
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Chapter 8

State

Man’s yesterday may ne’er be like his morrow;
Nought may endure but Mutability

— Mutability, st. 4, Percy Bysshe Shelley

I woke up one morning and looked around the room. Something
wasn’t right. I realized that someone had broken in the night before
and replaced everything in my apartment with an exact replica. I
couldn’t believe it...I got my roommate and showed him. I said, “Look
at this — everything’s been replaced with an exact replica!” He said,
“Do I know you?”

— Steven Wright

8.1 What is State?

8.1.1 Time, State, Identity, and Change

We naturally view the world around us in terms of objects. Each object is
characterized by a set of attributes that can vary with time. The state of an
object is the set of particular attributes it has at a given point in time. For
example, the state of a box of chocolates includes its size, shape, color, location,
whether its lid is on or off, and the number, types, and positions of the chocolates
inside.

Every object has a unique, time-independent attribute that distinguishes it
from other objects: its identity. The notion of identity is at the very heart of

313

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

314 CHAPTER 8. STATE

objectness, for it formalizes the intuition that objects exist over extents of time
rather than just at instants of time. Identity allows us to say that an object
at one point in time is the “same” as that at another point, regardless of any
changes of state that may have taken place in between. It also gives us a way of
saying that two objects with otherwise indistinguishable states are “different.”

Consider our box of chocolates again. If we open the lid, the state of the
box has changed, but we still consider it to be the same box of chocolates. Even
after we eat all the goodies inside, we think that the box has become empty, not
that we have a different box of chocolates.

On the other hand, suppose we leave an unopened box of chocolates on the
kitchen table one day and find an unopened box there the next day. We are
likely to assume that it’s the same box. However, a housemate might later
confess to consuming the entire original box in a fit of the munchies, but then
buying a replacement box after feeling pangs of guilt. In light of this confession,
we concede that the box on the table is not the same as the one we bought, even
though, from our perspective, its state is indistinguishable from that of the box
we left there the day before.

How could we monitor similar situations in the future without the help of
explicit confessions? Before placing an unopened box of chocolates on the table
we could alter the box in some irreversible way. The next day we could check
if the box on the table had the same alteration. If the box on the table the
next day does not exhibit the alteration, we are sure that the new box is not
the same as the original. If it does have the alteration, we aren’t 100% sure
(our housemate might have diabolically copied our alteration, or a new box by
chance might exhibit the same alteration), but there is reasonable evidence that
the box is in fact the same one we left the previous day.

This example emphasizes that the notions of time, state, identity, and change
are all inextricably intertwined.1 The purpose of this chapter is to see how these
notions are expressed in a computational framework. We shall see that state and
its friends provide new ways to decompose problems but can greatly complicate
reasoning about programs.

8.1.2 FL Does Not Support State

Computing with time-varying state-based entities is an extremely popular pro-
gramming paradigm, both in traditional imperative languages, such as For-
tran, Cobol, Pascal, C, and Adaas well as in object-oriented languages
like SmallTalk, C++, C#, and Java. We shall call such languages stateful.

1For a further discussion of this philosophical point in a computational framework, see
Chapter 3 of [ASS96].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 315

One reason that stateful languages are so popular is that they resonate with the
experience that many programmers have in interacting with objects that change
over time in the world. At the opposite side of the spectrum are stateless
languages like the so-called purely functional programming languages such as
Haskell and Miranda. Mostly functional languages are those, like Com-
mon Lisp, Scheme, and ML, that add stateful features on top of a stateless
function-oriented core.

The FL language we have studied thus far is a stateless language – it provides
no support for expressing computational objects with identity and state. In par-
ticular, neither variables nor data structures (pairs) may exhibit time-dependent
behavior. To underscore this point, we will show the difficulties encountered in
modeling a classic example of state – bank accounts – within FL. The goal is to
implement the following bank account procedures in FL:

• (make-account amount): Creates an account with amount as the initial
balance.

• (balance account): Returns the balance in account.

• (deposit! amount account): If amount is non-negative, increases the
balance of account by amount and returns the symbol succeeded. If
amount is negative, leaves the balance unchanged and returns the sym-
bol failed.

• (withdraw! amount account): If amount is less than or equal to the bal-
ance of account, decreases the balance of account by amount, and returns
the symbol succeeded. If amount is negative or is greater than the balance
of account, leaves the balance unchanged and returns the symbol failed.

We adopt the convention that names of procedures that change the state of an
object (such as deposit! and withdraw!) end in the ‘!’ character (pronounced
“bang”).

Note that the specifications of deposit! and withdraw! indicate not only
what value the procedures return (in both cases, one of the symbols succeeded
or failed) but also what effect the procedure has on the state of the account
(increasing or decreasing the balance). Even make-account has the effect of
updating the banking system to include a new account. Such changes in state are
referred to as side effects ormutations. In programming languages supporting
state, the specification of a procedure includes both its return value and its side
effects.2

2This is true for languages like Scheme and C in which procedure calls are expressions —

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

316 CHAPTER 8. STATE

It turns out that it is impossible to write a set of FL procedures that
satisfy the above specifications. We will demonstrate this fact by studying a
nullary (i.e., zero-argument) procedure test-deposit! that performs the fol-
lowing steps in order:

• create an account acct with a balance of 100;

• determine the balance bal of acct;

• deposit 17 dollars into acct;

• determine the new balance bal ′ of acct;

• return the difference bal ′ − bal.

In a stateful language, (test-deposit!) should return 17. However, we can
show that in FL test-deposit! must return 0!

If we try to write test-deposit! in FL, we immediately run into a stumbling
block. The specified actions are clearly ordered by time, but FL provides no
explicit construct for specifying that expressions should be evaluated in any
particular order. To get around this problem, we assume the existence of a
construct (begin E1 E2) that evaluates E1 before E2 . Since all FL expressions
must return a value, we dictate that the value returned by a begin expression is
the value of E2 . The formal semantics of begin are specified by the operational
rewrite rules and the denotational valuation clause in Figure 8.1.

Operational Semantics

(begin V E)⇒E [begin-return]

E1 ⇒E1
′

(begin E1 E2)⇒ (begin E1
′ E2)

[begin-progress]

Denotational Semantics

E [[(begin E1 E2)]] =λe . (with-value (E [[E1]] e) (λv . (E [[E2]] e)))

Figure 8.1: Operational and denotational semantics of begin.

Using begin, we can write test-deposit! in FL as follows:

constructs that appear in value-accepting contexts. But in many languages, procedure calls
are commands — constructs that do not produce values but are executed for effect only. In
such languages, procedure specifications do not describe a return value.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 317

(define test-deposit!

(lambda ()

(let ((acct (make-account 100)))

(let ((old (balance acct)))

(begin (deposit! 17 acct)

(- (balance acct) old))))))

The abstraction can be translated into FLK as follows:

(proc ignore

(call (proc acct

(call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct)))

(call make-account 100)))

We can now use our semantics frameworks to show that the FLK call

(call test-deposit! #u)

must evaluate to 0 regardless of how deposit! is defined. We will assume a
CBN version of FLK; since termination is not an issue here, the result will be
the same for CBV.

An operational trace of (call test-deposit! #u) appears in Figure 8.2.
Note the three copies of the expression (call make-account 100) generated
by substitution. In FL’s operational semantics, an expression representing a
data structure for all intents and purposes is the data structure. Since the
second operand of deposit! and the operand of the two calls of balance are
syntactically distinct copies of the make-account expression, any operations
performed by deposit! can’t possibly affect the operands of the balance calls.
If we make the assumption that

(call balance (call make-account 100))
∗⇒ 100

(this would seem to be required of any reasonable bank account implementation),
then the trace shows that (test-deposit!) indeed evaluates to 0.

Denotational semantics offers another perspective on this example. Recall
that FL’s valuation function E maps expressions and environments to expressible
values. If an environment econtext is specified, then a given expression must
always denote the same meaning relative to econtext because E is a mathematical
function. Suppose that e1 is an environment in which acct is bound to a
representation of an account with a balance of b dollars (b need not be 100).
Then the following must be true:

(E [[(call balance acct)]] e1) = b

Now consider the meaning of the following expression Ecore with respect to e1 :

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

318 CHAPTER 8. STATE

(call (proc ignore

(call (proc acct

(call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct)))

(call make-account 100)))

#u)

⇒ (call (proc acct

(call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct)))

(call make-account 100))

⇒ (call (proc old

(begin (call (call deposit! 17) (call make-account 100))

(primop - (call balance (call make-account 100))

old)))

(call balance (call make-account 100)))

⇒ (begin (call (call deposit! 17) (call make-account 100))

(primop -

(call balance (call make-account 100))

(call balance (call make-account 100))))
∗⇒ (primop -

(call balance (call make-account 100))

(call balance (call make-account 100)))
∗⇒ (primop - 100 100)

⇒ 0

Figure 8.2: Operational trace showing that (call test-deposit! #u) evalu-
ates to 0.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 319

Ecore = (call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct))

This expression contains two occurrences of (call balance acct) that are eval-
uated in environments containing the same binding for acct. So both of these
occurrences denote the same number b. But then the meaning of old is clearly
b, so the meaning of

(primop - (call balance acct) old)

must be 0. Thus, we have shown that Ecore denotes 0, regardless of which
account is denoted by acct. So (test-deposit!) must also denote 0.

In both the operational and denotational analyses, the fundamental insight
is that (test-deposit!) returns the difference of two occurrences of the expres-
sion (call balance acct), and these must necessarily have the same value. A
language in which distinct occurrences of any expression always have the same
meaning within a given naming context is said to be referentially transpar-
ent. Of course, the notion of “naming context” needs to be fully specified.
Intuitively, two occurrences of an expression are in the same naming context if
they share the same Stoy diagram — i.e., if every occurrence of a free identifier in
one refers to the same binding occurrence as the corresponding identifier in the
other. Stateless languages, such as our mini-language FL and the real language
Haskell, are referentially transparent, while stateful languages are not.

Referential transparency is a property that we frequently use in mathematical
reasoning in the form of “substituting equals for equals.” But it is seriously at
odds with the notions of state and time. State is predicated on the idea that
observable properties of an object can change. But if we make the reasonable
assumption that a property of an object can be accessed by applying a single-
argument procedure to that object (as in (balance acct) above), referential
transparency dictates that all occurrences of such an expression within a given
environment must denote the same value. Thus, the observable properties of
an object cannot change. And if changes to the state of objects cannot be
observed, how meaningful is it to talk about one action happening before or
after another? We shall have more to say about referential transparency and
state in Section 8.2.5.

Finally, suppose we actually try to write the definition of deposit! in FL.
What kind of difficulties do we run into? Below is a skeleton for such a procedure:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

320 CHAPTER 8. STATE

(define deposit!

