Chapter 12
Simple Types

Type of the wise who soar, but never roam,
True to the kindred points of heaven and home

— To a Skylark, William Wordsworth

12.1 Static Semantics

Our emphasis until this point has been the dynamic semantics of program-
ming languages, which covers the meaning of programming language constructs
and the run time behavior of programs. We will now shift our focus to static
semantics, in which we describe and determine properties of programs that are
independent of many details of program execution (e.g., the particular values
manipulated by the program).

Programs have both dynamic and static properties:

e A dynamic property is one that can be determined in general only by
executing the program. Such a property is determined at run time —i.e.,
when the program is executed.

e A static property is one that can be determined without executing the
program. A static property can be determined at compile time — i.e.,
when the program is analyzed before execution.

For instance, consider the following FL program:

513

014 CHAPTER 12. SIMPLE TYPES

(f1 (n)
(let ((sq (lambda (x) (* x x))))
(if (integer? n)
(+ (sq (-1n 1)) (sq (+ n 1)))
0))

We assume that the program input n can be any s-expression. The result of the
program is a dynamic property, because it cannot be known until run time what
input will be entered by the user. However, there are numerous static properties
of this program that can be determined at compile time:

e the free variables of the expression are integer?, +, -, and *;
e the result of the expression is an a non-negative even integer;

e the program is guaranteed to terminate.

In general, we're interested in static properties that aid in the verification,
optimization, and documentation of programs. For instance, we'd like to ask
the following kinds of questions about a given program:

e is this program consistent with a given specification?
e can this program possibly encounter a certain error situation?

e when the program executes, is this variable guaranteed to contain a value
consistent with its declared type?

e can this program be optimized in a particular way without changing its
meaning?

Of course, there are certain questions that simply cannot be answered in gen-
eral. “Does this program halt?” is the most famous example of an undecidable
question. Yet undecidability does not necessarily spell defeat for the goal of de-
termining static properties of programs. There are two ways that undecidability
is finessed in practice:

1. Make a conservative approximation to the desired property. E.g., for the
halting problem, allow three answers:

(a) yes, it definitely halts;
(b) it might not halt (but I'm not sure);
(¢) no, it definitely doesn’t halt.

12.2. AN INTRODUCTION TO TYPES 515

A termination analysis is sound if it answers (a) or (b) for a program that
halts and (b) or (c) for a program that doesn’t halt. Of course, a trivial
sound analysis answers (b) for all programs. In practice, we're interested
in sound analyses that answer (a) or (c) in as many cases as possible.

2. Restrict the language to the point where it is possible to determine the
property unequivocally. Such restrictions reduce the expressiveness of the
language, but in return give precise static information. The ML language
is an example of this approach; in order to provide static type information,
it forbids many programs that would not give run-time type errors.

The notion of restricted subclasses of programs is at the heart of static
semantics. We will typically start with a general language about which we can
determine very few properties, and then remove features or add restrictions until
we can determine the kinds of properties we're interested in. Unfortunately, the
increase in our ability to reason about the programs is offset by a decrease
in the expressive power of the programming language. This is a fundamental
tension in programming languages: the more we can say about programs, the less
we can say with them. Taking into account considerations of static semantics
greatly enlarges the number of dimensions in the programming language design
space. Points in the design space can often be characterized by different tradeoffs
between expressive power and static properties.

12.2 An Introduction to Types

12.2.1 What is a Type?

When reading or writing code, it is common to describe expressions in terms of
the kinds of values they manipulate. This is especially true when talking about
procedures. For example, we typically describe > as a procedure that takes two
integers and returns a boolean. At a more detailed level, > certainly performs
an operation much more specific than indicated by this fuzzy description, but
in many situations the fuzzy description is all we need.

For example, suppose we just want to know whether > would make sense as
the contents of the box in the following FL expression:

(if (O 1 2) (symbol three) (symbol four))

We can reason as follows about the contents of the box: because the box appears
as the leftmost subexpression of a combination, it must be a procedure; because
it is supplied with 1 and 2 as arguments, it must take two integer arguments; and

016 CHAPTER 12. SIMPLE TYPES

because the result of the application is used as the test in an if expression, the
procedure in the box must return a boolean. Thus, > would make sense as the
contents of the box. But more important, any value satisfying the description “a
procedure of two integers returning a boolean” would be viable as the contents
of the box.

This simple example underscores the fact that it is not necessary to know
precise values in order to perform computations with a program. The reasoning
used above was based on classes of values rather than on particular values.
Classes of values are known as types.

There are many ways to think about types. In its most general form a
type is just a description of a value. From another perspective, a type is an
approximation to a value, or a value with partial information. For example,
the type “integer” is an approximation to the integers 1 and 2, while the type
“procedures from two integers to a boolean” is an approximation to > and =.
From yet another point of view, types are arbitrary sets. Some examples of such
sets include the integers, the natural numbers less than 5, the prime integers,
and procedures that halt on the input 3.

The last example (procedures that halt on the input 3) shows that types
we might like to describe may not even be computable. In other cases (e.g.,
the prime numbers), types might be exceedingly difficult to reason about. It is
often necessary to restrict these very general notions of type to ones that are
less general, but simpler to reason about. However, if we hope to assign types to
all expressions in a language, such simplification entails restrictions on the kinds
of programs we can write. This is an example of the general tradeoff between
expressive power and determination of static properties introduced above. In
our study of types, we shall consider several points in the design space that
handle this tradeoff in different ways.

12.2.2 Dimensions of Types

Types are not a monolithic feature that are either present or absent in a language.
Rather, there is a rich diversity of ways that types may appear in a programming
language, and almost all languages have some sort of type system. (Examples
of completely typeless languages include the untyped lambda calculus and most
assembly-level languages.) Here we shall examine three dimensions along which
type systems may vary.

12.2. AN INTRODUCTION TO TYPES 017

12.2.2.1 Dynamic vs. Static

In the programming languages we have studied so far, values have types asso-
ciated with them. FL!, for instance, divides the class of (non-error) values into
six types: unit, integers, booleans, symbols, procedures, and references. The op-
erational and denotational semantics for these languages make use of the type
information to determine the meanings of programs. For example, whether or
not the expression (primop + E; Fj) denotes an integer depends on the types
of values found for F; and E». Both operational and denotational semantics
provide some method for checking the types of these subparts in order to de-
termine the value of the whole. Languages in which values carry types with
them and type checks are made at run time are said to be dynamically typed.
Examples of dynamically typed languages include Lisp, SMALLTALK, and APL.

An alternative to dealing with types at run time is to statically analyze a
program at compile time to determine if type information is consistent. Here,
types are associated with expressions in the language rather than with run time
values. A program that can be assigned a type in this approach is said to be
well-typed. Programs that are well-typed are guaranteed not to contain certain
classes of errors (e.g., a procedure call with the wrong number of arguments). A
program that cannot be described with a type is said to contain a type error.
The set of well-typed programs is a subset of all of the programs that are syntac-
tically well formed. Languages in which types are associated with expressions
and are computed at compile time are said to be statically typed. Examples
of statically typed languages include JAVA, PAScAL, ADA, ML, and HASKELL.
Practical statically typed languages are equipped with a type checker that can
automatically verify that programs are well-typed.

