Chapter 13

Subtyping and Polymorphism

We need a quote for this chapter.

— Mark A. Sheldon

13.1 Subtyping

13.1.1 Motivation

The typing rules presented for FL /X are rather restrictive. For example, con-
sider a get-name procedure that extracts the contents of the name field of a
record:
(define get-name (-> ((recordof (name string))) string)
(lambda ((r (recordof (name string))))

(select name r)))

According to the FL/X typing rules, the following use of get-name does not
type check:

(get-name (record (name "Paula Morwicz") (age 35) (student? #f)))

The problem is that the given record has three fields, but the type of get-name
dictates that the argument record must have exactly one field. Yet the presence
of the extra fields does not compromise the type safety of the expression. We can
reliably extract a string from the name field of any record whose type binds name
to string. No constraints on the number or nature of other fields is implied by
the extraction of the name field.

Situations like get-name can be addressed by the notion of type inclusion
(also called subtyping). We say that S is a subtype of T (written S T T) if

551

952 CHAPTER 13. SUBTYPING AND POLYMORPHISM

all expressions of type S can be used (in a type-safe manner) in every situation
where an expression of type T is used. Viewing types as sets, S C 7T means
that S C T. If Sis a subtype of T, we can also say that 7T is a supertype of S.

13.1.2 FL/XS

We shall consider a variant of FL/X, called FL/XS (the “S” stands for “Sub-
types”), that supports subtyping. The typing rules of FL /XS are the same as
those for FL /X except for the addition of the [inclusion] rule of Figure 13.1. This
rule formalizes the notion that a subtype element can be used in any situation
where a supertype element is expected.

(AFE:T);(T C T
ARE . T’

[inclusion]

Figure 13.1: Additional typing rule for FL/XS. This rule augments the typing
rules for FL/X.

Subtyping is a relation on type expressions that can be defined by a collection
of rules. The subtyping rules for FL./XS appear in Figure 13.2. The [reflexive-

TCT [reflexive-C]
T E Ty ; Ty E Ty s
T, © T, [transitive-C|
vi.dj. (L = Jj) /\(Sj C 7))
(recordof (J; S;) ... (Jm Sw)) [recordof-C]

C (recordof (I; T;) ... (I, T.))
Vi 3. ((J; =L)AS; C To))

(oneof (J; S1) ... (Jyy Sw)) E (omeof (I; T;) ... (Up Tp)) [oneof-C]
Vio(T; © 8) 5 Seody T Toody -~

(> 57 ... S Sbody) C (> (T; ... T,) Tbody) =

VT . (/L] T: C [T/1,]Ts) ot

(recof I; T;) C (recof Ip T»)

Figure 13.2: Subtyping rules for FL/XS.

13.1. SUBTYPING 953

C] and [transitive-C] rules guarantee that subtyping is a reflexive, transitive
closure of the relation induced by the other rules. The [recordof-C| rule says
that a record type S is a subtype of a record type T if (1) S has at least the
fields of T and (2) for each of the field names in T, the field types in S are in a
subtype relation with the corresponding field types of 7. Condition (1) says that
extra fields in S can’t hurt, since they will be ignored by any code that extracts
only the fields mentioned in 7. Condition (2) says that subtyping is allowed
among the corresponding component types of the fields named by 7. When
corresponding type components are related via subtyping in the same direction
as the entire type, the subtyping of the components is said to be monotonic.
Thus, the second condition for record subtyping could be rephrased as “for each
of the field names in T, the corresponding field types are related monotonically.”

SCT

Figure 13.3: Procedure subtyping is monotonic on result of types and anti-
monotonic on input types.

The [oneof-C] rule is a dual of the [record-C| rule: A oneof type S is a subtype
of a oneof type T if it has fewer tags. The types of the shared tags are related
monotonically. This makes sense because if a program is prepared to handle all
the cases of the supertype (7)), then it is prepared for the fewer possible cases
of the subtype (5).

In the rule for procedure subtyping, the return types are monotonic, but

954 CHAPTER 13. SUBTYPING AND POLYMORPHISM

the parameter types are anti-monotonic — i.e., they are related via subtyping
in a direction opposite to the subtyping of the procedure type as a whole. As
shown in Figure 13.3, procedures are supposed to handle any element in the
class specified by the type of the formal parameter. Thus if a procedure expects
type S;, it can be used in a context where it will be passed elements from the
smaller class T; T S;. (Alternatively, one may always safely use a procedure
that is defined on more values.) On the other hand, it is always safe to use a
procedure that returns elements of type Sgp where Ty is expected if Sp C T'g.

The rule for the subtyping of recof types says that recof type S is a subtype
of another recof type T if the result of instantiating the body of S with any
type is a subtype of the result of instantiating the body of T with the same
type.

Note that there are no special subtyping rules for cellof, listof, and
vectorof types. This is not an oversight; types of these forms are only in a
subtype relation if they are type equivalent! The following monotonic rule for
cellof subtyping seems natural, but it is actually incorrect:

T; E Tp
(cellof T;) C (cellof T9)

[incorrect-cellof-C|

It is possible to show expressions that are well-typed using this rule, but that
would raise a run-time type error in the corresponding dynamically typed sys-
tem. We leave the generation of such an example as an exercise for the reader.
Corresponding rules for listof and vectorof subtyping suffer the same prob-
lem as the cellof rule above. In all cases, the fundamental problem is due to
side effects. In fact, the expected monotonic rule for these types is valid if they
are immutable.