(lambda (amount account)

(if (< amount 0)

’failed

(begin EIncreaseBalance
’succeeded))))

The body of deposit! returns the right value (one of the symbols failed or
succeeded). But how do we write EIncreaseBalance? By the same reasoning used
above, no FL expression can possibly alter the state of the account. Obviously,
we are missing something. Shortly, we will introduce constructs that allow us
to fill in the blanks here, and we will explore how the semantics of FL needs to
be changed to accommodate their introduction.

But before we do that, consider the following. Since FL is a universal lan-
guage, it is capable of expressing any computation. So surely examples such as
the bank account scenario must be expressible within FL, albeit not necessarily
in a way that corresponds to our intuitions about the physical world. Next, we’ll
examine some ways in which state can be simulated in FL. The purpose of this
exploration is to give us insight into the nature of state. Later, we will be able
to apply what we learn to the semantics for our modified dialect of FL.

8.1.3 Simulating State In FL

8.1.3.1 Iteration

The simulation of state in FL is exemplified by the handling of iteration. An
iteration is a computation that characterizes the state of a system in terms of
the values of a set of variables known as its state variables. The value of each
state variable in an iteration at time t is a function of the values of the state
variables at time t− 1.

As an example of an iteration, consider the problem of reversing the order
of cards in a deck of playing cards. A natural solution is to use two piles, called
old and new, where old is initially the original deck and new is an empty pile.
Then, one by one, cards can be moved from the old pile to the new pile until the
old pile is empty. At this point, the new pile contains the reversed deck of cards.
In this example the state variables are the (ordered) contents of the old and new
piles. These two variables completely characterize the state of the system. If a
person performing the reversal for some reason had to leave before completing
the task, someone else could take over as long as it was apparent which was the
old pile and which was the new.

It is straightforward to express iterations in FL. For example, the above

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 321

technique can be applied to list reversal as follows:

(define reverse

(lambda (lst)

(letrec ((iterate

(lambda (old-pile new-pile)

(if (null? old-pile)

new-pile

(iterate (cdr old-pile)

(cons (car old-pile) new-pile)))))))

(iterate lst ’())))

In this case, the state variables are the arguments old-pile and new-pile to
the internal procedure iterate. For example, here is a trace of the reversal of a
three-element list (where REVERSE and ITERATE stand for the appropriate
expressions):

(REVERSE (list 1 2 3))
∗⇒ (ITERATE (list 1 2 3) (list))
∗⇒ (ITERATE (list 2 3) (list 1))
∗⇒ (ITERATE (list 3) (list 2 1))
∗⇒ (ITERATE (list) (list 3 2 1))
∗⇒ (list 3 2 1)

The above example suggests a general approach for expressing iterations in
FL. State variables simply become the arguments to an iterating procedure, and
updating the state variables is expressed by calling the iterating procedure on
values computed from the previous values of the state variables.

Note carefully how an iteration manages to circumvent the constraints of
referential transparency to represent state and time. The state at any point in
time is represented by the values of formal parameter names associated with a
particular application of the iterating procedure. In the list reversal example,
the state variables correspond to the formal parameters old-pile and new-pile.
The value of a particular variable named old-pile or new-pile never changes.
However, each application of the iterate procedure effectively creates new vari-
ables that happen to be named by these same identifiers. So for each point in
time t, there are distinct variables old-pilet and new-pilet . State is encoded
not as the changing value of a variable, but rather as the values of a sequence
of immutable variables.

Events in time are ordered by the only means available for ordering in a
stateless language: data dependency. If the value of E1 is needed to compute E2 ,
then E2 is said to have a data dependency on E1 . In the list reversal example,
since old-pilet is equal to (cdr old-pilet−1), it has a data dependency on

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

322 CHAPTER 8. STATE

old-pilet−1 ; new-pilet is dependent on both old-pilet−1 and new-pilet−1 .
Data dependencies can be interpreted as a kind of time: if E2 depends on the
result of E1 , it is natural to view the evaluation of E1 as happening before the
evaluation of E2 .

8.1.3.2 Single-Threaded Data Flow

Iteration is an instance of a general technique for simulating state in a stateless
language. State can always be simulated by adding state variables both as
arguments and return values to every procedure in a program whose body either
accesses or changes the state variables. The state of the program upon entering
a procedure is encoded in the values of the state variable arguments, and the
state of the program upon exiting a procedure is encoded in the values of the
state variables returned as results. Because state is based on a notion of linearly-
ordered time, we must guarantee that the data dependencies among the state
variables form a linear chain. State variables satisfying this constraint are said
to be passed through the program in a single-threaded fashion.

From this perspective, the problem with the bank account procedures is that
the state of the system is not appropriately threaded through calls to these pro-
cedures. Suppose the state of the banking system is modeled by an entity called
a bank-state. Then we can simulate state with the bank account procedures by
extending each procedure to accept an additional bank-state argument and to
return a pair of its usual return value and a (potentially updated) bank-state.

Suppose that every bank account bears a unique account number. Then we
can represent a bank-state as a list of account-number/current-balance pairs. For
example, the bank-state [〈1729 , 200 〉, 〈6821 , 17 〉] indicates that account 1729
has a current balance of 200 dollars and account 6821 has a current balance
of 17 dollars. We will allow the same account number to appear more than
once in a bank-state; in this case, the leftmost pair with a given account num-
ber indicates the current balance of that account. For example, in bank-state
[〈6821 , 52 〉, 〈1729 , 200 〉, 〈6821 , 17 〉], account 6821 has 52 dollars.

Here is an implementation of the deposit! procedure in this approach:

(define deposit!

(lambda (amount account bank-state)

(if (< amount 0)

(pair ’failed bank-state)

(let ((old&bank1 (balance account bank-state)))

(let ((old (left old&bank1))

(bank1 (right old&bank1)))

(pair ’succeeded

(cons (pair account (+ old amount)) bank1)))))))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 323

We assume that accounts are represented by their account numbers and that
balance has been similarly modified to accept and return a bank-state. When
it succeeds, deposit! creates a new bank state by prepending a new account-
number/current-balance pair to the old one. A bank-state can be threaded
through make-account3, balance, and withdraw! in a similar fashion.

The test-deposit! procedure can also be modified to take a bank-state and
thread it through each of the bank account operations:

(define test-deposit!

(lambda (bank)

(let ((acct&bank1 (make-account 100 bank)))

(let ((acct (left acct&bank1))

(bank1 (right acct&bank1)))

(let ((old&bank2 (balance acct bank1)))

(let ((old (left old&bank2))

(bank2 (right old&bank2)))

(let ((sym&bank3 (deposit! 17 acct bank2)))

(let ((sym (left sym&bank3))

(bank3 (right sym&bank3)))

(let ((new&bank4 (balance acct bank3)))

(let ((new (left new&bank4))

(bank4 (right new&bank4)))

(pair (- new old)

bank4)))))))))))

Given any initial bank-state, the new version of test-deposit! will return a
pair of 17 (the desired result) and an updated bank-state.

¤ Exercise 8.1 Provide definitions of make-account, balance, and withdraw! in

which a bank-state is single-threaded through each procedure. ¢

¤ Exercise 8.2 It is only necessary to single-thread a store through procedures that
may update the store. For procedures that only access the store without updating it, it
is sufficient to pass the store as an argument; such a procedure need not return a store
as its result. An example of such a procedure is balance, which reads the balance of a
bank account but does not write it.

• Write a version of balance that takes an account and a bank-state and returns
only the balance of the account.

• Modify the state-simulating definitions of deposit! and test-deposit! to use

3make-account must also create a new, previously unused account number. Asking the
caller to specify the number is an option, but it is better to include the next available account
number as part of the bank state. If we don’t care about wasting computational resources, we
can compute a fresh account number from the current bank-state representation by adding 1

to the largest account number in the bank.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

324 CHAPTER 8. STATE

the new version of balance. ¢

8.1.3.3 Monadic Style

The bank-state threading details make the test-deposit! code hard to read,
but some well-chosen abstractions can significantly increase readability. It helps
to have a with-pair procedure that decomposes a pair into its component parts
and passes these to a receiver procedure that names them:

(define with-pair

(lambda (pair receiver)

(receiver (left pair) (right pair))))

Using with-pair, test-deposit! can be simplified as follows:

(define test-deposit!

(lambda (bank)

(with-pair (make-account 100 bank)

(lambda (acct bank1)

(with-pair (balance acct bank1)

(lambda (old bank2)

(with-pair (deposit! 17 acct bank2)

(lambda (sym bank3)

(with-pair (balance acct bank3)

(lambda (new bank4)

(pair (- new old) bank4)))))))))))

Readability can be increased even further by hiding the threading of the
bank-state altogether. Suppose that we define an action as any procedure that
takes a bank-state and returns a pair of a value and a bank-state. In order
to perform an action, we apply the action to a bank-state, which returns a
value/bank-state pair. Such actions can be glued together by the after proce-
dure in Figure 8.3, which takes a first action and a procedure that maps the value
from performing the first action to a second action and returns a single action
that performs the first action followed by the second. The figure also contains
a return procedure that converts a value into an action and curried versions of
make-account, balance, and deposit! that return actions when supplied with
their non-bank-state arguments. With these abstractions, the test-deposit!

procedure can be composed using four occurrences of after and one return

(Figure 8.4).

This final version of test-deposit! illustrates a technique for threading
state through a program that is known as monadic style. This style is based
on gluing together state-threading components like the bank account actions in

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 325

(define after

(lambda (action receiver)

(lambda (bank)

(with-pair (action bank)

(lambda (val bank1)

((receiver val) bank1))))))

(define return

(lambda (val)

(lambda (bank) (pair val bank))))

(define *make-account

(lambda (amount)

(lambda (bank) (make-account amount bank))))

(define *deposit!

(lambda (amount acct)

(lambda (bank) (deposit! amount acct bank))))

(define *balance

(lambda (acct)

(lambda (bank) (balance acct bank))))

Figure 8.3: Procedures supporting a monadic style of threading bank-states
through a program.

(define test-deposit!

(after (*make-account 100)

(lambda (acct)

(after (*balance acct)

(lambda (old)

(after (*deposit! 17 acct)

(lambda (sym)

(after (*balance acct)

(lambda (new)

(return (- new old)))))))))))

Figure 8.4: A version of test-deposit! written in monadic style.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

326 CHAPTER 8. STATE

a way that hides the details of the “plumbing.” We have already seen monadic
style in the denotational semantics of FL in Section 6.5. There, the Compu-
tation domain and functions like with-value are used to hide the messy details
of propagating errors. In Section 8.2.4, we will extend the Computation do-
main to include a threaded store. By changing the meanings of a few functions
like with-value, it is possible to thread the state through the semantics without
changing many of the existing valuation functions. This illustrates the power of
the monadic style.

In stateless languages, monadic style is commonly used to express stateful
computations. The awkwardness of using a combiner like after can be avoided
by syntactic sugar. For example, Haskell supports a “do notation” in which
the bank account testing function can be written as:

testDeposit =

do a <- makeAccount 100

b1 <- balance a

deposit 17 a

b2 <- balance a

return (b2-b1)

As we shall see, this notation is not far from the way that stateful computations
are expressed in stateful languages.