The choice between dynamic and static typing has been the source of a great
debate in the programming language community. Adherents of static typing offer
the following arguments in favor of static types:

e Safety: Type checking reduces the class of possible errors that can occur at
run time. In certain situations it is extremely desirable to catch as many
errors as possible before the program is run (e.g., programs to control a
space shuttle or nuclear power plant).

e Ffficiency: Statically typed programs can be more efficient than dynami-
cally typed ones. In implementation terms, dynamic typing implies space
and time costs at run time. Space is necessary to encode the type of
a value at the bit level. Since types must be checked when performing
certain primitive operations (e.g., binary integer addition can only be ap-
plied when both operands are integers), dynamic typing has a time cost

018 CHAPTER 12. SIMPLE TYPES

as well. In statically typed languages, most values do not require any run
time storage for type representations. In addition, the compile time type
checks eliminate the need to check types at run time.

e Documentation Static types provide documentation about the program
that can facilitate reasoning about the program, both by humans and by
other programs (e.g. compilers). Such information is especically valuable
in large programs.

e Program Development: Static types help programmers catch errors in their
programs before running them and help programmers make representation
changes. For example, suppose a programmer decides to change the in-
terface of a procedure in a large program. The type checker helps the
programmer by finding all the places in the program where there is a mis-
match between the old and new interfaces.

Proponents of dynamic typing counter that the restrictions placed on a lan-
guage in order to make it type checkable force the programmer into a straight
jacket of reduced expressive power. They argue that in many statically typed
languages (e.g., JAVA and PASCAL), types mainly serve to make the language
easier to implement, not easier to write programs in. Furthermore, they discount
the importance of finding type errors at compile time; they argue that the hard-
to-find errors that occur in practice are logical errors, not type errors. Finding
such errors requires testing programs with extensive test suites that would also
find type errors.

12.2.3 Explicit vs. Implicit

Another dimension on which type systems vary is the extent to which they force
a programmer to declare explicit types. Although some dynamically typed lan-
guages require some form of type declaration (e.g., array variables in BASIC),
dynamically typed languages typically have no explicit types. The converse is
true in static typing, where explicit types are the norm. In traditional statically
typed languages (e.g., PASCAL, ; and JAVA) it is necessary to explicitly declare
the types of all variables, formal parameters, procedure return values, and data
structure components. However, some recent languages (e.g., FX, ML, MI-
RANDA, and HASKELL) achieve static typing without explicit type declarations
via a method called type reconstruction or type inference. We shall study
type reconstruction in Chapter 14.

One argument for explicit types is that the types serve as important docu-
mentation in a program and therefore make programs easier to read and write.

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 519

Often, however, explicit types make programs easier for compilers to read, not
easier for humans to read; and explicit types are generally cumbersome for the
program writer as well. Implicitly typed programming languages thus have
clear advantages in terms of readability and writability. Unfortunately, certain
restrictions must be placed on a language in order to make type reconstruction
possible. This means that some programs that can be written with explicit
types cannot be written with implicit ones. A compromise between the two
approaches, adopted by ML and HASKELL, is to make most types implicit by
default, but to allow explicit declarations in situations where types cannot be
reconstructed.

12.2.4 Simple vs. Expressive

A third dimension along which typed languages can vary is the expressiveness
of their type systems. Languages with very simple type systems facilitate type
checking and type reconstruction, but generally severely restrict the kinds of
programs that can be written. For example, in PASCAL,! the length of an array
is a part of its type; this makes it impossible to write a sorting procedure that
can accept an array of any length. In languages with polymorphic types, it
is possible to have procedures that are parameterized over the types of their
inputs. This makes it possible to express programs more naturally, but at the
cost of making the type system more complex. We will study polymorphism in
Chapter 13.

12.3 FL/X: A Language with Monomorphic Types

12.3.1 FL/X

We begin our exploration of types by studying FL /X, a statically typed dialect
of FL with eXplicit types. FL/X is a monomorphic language, which means
that each legal expression is described by exactly one type. In a monomorphic
language, procedures cannot be parameterized over the types of their arguments.
For example, a procedure that reverses lists of integers cannot be used to reverse
lists of strings, even though the reversal procedure never needs to examine the
components of the list.

Despite this lack of expressiveness, a monomorphic language is worth study-
ing because (1) it simplifies the discussion of many type issues and (2) a number

LAt least in pre-ANSI PASCAL.

520 CHAPTER 12. SIMPLE TYPES

of popular languages (e.g., FORTRAN, PASCAL, and C) are monomorphic.? As
evidenced by the success of these languages, monomorphic languages can still
be very useful in practice. As we shall see, monomorphic languages can even
support features like higher-order procedures and recursive types.

The grammar for FL /X is presented in Figure 12.1. It is similar to the FL
grammar, but there are some important differences, which we discuss in detail.

There is a new syntactic domain Type that is used to specify the types of
FL/X expressions. An FL/X type has one of two forms:

1. a base type specifies one of the built-in types of primitive data:

e unit, the type of the one-point set {#u};

e bool, the type of the two-point set {#t,#f};
e int, the type of integers; and

e sym, the type of symbols.

2. an arrow type of the form (> (T4, ... Tyrg,) Tresur) specifies the
type of an n-argument procedure that takes arguments of type Ty,
through T4, and returns a result of type Ty.su;. For example, an in-
crementing procedure on integers has type (-> (int) int), an addition

procedure on integers has type (-> (int int) int), and a less-than pro-
cedure on integers has type (-> (int int) bool).

Arrow types can be nested, in which case they describe higher-order pro-
cedures. For example:
e a procedure that returns either an incrementing or decrementing pro-
cedure based on a boolean argument has type

(-> (bool) (-> (int) int))

e a procedure that takes an integer predicate and determines if any
numbers in the range [1...10] satisfy this predicate has type

(=> ((=> (int) bool)) bool)
e a procedure that approximates the derivative of an integer function
has type

(=> ((=> (int) int)) (-> (int) int))

2These languages provide ad hoc overloading and type casting mechanisms that make it
possible to go beyond monomorphism in limited ways. However, because they provide no
principled mechanisms for polymorphism, we consider them to be monomorphic.

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 521
P € Program
D € Def
E € Exp
T € Type
I € Identifier
B € Boollit = {#t,#f}
N € Intlit = {..,-2,-1,0,1,2,...}
L e Lit
O € Primop = Usual FL primitives except list ops and predicates.
P = (flx ((Iformal %) Ebody Ddeﬁnitions*) [Program]

D ::= (define Iname Tiype Ldefn)

E:=1L
| I
| (if Etest Econsequent Ealternate)
| (lambda ((Iformal *) Ebody)
| (Erator Erand*)
| (let ((Iname Edefn)*) Ebody)
| (letrec ((Iname Ttype Edefn)*) Ebody)
| (primop Oname Farg™
| Cerror Imessage 1D
| (the T E)
| (tlet ((Iname Tdefn)*) Ebody)
L :=#u
| B
| N
| (symbol 1)
T ::= unit | bool | int | sym

| (define-type Iname Tdefn)

| (=> (T*) Thodqy)

[Value Definition]
[Type Definition]

[Literal]

[Variable Reference]
[Branch]
[Abstraction]
[Application]

[Local Value Binding]
[Local Value Recursion]
[Primitive Application]
[Error]

[Type Ascription]
[Local Type Binding]

[Unit Literal]
[Boolean Literal]
[Integer Literal]
[Symbol Literal]

[Base Types|
[Arrow Type]

Figure 12.1: Grammar for FL /X, a monomorphic, explicitly typed language.

022 CHAPTER 12. SIMPLE TYPES

Because -> is used to combine simpler types into more complex types, it is
known as a type constructor. It is the first of several type constructors
that we will encounter in FL /X. We will see several others in Section 12.4.