Finally, in a language with subtyping, it is reasonable to define type equiva-
lence as mutual inclusion.

13.1.3 Discussion

The [inclusion] rule is a simple way of extending the FL/X typing rules with
subtyping, but it harbors some problems. In FL /X, every expression has exactly
one type (actually, an expression may have many types, but they are all type
equivalent). The [inclusion] rule destroys this unique typing property allowing a
single expression to have many (non-equivalent) types. For instance, in FL /XS,
it is possible to prove that the expression

(record (a 3) (b #t))

has each of the following types:

13.1. SUBTYPING 955

(recordof (a int) (b bool))
(recordof (a int))
(recordof (b bool))

(recordof)

The lack of unique typing is not in itself a problem, but it can complicate
other analysis. In the case of FL /XS, the lack of unique typing makes it difficult
to write a type checker. The problem is that a straightforward type checker needs
to choose one of many possible types before enough information is known to make
a correct decision. Consider type checking the following simple expression:

(let ((c (cell (record (a 3) (b #t)))))
(begin (cell-set! ¢ (record (a 4)))
(select a (cell-ref c))))

This expression is well-typed according to the typing rules of FL/XS. But the
proof of well-typedness requires invoking the [inclusion] rule to hide the b field
of the first record so that c has the type (cellof (recordof (a int))). A
straightforward type checker needs to decide upon the type of ¢ before it exam-
ines the rest of the program. At this point the type checker does not “know”
which fields of the record content of ¢ may be accessed later and how ¢ will be
mutated. (In fact, such details are undecidable in general.) But without such
knowledge, the type checker may make an inappropriate choice. For instance,
upon encountering the cell expression, it seems prudent to assume that c has
the type
(cellof (recordof (a int) (b bool)))

Unfortunately, the program is not well-typed under this assumption. In this
case, the correct type for c is

(cellof (recordof (a int)))

but this is only OK because it so happens that the program does not later
extract the b field. Without backtracking or some sophisticated mechanism for
managing constraints, simple expressions like the one above will not be type
checked properly.

It is possible to restore unique typing and make type checking easier by
restricting the contexts in which subtyping is allowable. Figure 13.4 presents
an alternate set of type rules that can be used in place of the [inclusion| rule.
The [call-inclusion] rule permits actual arguments to be subtypes of the formal
parameters expected by the called procedure. This rule pinpoints procedure call
boundary as the most useful spot where the power of subtyping is used implicitly.
Implicit coercion is common in other languages: JAVA allows methods to accept
arguments of a subclass of the expected class, and numerous languages allow
implicit coercion among numeric types (e.g., converting an integer to a floating

956 CHAPTER 13. SUBTYPING AND POLYMORPHISM

AbF Egor + (> (T7 ... Ty) Tbody)
Vi(AFE;: S) NS T Ty)) [call-inclusion]
Al (Erator E] .- En) : Tbody

ARE: S
SCT [the-inclusion]
AF(the TE): T

Figure 13.4: Modified typing rules for FL /XS

point number).!

The alternate set of type rules also includes the [the-inclusion] for handling
the. Under this rule, the is no longer merely a type declaration, but a means
of type coercion — that is, a means of making a value appear to have as its
type a supertype of its actual type. In FL /XS, an item can only be coerced to
an object of a supertype, and thus no type loophole can arise. Some languages
support arbitrary coercion as a deliberate type loophole. C’s casts are a prime
example.

;3 This type checks
(select a (the (recordof (a int))
(record (a 3) (b #t))))

;; This fails to type check, because B is hidden by coercion
(select b (the (recordof (a int))

(record (a 3) (b #t))))

If the [inclusion], [call], and [the] rules are replaced with the rules in 13.4,
then every FL /XS expression has a single type. This is because implicit subtyp-
ing is limited to argument positions while all other coercions must be explicitly
made by the programmer. This limitation also makes it possible to implement
a straightforward type checker that embodies the rules; the situations in which
subtyping needs to be employed are very constrained. Of course, the price of
increased simplicity is a reduction in the power of the type system. Under the
alternate set of typing rules, some expressions well-typed under the [inclusion]
rule are no longer well-typed. For example, reconsider an example from above:

Tn the case of numeric coercion, there is an actual runtime change in representation that
must be inserted.

13.1. SUBTYPING 957

(let ((c (cell (record (a 3) (b #t)))))
(begin (cell-set! ¢ (record (a 4)))
(select a (cell-ref c))))
Under the alternate rules, this expression is not well-typed. The variable c is
found to have the type

(cellof (recordof (a int) (b bool)))

However, because the [cell-set] rule requires the new value to have the same type
as that stored in the cell, type checking fails at the cell-set! expression.