The name “monadic style” is derived from an algebraic structure, themonad,
that captures the essence of manipulating state-threading components. For more
information on monads and how monadic style can be used to express stateful
computations in stateless languages like Haskell, see [Wad95] and [JW93].

8.1.4 Imperative Programming

The bank account example demonstrates how it is possible to simulate state
within a stateless language. However, even in monadic style, such simulations
can be cumbersome. An alternative strategy is to develop a language paradigm
that abstracts over the notion of state in such a way that the details of single-
threading are automatically managed by the language. This is the essence of
the imperative programming paradigm. In the imperative paradigm, all
program state is conceptually bundled into a single entity called a store that
is implicitly single-threaded through the program execution. Elements of the
store are addressed by locations, unique identifiers that serve as unchanging
names for time-dependent values. In the bank account example, bank-states
correspond to stores and account numbers correspond to locations.

The advantage of the imperative programming paradigm is that programs
can be shorter and more modular when the details of single-threading are im-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 327

plicitly handled by the language. However, implicit single-threading has a down
side: making explicit state variables implicit destroys referential transparency
and thus makes programs harder to reason about.

The rest of this chapter explores how to model languages that exhibit state.
We will see that the notions of store, location, and single-threading crop up in
both operational and denotational descriptions of stateful languages.

8.2 Mutable Data: FL!

8.2.1 Mutable Cells

A one-slot cons is called a cell,
A two-slot cons makes pairs as well.
But I would bet a coin of bronze
There isn’t any three-slot cons.

— Guy L. Steele, Jr.

Data structures whose components can change over time are said to be mu-
table. The simplest kind of mutable data is the mutable cell, a data structure
characterized by a single time-dependent value called its content. A mutable
cell corresponds to a one-slot cons cell in Scheme or a pointer variable in lan-
guages like C and Pascal. We will study mutable data in the context of FL!,
a version of FL that supports mutable cells. We will use CBV as the default
evaluation strategy for FL! because, as we shall see later, it makes more sense
than CBN in languages that support mutation.

We begin by extending CBV FLK with features for supporting mutable cells.
The modified kernel, FLK!, has the following syntax:

EFLK ! ::= . . . [FLK expressions]
| (cell Econtent) [Cell]
| (begin Esequent1 Esequent2) [Begin]

O ∈ PrimopFLK ! = PrimopFLK ∪ {cell-ref, cell-set!, cell=?, cell?}

Here is an informal description of the extensions:

• (cell E) returns a new mutable cell whose initial content is the value of E.
We shall write cells as id:val, where id is a number that uniquely identifies
the cell, and val is the content of the cell. In the following example, the
expression allocates a cell with id number 1729 and content 3:

(cell (+ 1 2)) −−−−FLK!→ 1729:3

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

328 CHAPTER 8. STATE

• (primop cell-ref E) fetches the content of the cell computed by E. If
the value of E is not a cell, this expression yields an error.

(primop cell-ref (cell (+ 1 2))) −−−−FLK!→ 3

(primop cell-ref (+ 1 2)) −−−−FLK!→ error:not-a-cell

• (primop cell-set! E1 E2) stores the value of E2 in the cell computed
by E1 . If the value of E1 is not a cell, this expression yields an error.
Since every FLK! expression must return a value, we shall arbitrarily
specify that the value returned by a cell assignment expression is the unit
value.

(primop cell-set! (cell (+ 1 2)) 4) −−−−FLK!→ unit

• (primop cell=? E1 E2) returns true if E1 and E2 evaluate to the same
cell and false if they evaluate to different cells. If at least one of E1 or E2

is not a cell, the expression yields an error.

(let ((c1 (cell 1))

(c2 (cell 1)))

(let ((c3 c1))

(list (primop cell=? c1 c1)

(primop cell=? c1 c2)

(primop cell=? c1 c3)))) −−−−FLK!→ [true, false , true]

• (primop cell? E) returns true if E evaluates to a cell and false if it eval-
uates to some other value.

(pair (primop cell? 0) (primop cell? (cell 0))) −−−−FLK!→ 〈false , true〉

• (begin E1 E2) first evaluates E1 , then evaluates E2 , and then returns
the value of E2 . The value of E1 is discarded.

(call (proc c

(begin (primop cell-set! c 4)

(primop cell-ref c)))

(cell (+ 1 2)))

−−−−FLK!→ 4

FL! is built on top of the kernel provided by FLK!. It has the same syntax
as FL except that it includes the cell construct and a version of begin that
can have an arbitrary number of sequents.

EFL! ::= . . . [FL expressions]
| (cell E) [Cell]
| (begin Esequent*) [Begin]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 329

The extended begin construct is defined by the following desugarings:

Dexp[[(begin)]] = #u

Dexp[[(begin E)]] = Dexp[[E]]

Dexp[[(begin E1 E2 Erest*)]] =

(begin Dexp[[E1]] Dexp[[(begin E2 Erest*)]])

This is the first time we’ve seen a sugar construct that has the same phrase
tag as a kernel construct. This situation is common in practice. Of course,
the desugaring for such a construct must guarantee that the general sugar form
rewrites to the more restricted kernel form.

Like other primitive operator names, cell-ref and cell-set! are standard
identifiers in FL!, where, respectively, they stand for procedures that access the
content of a cell and change the content of a cell. Because these names are
verbose, we will also introduce shorter synonyms in the standard environment:
the name ^ is a synonym for cell-ref, and := is a synonym for cell-set!.

8.2.2 Examples of Imperative Programming

The imperative programming paradigm is characterized by the use of side effects
to perform computations. Because it is equipped with mutable cells, FL! sup-
ports the imperative paradigm. In this section, we present a few FL! programs
that illustrate the imperative programming style.

8.2.2.1 Factorial

Here is an imperative version of an iterative factorial procedure written in FL!:

(define factorial

(lambda (n)

(let ((num (cell n))

(ans (cell 1)))

(letrec ((loop

(lambda ()

(if (= (cell-ref num) 0)

(cell-ref ans)

(begin

(cell-set! ans (* (cell-ref num)

(cell-ref ans)))

(cell-set! num (- (cell-ref num) 1))

(loop))))))

(loop)))))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

330 CHAPTER 8. STATE

num and ans are cells that serve as the state variables of the iteration. The
nullary loop procedure corresponds to a while loop in traditional imperative
languages. On each round through the loop, the contents of the state vari-
ables are updated appropriately. The loop terminates when the content of num
becomes zero.

It is instructive to compare the imperative version to a purely functional
version:

(define factorial

(lambda (n)

(letrec ((loop (lambda (num ans)

(if (= num 0)

ans

(loop (- num 1) (* num ans))))))

(loop n 1))))

In the functional version, every call to loop creates a new pair of variables named
num and ans. In contrast, the imperative version shares one num and one ans

variable across all the calls to loop. The correctness of the imperative version de-
pends crucially on the order of the assignment expressions (cell-set! ans . . .)
and (cell-set! num . . .). If these expressions are swapped, then the impera-
tive factorial no longer computes the right answer. This bug is due purely to
the time-based nature of the imperative paradigm; the functional version does
not exhibit the potential for this bug since all expressions have time-independent
values. This illustrates one of the dangers of imperative programming: since
many dependencies are implicit rather than explicit, subtle bugs are more likely,
and they are harder to locate.

8.2.2.2 Bank Accounts

Using mutable cells, it is straightforward to implement the bank account scenario
introduced in Section 8.1.2 and examined further in Section 8.1.3.

(define make-account

(lambda (amount)

(if (< amount 0)

’failed

(cell amount))))

(define balance

(lambda (account) (cell-ref account)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 331

(define deposit!

(lambda (amount account)

(if (< amount 0)

’failed

(begin

(cell-set! account (+ amount (cell-ref account)))

’succeeded))))

(define withdraw!

(lambda (amount account)

(let ((bal (cell-ref account)))

(if (or (< amount 0) (> amount bal))

’failed

(begin

(cell-set! account (- bal amount))

’succeeded)))))

Each account is represented by a distinct cell, and the bank account operations
examine and change the content of this cell. Figure 8.5 shows the transcript of
an interpreter session testing bank account objects.

(define a (make-account 100))

(define b (make-account 100))

(balance a) −−−FL!→ 100
(balance b) −−−FL!→ 100

(deposit! 17 b) −−−FL!→ ′succeeded

(balance a) −−−FL!→ 100
(balance b) −−−FL!→ 117

(deposit! 23 a) −−−FL!→ ′succeeded
(deposit! -23 b) −−−FL!→ ′failed
(withdraw! 120 a) −−−FL!→ ′succeeded
(withdraw! 120 b) −−−FL!→ ′failed

(balance a) −−−FL!→ 3
(balance b) −−−FL!→ 117

Figure 8.5: Sample interactions with bank account objects.

While it is natural to represent accounts directly as cells, it is also somewhat
insecure to do so. Every account should maintain the invariant that the balance

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

332 CHAPTER 8. STATE

never slips below zero. But if an account is just a cell, then it is possible to
violate this invariant by using cell-set! to directly store a negative number
into an account. In general, it is wise to package up mutable data in a way that
guarantees that important invariants cannot be violated (either accidentally or
maliciously) by some other part of a software system.

First-class procedures provide an elegant means of encapsulating state so
that it can only be manipulated in constrained ways. Figure 8.6 presents an
alternate implementation in which bank accounts are represented as procedures
that dispatch a message. The advantage to this approach is that the procedure
provides a security wall for accessing and updating the account balance. In
particular, the alternate implementation guarantees that the balance can never
fall below zero.

8.2.2.3 Pattern Matching Revisited

The pattern matcher presented in Section 6.2.4.3 passes a dictionary through
the computation in a single-threaded fashion. This means that the time-based
sequence of dictionary values can alternately be represented as the changing
content of a mutable cell. Figure 8.7 presents an imperative version of the
match-sexp procedure that is based on this idea. (Procedures not defined in
the figure are assumed to be the same as before.)

The match-with-dict procedure from Section 6.2.4.3 has been replaced by
the internal match! procedure. Rather than taking a dictionary as its third ar-
gument, match! implicitly takes the current value of dict-cell as its argument.
The failed-flag cell is used to simplify the handling of unsuccessful pattern
matches.

8.2.3 An Operational Semantics for FLK!

In order to model the state exhibited by FLK!, we will use the notions of a
location and a store introduced above. A location is a unique identifier for a
mutable entity, and a store is a structure that associates each location with its
value at a particular point in time. There are many ways to represent locations
and stores. In our operational treatment, we will represent locations as numeric
literals and stores as a sequence of location/value pairs:

L ∈ Location = Nat
S ∈ Store = Assignment*
Z ∈ Assignment = Location×ValueExp

We will assume the existence of a partial function get that finds the first
value associated with a location in a store:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 333

(define make-account

(lambda (amount)

(if (< amount 0)

’failed

(let ((account (cell amount)))

(lambda (message)

(cond ((sym=? message ’balance)

(cell-ref account))

((sym=? message ’deposit!)