The prefix form of FL/X arrow types may seem unusual to those accus-
tomed to the infix type notation that is standard in the types literature and in
languages like SML and HASKELL. The following table shows examples of the
two notations side by side:

FL/X types SML types
(-=> (bool) (-> (int) int)) bool -> (int -> int)
(=> ((-> (int) bool)) bool) (int -> bool) -> bool
(> ((-> (int) int)) (> (int) int)) (int -> int) -> (int -> int)
(-=> ((-> (int int) bool)) (-> (int int) int)) (int * int -> bool) -> int * int -> int

Some FL /X expressions — literals, variable references, conditionals, prim-
itive applications, and let — are unchanged from FL. But other expressions
have been extended with type annotations that will be used to determine the
types of the expressions:

e In abstractions, parameters are specified by a sequence of bindings of the
form (I T) that specify both the name and the type of each formal pa-
rameter. For example, an averaging abstraction can be written as

(lambda ((a int) (b int))

(/, (+) 2 . . .
and an a/bstra%t})on t)hat chooses an incrementing or decrementing proce-

dure based on a boolean argument can be written as
(lambda ((b bool))
(if b
(lambda ((x int)) (+ x 1))
(lambda ((x int)) (- x 1)))).

e Unlike let expression bindings, each binding in a letrec expression has a
type in addition to the name and definition expression. For example, the
following letrec expression introduces a summer procedure that sums all
the integer values in the range lo to hi that satisfy a predicate £. The
letrec syntax requires that the type of summer be written down explicitly.

(letrec
((summer (-> ((-> (int) bool) int int) int)
(lambda ((f (-> (int) bool)) (lo int) (hi int))
(if (> 1o hi)
0
(+ (if (f lo) 1o 0)
(summer £ (+ lo 1) hi))))))
(summmer (lambda (x) (= (rem x 3) 0)) 1 100))

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 523

e FL/X requires the programmer to specify the type of an error construct
explicitly. For example, consider the following higher-order procedure:
(lambda ((n int))
(if (< n 0)
(error negative (-> (int) bool))
(lambda ((d int))
(if (=4 0)
(error zero bool)
(= (remn d) 0)))))
Although error expressions never return a value, the type annotations
specify that the first error expression should be treated as if it returns a
procedure with type (-> (int) bool) and the second error expression
should be treated as if it returns a boolean value. These type declarations
allow the error expressions to have the same type as the other arms of
their corresponding if expressions.

You may wonder why FL /X has type annotations for some expressions but
not others. For instance:

e Why are types required in letrec bindings but not let bindings?

e Why do abstractions require specifying parameter types but not the type
of the returned value? After all, procedure and method declarations in
languages like C, JAVA, and PASCAL require explicit return types.

e Why are types required in error expressions?

The answer is that type annotations in FL/X were chosen to be the minimal
annotations that allow the type of any expression in a program to be determined
without “guessing” the types of any expressions. We will formalize this notion
when we study the type checking of FL /X expressions in Section 12.3.2.

There are several other differences between FL /X and FL:

e For simplicity, the version of FL /X we study here has no data structures
(unlike FL, which has pairs and lists). We will study typed data later in
Section 12.4.

e FL/X supports fewer primitive operations than FL. In particular, because
the type of every FL /X expression is known at type checking time, there
is no need for type predicates like boolean?, integer?, and procedure?.
Because we are ignoring lists for now, the variant of FL /X we study here
does not support any list operations either.

524

CHAPTER 12. SIMPLE TYPES

e FL/X has a new type ascription construct (the T FE) that asserts that

expression F has type T. In other languages, type ascription is often
written via a notation like E : T. The expression (the T E) returns
the value of E, so it can be used wherever F is used. For example, it can
be used to explicitly declare the return type of a procedure:
(lambda ((b bool) (x int))
(the int (if b (+ x 1) (* x 2))))

The the construct is not strictly necessary, but it is handy for documenting
the types of expressions.® Assertions made with the are automatically
verified by a type checker. For example:

(+ 1 (the int (* 2 3))) ; Type Checks; Value = 7

(+ 1 (the bool (* 2 3))) ; Doesn’t type check: * returns int

Later we will see that types in FL./X can become large and cumbersome.
The tlet construct improves the readability and writability of types by
allowing type expressions to be abbreviated by names. The abbreviations
are local to the body expression of the tlet. For example:
(tlet ((intfun (-> (int) int)))
(tlet ((intfun-transformer (-> (intfun) intfun)))
(the intfun-transformer
(lambda ((f intfun))
(lambda ((x int))

(x2 (£ (+x 1))

We will assume that there is a single namespace for types and values. So
the first of the following expressions is reasonable, but the second and third
are nonsensical:

;; Reasonable expression
(lambda ((x int))
(tlet ((z bool))
(lambda ((y z))

x)))

;3 nonsensical expression
(lambda ((x int))
(tlet ((x bool))
(lambda ((y x))

x))) ; This X bound by TLET

3Unlike, for example, casts in C, FL/X’s the is not a coercion operator that can be used
to create type loopholes.

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 925

;3 nonsensical expression
(tlet ((x bool))
(lambda ((x int))
(lambda ((y x)) ; This X bound by LAMBDA

x)))

It is possible to put types and values in different namespaces, but this
complicates the definitions of syntactic operations (finding free variables,
performing substitution) that we will use later.

e In the program sugar of FL/X (see Figure 12.2), define declarations
(which desugar into a letrec) must include an explicit type. There is
also a new define-type declaration that is sugar for a global tlet. The
desugaring for program assumes that all define-type forms come before
all define forms. This is not required, but it is always possible to “bubble-
up” the define-type forms to the top of the program without changing
its meaning (assuming the names used in defines and define-types are
disjoint).

Unlike FL, FL/X does not have any syntactic sugar for expressions.
Multi-argument abstractions, let, and letrec do not desugar to sim-
pler FL/X forms but are considered primitives. The reason for this is
that such desugarings would not preserve expressions types. In FL/X,
a two argument addition procedure, whose type is (-> (int int) int),
is not equivalent to the curried form of this procedure, which has type
(=> (int) (-> (int) int)). An FL/X let construct cannot desugar
into an application of a multi-argument abstraction because the parameter
types necessary for the abstraction are not manifest.

FL/X could easily be extended to support other sugared expressions from
FL, such as and, or, cond, but we omit these here to avoid clutter.

12.3.2 FL/X Type Checking
12.3.2.1 Introduction to Type Checking

In a statically typed language, a program phrase is said to be well-typed if
it is possible to assign a type to the phrase based on a process known as type
checking. This process is typically expressed by a collection of formal rules and
a reasoning system that uses these rules. A phrase is said to be ill-typed if it
is not possible to assign it a type. Only well-typed phrases are considered legal
phrases of the language.

526 CHAPTER 12. SIMPLE TYPES

Dprog [(£1x (I T)*) Epody
(define-type I;; Ti;) ... (define-type Iy Tu)
(define I,; Ty; E,;) ... (define Iy, Ton Eun))]
= (fl1x (I I*)
(let ((not? (lambda ((x bool)) (primop not? x))))
(and? (lambda ((x bool) (y bool)) (primop and? x y)))

5 ; Similar for or? and bool=?
(+ (lambda ((x int) (y int)) (primop + x y))))

. ; Similar for -, *, /, rem, <, <=, =, /=, >=, >
(sym=7 (lambda ((x sym) (y sym)) (primop sym=7 x y)))
(unit #u)

(true #t)
(false #f)
)

(tlet ((Ly; Ti1))

(tlet ((Ly Tw))
(letrec ((I,; Ty Eyu1)

Uy Ton Epn))
Epody)))

Figure 12.2: Desugaring for FL /X syntactic sugar.