> Exercise 13.1 Show that the following subtyping rule for cellof types is unsound:

T; E T,

i - C
(cellof T;) C (cellof T») [incorrect-cellof-C|

Do this by exhibiting an expression that is well-typed under this rule, but which would
raise a run-time type error in a dynamically-typed version of FL/XS. <

> Exercise 13.2 Suppose that FL/XS were extended to include immutable lists of
type (ilistof T) with operations icons, icar, and icdr. Argue that the following
subtyping rule for immutable list types is sound:

T
(ilistof Ty)

Ty
(ilistof T3)

C
= [immutable-listof-C]

<

> Exercise 13.3 The typing rules in Figure 13.4 can be extended to handle limited
subtyping for certain cell, list, and vector operations while still maintaining the unique
typing property. For example, if 1st is defined as

(define 1lst (comns (record (a 3)) (null (recordof (a int)))))
then it seems reasonable that
(cons (record (a 7) (b #t)) 1lst)
should type check with (listof (recordof (a int))) as its type.
Extend the rules of Figure 13.4 to include special subtyping rules for cell, list, and

vector special forms, where they make sense. Argue that your rules are (1) safe and (2)
preserve the unique typing property of expressions. <

> Exercise 13.4 Ben Bitddidle has decided to improve FL/XS by allowing user
defined procedures to return multiple values instead of just one. Here’s an example of
a program that uses Ben’s new improvement:

958 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(let ((f (lambda ((x int)) (result (* x x) (< x 10)))))
(result-bind (f 4) (i b)
(if b (+1 1) 2)))

eval 17

Multiple values are returned from a procedure by result and they are bound at the
point of application with result-bind. In the above example, i is bound to 16, and b
is bound to #t. The syntax of FL/XS expressions is expanded to include result and
result-bind:

E == ... | (result E*) | (result-bind E,pp (I*) Epoay)

Values created by result can only be used with result-bind. In particular, £ and
(result FE) do not have the same type and are not equivalent. Procedures do not
have to return multiple values. The type domain includes a new type constructor for
multiple-value return values that are created by result:

T == ... | (result-of T%)

a. Give the typing rules for the result and result-bind constructs.

b. What are the subtyping rules for result-of types? <

> Exercise 13.5 Bud Lojack decides to add exceptions with termination semantics to
FL/X. He extends the grammar as follows:

E = ... | (raise Iezcept Eval) | (handle Iezcept Ehandle Ebody)

Recall the informal semantics of raise and handle from Exercise 9.12 on page 407:

o (raise Iegpeept FEual) evaluates E,q and applies the current handler for the ex-
ception named Igcept to the resulting value. This application takes place in the
handler environment and continuation of the handler.

o (handle Ilepcept Ehandie Eboay) first evaluates Epandgie. It is an error if the value
of Enandie is not a procedure of one argument. Otherwise the (procedure) value
of Ehandle is installed as the current handler of the exception named I¢gzcept, and
Eyoqy is evaluated. If Eyoqy returns normally, the value of Epapnqie is removed as
the handler of Iczcept, and the value of Eyoqy is returned.

Bud wants to modify the type system of FL/X to support the newly introduced
constructs. First, he extends the type grammar to include a new type for exception
handlers:

T == ... | (handlerof 1)

Next, he suggests the following typing rules for handle and raise:

13.1. SUBTYPING 559

AF Ehandle s (> (Tl) TQ)
A[Iemcept: (handlerof T})] F Ebody 2 Ty [handle]
Al (handle Iezcept Ehandle Ebody) : T2

AF Igeept : (handlerof T), AFE,y : T
Al (raise Iegeept Eva) @ T

[raise]

a. Show that Bud’s typing rules result in an unsound type system by providing ex-
pressions for Efre; and Egecona in the following expression such that the expression
is well-typed by Bud’s rules, but will generate a dynamic type error.

(handle an-exn Ef.
(let ((f (lambda () (raise an-exn 17))))
(handle an-exn F.econd

(£32))

Scared by this initial failure, Bud calls his more skilled friend Ty Pingnut and gives him
the task of defining a sound type system for raise and handle. Ty makes the following
change to the grammar of types:

(> S (T D

T == ...normal FL/X types except for -> ...
|
| void

S € Exn-Spec

S u= {1, T1)y ooy (In, Tn) }
The type system is changed to have judgments of the form
AFE:T$S

This can be read, “under type environment A, expression F has type T and may raise
exceptions as specified by S.” An Exn-Spec S is a set of (I;, T;) pairs that indicates
exceptions that may be raised when F is evaluated, and the type of the value raised for
each exception. For example, the judgment

AF E:bool $ {(x,bool), (y,int)}

indicates that if F returns normally, its value will have type bool; and that evaluation of
E could cause the exception x to be raised with a value of type bool, or the exception
y to be raised with a value of type int. Ty’s type system guarantees that no other
exceptions can be raised by E. Note that in Ty’s system, a procedure type includes an
Exn-Spec S that describes the latent exceptions that might be raised when the procedure
s applied.

Moreover, Ty uses exception masking to remove exceptions from judgments when it
is clear that they will be handled:

A F (handle x (lambda ((z bool)) z) E) :bool$ {(y,int)}.