(lambda (amount)

(if (< amount 0)

’failed

(begin

(cell-set! account

(+ amount (cell-ref account)))

’succeeded))))

((sym=? message ’withdraw!)

(lambda (amount)

(let ((bal (cell-ref account)))

(if (or (< amount 0) (> amount bal))

’failed

(begin

(cell-set! account (- bal amount))

’succeeded)))))))))))

(define balance (lambda (account) (account ’balance))

(define deposit!

(lambda (amount account) ((account ’deposit!) amount)))

(define withdraw!

(lambda (amount account) ((account ’withdraw!) amount)))

Figure 8.6: A message passing implementation of bank accounts.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

334 CHAPTER 8. STATE

;;; Imperative version of the MATCH-SEXP program. Procedures not defined

;;; here are the same as before.

(define match-sexp

(lambda (pat sexp)

(let ((dict-cell (cell (dict-empty)))

(failed-flag (cell #f)))

(letrec ((match!

;; MATCH! sets FAILED-FLAG true upon failure, and

;; updates the content of the DICT-CELL otherwise.

;; It always returns unit.

(lambda (pat sexp)

(cond

((failed-flag?) #u)

((null? pat)

(if (null? sexp)

#u

(fail!)))

((null? sexp) (fail!))

((pattern-constant? pat)

(if (sexp=? pat sexp) #u (fail!)))

((pattern-variable? pat)

(dict-bind! (pattern-variable-name pat) sexp))

(else

(begin (match! (car pat) (car sexp))

(match! (cdr pat) (cdr sexp)))))))

(failed-flag? (lambda () (cell-ref failed-flag)))

(fail! (lambda () (cell-set! failed-flag #t)))

(dict-bind!

(lambda (sym sexp)

(let ((new-dict (dict-bind

pat sexp (cell-ref dict-cell))))

(if (failed? new-dict)

(fail!)

(cell-set! dict-cell new-dict))))))

(begin

(match! pat sexp)

(if (cell-ref failed-flag)

’failed

(cell-ref dict-cell)))))))

Figure 8.7: Version of match-sexp written in an imperative style.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 335

get : Location→ Store⇀ ValueExp
(get L 〈L,V〉 . S) =V
(get L1 〈L2 ,V〉 . S) = (get L1 S), where L1 6=L2

The FLK! SOS uses the syntactic domain Emixed ∈MixedExp, which has a
grammar isomorphic to FLK! except for the addition of a (*cell* L) construct
that is used to represent cell values:

Emixed ::= . . . [FLK! expressions]
| (*cell* L) [Cell Value]

The *cell* construct may not appear in a user program. ValueExp is the same
as that for CBV FLK except that it also contains cell values:

V ∈ ValueExp = Lit ∪ {(proc I E)}
∪{(pair V1 V2)} ∪{(*cell* L)}

An operational semantics for FLK! is specified by

〈CFFLK !,⇒ ,FCFLK !, IFFLK !,OFFLK !〉,

where the rewrite rules defining ⇒ are specified later and

CFFLK ! = MixedExp× Store
FCFLK ! = ValueExp× Store
IFFLK ! = λE . 〈E, []Assignment 〉
OFFLK ! = λ〈V,S〉 . (output V)

(output L) = L

(output (proc I E)) = procedure

(output (pair V1 V2)) = (pair (output V1) (output V2))

(output (*cell* L)) = cell.

The first component (code component) of an FLK! configuration is a mixed
expression that serves the same role as an entire FLK configuration. An FLK!
configuration has an additional state component: a store that models the cur-
rent mapping of locations to value expressions. A computation begins with the
initial expression and an empty store, []Assignment, and runs until the code com-
ponent becomes a value (or the configuration becomes stuck). At this point, an
approximation to the final value is returned as the result of the original FLK!
expression.

The core rewrite rules for the FLK! semantics appear in Figure 8.8. The
cell construct and the primitive operators cell-ref and cell-set! are the
only constructs that directly manipulate the store. The [cell-alloc] axiom allo-
cates a new location, Lfresh , which does not appear in the store, and extends the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

336 CHAPTER 8. STATE

〈E,S〉⇒ 〈E ′,S ′〉
〈(cell E),S〉⇒ 〈(cell E ′),S ′〉 [cell-progress]

〈(cell V),S〉⇒ 〈(*cell* Lfresh), (〈Lfresh ,V〉 . S)〉,
where Lfresh is a location that does not appear in S.

[cell-alloc]

〈(primop cell-ref (*cell* L)),S〉⇒ 〈V,S〉,
where (get L S) =V

[cell-ref]

〈(primop cell-set! (*cell* L) V),S〉⇒ 〈#u, 〈L,V〉 . S〉 [cell-set!]

〈(primop cell=? (*cell* L) (*cell* L)),S〉⇒ 〈#t,S〉 [cell=?-true]

〈(primop cell=? (*cell* L1) (*cell* L2)),S〉⇒ 〈#f,S〉,
where L1 6= L2

[cell=?-false]

〈(primop cell? (*cell* L)),S〉⇒ 〈#t,S〉 [cell?-true]

〈(primop cell? V),S〉⇒ 〈#f,S〉,
where V 6= (*cell* L)

[cell?-false]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(begin E1 E2),S〉⇒ 〈(begin E1

′ E2),S
′〉 [begin-first]

〈(begin V E),S〉⇒ 〈E,S〉 [begin-rest]

〈E,S〉⇒ 〈E ′,S ′〉
〈(rec I E),S〉⇒ 〈(rec I E ′),S ′〉 [rec-body]

〈(rec I V),S〉⇒ 〈[(rec I V)/I]V,S〉 [cbv-rec]

Figure 8.8: Core rewrite rules for FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 337

store with a new binding between Lfresh and the given value. The result of this
operation is a *cell* value that maintains an index into the store. The [cell-
ref] rule uses get to extract the binding at the location specified by the *cell*
value. Even though get is only a partial function, a cell-ref expression can
never get stuck because every location appearing in a *cell* value must appear
in the store. The [cell-set!] rule returns a unit value but also prepends a new
location/value pair to the store to reflect the assignment.

We have chosen to represent stores as explicit sequences of bindings, but
other representations are certainly possible (e.g., representing stores as functions
that map locations to values). In our approach, the number of bindings in a
store is equal to the number of allocations and assignments performed by the
program. An implementation based on such a strategy would be disastrously
inefficient: the size of the store would grow throughout the computation, and cell
references would take time linear in the size of the growing store. But our goal
here is to give a simple semantics for stores, not to implement them efficiently.
Any reasonable implementation of FLK! would represent stores in a way that
takes advantage of the state-based nature of addressable memory in physical
computers.

Of the remaining rules in Figure 8.8, the begin rules are straightforward,
but the rec rules deserve some explanation. Handling rec is a bit tricky in the
presence of side effects. The basic problem is illustrated by the following FL!
example:

(let ((counter (cell 0)))

(begin ((rec fact

(begin (cell-set! counter

(+ (cell-ref counter) 1))

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1)))))))

5)

(cell-ref counter)))

Here the value computed by the rec expression is a factorial procedure. But
we’re not so much interested in the value of the rec as we are in the value of the
counter cell at the end of the expression. This value tells us how many times
counter is incremented during the evaluation of the rec expression. Presumably,
the content of counter should be 1. However, if the CBN rule

〈(rec I E),S〉⇒ 〈[(rec I E)/I]E,S〉 [cbn-rec]

were used, then the value of the above expression would be 6 because the begin

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

338 CHAPTER 8. STATE

expression that is the body of the rec would be copied in each unwinding and
would be evaluated six times.

To avoid this behavior, the [cbv-rec] rule only unwinds the rec when the
body is a value. The [rec-body] rule takes care of rewriting the body of the rec
into a member of ValueExp. This means that any side effects encountered during
the evaluation of the rec body are performed only once. In a CBV semantics,
the rewriting of the rec body will only terminate in a non-stuck state when all
uses of the formal parameter introduced by rec that appear in the body are
“shielded” from immediate evaluation by a proc.

The rest of the rules for FLK! appear in Figure 8.9. These rules never
actually examine or update the store. Rather, they just specify the “plumbing”
that passes the store through the computation in a single-threaded fashion. This
guarantees that any changes made by cell or cell-set! are visible to later
uses of cell-ref. Except for the additional shuffling of the store component,
these rules are the same as those for CBV FLK. The [FLK-prim] rule says
that the behavior of primitive applications from FLK (as specified by ⇒FLK)
is inherited by FLK! (as specified by ⇒), where the store is unaffected by all
such applications.

As a simple example of the FLK! SOS, consider the operational evaluation
of the expression (call Eproc (cell 3)) where Eproc is:

(proc c

(begin (primop cell-set! c

(primop + 1

(primop cell-ref c)))

(primop cell-ref c)))

Figure 8.10 shows the transition sequence associated with this expression. Note
how the cell value (*cell* 0) serves as an unchanging index into the time-
dependent store.

¤ Exercise 8.3 The begin construct need not be primitive in FLK!. A desugaring of
begin into other FLK! constructs must take advantage of the fact that the only notion
of time in FL has to do with data dependency. That is, the only thing that forces an
expression to be evaluated is that its value is used in the evaluation of another expression.
This suggests the following desugaring for begin into other FLK! expressions.

Dexp[[(begin E1 E2)]] = (call (proc (Iignore) Dexp[[E2]]) Dexp[[E1]])

where Iignore 6∈FreeIds[[E2]].

a. The desugaring for begin given above uses constructs only from FLK, which
does not support state. Is it possible to determine whether begin actually works
as advertised (i.e., evaluates E1 before E2) in a language that does not support
state? Explain your answer, using examples where appropriate.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 339

〈(call (proc I E) V),S〉⇒ 〈[V/I]E,S〉 [cbv-call]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(call E1 E2),S〉⇒ 〈(call E1

′ E2),S
′〉 [rator-progress]

〈E2 ,S〉⇒ 〈E2 ′,S ′〉
〈(call (proc I E1) E2),S〉

⇒〈(call (proc I E1) E2
′),S ′〉

[rand-progress]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(if E1 E2 E3),S〉⇒ 〈(if E1

′ E2 E3),S
′〉 [test-progress]

〈(if #t E1 E2),S〉⇒ 〈E1 ,S〉 [if-true]

〈(if #f E1 E2),S〉⇒ 〈E2 ,S〉 [if-false]

〈Eleft ,S〉⇒ 〈Eleft ′,S ′〉
〈(pair Eleft Eright),S〉⇒ 〈(pair Eleft

′ Eright),S
′〉 [left-progress]

〈Eright ,S〉⇒ 〈Eright ′,S ′〉
〈(pair Vleft Eright),S〉⇒ 〈(pair Vleft Eright

′),S ′〉 [right-progress]

〈E,S〉⇒ 〈E ′,S ′〉
〈(primop O E),S〉⇒ 〈(primop O E ′),S ′〉 [unary-arg]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(primop O E1 E2),S〉⇒ 〈(primop O E1

′ E2),S〉 [binary-arg1]

〈E2 ,S〉⇒ 〈E2 ′,S ′〉
〈(primop O V1 E2),S〉⇒ 〈(primop O V1 E2

′),S ′〉 [binary-arg2]

(primop OFLK V*)⇒FLK Vresult

〈(primop OFLK V*),S〉 ⇒ 〈Vresult ,S〉,
where OFLK ∈PrimopFLK ! − {cell-ref, cell-set!, and cell?}

[FLK-prim]

Figure 8.9: FLK! rewrite rules for single-threading the store.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

340 CHAPTER 8. STATE

〈(call Eproc (cell 3)), []〉
⇒ 〈(call Eproc (*cell* 0)), [〈0, 3〉]〉 [rand-progress & cell-alloc]
⇒ 〈(begin (primop cell-set!