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 927

Type checking is similar to evaluation, except that rather than manipulating
the run-time values associated with expressions, it manipulates the static types
associated with the expressions. Recall that it is possible to view types as
approximations to values. From this perspective, a type checker evaluates the
program with approximations rather than actual values. The notion that a
program can be “run” in a way that is guaranteed to terminate on a finite set
of value approximations is the basis of a style of program analysis known as
abstract interpretation.

As a simple example of the kind of reasoning used in type checking, consider
the type analysis of the following FL /X abstraction:

(lambda ((b bool) (x int) (f (-> (int int) int)))
(if b x (£ 0 1)))

The type annotations on the parameters indicate that b is assumed to be a
boolean, x is assumed to be an integer, and f is assumed to be a procedure
that maps two integer arguments to an integer result. Based on the assump-
tion for £, the type of (£ 0 1) is int, because applying a procedure of type
(=> (int int) int) to two integers yields an integer. Based on this conclusion
and the assumptions for b and x, the body expression (if b x (£ 0 1)) is well-
typed, because the test subexpression has type bool, and the two branches both
have the same type, int. The type of the if expression is int, because that is the
type of the value returned by the expression for any values of b, x, and f satisfy-
ing the type assumptions. Since the abstraction takes three parameters, a bool,
an int, and a procedure of type (-> (int int) int), and it returns an int, the
abstraction has the arrow type (-> (bool int (-> (int int) int)) int).

If we changed the body of the example to (if x x (f 0 1)), the if expres-
sion would not be well-typed because the test subexpression does not have type
bool. Similarly, the body would not be well-typed if it were (if b b (£ 0 1)),
because then the two conditional branches would have incompatible types: bool
and int.* Even the expression (if #t b (f 0 1)) is not considered to be well-
typed, even though it is guaranteed to return a boolean value when executed.
Why? The type checker only manipulates approximations to values. It does not
“know” that the test expression is the constant true value. All it “knows” is
that the test expression is a boolean, and so it cannnot determine which branch

4There are sophisticated type systems in which (if b b (f 0 1)) would be considered
well-typed, with a so-called union type that is either bool or int. In order to guarantee type
soundness (see Section 12.3.3), such systems must constrain the ways in which a value with
union type may be manipulated. In this presentation, we focus on simpler type systems that
do not allow union types.

028 CHAPTER 12. SIMPLE TYPES

is taken.’

From the above examples, it is clear that just as the value of an expression
is determined from the values of its subexpressions, so too is the type of the
expression determined from the type of its subexpressions. However, the actual
rules for determining the type of the whole from the type of the parts may be
very different from the rules for determining the value of the whole from the
value of the parts. For instance:

e an evaluator only evaluates one branch of a conditional, but a type checker
checks both branches of a conditional.

e an evaluator does not evaluate the body of a procedure until it is applied to
arguments, but a type checker checks the body of an abstraction regardless
of whether or not it is applied.

e an evaluator associates the actual arguments with the formal parameters
when applying a procedure to arguments, but a type checker simply checks
that the types of the actual arguments are compatible with the argument
types expected by the procedure.

12.3.2.2 Type Environments

Just as expressions are evaluated with respect to a dynamic value environment
that associates free identifiers with their run-time values, they are type checked
with respect to a static type environment that associates free identifiers with
their types. Type environments are partial functions from identifiers to types:

A € Type-Environment = Identifier — Type

If A is a type environment and I€dom(A), then the notation A(I) designates
the type assigned to [in A.

The association of a type T with a name [is known as a type assignment,
which we will write using the notation I: T and pronounce as “I has type T.”
We will write type environments as sets of type assignments whose names are
pairwise disjoint. For instance, {} is the empty type environment, and the type
environment used to check the abstraction body (if b x (£ 0 1)) in the above
example is:

Ay = {b:bool, x:int, f:(-> (int int) int)}

5 Again, in some more sophisticated type systems, (if #t b (f 0 1)) would be considered
well-typed with type bool.

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 529

The body of an FL /X program is type checked with respect to a standard
type environment Ay, (Figure 12.3) that assigns types to the global names
that may be used within the body. For example, Agq(+) = (=> (int int) int)
and Aggy(<) = (-> (int int) bool).

{ unit:unit,
true:bool,
false:bool,
not?: (-> (bool) bool),
and?: (> (bool bool) bool),
or?: (-> (bool bool) bool),
bool=7: (-> (bool bool) bool),
+:(-> (int int) int),
-:(-> (int int) int),
*:(-> (int int) int),
/:(=> (int int) int),
rem: (-> (int int) int),
<:(-> (int int) bool),
<=:(-> (int int) bool),
=:(-> (int int) bool),

: (=> (int int) bool),

: (=> (int int) bool),

>:(-> (int int) bool),

sym=7: (> (sym sym) bool) }

V?I

Figure 12.3: Standard type environment Ay for FL/X.

As with value environments, it is often necessary to extend a type environ-
ment with additional bindings. We use the notation

All; Ty, ..., I,:T,]

to indicate the type environment that results from extending A with the given
type assignments. The identifiers I; must be distinct, and the extensions override
any assignments that A may already have for these identifiers. For example,
suppose that Ay = Aj[b:sym,t:bool]. Then dom(Az) ={b,f x,z} and Aa(b)
=sym, Az2(f) = (-> (int int) int), As(x) =int, and As(t) =Dbool.

12.3.2.3 Type Rules for FL/X

We now describe a formal process by which the types of FL /X expressions can
be determined. The assertion that an expression E has type T with respect to
type environment A is known as a type judgment and is written as

AFE: T

930 CHAPTER 12. SIMPLE TYPES

This is pronounced “F has type T in A” or, more loosely, “A proves that F
has type T.” When such an assertion is true, we say that the type judgment
isvalid. If A+ E : T is valid, we say that E is well-typed with respect
to A. Otherwise, F is ill-typed with respect to A. If the type environment
(typically Agy) is understood from context, we just say that E is well-typed
or ill-typed. When the type environment is omitted from a type judgment, as
in - E : T, this asserts that E has type T in every environment.

Valid type judgments can be determined via type rules that have a form
similar to the rules we introduced for operational semantics in Chapter 3. Each
type rule has the form

Premisey; . ..; Premise,

Conclusion [name-of-rule]

where Conclusion and each Premise; are type judgments. If all of the premises
of a rule are valid, then the type judgment in the conclusion of the rule is valid.

The type rules for FL./X are presented in Figure 12.4. The [unit], [bool],
[int], [sym], and [error] rules are axioms that are independent of the type envi-
ronment. The other axiom, [var], says that the type of an identifier is looked up
in the type environment.

The [if] rule requires that (1) the test expression denotes a boolean and (2)
the two branches have the same type. If these requirements are met, the type
of the if expression is the type of the branches. The constraint that the two
branch types and return type must all be the same is specified by using the same
type metavariable, T, for all three types.

As in the operational semantics rules, type rules are really rule schemas in
which every metavariable can be instantiated by any element of the domain
ranged over by the metavariable. So [if] stands for an infinite number of rules in
which A can be any type environment, 7T can be any type, and Eyest, Eeopn, and
E,; can be any expressions. Many of these instantiations may not make sense
at first glance. For example, here is one instantiation of the if rule:

{}F1:bool ; {}F2:bool ; {}F3:bool
{}F @Gf 12 3) : bool

Certainly we should not be able to prove that (if 1 2 3) has type bool! But
the rule doesn’t say that (if 1 2 3) has type bool. Rather, it says that
(if 1 2 3) would have type bool if the integers 1, 2, and 3 all had type bool.
But it is impossible to prove these false premises, and so the false conclusion
will never be declared to be a valid judgment by the type system.