960 CHAPTER 13. SUBTYPING AND POLYMORPHISM

Ty uses void as the type of a raise expression:
F (raise x 4) :void $ {(x,int)}

It is a general property of Ty’s system that any expression of type void is guaranteed
to raise an exception, and therefore, will never return a result. Since an expression of
type void can never return, it makes sense to think of void as a subtype of every type.
Ty uses this idea to define a subtyping relation, =, that is similar to the subtyping
relation for FL /XS, but has the following additional rule:

void C T [void-C]

Also, the procedure subtyping rule has been modified to be monotonic on the set of
possible exceptions:

Vi . (Tzl C Ti)7 Tbody C Tbodyla S C S’

->-C
(> 5 (T: ... To) Tooa) T (> 8 (T17 .. Tu") Toozy) [->-E]
All other subtyping rules for FL /XS are unchanged in Ty’s system.
Here are some of Ty’s typing rules:
AF N:int$ {} [int)
AF B:bool$ {} [bool]
AF FE; :bool$ S,
AFE;:T$Ss [if]
AbF (if By Ey Eg) : T$ S, US,US;3
AFE:T$S T C T,SCS . .
[inclusion]

AFE:T'$S5

Note in particular the rule [inclusion], which is crucial in typing the following ex-
amples:

F (if #t #f (raise x 4)) :bool $ {(x,int)}
F (if #f (raise x 4) (raise x #t)) : void $ {(x,int), (x,bool)}

In the second example, values of two incompatible types (int and bool) are raised for
the same exception x. Because we are working in a language without polymorphism, it
is impossible to write a handler for both values.

13.2. POLYMORPHIC TYPES 961

b. Give the typing rule for raise.
c. Give the typing rule for handle.

d. Suppose we alter the syntax of error to be (error Y). What is the new typing
rule for error? <

13.2 Polymorphic Types

Monomorphic type systems are easy to reason about, but they hinder the de-
velopment of reusable code. In particular, monomorphic languages prevent the
programmer from expressing polymorphic values — values (typically proce-
dures) that can have different types in different contexts. In this section, we
develop a type system that allows the expression of polymorphic values.

As an example of a polymorphic value, consider a map procedure written in
FL:

(define map
(lambda (fn 1st)
(if (null? 1st)
(null)

(cons (fn (car 1st)) (map fn (cdr 1st))))))

We have seen that aggregate data operators like map are a powerful means of
composing programs out of reusable, mix-and-match parts. In large part, this
power is due to the fact that the same operator works over many types of
operands. The map procedure, for instance, can be viewed as having an infinite
number of possible types, including:

(=> ((-> (int) int) (listof int)) (listof int))

(=> ((-> (int) bool) (listof int)) (listof bool))

(=> ((-> (bool) int) (listof bool)) (listof int))

(=> ((-> (bool) bool) (listof bool)) (listof bool))

(=> ((-> ((listof int)) int) (listof (listof int))) (listof int))

(-> ((-> (int) (-> (bool) int)) (listof int))
(listof (-> (bool) int)))

The type of map for any particular call depends on the types of its arguments.
So, in the call

962 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(map (lambda (x) (* x x)) (list 1 2 3)),
map effectively has type

(=> ((-> (int) int) (listof int)) (listof int)),
while in the call

(map (lambda (x) (< x 17)) (list 23 13 29)) ,
it has the type

(=> ((=> (int) bool) (listof int)) (listof bool)) .

Other common examples of useful polymorphic procedures include the iden-
tity function ((lambda (x) x)) and general sorting utilities.

Unfortunately, the type system of FL /X requires the type of values like map
to be specified where it is created, not where it is called. A programmer wishing
to use map on different types of arguments must write a different version of map
for every different set of argument types. For example, here are two FL/X
versions of map that correspond to the two calls mentioned above:

(define map (-> ((-> (int) int) (listof int)) (listof int))
(lambda ((fn (-> (int) int)) (1st (listof int)))
(if (null? 1st)
(null int)
(cons (fn (car 1st)) (map fn (cdr 1st))))))

(define map (-> ((-> (int) bool) (listof int)) (listof bool))
(lambda ((fn (-> (int) bool)) (1st (listof int)))
(if (null? 1st)
(null bool)
(cons (fn (car 1st)) (map fn (cdr 1st))))))

Except for type information, the two definitions are exactly the same.

Any language like FL /X that forces the programmer to reimplement func-
tionality in order to satisfy the type system thwarts the goal of writing reusable
software components. There is a broad class of general-purpose functions and
data structures that are inexpressible in such languages due to the shackles of the
type system. This lack of expressiveness is indicative of the price that program-
mers may have to pay for types. In fact, the primary limitations of languages
such as PASCAL and C stem from their monomorphic type systems.

Polymorphism can be introduced into a language by generalizing the types of
values where they are created, and then specializing these types where the values
are used. Reconsider the types of map listed above. All of them are instances of
a common pattern:

13.2. POLYMORPHIC TYPES 963

(> ((=> (5 T) (1istof S)) (listof 1))

We would like to be able to declare that map has this general type, but then
specialize this type (by specifying S and T') wherever map is applied.

We embody this approach in a polymorphic language FL/XSP (the “P”
stands for “Polymorphism”) by adding two new expression constructs and one
new type construct to FL/XS:

E := ... | (plambda (I*) E) | (pcall E T%*)
T == ... | (forall (I*) T)

(plambda (I*) E) creates a polymorphic value that is parameterized over
the type variables I*.

(pcall E T*) instantiates, or projects, the type variables of the poly-
morphic object denoted by E. pcall is the “call” that supplies “argu-
ments” to values created by plambda.