(*cell* 0)

(primop + 1

(primop cell-ref

(*cell* 0))))

(primop cell-ref

(*cell* 0))),
[〈0, 3〉]〉

[cbv-call]

⇒ 〈(begin (primop cell-set!

(*cell* 0)

(primop + 1 3))

(primop cell-ref

(*cell* 0))),
[〈0, 3〉]〉

[begin-first, 2×binary-arg2, cell-ref]

⇒ 〈(begin (primop cell-set!

(*cell* 0)

4)

(primop cell-ref

(*cell* 0))),
[〈0, 3〉]〉

[begin-first, binary-arg2, FLK-prim]

⇒ 〈(begin #u

(primop cell-ref

(*cell* 0))),
[〈0, 4〉]〉

[begin-first & cell-set!]

⇒ 〈(primop cell-ref

(*cell* 0)),
[〈0, 4〉]〉

[begin-rest]

⇒ 〈4, [〈0, 4〉]〉 [cell-ref]

Figure 8.10: Operational evaluation of a sample FLK! expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 341

b. Explain why the above desugaring would not work for a CBN version of FL!.

c. Write a desugaring for begin in CBV FLK! that does not require any condition
involving the free variables of E1 or E2 . (Hint: use thunks!)

d. Is it possible to write a desugaring for begin that works in both CBV and CBN
FLK! ? If so, give the desugaring; if not, explain why not. ¢

¤ Exercise 8.4 The introduction of side effects can complicate reasoning about
programs. For example, program transformations that are safe in FL aren’t necessarily
safe in FL!.

• List three transforms that are safe in FL but not in FL!. Provide counter-
examples to demonstrate why they are not safe in FL!.

• List three transforms that are safe in both FL and FL!.

• Consider transforms that do not mention any of the new features of FLK!. Are
there any such transforms that are safe in FL! but not in FL? If so, exhibit such
a transform. If not, explain. ¢

8.2.4 A Denotational Semantics for FLK!

Now we’ll study the semantics of FLK! from the denotational perspective. As
in the operational approach, notions of location and store will be used to model
state. The notion of computation will be modified so that stores flow through
a computation in a single-threaded fashion. The power of the computation ab-
straction will be illustrated by the fact that only those constructs that explicitly
refer to the store need new valuation clauses; other constructs are described by
their (unmodified) FLK valuation clauses.

8.2.4.1 Stores

The denotational treatment of stores and locations is summarized in Figure 8.11.

Here locations are represented as natural numbers and stores are represented
as functions that map locations to elements of the Assignment domain. Stores
do not map locations directly to values because it is necessary to encode the
fact that not all locations have values assigned to them. The distinguished
element unassigned in the lifted sum domain Assignment is used to indicate
that a location is unassigned. unassigned serves the same purpose for stores
that unbound serves for environments.

The domain Storable of storable entities varies from language to language.
In FLK!, which is a CBV language, Storable =Value, but a CBN version of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

342 CHAPTER 8. STATE

s ∈ Store = Location → Assignment
l ∈ Location = Nat
α ∈ Assignment = (Storable +Unassigned)⊥
σ ∈ Storable = language dependent ;Value in CBV

Unassigned = {unassigned}
same-location? : Location → Location → Bool =λl1 l2 . (l1 =Nat l2)
next-location : Location → Location =λl . (l +Nat 1)

empty-store : Store =λl . (Unassigned 7→ Assignment unassigned)
fetch : Location → Store → Assignment =λls . (s l)
assign : Location → Storable → Store → Store
=λl1σs . λl2 . if (same-location? l1 l2)

then (Storable 7→ Assignment σ)
else (fetch l2 s)
fi

fresh-loc : Store → Location =λs . (first-fresh s 0)
first-fresh : Store → Location → Location
=λsl . matching (fetch l s)

. (Unassigned 7→ Assignment unassigned) [] l

. else (first-fresh s (next-location l))
endmatching

Figure 8.11: Denotational treatment of stores.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 343

FLK! would have Storable =Computation. In both CBV and CBN FLK!, it
happens that Storable =Denotable, but this need not be the case in general. For
example, in Pascal, procedures can be named and (with certain restrictions)
be passed as arguments, but they may not be assigned to variables or stored as
the components of data structures.

There are several auxiliary functions for manipulating stores. fetch and
assign are functions on stores that are reminiscent of lookup and extend on
environments. The purpose of fresh-loc is to return an unassigned location
from the given store. Since locations are natural numbers, one way of doing this
is by scanning the store starting with location 0 and incrementing the location
until an unassigned location is found. We assume an unbounded store, so that
fresh-loc never fails to return a fresh location. To model a bounded store (which
would be more realistic), fresh-loc could potentially return an indication that
the attempt to find a fresh location failed.

8.2.4.2 Computations

Previously, a computation was just an expressible value. But in the presence of
state, a computation needs to embody the single-threaded nature of stores. The
following domain definition captures this idea:

c ∈ Computation = Store → (Expressible × Store)

Here, a computation accepts an initial store and returns two entities:

• The expressible value computed by the computation.

• A final store that reflects all the allocations and assignments performed by
the computation.

When composing two computations, single-threadedness can be achieved by sup-
plying the final store of the first computation as the initial store of the second.

It is not difficult to show that the new Computation domain is pointed. This
means that it is possible to find fixed points over computations, as required in
the semantics of rec.

Recall that numerous auxiliary functions must be defined as part of the
computation abstraction. Figure 8.12 shows the definitions of these functions
for the store-based version of Computation. val-to-comp injects a value into a
computation by injecting it into an expressible value and passing a store around
it unchanged. Similarly, error-comp passes a store around an error expressible
value.

The main means of gluing computations together is with-value. It takes a
computation c1 and a function f that maps a value to a computation c2 and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

344 CHAPTER 8. STATE

c ∈ Computation = Store → (Expressible × Store)

expr-to-comp : Expressible → Computation =λx . λs . 〈x, s〉

val-to-comp : Value → Computation =λv . (expr-to-comp (Value 7→ Expressible v))

err-to-comp : Error → Computation =λI . (expr-to-comp (Error 7→ Expressible I))

error-comp : Computation =(err-to-comp error)

with-value : Computation → (Value → Computation)→ Computation
=λcf . λs1 . matching (c s1)

. 〈(Value 7→ Expressible v), s2 〉 [] (f v s2)

. 〈(Error 7→ Expressible error), s2 〉 [] (error-comp s2)
endmatching

with-values, with-boolean, with-procedure, etc. can be written in terms of with-value.

check-location : Value → (Location → Computation)→ Computation
=λvf . matching v

. (Location 7→ Value l) [] (f l)

. else error-comp
endmatching

check-boolean, check-procedure, etc. are similar.

Figure 8.12: Store-based implementation of the computation abstraction.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 345

returns the computation that results from composing c1 and c2 . Like the action-
combining after procedure in Section 8.1.3.3, the main purpose of with-value
is to support the monadic style of threading state by handling the “plumbing”
between computations: the value argument to f is the (non-error) expressible
value produced by c1 and the initial store of c2 is the final store of c1 . In
the case where c1 produces an error rather than a value, f is ignored and the
resulting computation is equivalent to c1 . It is instructive to unwind the type
of f :

Value → Computation = Value → Store → (Expressible × Store)

This makes it clear that f can be viewed as a function that maps two (curried)
arguments (a value and store) to two (paired) results (an expressible value and
store).

Other with- functions, like with-values, with-procedure, with-boolean can be
written in the same style as with-value. There is a parallel collection of check-
functions that differ from the with- functions only in that their initial argument
is a value rather than a computation.

In the presence of state, there are a few more auxiliary functions involv-
ing computations that are especially handy. These are defined in Figure 8.13.
allocating allocates a location for a storable value and passes it (and the up-

allocating : Storable → (Location → Computation)→ Computation
=λσ f . λs . (f (fresh-loc s) (assign (fresh-loc s) σ s))

fetching : Location → (Storable → Computation)→ Computation
=λlf . λs . matching (fetch l s)

. (Storable 7→ Assignment σ) [] (f σ s)

. else (error-comp s)
endmatching

update : Location → Storable → Computation
=λlσ . λs . 〈(Value 7→ Expressible (Unit 7→ Value unit)), (assign l σ s)〉

sequence : Computation → Computation → Computation
=λc1 c2 . (with-value c1 (λv . c2))

Figure 8.13: Auxiliary functions for store-based computations.

dated store) to a computation-producing function. fetching finds the storable
value at a location and passes it (and the unchanged store) to a computation-
producing function. update takes a location and storable value and returns a
unit-producing computation whose final store includes an assignment between
the location and value. sequence glues two computations together by supplying

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

346 CHAPTER 8. STATE

the final store of the first as the initial store of the second; the expressible value
produced by the first is ignored.

Reasoning about computations directly in terms of the auxiliary functions
can be very tedious. Figure 8.14 presents a number of high-level equalities that
greatly facilitate reasoning about computations. We leave the proofs of these

1. (with-value (val-to-comp v) f)= (f v)

2. (with-value c (λv . (val-to-comp v)))= c

3. (with-procedure (val-to-comp (Procedure 7→ Value p)) f)= (f p)
Similarly for with-boolean, with-integer, etc.

4. (with-value (with-value c f) g) = (with-value c (λv . (with-value (f v) g)))

5. (with-value (check-location v f) g)
= (check-location v (λl . (with-value (f l) g)))
similarly for check-boolean, check-integer

6. (with-value (allocating σ f) g) = (allocating σ (λl . (with-value (f l) g)))

7. (with-value (fetching l f) g) = (fetching l (λσ . (with-value (f σ) g)))

8. (with-value (update l σ) f)
= (sequence (update l σ) (f (Unit 7→ Value unit)))

9. (with-value (sequence c1 c2) f) = (sequence c1 (with-value c2 f))

Figure 8.14: Useful equalities on computations. It is assumed that newly intro-
duced variables do not conflict with free identifiers elsewhere in the expression.

equalities as exercises for the reader. We require the first four equalities in
Figure 8.14 to be true of any notion of computation that we introduce, and
equalities 5–9 to be true of any notion of computation that supports state.