The [->-intro] and [->-elim| rules are the rules for abstractions and applica-
tions, respectively. The rule names emphasize that abstractions are the source

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 531

F#u : unit [unit] F N :int [int] F B : bool [bool]
F (symbol I) : sym [sym] F(error I T) : T [error]
AF1T: A(l), where Iedom(A) [var]

AbF By : 00l 3 AFEgp : T 3 AFEy - T
AF Gf Brest Econ Ear) + T

All; 2Ty, ..., In: Tyl Epoay @ Thody
AF (Lambda ((I; T1) ... (n 1)) By [~>-intro]
(> (T; ... T,)D Tbody)

A = Erator . (—> (T] e Tn) Tresult)
Vi, AR E T, [->-elim]
Al (Erator El s En) : Tresult
v?:l . A H E,L : T,L
A[I1 Ty, ..., I,: Tn] [Ebody : Tbody [let]
Al (let ((11 E]) e (In En)) Ebody) : Tbody
V?:l . A/ H Ez . Tl
A'F Ebody : Tbody [letrec]
AF (Qetrec ((U; Ty Ey) ... (Iy Ty En)) Epody) : Thody

where A'=A[l;: Ty, ..., In: Ty,
Astdl_ Oname 2 (=> (TI Tn) Tresult)

[if]

Vi, . AR E : T; [primop)]
AF (primop Oname EI o En) : Tresult
AFE: T (the]

AF(the TE) : T

A+ ([Ti/ L)1) Evody : Thody
At (tlet ; T ... (I, Tp)) Ebody) : Tbody

[tlet]

A[[1:T1, ey In3Tn]|_Ebody . Tbody [o]
AF Glx (T T .. o T)) By : (= (T; .. T) Tooqy) P8

Figure 12.4: Typing rules for FL/X.

932 CHAPTER 12. SIMPLE TYPES

expressions that produce values of arrow type and that applications are the
sink expressions that use values of arrow type. In our study of typed data in
Section 12.4, we shall see many other examples of introduction and elimination
rules. In the [->-intro] rule, the type of an abstraction is an arrow type that
maps the explicitly declared parameter types to the type of the body, where the
body type is determined relative to an extended environment that includes type
assignments for the parameters. The [->-elim| rule requires that the operator
of an application be an arrow type whose number of parameters is the same as
the number of supplied operands and whose parameter types are the same as
the corresponding operand types. In this case, the type of the application is the
result type of the operator type.

The [let] and [letrec] rules are similar. Both type check a body expression
with respect to the given type environment A extended with type assignments
for the named definition expressions F; in the bindings. The difference is that
let definitions are not in the scope of the bindings, and so can be type checked
relative to A. However, letrec definitions are in the scope of the bindings, and
so must be type checked relative to an environment A’ that extends A with
type assignments for the bindings. Since the definition types in a let can be
determined from the supplied type environment A, there is no need for types of
the definitions to be explicitly declared. But in the letrec case, determining
the extended type environment A’ in general requires finding a fixed point over
type environments. FL/X requires the programmer to explicitly declare the
types of letrec definitions so that the type checker does not need to compute
fixed points.

The [primop] rule treats primitive operators as if they have arrow types
determined by the standard type environment, Agy. This allows the type checker
to handle primitive applications via what is essentially a specialized version of
[->-elim].

The [tlet] rule type checks the result of substituting the types Ty, ..., T}, for
the identifiers I;, ..., I, in the body expression Ep.q,. All the rules except for
tlet are purely structural in the sense that the premise judgments involve
subexpressions of the expression that appears in the conclusion judgment. When
rules are purely structural, it is easy to show by structural induction that the
type checking process will terminate. The initial expression being type checked is
finite, and in any rule each premise subexpression is necessarily strictly smaller
than the conclusion expression, so the recursion process must eventually bot-
tom out at the axioms. But tlet is mot structural, because the substituted
body expression is not a subexpresion of the original tlet expression. With
non-structural rules like tlet, care must be taken that each of the premise ex-
pressions is strictly smaller than the conclusion expression by an appropriate

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 933

metric. In the case of tlet, such a metric is expression height, which measures
the height of an expression tree ignoring the height of any type nodes.

The [prog] rule is the type checking rule for a top-level program. Since a
program maps input values to an output value, it has an arrow type. Indeed,
from a type-checking perspective, the [prog| rule is identical to the [->-intro]
rule. Although FL/X allows program parameters of any type, in practice the
parameter types are often restricted. For example, JAVA programs have a single
program parameter that must be an array of strings. In our examples, we will
assume that the parameters to FL /X programs correspond to values that can
be expressed with s-expressions. In particular, we will assume that parameter
types cannot contain arrow types.

12.3.3 FL/X Dynamic Semantics and Type Soundness

Intuitively, types specify a static property of an FL /X expression, not a dynamic
property. We formalize this intuition by defining the dynamic semantics of
FL/X via a transformation that erases the types of FL/X. As the target of this
transformation, we introduce a variant of FL that we will call FL*. The FL*
language has the same syntax as FL, but its multiple parameter abstractions,
multiple argument applications, and multiple binding letrecs are treated as
indecomposable constructs rather than as syntactic sugar. (The multiple binding
let, on the other hand, desugars into an application of a manifest abstraction.)
The essence of the operational semantics of CBN FL* is presented in Figure 12.5.
Rewrite rules for FL* constructs not in the figure are the same as those for FL.

(Qambda (I; ...1.) Eoay) Ei - En)= ([Ei/L)"y) Evoay [FL*-apply]

Erator = Erator !
(Erator El .. En) = (Erator/ El .. En)

[FL*-rator]

(letrec ((I; Ep) ...y En)) Epoay)

*_
—([Qetrec ((I; E) ...(Iy E)) ED /L)) Evoay [FL*-letrec]

Figure 12.5: Operational rules distinguishing CBN FL* from CBN FL. Rules
for all other FL* constructs are the same as those for FL.

The types of an FL /X expression E can be erased via type erasure (written
[E]) to yield an FL* expression (see Figure 12.6). We define the meaning of

934 CHAPTER 12. SIMPLE TYPES

an FL/X expression E as the meaning of its type erasure [F|. For example,
suppose that Fj.q is:

(let ((f (lambda ((b bool) (x int))
(if b x (primop + x 1))))

(y (primop * 3 4)))

(f (primop = 10 y) y))

Then [FEpest] is:

((lambda (f y) (f (primop = 10 y) y))
(lambda (b x) (if b x (primop + x 1)))
(primop * 3 4))

Since the latter expression reduces to 13 in FL*, the meaning of the FL/X
expression Fieq is 13.

We will say that an FL* expression is a type error if it is stuck under the
operational rewrite rules for some reason other than (1) division or remainder
by zero or (2) an explicit error construct. For instance, the following FL*
expressions are type errors:

(primop + 1 true) ; wrong argument type to +

(primop + 1) ; too few arguments to +

(primop + 1 2 3) ; too many arguments to +

(if 1 2 3) ; non-boolean if test

(1 2 3) ; application of non-abstraction

((lambda (x y) x) 1) ; too few arguments in application
((lambda (x y) x) 1 2 3) ; too many arguments in application

We will say that an FL* expression has a type error if it can be operationally
rewritten to an expression that is a type error.

The advantage of types is that they guarantee an expression has no type
errors. This is captured in the following type soundness result for FL/X:

Theorem 1 (Type Soundness of FL/X) If E is a well-typed FL/X expres-
sion, then [E] does not have a type error.