(forall (I*) T) is the type of a polymorphic value. In the literature,
polymorphic types are often written using V notation and referred to as
“universally quantified.” For example, the type of the mapping procedure,

(forall (s t) (-> ((-> s t) (listof s)) (listof t)))
is typically rendered

Vs,t. (8 — t) x (listof s) — (listof t)

Here is a polymorphic version of map written in FL /XSP:

(define map (forall (s t)
(> ((-> (s) t) (listof s)) (listof t)))
(plambda (s t)
(lambda ((fn (-> (s) t)) (Ist (listof s)))
(if ((pcall null? s) 1lst)
((pcall null t))
((pcall cons t) (fn ((pcall car s) 1st))
((pcall map s t)

fn ((pcall cdr s) 1st)))))))

The (plambda (s t) ...) creates a polymorphic value (in this case, a proce-
dure) whose type is abstracted over the type variables s and t. The pcall
construct specializes the type of a polymorphic value by filling in the types of
these variables:

064 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(the (-> ((-> (int) int) (listof int)) (listof int))
(pcall map int int))

(the (-> ((-> (int) bool) (listof int)) (listof bool))
(pcall map int bool))

Projection allows a polymorphic procedure to be used with different types of
arguments:

((pcall map int int) (lambda (x) (* x x)) (list 1 2 3))

((pcall map int bool) (lambda (x) (< x 17)) (list 23 13 29))

plambda and pcall have a similar contract to lambda and procedure call.
But whereas 1ambda and procedure call imply computation at run time, plambda
and pcall imply computation during type checking. That is, plambda builds
abstractions over types during static analysis; these abstractions are also un-
wound by pcall during static analysis. Every polymorphic value must have its
types instantiated (via pcall) before it can be used.

FL/XSP requires the explicit projection of polymorphic values via pcall.
But some polymorphic languages support implicit projection, in which the
projected types are automatically deduced from context. Implicit projection
makes polymorphic programming more palatable by removing some of the over-
head of writing explicit types.

In a polymorphic language, general operations on data structures like cells,
sums, products, and lists can once again be treated as first-class procedures
rather than as special forms. For example, here are the types of the list operators
in FL/XSP:

(the (forall (t) (-> (t (listof t)) (listof t))) coms)
(the (forall (t) (-> ((listof t)) t)) car)

(the (forall (t) (-> ((listof t)) (listof t))) cdr)
(the (forall (t) (-> ((listof t)) bool)) null?)

(the (forall (t) (-> (O (listof t))) null)

In FL/XSP, it is even possible to have a polymorphic empty list nil with type
(forall (t) (listof t)). This underscores the fact that polymorphism can
be used with all values, not only procedures.

In order to type check expressions involving plambda and pcall, it is nec-
essary to extend the typing rules, type inclusion rules, and type equivalence as
shown in Figure 13.5.

The [pA] rule gives a forall type to a plambda, while the [project] rule
specifies a beta substitution in the type domain. The [pA] rule includes a re-
striction on the identifiers that plambda can abstract over. The restriction uses

13.2. POLYMORPHIC TYPES

965

Typing Rules

AFE: T

At (plambda (I; ... I,) E) : (forall (I; ... I,) T)

where VI, . I; € (FTV (Freelds[E])A)
and F is pure. [purity restriction]

AR E: (forall (I; ... I,) Tg)
AF (pcall E T; ... Tp) : ([Ti/L]~,) Tk

Type Inclusion Rules

([L/J:)y) S © T, Vi(I; & Freelds[9])
(forall (J; ... J,) S) C (forall (I; ... I,) T)

Type Equivalence

(T; E Ty)
(T, E Ty)
T1 ETQ

[project]

[forall-C]

Figure 13.5: New rules to handle polymorphism in FL/XSP.

266 CHAPTER 13. SUBTYPING AND POLYMORPHISM

a function FTV (which stands for Free Type Variables). (FTV I* A) returns
the collection of type variables that appear free in the type assignments that A
gives to the identifiers I*. This restriction prohibits a subtle form of variable
capture. Consider the following example:

(define polytest
(plambda (t)
(lambda ((x t))
(plambda (t) x))))

What is the type of polytest? To say that it is
(forall (t) (> (t) (forall (t) t)))

is incorrect, because the t introduced by the outer plambda has been captured
by the inner one. Because of this name capture, the following expression would
not type check even though it should:

(pcall ((pcall polytest int) 3) bool)

In the [pA] rule, we simply outlaw such situations. An implementation could
insist programmers enforce the rule, or it could a-rename type variables to
guarantee that no capture is possible no matter what names the programmer
used.

Note that the rule for type equivalence is broadened to allow equivalence of
forall types that are the same except for the names chosen for their variables.
E.g., this rule allows us to show:

(forall (s) (-> (8) s)) = (forall (t) (> (%) t))

> Exercise 13.6 Alyssa P. Hacker wants to remove error from the language as
a special syntactic construct. She suggests that we add an error procedure to the
standard environment.

a. Specify the type of the error procedure.

b. Illustrate its use by filling in the box in the following example to produce a well-
typed expression:

(lambda ((x int) (y int))
(if (=x 0)

/ y x))) <

> Exercise 13.7 Louis Reasoner has had a hard time implementing letrec in a
call-by-name version of FL/XSP, and has decided to use the fixed point operator fix
instead. For example, here is the correct definition of factorial in Louis’s approach:

13.3. DESCRIPTIONS o967

(let ((fact-gen
(lambda ((fact (-> (int) int)))
(lambda ((n int))
(if (=n 0) 1 (*x n (fact (- n 1))))))))
((pcall fix (-> (int) int)) fact-gen))

Thus, fix is a procedure that computes the fixed point of a generating function.
Ben Bitdiddle has been called on the scene to help, and he has ensured that Louis’s
FL/XSP supports recursive types using recof.

a. What is the type of fact-gen?
b. What is the type of fix?
c. What is the type of ((pcall fix (-> (int) int)) fact-gen)?