8.2.4.3 Valuation Clauses

The denotational specification of FLK! is summarized in Figure 8.15. The
Value domain has been extended with locations, which represent cell values.
Since FLK! is a CBV language, both Denotable and Storable equal Value. As
always, E has the signature Exp→ Environment→ Computation. There are two
semantic functions for primitives. PFLK ! is the version for FLK!, while PFLK

is the version inherited from FLK.

With the help of the auxiliary functions, the valuation clauses are surprisingly
compact. In fact, only one clause (rec) explicitly mentions the store! begin

sequences two computations. cell allocates a location for its content and returns

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 347

c ∈ Computation = Store → (Expressible × Store)
v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure+ Location
δ ∈ Denotable = Value
σ ∈ Storable = Value

p ∈ Procedure = Denotable → Computation

E : Exp→ Environment → Computation
PFLK : Primop→ Value*→ Expressible
PFLK ! : Primop→ Value*→ Computation

E [[(begin E1 E2)]] =λe . (sequence (E [[E1]] e) (E [[E2]] e))

E [[(cell E)]]
=λe . (with-value (E [[E]] e)

(λv . (allocating v (λl . (val-to-comp (Location 7→ Value l))))))

PFLK ![[cell-ref]] =λ[v] . (check-location v (λl . (fetching l (λv . (val-to-comp v)))))

PFLK ![[cell-set!]] =λ[v1 , v2] . (check-location v1 (λl . (update l v2)))

PFLK ![[cell=?]] =
λ[v1 , v2] . (check-location v1

(λl1 . (check-location v2
(λl2 . (val-to-comp (Bool 7→ Value (l1 = l2)))))))

PFLK ![[cell?]] =λ[v] . matching v
. (Location 7→ Value l) [] (val-to-comp (Bool 7→ Value true))
. else (val-to-comp (Bool 7→ Value false))
endmatching

PFLK ![[O]] ; O ∈Primop − {cell-ref, cell-set!, cell?}
=λv* . (expr-to-comp (PFLK [[O]] v*))

E [[(rec I E)]] =λe . fixComputation (λc . λs . E [[E]] [I :: (extract-value c s)]e s)

extract-value : Computation → Store → Binding
=λcs . matching (c s)

. < (Value 7→ Expressible v), s’ > [] (Denotable 7→ Binding v)

. < (Error 7→ Expressible error), s’ > [] ⊥Binding

endmatching

Figure 8.15: Essential valuation clauses for FLK!. Clauses not shown here
inherit their definition from FLK.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

348 CHAPTER 8. STATE

the location as its resulting value. cell-ref fetches the value of a location and
returns it, while cell-set! updates a location to contain a new value. cell?

simply checks the tag on a value. Other primitives are handled by passing them
off to PFLK and converting the result into a computation. This works because
none of the primitives inherited from FLK has any effect on the store.

The only really tricky clause is the one for rec. The valuation clause pre-
sented here is a variant of the CBV version presented in Section 7.1.3. The only
difference is that it is necessary to supply extract-value with the current store
in order to coerce the computation into a binding.

And that’s it! By the magic of the monadic style, all the other valuation
clauses are inherited unchanged from the denotational definition of CBV FLK.
For example, the clause for call is still:

E [[(call E1 E2)]] =
λe . (with-procedure (E [[E1]] e) (λp . (with-value (E [[E2]] e) p)))

The valuation clauses are very concise, but their level of abstraction can make
them difficult to understand. To get a better feel for the valuation clauses, it can
be helpful to strip away the abstractions by “in-lining” the auxiliary functions.
For example, here is a version of the call clause without any auxiliary functions:

E [[(call E1 E2)]] =
λes0 . matching (E [[E1]] e s0)

. 〈(Value 7→ Expressible (Procedure 7→ Value p)), s1 〉 []
matching (E [[E2]] e s1)
. 〈(Value 7→ Expressible v), s2 〉 [] (p v s2)
. 〈(Error 7→ Expressible error), s2 〉 [] 〈(Error 7→ Expressible error), s2 〉
endmatching

. 〈(Value 7→ Expressible v), s1 〉 [] 〈(Error 7→ Expressible error), s1 〉

. 〈(Error 7→ Expressible error), s1 〉 [] 〈(Error 7→ Expressible error), s1 〉
endmatching

The single-threaded nature of the store that is implicit in the original clause is
explicit in the expanded clause. Evaluating E1 in e with s0 yields an expressible
value (call it x1) and a store s1 . If the x1 is a procedure value p, E2 is evaluated
in e with s1 to yield a second expressible value (call it x2) and another store,
s2 . If x2 is a value v, then p, whose signature is

Value → Store → (Expressible × Store)

is applied to the value and the store. In error situations (x1 is not a procedure
or x2 is not a value), expressible error values are propagated along with the
updated store.

You may find it helpful to perform this sort of expansion on other valuation
clauses. After you have done several, you may start to appreciate the purpose

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 349

of the auxiliary functions! As usual, it is also instructive to make sure that all
of the valuation clauses type check.

8.2.5 Referential Transparency, Interference, and Purity

We noted earlier (page 319) that stateless languages like FL are referentially
transparent. Referential transparency is an important property when reason-
ing about programs, especially when analyzing and transforming programs.

For example, consider the following program transformations:

T1: (+ Ea Ea) −→ (* 2 Ea)

T2: (+ Eb Ec) −→ (+ Ec Eb)

Under what conditions are such transformations safe, i.e., guaranteed to pre-
serve the meaning of a program?4

In a referentially transparent language like FL, these two transformations
are always safe. In T1, Ea always has the same value no matter how many
times it is evaluated. In T2, reordering Eb and Ec cannot change their values
because they are still in the same naming context as before.

However, in a stateful language like FL!, neither of these transformations is
always safe. For example, in T1, suppose that Ea increments a counter in ad-
dition to returning a result. Then (+ Ea Ea) will increment the counter twice,
but (* 2 Ea) will only increment it once. In T2, suppose that Eb increments a
counter whose value is returned by Ec. Then swapping Eb and Ec changes the
value returned by Ec. The problem in these cases is that expressions can depend
on the implicit store threaded through their evaluation, so it is generally not safe
to replace them by a value or change their relative positions. In particular, an
expression can depend on the store by:

• allocating a location in the store (which includes initialization in our se-
mantics),

• reading the value stored at a location, or

• writing a value into a location.

Nevertheless, there are still many situations in which the transformations are
safe, even in a stateful language. Let us say that an expression E1 interferes
with E2 when E1 allocates or writes a store location that is read and/or written
by E2 . Then T1 is safe as long as Ea does not interfere with itself or the rest

4For the purposes of this discussion, we choose to treat all errors and divergence as obser-
vationally equivalent. That is, we do not care if a transformation changes the error signaled
by a program or changes an error-signaling program to a diverging one (or vice versa).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

350 CHAPTER 8. STATE

of the program and T2 is safe as long as Eb or Ec do not interfere with each
other. Classical compiler optimizations like code motion, common subexpression
elimination, and dead code removal require reasoning about the interference
between expressions.

A particularly simple form of non-interference involves expressions that do
not depend on the store at all. An expression is pure when it does not allocate,
read, or write any store locations. A pure expression does not interfere with
any other expression, and so it can be treated as if it were in a referentially
transparent language. For instance, it is safe to replace a pure expression by
an expression having the same value or to move a pure expression to a different
position in the same naming context.

Neither interference nor purity is a computable property. However, there
are conservative approximations to these properties that are computable. For
example, a common syntactic technique for approximating purity is to observe
the following in a language with cells:

• variable references and abstractions (lambda expressions) do not depend
on the store and so are syntactically pure;

• conditionals, let expressions, pair expressions, and primitive applications
(except those involving cell primitives) are syntactically pure if all their
subexpressions are syntactically pure;

• all other expressions, including primitive applications of cell primitives and
procedure applications, are assumed to be impure.

Expressions that are pure by these rules are called syntactic values. We shall
use this notion later in our discussion of polymorphic types, type reconstruction,
and abstract types (Chapters ?? and 15). Chapter 16 will present a more flexible
mechanism for statically determining the side effects (and therefore interference
properties) an expression may have.

¤ Exercise 8.5 Show that the store-based definition of Computation is pointed. ¢

¤ Exercise 8.6

a. Prove that the first four equalities in Figure 8.14 hold when
Computation=Expressible.

b. Prove that all nine equalities in Figure 8.14 hold when
Computation = Store → (Expressible × Store). ¢

¤ Exercise 8.7

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 351

a. What is the value of (rec a a) under the call-by-value denotational semantics
for FLK in the previous chapter?

b. What is the value of (rec a a) under the operational semantics for FLK!?

c. What is the value of (rec a a) under the denotational semantics for FLK!?

d. Explain any discrepancy in your answers to the first three parts of this question.
¢

¤ Exercise 8.8 The FL! language definition includes a simple immutable data struc-
ture called the pair. In this problem, we introduce a mutable pair. Mutable pairs
are a simple kind of mutable structure similar to the mutable records found in many
imperative languages. (See Section 10.1.4 for a discussion of mutable data structures.)

Suppose the FLK! language is extended in the following way:

E ::= . . .
| (mpair El Er) | (mfst Emp) | (msnd Emp)

| (set-mfst! Emp El) | (set-msnd! Emp Er)

The new constructs have the following informal semantics:

• (mpair El Er) creates a new mutable pair value with two fields called mfst and
msnd. The values of El and Er are stored in themfst andmsnd fields, respectively.

• If Emp evaluates to a mutable pair, then (mfst Emp) returns the content of the
mfst field of the pair. Otherwise, mfst produces an error. Similarly for msnd.

• If Emp evaluates to a mutable pair, then (set-mfst! Emp El) mutates the
mutable pair so that the mfst field contains the value of El . If Emp evaluates
to anything else, or if evaluating El gives an error, then set-mfst! generates an
error. Similarly for set-msnd!.

For example, here are some expressions involving mutable pairs:

(let ((foo (mpair 1 2)))

(begin

(set-mfst! foo 6)

(+ (mfst foo) (msnd foo)))) −−−eval→ 8

(let ((bar (mpair 8 (mpair 4 3))))

(begin

(set-mfst! bar (msnd bar))

(set-msnd! (msnd bar) (mfst (mfst bar)))

(+ (mfst (msnd bar)) (msnd (msnd bar))))) −−−eval→ 8

a. Extend the denotational semantics of FLK! to handle mpair, mfst, msnd, set-mfst!,
and set-msnd!.

i. Describe any additions or modifications you make to the semantic domains
of FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

352 CHAPTER 8. STATE

ii. Give valuation clauses for the five constructs. (You should not have to
modify any of the existing valuation clauses.)

iii. Define any auxiliary functions necessary for your valuation clauses.

b. Consider the following potential desugaring for mpair, mfst, and set-mfst!