The above theorem is the consequence of the following two theorems:

Theorem 2 (Progress for FL/X) If E is a well-typed FL. /X expression, then
it 1s not stuck — i.e., either it is a normal form or it can be rewritten via the
operational rules to another FL /X expression.

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES

935

[.] : Exprr/x — Exprr«

((11: Etest Econsequent Ealternate)~| = (1f |—Etest-| (Econsequengl I_Ealternatt;l)
[(lambda ((I; T;) ... (I, Tp)) Epogy)] = Qambda (I; ... I,) [Epoay])
’—(Erator Erandl Erandn)-| - ([Erator-| (Erandl] |—Erandn-|)

((let (; Ey) ... U, ED) Ebodyﬂ =
((lambda (I; ... 1) I_Ebody~|) [E] ... [E.]D

[(Letrec ((I; T; Ey) ... (U T1 En)) Epoqy)| =
(letrec ((I; [E(]) ... Up [Ex])) [Ebody])

[(primop Ongme Ei ... Ep)] = (primop Oname [E1] ... [En])
((tlet u; Ty ... I, T)) Ebody)‘| = ’VEbody]
[(the T E)| = [E]

((GI'I'OI' Imessage T)—| = (error Imessage)

Figure 12.6: Type erasure rules transforming FL /X to FL* expressions.

936 CHAPTER 12. SIMPLE TYPES

Theorem 3 (Subject Reduction for FL/X) If E is a well-typed FL/X ex-
pression with type T and [E]| is not a normal form or stuck, then there is a
well-typed FL /X expression E' with type T such that [E] = [E'].

12.4 Typed Data

We now consider how to extend FL /X with typed versions of the forms of data
studied in Chapter 10. We will see that the goal of maintaining static type
checking constrains the ways in which we create and manipulate some data
structures.

12.4.1 Typed Products

Figure 12.7 shows the syntax and type rules needed to extend FL /X with pairs,
the simplest kind of product. Types formed by the pairof type constructor
keep track of the types of the first and second components of a pair. This type
is introduced by the pair construct and eliminated by either fst or snd. For
example, the type of (pair (+ 1 2) (= 3 4)) is (pairof int bool).

Although fst and snd are primitive operators in FL, they cannot be prim-
itive operators in FL./X due to the monomorphic nature of the language. For
example, the [pair-elim-F] rule says that fst returns a value whose type is the
first type component of the type (pairof T; T,). Without some form of poly-
morphism (see Chapter ??) it is not possible to describe this behavior via a
single type assignment for left in the standard type environment.

Pairs can be generalized to arbitrary positional products, whose syntax and
type rules are presented in Figure 12.8. The productof type tracks the number
of components and type of each component in a product value. For example,
the type of

(product (+ 1 2) (= 3 4) (lambda (x) (> x 5)))

is
(productof int bool (-> (int) bool)).

The [productof-elim] rule clarifies why the index in a proj form must be a man-
ifest integer literal rather than the result of evaluating an arbitrary expression.
Otherwise, the type checker would not “know” which component was being ex-
tracted and different types could not be allowed at different indices.

Handling named products in a typed language requires additional complexity.
As shown in Figure 12.9, the recordof type needs to associate record field
names with types. Although the [recordof-elim]| rule is concise, the ellipses in the

12.4. TYPED DATA 937

Syntax
E = ... | (pair Ejy Esq) [Pair Intro
| (£st Epuir) [Pair Elim First]
| (snd Epeir) [Pair Elim Second]
T:=...| (pairof Ty Tsna) [Pair Type]
Type Rules
AFEy : Ty 3 AV E; 0 T, [pairof-intro]
AF (pair E; L) : (pairof Ty Ty) patrot-imtro
At E,pir : (pairof T Ty) . .
Apl— (fst%pair) : If} [pairof-elim-F)
AF E uir (pairof Ty T) . .
Az})— (SndPEpair) : fT s [pairof-elim-S]
Figure 12.7: Handling pairs in FL/X.
Syntax
E = ... | (product E*) [Product Intro]

| (proj Nindex Eproa) [Product Elim]
T:=... | (productof T*) [Product Type]

Type Rules

Vi, AFE T,
Al (product E; ... E,) : (productof T; ... T,)

[productof-intro]

AF Eproq @ (productof Ty ... T,)
AF (prOj Nindex Eprod) : Ty

index

, where 1 < Njpges <1 [productof-elim]

Figure 12.8: Handling products in FL/X.

038 CHAPTER 12. SIMPLE TYPES

premise type (recordof ... (I T) ...) obscure the fact that the type checker
must somehow find the binding associated with the selected field name in the list
of name/type bindings. Moreover, the fact that the name/type bindings may
be in any order complicates the notion of type equality — an issue discussed in
the next subsection.

Syntax
E = ... | (record (I ED*) [Record Intro]
| (select I E) [Record Elim]
T:=...| (recordof (I T)*) [Record Type]
Type Rules

?:1 . A " Ez . Tl
A& (record (I; E;) ... (I, E.)) [recordof-intro]
: (recordof (I; T;) ... (I, T,))

AR FE : (recordof ... (U T) ...)
Al (select T E) : T

[recordof-elim]

Figure 12.9: Handling records in FL /X.

> Exercise 12.1 Consider extending FL /X with a construct (pair=? Epeir, Epair,)
that returns ¢rue if the respective components of the pair values of Ep.;r, and Epgir,
are equal, and returns false otherwise.

a. Give a type rule for pair="?.

b. In dynamically typed FL, write pair=? as a user-defined procedure (using the
generic equal? procedure to compare components).

c. In FL /X, is it possible to write pair? as a user-defined procedure? Explain. <

12.4.2 Digression: Type Equality

Before the introduction of recordof types, it was safe to assume that two
types were equal only if they were syntactically identical. But this assumption
is no longer valid in the presence of recordof types, because two recordof
types with different binding orders can be considered equal. For example,
(recordof (a int) (b bool)) and (recordof (b bool) (a int)) areequiv-
alent types.

12.4. TYPED DATA 539

One way to handle record type equality is to require that all recordof types
be put into a canonical form — e.g., with name/type bindings alphabetically
ordered by name. Another approach is to develop a collection of rules that
formalize when two types are equal. In this approach, two types are equal if and
only if a proof of equality can be derived from the rules. This second approach
is more general than the first because it handles notions of type equality that
are not so easily addressed by canonical forms.

Figure 12.10 presents a set of type equality rules for the FL /X types studied
thus far. The [reflexive-=|, [symmetric-=|, and [transitive-=| rules guarantee
that = is an equivalence relation. The [->-=]|, [pairof-=|, and [productof-=]
rules ensure that = is a congruence over the ->, pairof, and productof type
constructors. The [recordof-=] rule allows the type and the tag names of a
recordof type to appear in permuted order as long as the named component
types are equivalent.

From now on, we assume that the type equality rules in Figure 12.10 are
used whenever it is necessary to determine the equality of two FL/X types.
Such tests are often implicit in the type constraints of type rules. For example,
here is a version of the [if] rule in which type equality tests are made explicit:

Ak Eiest @ Ttest 5 At Eeon @ Teon 5 AF Ealt : Talt
Ak (if Etest Econ Ealt) : Tresult

where Tiess =bool, Teon = Toi, and Toy = Tresuit

[if]

12.4.3 Typed Mutable Data

Mutable data, such as mutable cells, tuples, records, and arrays, are straight-
forward to handle in an explicitly typed framework. The type rules for mutable
cells are presented in Figure 12.11. Both subexpressions of a begin form are
required to be well-typed, but only the type of the second expression appears
in the result type. The cellof type constructor tracks the type of the cell con-
tents. In [cell-set], the new value is constrained to have the same type as the
value already in the cell. The unit result type of a cell-set form indicates
that it is performed for side effect, not for its value.