Ben Bitdiddle defined the call-by-name version of fix to be:

(let ((fix (plambda (t)
(lambda ((f T9))
((lambda ((x T2)) (f (x x)))
(lambda ((x T2)) (£ (x x))))))))
... fix can be used here ...

)
d. What is T17
e. What is Typ?

f. Louis has decided that he would like (fix E) to be a standard expression in his
language. What is the typing rule for (fix E)? <

13.3 Descriptions

The ability to abbreviate types with tlet is not sufficiently powerful to express
many desirable abstractions. For example, the define-type construct in FL /X
is too weak to simplify the definition of make-tree, the polymorphic version of
make-int-tree shown in Figure 13.8. Here the tree type expressions cannot be
replaced by some globally named type because they are parameterized over the
type t, which is local to the definition of make-tree. What we’d like in this
situation is a lambda-like construct in the type domain that would allow the
construction of type abstractions.? In this case, we’d like to define a treeof
operator in the type domain that would allow us to rewrite make-tree as:

2Not to be confused with abstract types.

068 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(define make-int-tree
(-> ((recof tree
(oneof
(leaf int)
(node (recordof (left tree)
(right tree)))))
(recof tree
(oneof
(leaf int)
(node (recordof (left tree)
(right tree))))))
(recof tree
(oneof (leaf int)
(node (recordof (left tree)
(right tree))))))
(lambda ((left-branch (recof tree
(oneof
(leaf int)
(node (recordof
(left tree)
(right tree))))))
(right-branch (recof tree
(oneof
(leaf int)
(node (recordof
(left tree)
(right tree)))))))
(one
(recof tree
(oneof
(leaf int)
(node (recordof (left tree)
(right tree)))))
node (record (left left-branch)
(right right-branch)))))

Figure 13.6: Lack of type abstraction greatly complicates the definition of a
make-int-tree procedure.

13.3. DESCRIPTIONS 569

(define-type int-tree
(recof tree
(oneof (leaf int)
(node (recordof (left tree) (right tree))))))

(define make-int-tree (-> (int-tree int-tree) int-tree)
(lambda ((left-branch int-tree) (right-branch int-tree))
(one int-tree
node
(record (left left-branch)
(right right-branch)))))

Figure 13.7: Type abstractions simplify the definition of make-int-tree.

(define make-tree (forall (t) (-> ((treeof t) (treeof t)) (treeof t)))
(plambda (t)
(lambda ((left-branch (treeof t))
(right-branch (treeof t)))
(one (treeof t)
node
(record (left left-branch)

(right right-branch))))))

Note that a type operator such as treeof cannot be created by lambda
or plambda; whereas lambda creates procedures that map values to values and
plambda creates procedures that map types to values, a type operator maps
types to types. Therefore, a new kind of lambda is needed.

In order to address the issues raised by the above examples, we consider a new
language FL/XSPD that is a generalized version of FL/XSP. The grammar
for FL/XSPD is given in Figures 13.9 and 13.10.3> Whereas all type expressions
in FL./XSP (generated by nonterminal T') denote types, the type expressions in
FL/XSPD (generated by nonterminal D) denote descriptions. Descriptions
encompass not only types, but also operators on types and, in fact, operators
on arbitrary descriptions.*

The define-desc construct can be used to name descriptions globally. Thus,

3The grammar for program specifies that all define-descs must precede all defines. In
spite of this, we will assume that these two forms can be freely intermingled in practice. It
is easy to imagine that the FL/X parser translates the more liberal form of program into the
restricted form specified by the grammar.

4Descriptions can be extended to include other information as well, such as effects, which
indicate the allocation, reading, or writing of a mutable data structure. FX uses descriptions
with effects to perform static side-effect analysis on programs.

970 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(define make-tree
(forall (t)
(-> ((recof tree
(oneof
(leaf t)
(node (recordof (left tree)
(right tree)))))
(recof tree
(oneof
(leaf t)
(node (recordof (left tree)
(right tree))))))
(recof tree
(oneof (leaf t)
(node (recordof (left tree)
(right tree)))))))
(plambda (t)
(lambda ((left-branch (recof tree
(oneof
(leaf t)
(node (recordof
(left tree)
(right tree))))))
(right-branch (recof tree
(oneof
(leaf t)
(node (recordof
(left tree)
(right tree)))))))
(one
(recof tree
(oneof
(leaf t)
(node (recordof (left tree)
(right tree)))))
node (record (left left-branch)
(right right-branch))))))

Figure 13.8: make-tree, a version of make-int-tree parameterized over the
leaf type.

