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nheight : NumExp→ Nat
nheight[[NE ]] = 0
nheight[[(arg NE )]] = 0
nheight[[(A NE1 NE2)]] = (1+ (max nheight[[NE 1 ]] nheight[[NE 2 ]]))
nheight[[(if BE test NE con NEalt)]]
= (1+ (max bheight[[BE test ]] (max nheight[[NE con ]] nheight[[NEalt ]])))

bheight : BoolExp→ Nat
bheight[[B]] = 0
bheight[[(R NE1 NE2)]] = (1+ (max nheight[[NE 1 ]] nheight[[NE 2 ]]))
bheight[[(L BE1 BE 2)]] = (1+ (max bheight[[BE 1 ]] bheight[[BE 2 ]]))

Figure 2.7: Two examples illustrating the form of function definitions on syn-
tactic domains.

2.4 The Syntax of PostFix

Equipped with our syntactic tools, we are now ready to formally specify the
syntactic structure of PostFix, the stack language introduced in Section 1.4,
and to explore some variations on this structure. Figure 2.8 presents an s-
expression grammar for PostFix. Top-level programs are represented as s-
expressions of the form (postfix Nnumargs Qbody), where Nnumargs is a numeral
specifying the number of arguments andQbody is the command sequence executed
by the program. The sequence pattern C* in the production for Commands
(Q) indicates that it is a sequence domain over elements from the Command
domain. Most of the elements of Command (C) are single tokens (e.g., add

and sel), except for executable sequences, which are parenthesized elements
of the Commands domain. The mutually recursive structure of Command and
Commands permits arbitrary nesting of executable sequences.

The concrete details specified by Figure 2.8 are only one way of capturing
the underlying abstract syntactic structure of the language. Figure 2.9 presents
an alternative s-expression grammar for PostFix. In order to avoid confusion,
we will refer to the language defined in Figure 2.9 as PostFix2.

There are two main differences between the grammars of PostFix and
PostFix2.

1. The PostFix2 grammar strictly adheres to the phrase tag convention in-
troduced in Section 2.3.3. That is, every element of a compound syntactic
domain appears as a parenthesized structure introduced by a unique tag.
For example, 1 becomes (int 1), pop becomes (pop), and add becomes
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P ∈ Program
Q ∈ Commands
C ∈ Command
A ∈ ArithmeticOperator = {add, sub, mul, div, rem}
R ∈ RelationalOperator = {lt, eq, gt}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
P ::= (postfix Nnumargs Qbody) [Program]

Q ::= C* [Command Sequence]

C ::= N [IntLit]
| pop [Pop]
| swap [Swap]
| A [Arithmetic Operator]
| R [Relational Operator]
| nget [NumGet]
| sel [Select]
| exec [Execute]
| (Q) [Executable Sequence]

Figure 2.8: An s-expression grammar for PostFix.

(arithop add).4

2. Rather than representing command sequences as a sequence domain, Post-
Fix2 uses the : and (skip) commands to encode such sequences. (skip)
is intended to be a “no op” command that leaves the stack unchanged,
while (: C1 C2) is intended first to perform C1 on the current stack and
then to perform C2 on the stack resulting from C1 . The : and (skip)
commands in PostFix2 serve the roles of consCommand and [ ]Command in
PostFix. For example, the PostFix command sequence

[1, 2, add]Command = (cons 1 (cons 2 (cons add [ ]Command)))

can be encoded in PostFix2 as a single command:

(: (int 1) (: (int 2) (: (arithop add) (skip)))).

The difference in phrase tags is a surface variation in concrete syntax that
does not affect the structure of abstract syntax trees. Whether sequences are ex-
plicit (the original grammar) or implicit (the alternative grammar) is a deeper

4the arithop keyword underscores that the arithmetic operators are related; similarly for
relop.
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P ∈ Program
C ∈ Command
A ∈ ArithmeticOperator = {add, sub, mul, div, rem}
R ∈ RelationalOperator = {lt, eq, gt}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
P ::= (postfix Nnumargs Cbody) [Program]

C ::= (int N) [IntLit]
| (pop) [Pop]
| (swap) [Swap]
| (arithop A) [Arithmetic Operator]
| (relop R) [Relational Operator]
| (nget) [NumGet]
| (sel) [Select]
| (exec) [Execute]
| (seq C) [Executable Sequence]
| (: C1 C2) [Compose]
| (skip) [Skip]

Figure 2.9: An s-expression grammar for PostFix2, an alternative syntax for
PostFix.

variation because the abstract syntax trees differ in these two cases (see Fig-
ure 2.10).

Although the tree structures are similar, it is not a priori possible to deter-
mine that the second tree encodes a sequence without knowing more about the
semantics of compositions and skips. In particular, : and (skip) must satisfy
two behavioral properties in order for them to encode sequences:

• (skip)must be an identity for :. I.e., (: C (skip)) and (: (skip) C)
must behave like C.

• : must be associative. I.e., (: C1 (: C2 C3)) must behave the same
as (: (: C1 C2) C3).

These two properties amount to saying that (1) skips can be ignored and (2) in a
tree of compositions, only the order of the leaves matters. With these properties,
any tree of compositions is isomorphic to a sequence of the non-skip leaves. The
informal semantics of : and (skip) given above satisfies these two properties.

Is one of the two grammars presented above “better” than the other? It
depends on the context in which they are used. As the following example indi-
cates, the PostFix grammar certainly leads to programs that are more concise
than those generated by the PostFix2 grammar:
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Program

Command

Sequence

commands

Integer

Literal

com1

1

Integer

Literal

com2

2

Arithmetic

Operator

com3

add

Program

Compose

command

Integer

Literal

com1

1

Compose

com2

Integer

Literal

com1

2

Compose
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com1
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(a) AST for PostFix program (b) AST for PostFix2 program

Figure 2.10: A comparison of the abstract syntax trees for two encodings of a
PostFix program.

; PostFix
(postfix 1 (1 2 add) (3 4 mul) sel exec)

; PostFix2
(postfix2 1

(: (seq (: (int 1) (: (int 2) (: (arithop add)

(skip)))))

(: (seq (: (int 3) (: (int 4) (: (arithop mul)

(skip)))))

(: (sel)

(: (exec) (skip))))))

Additionally, we shall see that the explicit sequences of PostFix make it more
amenable to certain kinds of semantic analysis. On the other hand, other se-
mantic and pragmatic tools are easier to apply to PostFix2 programs. Though
we will focus on the PostFix grammar, we will consider PostFix2 when it
is instructive to do so. In any event, the reader should be aware that even
the fairly constrained boundaries of s-expression grammars leave some room for
design decisions.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

36 CHAPTER 2. SYNTAX

Reading

The notion of abstract syntax is due to McCarthy [McC62]. This notion is
commonly used in operational and denotational semantics to ignore unimportant
syntactic details (see the references in Chapters 3–4). Interpreters and compilers
often have a “front-end” stage that converts concrete syntax into explicit data
structures representing abstract syntax trees.

Our s-expression grammars are based on McCarthy’s Lisp s-expression no-
tation [McC60], which is a trivially parsable generic and extensible concrete
syntax for programming languages. Many tools — most notably Lex [Les75]
and Yacc [Joh75] — are available for converting more complex concrete syn-
tax into abstract syntax trees. A discussion of these tools, and the scanning
and parsing theory behind them, can be found in almost any compiler text-
book. For a particularly concise account, consult one of Appel’s textbooks
[App98b, App98a, AP02].