Note that Figure 12.11 includes a type equality rule for cellof types. From
now on, we must specify type equality rules for each new type constructor in
order to test for equality on the types it constructs.

540 CHAPTER 12. SIMPLE TYPES

I=T [reflexive-=]
(e [symmetric-=]
To=T,
Ti=Ty ; To=Tjs L
T,=T; [transitive-=]
v?:l . Sl: T’L ; Sbody: Tbody [_>_:]
(_> (Sl STL) Sbody) :(_> (T] Tn) Tbody)
2 _m
. Vie1 - Si Tz (pairof =]
(pairof S; So) = (pairof T; Ts)
(productof S; ... S,) = (productof T; ... Ty) [productof-=]
(recordof (J; S;) ... (J, Su)) recordof.—

= (recordof (I; Ty) ... (I, T,))

where {Jg,...,Jn} ={I1,...,I,} and
Vi . V. J=I implies §;=T;

Figure 12.10: Type equality rules for FL/X.

12.4. TYPED DATA 541
Syntax
E:=... | (begin E; Ez) [Sequential Execution]
| (cell E) [Cell Creation]
| (cell-ref E) [Cell Get]
| (cell-set! FEcey Eyar) [Cell Set]
T:u=...| (cellof T) [Cell Type]
Type Rules
V%ZlAl_EZTZ [b]
At (begin E; Eg) : T» cgin
AFE: T .
AF (cell E) : (cellof T) [celloF-intro]
AbF E.y : (cellof T) .
AF (cell-tef Ep) : T [cellof-elim]
Ab Eo @ (cellof Tyu) ; AbF Eya @ Tow (cell-set]
At (cell-set! E. Euq) : unit celse
Type Equality
Ti=Te [cellof-=]

(cellof T;)=C(cellof T5)

Figure 12.11: Handling cells in FL/X.

042 CHAPTER 12. SIMPLE TYPES

12.4.4 Typed Sums

Although sums are in some sense the duals of products, the type rules for named
sums (Figure ??) are far more complex than the type rules for named prod-
ucts in an explicitly typed language. Like the recordof type constructor,

Syntax

E = ... | (one Toneos ltag Evai) [Oneof Intro]
| (tagcase Egisc Ivai (Ttag Epody) ™ [(else Egpe)]) [Oneof Elim]

T:=...| (oneof (I TO*) [Oneof Type]
Type Rules

Al Eval : Tval
A (one Toneof Itag E’ual) : Toneof

where Toneop = (oneof ... (Ligg Tyar) ...)

[oneof-intro]

At Egis. : (oneof (Iﬂ-(l) Tﬂ-(l)) (Iﬂ.(n) Tﬂ.(n)))
v?:l . A[Ljal : TT((’L)] F Ez : Tresult [Oneof—eliml]
A& (tagcase Eyise Lna (I3 E;) ... (In EW)) ¢ Tresunt

where 7 is a permutation on the integer range [1..n]

Al Egise : (oneof (J; Ty) ... (Jpy Thw))
v?:1 . A[Ival: Tf(z)] F B Tresun
Al Edefault : Tresult [OHeof—elim?]
At (tagcase Eyise Ly (U E7) ... (I, Ep)
(else Edefault)) : Tresult

where 7 <m and for all i € [1..n] there is a unique f(i) € [1..m] such that I;=J(;

Type Equality

(oneof (J; S;) ... (J, Sp)) = (oneof (I; Ty) ... (I, Tp)) [oneof-=]

where {Jg,...,Jn} ={I1,...,I,} and
n V. Jj=1 implies §=T;

Figure 12.12: Handling oneofs in FL/X.

the oneof type constructor combines a sequence of named types whose or-
der is irrelevant (as specified by [oneof-=]). But the oneof introduction form
(one Toneof ltag Eue) must include the explicit type Toneor of the resulting
oneof value for use in the [oneof-intro| rule. This is necessary to preserve the
FL/X property that the type of any expression in a given type environment is

12.4. TYPED DATA 943

unambiguous and can be determined without any guessing. In the dual [recordof-
elim] rule for checking (select I E), the record type of F, which includes all
field types, can be determined from the type environment. In contrast, a one
form would only determine the type of one field type if the type T yyeor Were not
explicitly included.

The elimination rules [oneof-elim1]| and [oneof-elim2] are also more complex
than the dual record introduction form. Having to bind the tagged value to the
name [, dealing with an optional else clause, and handling the fact that the
ordering of bindings is irrelevant all contribute to the complexity of the tagcase
rules.

As a concrete example of sum and product types, consider the typed shape
example in Figure 12.13. The shape type is an abbreviation for a oneof type
with three tags. Such abbreviations are crucial for enhancing code readability;
the example would be much more verbose without the abbreviation. We could
have consistently used productof or recordof types for all of the the oneof
components, but have chosen to use different type constructors for different
components just to show that this is possible. Note that in perim and double,
the variable v in the tagcase forms assumes different types in different clauses:
v has type int in a square clause, type (pairof int int) in a rectangle
clause, and type (productof int int int) in a triangle clause. All clauses
of a tagcase are required to return the same type. This return type is int for
perim and shape for double.

> Exercise 12.2 Construct type derivations showing that the perim and double
functions in Figure 12.13 are well-typed. <

12.4.5 Typed Lists

The geometric shape examples above shows that simple sum-of-product data
types can be expressed in FL/X by composing sums and products. However,
as it stands, FL /X does not have the power to express recursively structured
sum-of-product data types like lists and trees. Here we extend FL/X with a
built-in list data type. In Section 12.5, we extend FL /X with a recursive type
mechanism that allows lists and trees to be constructed by programmers.
Figure 12.14 presents the essence of lists in FL/X. Unlike in FL, where
lists are just sugar for idiomatic uses of pairs, FL /X supplies special forms for
creating lists (cons and null), decomposing non-empty lists (car and cdr), and
testing for empty lists (null?). All of these manipulate values of types created
with the listof type constructor. The type (listof 7) describes lists whose
components all have the same type T. FL/X lists are said to be homogeneous,

044 CHAPTER 12. SIMPLE TYPES

(define-type shape
(oneof (square int)
(rectangle (pairof int int))
(triangle (productof int int int))))

(define perim (-> (shape) int)
(lambda ((shp shape))
(tagcase shp v
(square (* 4 v))
(rectangle (x 2 (+ (left v) (right v))))
(triangle (+ (proj 1 v) (proj 2 v) (proj 3 v))))))

(define double (-> (shape) shape)
(lambda ((shp shape))
(tagcase shp v
(square (one shape square (* 2 v)))
(rectangle (one shape rectangle

(pair (* 2 (left v)) (* 2(right v)))))
(triangle (one shape triangle

(product (¥ 2 (proj 1 v))
(* 2 (proj 2 v))
(* 2 (proj 3 v)))N))

Figure 12.13: Typed shapes in FL/X.

12.4. TYPED DATA 945

in constrast to the heterogeneous lists, of FL. To model heterogeneous lists
within FL/X, such as a list of integers and booleans, it is necessary to inject
the different types into an explicit sum type.