13.3. DESCRIPTIONS 071

Abstract Syntax:

P € Program
1,J € Identifier
E € Exp
Y € Symlit
L € Lit = UnitlitUBoollitUIntlitUStringlitUSymlit
D € Description

E =L | I| (if E; Es E3) | (begin E; E3) | (the D E)
(lambda ((I D)*) Ebody) | (Eproc Eargs*)

(let ((I EY*) Epoay) |(letrec ((I D EX*) Epoay)
(record (I ED*) | (with Erec Epody)

(one D Itag Eﬂal) | (tagcase Edisc (]tag Ival Ebody)+)
(tagCase Edisc (Itag Ival Ebody)+ (else Edefault))
(plambda (I*) E) | (pcall E D*)

(plet ((I D)*) Epogy) | (pletrec ((I D)*) Epoqy)
(error D Y)

= int | unit | bool | string | I

| (> (Darg*) Dbody)

| (recordof (Ificig Dya)™) | (oneof (Iyaq Dya)™) | (cellof D)
| (forall (I*) D)

| (dlambda (I*) Diyoay) | (Drator Drana™) | (dlet ((I D)*) D)
| (drecof I D) | (dletrec ((I D)*) Dyogy)

Figure 13.9: A kernel grammar for FL/XSPD.

972 CHAPTER 13. SUBTYPING AND POLYMORPHISM

Syntactic Sugar:

P = (program Ej.qy (define-desc I D)* (define I D E)*)

E = ... | (begin E; E» ... E,)
| (cond (Etest -Econsequent)>i< (else Edefault))
| (Letrec (I D E)* Epoay)

(program FEpody
(define-desc I ; D;) ... (define-desc I;,, D,,)
(define I, ; F;) ... (define I, , E,))

(plet (I;; Dy)

(plet (Uym D)
(Qetrec ((U,.; Ey) ... Uy E2))
Evody)) ..)

The usual desugarings for begin, cond, and letrec.

Figure 13.10: A grammar for FL/XSPD’s syntactic sugar.

it acts like the hypothetical define-type in the integer binary tree examples
above:

(define-desc int-tree
(drecof t
(oneof (leaf int)

(node (recordof (left t) (right t))))))

The dlambda construct denotes a description operator that takes descriptions
as arguments and returns a description as a result. Using dlambda, the treeof
type operator suggested above could be written as

(define-desc treeof
(dlambda (leaf-type)
(drecof tree
(oneof (leaf leaf-type)

(node (recordof (left tree) (right tree)))))))

This description operator can then be applied to another description. For ex-
ample, an alternate definition of the int-tree type described above is:

(define-desc int-tree (treeof int))

13.3. DESCRIPTIONS o973

Since listof can be defined in a way similar to treeof, listof need not be
a primitive type constructor in FL/XSPD. It is worth noting in the above
examples that define-desc can be used to name both types and operators on

types.

Because the arguments and results of description operators may include ar-
bitrary descriptions, it is possible to have higher-order description operators.
As an example where this power can be put to use, suppose we are defining
mapping procedures for several different homogeneous aggregate data struc-
tures. In particular, suppose that 1istof and vectorof are type constructors
for lists and vectors, respectively. Then the types of the procedures 1ist-map
and vector-map would be as follows:

list-map : (forall (in-type out-type)
(> ((-> (in-type) out-type)
(listof in-type))
(listof out-type)))

vector-map : (forall (in-type out-type)
(=> ((-> (in-type) out-type)
(vectorof in-type))
(vectorof out-type)))

Clearly there is a common pattern in the types of the two mapping procedures.
We can capture this pattern by creating a description operator map-type.
(define-desc map-type
(dlambda (type-constructor)
(forall (in-type out-type)
(> ((-> (in-type) out-type)
(type-constructor in-type))
(type-constructor out-type)))))

Then the types of 1ist-map and vector-map can be written more succinctly:

list-map : (map-type listof)

vector-map : (map-type vectorof)

The dlet construct names a description in a local scope. The drecof and
dletrec constructs are used for creating recursive descriptions, such as treeof.
We have seen versions of these before in FL/XSP, where drecof was called
recof and dletrec was called rectype. plet and pletrec are similar to dlet
and dletrec except that they return values rather than descriptions; e.g.,

074 CHAPTER 13. SUBTYPING AND POLYMORPHISM

;5 DLET returns a description
(dlet ((pairof (dlambda (d1 d2)
(recordof (first d1) (second d2)))))
(pairof int (pairof bool string)))

;3 PLET returns a value
(plet ((pairof (dlambda (d1 d2)
(recordof (first d1) (second d2)))))
(the (pairof int (pairof bool string))
(record (first 3)
(second (record (first #f)

(second "Alyssa"))))))

Just as let in a typed language cannot be desugared into a lambda combination
(because type information is lost), it is similarly the case that plet cannot be
desugared into plambda plus pcall, nor can dlet be desugared into dlambda
plus a description application.

Intuitively, constructs in the description domain (define-desc, dlambda,
description operator application, dlet, and dletrec) have a close correspon-
dence with value domain constructs (define, lambda, value procedure applica-
tion, let, and letrec). But how do we formally describe the meanings of the
new description expressions that we have introduced? Two new typing rules
are needed (see Figure 13.11), but these are for the value-producing plet and
pletrec, not the description producing dlambda, dlet, drecof, and dletrec.