(msnd and set-msnd! would be handled similarly):

D[[(mpair El Er)]] = (pair (cell D[[El]]) (cell D[[Er]]))

D[[(mfst Emp)]] = (cell-ref (left D[[Emp]]))

D[[(set-mfst! Emp El)]] = (cell-set! (left D[[Emp]]) D[[El]])

Is this desugaring consistent with the semantics of mutable pairs? If it is, explain
why; if not, show an expression whose meaning differs under this desugaring. ¢

¤ Exercise 8.9 A common problem when working with state is data consistency.
For example, consider a database application that manages the accounts of a bank.
Transferring an amount of money between two accounts implies subtracting the amount
from the first account and adding it to the second one. If we transfer money only between
accounts of the same bank, the total amount of money present in all the accounts should
remain the same. However, if something bad occurs between the subtraction and the
addition (e.g., a system crash), a certain amount might simply vanish! To prevent this,
in database programming, all modifications to the database are required to occur within
a transaction.

Intuitively, a transaction is a series of modifications to a database that become
permanent only when the transaction is successfully terminated (the technical term is
committed). If the user decides to abort (i.e., cancel) the transaction, or the system
crashes before the transaction is committed, all the modifications are “undone.”

Abe Stract, president and CEO of Intrusive Databases, Inc., decides to add trans-
actions to FL!. In Abe’s language, the store will act as the database: queries of the
database are cell-refs, and modifications are performed by cell-set!. It is an error
to perform a cell-set! when there is no active transaction.

Abe extends the grammar of FLK! by the following clauses:

E ::= . . . [As before]
| (begin-transaction!) [Begin Transaction]
| (commit!) [Commit Transaction]
| (abort!) [Abort Transaction]

The informal semantics of transactions are:

• (begin-transaction!) begins a transaction. The transaction continues until
either a commit! or an abort! is encountered — it is an error if the program
ends and a transaction has not been ended or aborted.

• (commit!) successfully terminates the current transaction. It is an error if no
transaction is in progress.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 353

• (abort!) ends the current transaction and undoes all of its modifications. It is
an error if no transaction is in progress.

Like cell-set!, the three transaction operations all return unit .

Transactions may be nested, in which case abort! and commit! only end the current
(innermost) transaction. An abort! of a transaction undoes the modifications of the
transaction including modifications made by nested transactions.

Here is how Abe might write a transfer between two bank accounts (represented as
cells) using transactions:

(define transfer

(lambda (from to amount)

(begin (begin-transaction!)

(cell-set! from (- (cell-ref from) amount))

(cell-set! to (+ (cell-ref to) amount))

(if (< (cell-ref from) 0)

(begin (abort!)

’failed)

(begin (commit!)

’succeeded)))))

Here are more examples of the behavior of transactions; we assume the expressions
are evaluated in order.

(define cell-1 (cell 0))

(define cell-2 (cell 10))

(define inc!

(lambda (a-cell) (cell-set! a-cell (+ (cell-ref a-cell) 1))))

(define current-state

(lambda ()

(list (cell-ref cell-1) (cell-ref cell-2))))

(current-state) −−−FL!→ [0, 10]

(begin (begin-transaction!)

(inc! cell-1)

(commit!)

(current-state)) −−−FL!→ [1, 10]

(begin (begin-transaction!)

(inc! cell-2)

(abort!)

(current-state)) −−−FL!→ [1, 10]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

354 CHAPTER 8. STATE

(begin (begin-transaction!)

(inc! cell-1)

(begin (begin-transaction!)

(inc! cell-2)

(abort!))

(commit!)

(current-state)) −−−FL!→ [2, 10]

(begin (begin-transaction!)

(inc! cell-1)

(begin (begin-transaction!)

(inc! cell-2)

(commit!)) ;; End inner transaction,

(abort!) ;; but abort! outer transaction.

(current-state)) −−−FL!→ [2, 10]

(begin (begin-transaction!) ;; commit! returns #u

(inc! cell-2)

(commit!)) −−−FL!→ unit

(current-state) −−−FL!→ [2, 12]

Abe also points out some programs that generate errors (each interacts with the
database in a completely independent session):

(begin-transaction!) −−−FL!→ error : transaction − not − terminated

(commit!) −−−FL!→ error : no − current − transaction

(let ((a-cell (cell 0)))

(begin (cell-set! a-cell 5)

(cell-ref a-cell))) −−−FL!→ error : not − in − a − transaction

(let ((a-cell (cell 0)))

(begin (begin-transaction!)

(cell-set! a-cell 5)

(commit!)

(cell-set! a-cell 7) ;; commit! ends transaction,

;; so invalid modification

(cell-ref a-cell))) −−−FL!→ error : not − in − a − transaction

a. Extend the operational semantics of FLK! (Section 8.2.3) to handle transactions:

i. Define the configurations, the set of final configurations, the input function,
and the output function.

ii. Provide transition rules for begin-transaction!, commit!, abort!, and
cell-set!:

b. Modify the denotational semantics of FLK! to handle transactions.

i. Give the necessary additions or modifications to the semantic domains of
FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 355

ii. Some auxiliary functions used by the FLK! denotational semantics might
need to be modified (e.g., as a result of the changes in the semantic domains).
Give their new definitions.

iii. Write the valuation clauses for the three new constructs. ¢

¤ Exercise 8.10 Clark Smarter of the Photocopy Research Center has developed a
new backtracking construct for FLK! called try:

E ::= . . .
| (try E1 E2) [Backtracking]

The informal semantics of (try E1 E2) is as follows: First E1 is evaluated, and if
E1 returns true, then try ignores E2 and returns true. If E1 evaluates to false , then
the side effects of E1 are discarded, and the value of try is the value of E2 . If the value
of E1 is neither true nor false , then the try expression yields an error. try is thus an
elementary backtracking construct. It allows the exploration of one alternative, and, if
that does not work, restores the initial state and tries a second alternative.

Here’s an example of a program that uses try:

(let ((balance (cell 200)))

(let ((withdraw (lambda (n)

(begin (cell-set! balance

(- (cell-ref balance) n))

(> (cell-ref balance) 0)))))

; First try to withdraw 250; if that fails, withdraw 10 from

; the original balance.

(begin (try (withdraw 250)

(withdraw 10))

(cell-ref balance))))

−−−FL→ 190

Clark knows the pitfalls of informal semantics. When writing up the documenta-
tion for try, he decides to give an operational and denotational semantics for his new
construct.

a. First Clark tries to find an operational semantics for try:

i. In attempting to give an operational semantics for try, Clark realizes that
he must extend the configuration space CF , so he adds a new intermediate
expression to E. Describe the new intermediate form and its purpose. (Hint:
you may want to think about the next part before answering this one.)

ii. Provide all of the rewrite rules which are necessary to handle the try con-
struct.

b. Next Clark wants to find a denotational semantics for try. Help Clark by writing
the valuation clause that handles the try expression.

c. Clark shows his operational and denotational semantics definitions of try to lan-
guage implementor Hardy Ware. Hardy says, “These semantic definitions are all
well and good, but implementing try efficiently is going to be tough.”

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

356 CHAPTER 8. STATE

i. Explain what Hardy means by describing what difficulties would be encoun-
tered in implementing try efficiently on physical computers where state-
based memory devices implement the binding of locations to values.

ii. Sketch a strategy for implementing try that does not require making a copy
of the entire store. ¢

8.3 Mutable Variables: FLAVAR!

In FLK!, the only entity that can change over time is the contents of a muta-
ble cell. So-called “variables” are actually constants whose value cannot change
during the execution of a program. While mutable cells are sufficient for imple-
menting any state-based program, they are not always convenient to use. Here
we explore a variant of FLK! called FLAVAR! in which every variable becomes
a mutable entity. We will also revisit the issue of parameter-passing in the con-
text of state by examining four parameter-passing mechanisms for FLAVAR!.

8.3.1 Mutable Variables

In FL!, it can be difficult to modify a program to make a previously constant
quantity mutable. For example, suppose an FLK program binds the variable
addresses to a list of names and addresses. Since both variables and pairs
are immutable in FL!, the meaning of addresses cannot change during the
execution of the program. Suppose that we later decide to modify the program
so that it dynamically updates the address list. Then it is necessary to rebind
addresses to a mutable cell whose contents is a list. Furthermore, we must
find all references to addresses in the existing program and replace them by
(cell-ref addresses).5

Most programming languages offer a more convenient way of making such
changes: mutable variables. A variable is mutable if the value it is bound to
can change over time. The variables of FL and FL! are somewhat misnamed,
because their values can’t vary over time; rather, they are names for constants.
In contrast, variables in languages like Scheme, C, Pascal, and Fortran can
have their values changed by assignment during the execution of the program.
In these languages, modifying the address program would not require finding
and updating all references to addresses, because all variables are assignable
by default. On the other hand, programs in these languages can be tougher
to reason about because it can be hard to determine which variables change

5We shall see in Section 17.7 that compilers often perform a program transformation like
this called assignment conversion.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 357

over time and which do not. This situation can be improved if the languages
provide a mechanism for declaring that certain named entities are immutable
(e.g., constant declarations).

We have two motivations for studying mutable variables:

• Many real languages support mutable variables.

• Mutable variables shift the way we think about naming. In languages
with mutable variables, names do not denote values, but instead denote
locations in the store at which values are stored.

8.3.2 FLAVAR!

We will study mutable variables in FLAVAR!, a dialect of FL! that supports
assignments to variables. The syntax of FLAVAR! (and its kernel, FLAVARK!)
is the same as that for FL! (and its kernel, FLK!) except for the addition of a
Scheme-like set! construct:

EFLAVARK ! ::= . . . [FLK! Expressions]
| (set! I E) [Assignment]

Informally, (set! I E) assigns the value of the expression E to the variable
named by I. For example,

(let ((a 3))

(begin (set! a 4)

a)) −−−−−−−FLAV AR!→ 4

Note the differences between the cell assignment operator, cell-set!, and
the variable assignment construct, set!. The former changes the value of a first-
class data value (a cell), while the latter changes the value of a variable (which
is not a first-class value). In (cell-set! E1 E2), E1 can be any expression
that evaluates to a cell, while in (set! I E), I is constrained to be an identifier
visible in the current scope. Mutable cells and mutable variables are orthogonal
language features. FLAVAR! contains both.