Syntax
E = ... | (cons Epeaa FEiair) [List Creation]
| (car Fjst) [List Head]
| (cdr Fjst) [List Tail]
| (qull T) [Empty List]
| (aull? Epse) [Empty List Test]
T:=...| (listof T) [List Type]
Type Rules
At Ehead : T
Al Eiq 2 (Listof T) [cons]

At (cons Epead Etail) : T(listofT)

Al By © (Qistof T)

AT (car Euy) : T [car]
Al Eug © (listof T) ledr]
AT (cdr Epy) : (listof D) car
AF (qull 7) : (listof T) [null]
Al Eust © (Listof 1) (ull?]
Al (null? Ejg) : bool ’
Type Equality
Ti=Ts [listof-=]

(listof T;)=(1istof T5)

Figure 12.14: Handling lists in FL/X.

The null form includes the element type of the empty list. So (null int) is
an empty integer list, (null bool) is an empty boolean list, and (null (listof int))
is an empty list of integer lists.

046 CHAPTER 12. SIMPLE TYPES

(define map-shape-int (-> ((-> (shape) int) (listof shape)) (listof int))
(lambda ((f (-> (shape) int)) (ss (listof shape)))
(if (null? ss)
(null int)
(cons (f (car ss))

(map-shape-int f (cdr ss))))))

(map-shape-int perim
(cons (rectangle (pair 4 5))
(cons (triangle (product 7 8 9))
(cons (square 3)

(null shape)))))

12.5 Recursive Types

Recursive procedures often manipulate recursively-structured data that cannot
be described in terms of compound types alone. The recof and rectype type
constructs (Figure 12.15) are used to specify the types of such data. recof
allows the specification of a single recursive type in the same manner that the
FL rec construct specifies a single recursive value. For example, here recof is
used to specify the type of a binary tree with integer leaves:

(recof int-tree
(oneof (leaf int)
(node (recordof (left int-tree)

(right int-tree)))))

rectype is the type domain analog to letrec. It permits a mutually recursive
set of named types to be used in a body type expression. For example, here is a
use of rectype to specify a binary tree that has integers at odd-numbered levels
and booleans at even-numbered levels:

(rectype ((int-level
(oneof (leaf int)
(node (recordof (left bool-level)
(right bool-level)))))
(bool-level
(oneof (leaf bool)
(node (recordof (left int-level)
(right int-level))))))

int-level)

What does it mean for two recursive types to be equivalent? For example,
consider the four types in Figure 12.16. All of the types describe infinite lists of

12.5. RECURSIVE TYPES 047

E:=...| (recof I T) [Recursive Type]
| (rectype ((I T)*) Thoay) [Mutually Recursive Types]

Figure 12.15: Syntax for recursive types in FL/X.

alternating integer and boolean values. T is a copy of T; in which the recof
bound type variable has been consistently renamed. T3 is a copy of T'; in which
the definition of iblist has been unwound one level. In T, the recursive type
bilist describes an infinite list of alternating boolean and integer values. Which
pairs of these four types equivalent?

T; = (recof iblist (pairof int (pairof bool iblist)))
Ty = (recof int-bool-list (pairof int (pairof bool int-bool-list)))

T3 = (recof iblist
(pairof int
(pairof bool
(pairof int
(pairof bool iblist)))))

T, = (pairof int (recof bilist (pairof bool (pairof int bilist))))

Figure 12.16: Four types describing infinite lists with alternating integer and
boolean values.

The so-called iso-recursive approach to formalizing type equality on recur-
sive types is shown in Figure 12.17. The [recof-a] rule says that two recof types
are equal if their bound variables can be consistently renamed. So T'; = T» via
[recof-a]. The [recof-3] rule says that a recof type is equivalent to the result of
substituting the entire recof type expression for its bound variable in the body
of the recof. So T; = T3 via [recof-f], and Ty = T3 by the transitivity of
type equivalence.

(recof I T) = (recof Iyew [Inew/IT), where I, & Freelds[T] [recof-a]

(recof I T) = [(recof I T)/I|T [recof-0]

Figure 12.17: Iso-recursive type equality rules for recof types.

048 CHAPTER 12. SIMPLE TYPES

Can T, be shown to be equivalent to T;, T, or T3 using [recof-a] and
[recof-3]7 No! We can prove this via the following observation. In each of T,
Ts, and Tg, the number of occurrences of the type int is equal to the number
of occurrences of the type bool. In T, the number of occurrencs of int is one
more than the number of occurrences of bool. Since each application of [recof-/]
and [recof-f3] preserves the difference between the number of occurrences of int
and of bool, T, can never be shown to be equivalent to the other types via these
rules.

There is another approach to recursive type equivalence in which 7'y is equiv-
alent to the other types. In this so-called equi-recursive approach, two recur-
sive types are considered to be equivalent if their complete (potentially infinite)
unwindings are equal. Under this criterion, all four of the types in Figure 12.16
are equivalent, because all of them unwind to an infinite type describing a list
of alternating integers and booleans:

(pairof int (pairof bool (pairof int (pairof bool ...)))).

There are two approaches for formalizing equi-recursive type equality:

1. We can extend the type equivalence rules to maintain a set of assumed type
equivalences. This set is initially empty. Whenever T; and Ty are com-
pared for equivalence and at least one of T'; or T is a recof or rectype
type, the equivalence T; = T, is added to the set of assumptions before
unwinding a recof. If an equivalence already in the set of assumptions is
encountered, the equivalence is assumed to hold. The basic idea of this
approach is to assume that types are equivalent unless some contradiction
can be found.

2. It turns out that there is a normal form for FL/X types. recordof and
oneof types can be normalized by picking a convention for ordering their
tag and field names. recof and rectype types can be viewed as finite
state machines, which have normal forms. The existence of normal forms
implies that it is possible to perform type equivalence by normalizing two
types and syntactically comparing their normal forms.

> Exercise 12.3 Give iso-recursive type equality rules for rectype. <

> Exercise 12.4 Figure 12.18 presents five types. Which of these types are consid-
ered equivalent (a) under the iso-recursive approach and (b) under the equi-recursive
approach?

<

12.5. RECURSIVE TYPES 549

Tit1 = (recof it
(oneof (leaf int)
(node (recordof (left it)
(right it))))

Tite = (recof int-tree
(oneof (leaf int)
(node (recordof (left int-tree)
(right int-tree)))))

Tits = (recof it
(oneof
(leaf int)
(node (recordof (left (recof it
(oneof (leaf int)
(node (recordof (left it)
(right it))))))
(right it)))))

Tity = (recof it
(oneof
(leaf int)
(node (recordof (left it)
(right (recof it
(oneof (leaf int)
(node (recordof (left it)
(right it))))))))))

Ti5 = (recof it
(oneof
(leaf int)
(node (recordof (left (recof it
(oneof (leaf int)
(node (recordof (left it)
(right it))))))
(right (recof it
(oneof (leaf int)
(node (recordof (left it)
(right it))))))))))

Figure 12.18: Five types for integer-leaved binary trees.

950 CHAPTER 12. SIMPLE TYPES

> Exercise 12.5 Based on the idea of maintaining a set of type assumptions, write
a program that computes type equivalence for FL/X types. Your program should
effectively treat recursive types as their infinite unwindings. <

> Exercise 12.6
a. Show that a recof type can be viewed as a finite state machine.
b. Based on the first part, develop a notion of normal forms for FL /X types.

c. Write a program that determines the normal form for a FL. /X type, and use this
as a mechanism for testing type equivalence.

Reading

A good introduction to various dimensions of types is a survey article written by
Cardelli and Wegner [CW85]. A more in-depth discussion of these dimensions
can be found in textbooks by Pierce [Pie02], by Mitchell [Mit96], and by Schmidt
[Sch94]. For types in the context of the lambda calculus, see [Bar92a]. For work
on types in object-oriented programming, see [GM94].