The semantics of FLAVARK! is based on the denotational semantics of
FLK! presented in the previous section. We will only note the ways in which the
semantics for FLAVARK! differs from that for FLK!. Some of the differences
are highlighted in Figure 8.16. The key feature of FLAVARK! is that variables,
like mutable cells, are represented as locations in the store. This means that
locations are the only entity in the language that can be named; i.e., Denotable =
Location. The association between a name I and a value v that is represented by
a single environment binding in FL! is represented by two bindings in FLAVAR!:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

358 CHAPTER 8. STATE

δ ∈ Denotable = Location
σ ∈ Storable = depends on parameter passing mechanism

val-to-storable : Value → Storable = depends on parameter passing mechanism

E [[I]] = depends on parameter passing mechanism

E [[(call E1 E2)]] = depends on parameter passing mechanism

E [[(set! I E)]] =λe . (with-value (E [[E]] e)
(λv . (with-denotable (lookup e I)

(λl . (update l (val-to-storable v))))))

Figure 8.16: Semantics of mutable variables. The definitions of Storable,
val-to-storable, and the valuation clauses for I and call depend on the pa-
rameter passing mechanism.

an environment binding between a name I and a location l, and an assignment
between l and v. The indirection through l allows the value associated with the
name to be changed. The details of how the locations are allocated, how they
are looked up, and what values may legally be stored in them are determined
by the parameter passing mechanism of the language. We shall discuss several
mechanisms shortly.

The other interesting aspect of the FLAVAR! semantics is the valuation
clause for set!. In (set! I E), E is evaluated and stored in the location named
by I. The auxiliary function val-to-storable, which depends on the definition of
Storable, is needed to inject the value into the Storable domain. Note that in the
expression (set! a a), the left and right occurrences of a are treated differently.
A location is found for the left occurrence, but the value stored at that location
is found for the right occurrence. For this reason, the location is called the L-
value (left value) of the variable, and the value stored at that location is called
the R-value (right value) of the variable. Determining the R-value associated
with an L-value is called dereferencing the variable. The notions of L-value
and R-value can be extended to expressions. Variables can be viewed as cells in
which dereferencing corresponds to automatically performing a cell-ref upon
every variable reference, and (set! I E) performs a cell-set! of the L-value
of I to the R-value of E.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 359

8.3.3 Parameter Passing Mechanisms for FLAVAR!

Parameter passing mechanisms for languages with mutable variables are deter-
mined by the domain Storable, the function val-to-storable, and the valuation
clauses for call and I. Figures 8.17 and 8.18 summarize four parameter passing
mechanisms for FLAVAR!. These are explained in the following sections.

σ ∈ Storable = Value

val-to-storable=λv . v

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (with-value (E [[E2]] e)

(λv . (allocating v p)))))

E [[I]] =λe . (with-denotable (lookup e I) (λl . (fetching l val-to-comp)))

Call-by-Value

σ ∈ Storable = Computation

val-to-storable= val-to-comp

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (allocating (E [[E2]] e) p)))

E [[I]] =λe . (with-denotable (lookup e I) (λl . (fetching l (λc . c))))

Call-by-Name

Figure 8.17: Parameter passing mechanisms in FLAVAR!, part I.

8.3.3.1 Call-by-value

The CBV mechanism for FLAVAR! is similar to CBV for FL and FLK! except
that a procedure call allocates a new location for the argument value and passes
this location (rather than the value) to the procedure. Since the meaning of an
identifier is a location and not a value, every variable reference requires both
a lookup in the environment (to find the location) and a fetch from the store
(to dereference the location). In CBV, only elements of the domain Value are
storable. For example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

360 CHAPTER 8. STATE

σ ∈ Storable = Memo
mm ∈ Memo = Computation +Value

val-to-storable=λv . (Value 7→ Memo v)

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (allocating (Computation 7→ Memo (E [[E2]] e)) p)))

E [[I]] =λe . (with-denotable (lookup e I)
(λl . (fetching l

(λmm . matchingmm
. (Computation 7→ Memo c)
[] (with-value c

(λv . (sequence (update l (Value 7→ Memo v))
(val-to-comp v))))

. (Value 7→ Memo v) [] (val-to-comp v)
endmatching))))

Call-by-Need (Lazy Evaluation)

σ ∈ Storable = Value

E : Exp→ Environment → Computation
LV : Exp→ Environment → Computation

val-to-storable=λv . v

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (with-location (LV [[E2]] e) p)))

E [[I]] =λe . (with-denotable (lookup e I) (λl . (fetching l val-to-comp)))

LV [[I]] =λe . (with-denotable (lookup e I) (λl . (val-to-comp (Location 7→ Value l))))

LV [[Eother]] ; where Eother is not I
=λe . (with-value (E [[Eother]] e)

(λv . (allocating v (λl . (val-to-comp (Location 7→ Value l)))))

Call-by-Reference

Figure 8.18: Parameter passing mechanisms in FLAVAR!, part II.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 361

(let ((a 0)

(f (lambda (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−−CBV FLAV AR!→ 2

((lambda (x) 3) (/ 1 0)) −−−−−−−−−−−CBV FLAV AR!→ error

8.3.3.2 Call-by-name

CBN in FLAVAR! is similar to CBN in FL, except that here it is Storable
(not Denotable) that equals Computation. The call clause indicates that the
computation of the argument expression (not its value) is stored at a newly
allocated location. In FLAVAR!, computations are functions that accept a
store, so the current store is supplied to a computation every time the variable
that names it is referenced. If the computation performs a side effect, this
side effect will be performed every time the variable is looked up. Consider the
following example:

(let ((a 0)

(f (lambda (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−−CBN FLAVAR!→ 3

In the example, calling f binds x to a location that holds the computation
(E [[(begin (set! a (+ a 1)) a)]] e1), where e1 is an environment with bind-
ings for a and f. Each variable reference to x within the procedure body (+ x x)

performs this computation with the current store. So the left reference to x in-
crements a and returns 1, while the right reference to x increments a again
and returns 2. This behavior illustrates the perils of mixing state with CBN
parameter passing.

As in FL, certain computations in FLAVAR! correspond to errors or non-
termination. Because such computations are nameable in CBN (by an indirec-
tion through the store), procedures can be non-strict:

((lambda (x) 3) (/ 1 0)) −−−−−−−−−−−CBN FLAVAR!→ 3

8.3.3.3 Call-by-need (Lazy Evaluation)

The presence of state in FLAVAR! suggests a parameter passing mechanism
based on the memoization trick introduced in the FL interpreter. That is,
a formal parameter name can be bound to a location that originally stores
the computation of the argument expression. The first time the parameter
is referenced, the computation is performed, but the resulting value is cached
at the location and is used on every subsequent reference. Thus, the argument
expression is evaluated at most once and is never evaluated at all if the parameter

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

362 CHAPTER 8. STATE

is never referenced. This mechanism is called call-by-need or lazy evaluation.
Because the acronym CBN is already taken, we will abbreviate call-by-need as
CBL (call-by-lazy).

Call-by-need can exhibit the desirable behavior of both CBV and CBN:

(let ((a 0)

(f (lambda (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−−CBL FLAV AR!→ 2

((lambda (x) 3) (/ 1 0)) −−−−−−−−−−−CBL FLAV AR!→ 3

However, because side effects in argument expressions are performed at the time
of lookup rather than at the time of call, CBL can exhibit different behavior
from CBV. For example, consider the following expression:

(let ((a 0))

(let ((f (lambda (x)

(begin (set! a 17)

(+ x x)))))

(f (begin (set! a (+ a 1)) a))))

Under CBV, the call to f first increments a and then binds x to a location holding
1. The assignment of 17 to a does not affect x, so the result is 2 . However,
under CBL, the call to f binds x to a location that holds the computation of
(begin (set! a (+ a 1)) a). This computation is not performed until the
first reference of x, which occurs after a has been set to 17. So CBL returns 36
for this expression.

8.3.3.4 Call-by-reference

So far, all the parameter passing mechanisms we have discussed allocate a new
location for every argument. But in the case where the argument expression is a
variable reference, there is already a location associated with the variable. This
suggests a mechanism that uses the existing location rather than allocating a
new one. Such a mechanism is termed call-by-reference (CBR). Fortran
and Pascal and are examples of languages that support CBR.

In CBR, there is the question of what to do with an argument that is not
a manifest identifier. For example, in the application (test (+ 1 2)), the
value of (+ 1 2) has no associated location. Languages handle this situation
in different ways. In Pascal, it is an error to supply anything but an identifier
as a CBR argument. In Fortran, however, a new location will be allocated
for any argument that is not a manifest identifier. The semantics in Figure 8.18
takes this latter approach. In fact, this is the only mechanism for creating

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 363

new variables in CBR FLAVAR!. This is a somewhat unrealistic aspect of
our language; real CBR languages have special declarations for introducing new
variables.

The denotational semantics for CBR models the special handling of variable
arguments by providing two valuation functions for expressions: E and LV. LV
finds the L-value of an expression, while E finds the R-value of an expression.
For an expression that is an identifier, LV returns the location of that identifier.
For any other expression, LV allocates a new location for the R-value of the ex-
pression and returns this location. The key feature of the CBR semantics is that
LV (rather than E) is used to evaluate the operand of a procedure application.

In FLAVAR!, procedure calls are expressions that return results, but in
many imperative languages, procedure calls are commands that do not return
results. In such languages, CBR is useful as a means of extracting a result from
a procedure call. One (or more) arguments to a procedure can be a variable
that the procedure uses to communicate the result(s) back to the caller. Here is
an example of this idiom in CBR FLAVAR!:

(let ((a 0)

(double (lambda (in out)

(set! out (+ in in)))))

(begin

;; A is 0 here.

(double 17 a)

;; Now A is 34.

(+ a 1))) −−−−−−−−−−−CBR FLAVAR!→ 35

The double procedure takes a numeric argument (in) and variable (out) for
returning the result of doubling in. In the example, the variable a is used to
communicate the result of the doubling operation back to the point of call.

One characteristic of CBR (or any paradigm that allows mutable entities
to be passed as arguments) is that two different names may refer to the same
location. This situation is known as aliasing. Consider the following example:

(let ((x 1))

(let ((test (lambda (a)

(begin

(set! x 20)

(+ a x)))))

(test x))) −−−−−−−−−−−CBR FLAVAR!→ 40

Within the call (test x), both x and a are aliases for the same location, so the
assignment to x changes a. Aliasing is often considered undesirable because it
complicates reasoning about programs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

364 CHAPTER 8. STATE

CBR is similar to passing a mutable cell as an argument to a procedure. The
difference is that variables are more restricted than cells. A mutable cell is a
first-class value: it may be named, passed as an argument to a procedure, re-
turned as a result from a procedure, and stored in any data structure, including
another cell. On the other hand, while a variable may be named by an identifier
and passed as an argument to a procedure, it cannot be returned as a result
from a procedure, and it cannot be stored in a data structure (including another
variable). Unlike cells, therefore, variables are not first-class values. Although
this restricts the expressive power of variables, it permits variables to be imple-
mented more efficiently than cells. A variable may be allocated on a stack, while
cells generally must be allocated from a garbage-collected heap. We will have
much more to say about tradeoffs between expressiveness and efficiency when
we study pragmatic issues later on.

¤ Exercise 8.11

a. Give a translation of call-by-value FLAVARK! into call-by-value FLK!. You do
not need to translate rec.

b. Give a translation of call-by-reference FLAVARK! into call-by-value FLK!. You
do not need to translate rec. ¢