At ([Di/Li]7-1) Evody : Dyody [plet]
AF (plet ((II DI) (]n Dn)) Ebody) : Dbody

AF (I - @letrec ((I; D) ... (I Dw)) D /L) Esody : Doody
AF (pletrec ((U; D) ... (Uy Dp)) Ebody) : Diody

[pletrec]

Figure 13.11: New typing rules needed for FL /XSPD.

In order to perform type checking in the presence of general descriptions,
we require description equivalence rules that tell us when two descriptions
are the same. Earlier, we saw some type equivalence rules, including ones for
recof and rectype. We need to extend those rules to handle arbitrary descrip-
tions. Figure 13.12 shows the description equivalence rules that are necessary
for FL/XSPD.

Some of the the description equivalence rules correspond to the «, G, and 7
conversion rules of the lambda calculus. Consider the following examples:

13.3. DESCRIPTIONS

575
D = D [reflexivity]
D, = D
D; = D? [symmetry]
D1 = DQ 5 Dg = D3 e .
D, = D, [transitivity]
Vi. (l)z = Di I)) DB = DBI [_>_:]
(> (D; ... D) Dp) = (-> (D;" ... D,) D" B
J permuation m such that Vi. ((li =['w(i)) A(D;i = Dry)')) I _
(recordof (I, D) ... (I, D)) = (recordof (I’ D,y ... (I, D7y [fcordor=]
J permuation 7 . suchthat Vi.(([; =l'w(i)) AN(D; = Dqu) M) foneof-=]
(oneof (I; D;) ... (I, D,)) = (oneof (I;/ D;") ... (I,’ D,")) -
D = D' _
(refof D) = (refof D') [refof-=]
Vi. (J; & Freelds[Dg]) (forall-=]
(forall (I; ... I,) Dp) = (forall (J; ... J,) ([Ji/Li]?-,)Dp) -
Vi. (J; & Freelds[Dg]) _
(@ambda (I . 1) Dp) = (lambda (Jy .. 7o) (J/LT D5y |dambda=]
Dp = Dp/ ; Vl(l)z = Di/) _
Dp D; ... Dy = (Dp’ Dy’ ... DD [dapply-=]
((dla.mbda ([1 In) DB) D1 Dn) = ([Di/lz]ZL:l)DB [dbeta—z]
Vi. (I; ¢ Freelds[Dp]) _
(@ambda (I, .. L) (Dp I, ... 1)) = Dp [deta-=]
(dlet ((I; Dy) ... (I, D)) D) = ([Di/L]*,)Dp [dlet-=]
(drecof I D) = [D/IID [drecof-=]
(dletrec ((I; Dy) ... (U, D,)) Dpg) [dletrec-=]

= ([(dletrec (I; D) ... I, D)) Dl)/Il]?:l) Dg

Figure 13.12: Description equivalence rules for FL /XSPD.

076 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(dlambda (t) t) = (dlambda (s) s) ; alpha

; Assume pairof defined as above
(pairof int bool) = (recordof (left int) (right bool)) ; beta
(dlambda (s t) (pairof s t)) = pairof ; eta

It is enlightening to compare the three kinds of abstraction that exist in
FL/XSPD:

Abstraction Constructor | Arguments Results
lambda values values
plambda descriptions values
dlambda descriptions | descriptions

It is also possible to imagine a fourth kind of abstraction that takes values
as arguments and returns descriptions. These can result in what are called
dependent descriptions — descriptions that contain values. The array type
constructor in Pascal is a simple example of a dependent type; every array type
has an integer which indicates the length of the array. Of course, in order to
ensure static type checking, the argument values to such an abstraction would
have to be statically determinable.

It is disturbing that there are three different constructs that are so similar
in intent. The need for the differing constructs arises from the fact that we
have maintained a rigid distinction between types and values. In the interest
of conceptual economy, some languages, such as PEBBLE, blur the distinction
between types and values; in these languages, a single operator constructor can
do the job of lambda, plambda, and dlambda. Since types can be treated as
values in these languages, however, type checking can generally not be performed
statically. Instead, it may have to be interleaved with the execution of the
program; in such cases, type checking is effectively dynamic. In fact, in some
languages with first-class types, type checking might never even terminate!

13.4 Kinds and Kind Checking: FL/XSPDK

It is important to note that only a subset of descriptions serve as types of
values. For example, there is no value that has the type (dlambda (t) t) or
the type listof. Furthermore, many expressions generated by the grammar for
descriptions are nonsensical. The description (int bool), for instance, indicates
that int is being applied to bool as a description operator. But since int is
the type of a value and not a description operator, such an application is not

13.4. KINDS AND KIND CHECKING: FL/XSPDK LY

meaningful. Even the typing rules in Figure 13.11 are problematic as stated; the
notation I: D only makes sense if D is a type.

We'd like to ensure that descriptions make sense, both intrinsically and in
context. This problem seems an awful lot like the one we already solved via
types; showing that (int bool) is not a meaningful description is rather similar
to showing that (1 2) is not a meaningful expression. Just as we had types for
expressions, we’'d like to have something akin to types for descriptions. These
are called kinds; kinds are the types of descriptions.

We incorporate the notion of kinds into the language FL /XSPDK, which is
just an extension of FL./XSPD. The grammatical changes necessary to extend
FL/XSPD into FL/XSPDK are presented in Figure 13.13. The nonterminal
K generates kind expressions, which are now required in plambda, forall, and
dlambda.

E == ... | (plambda (({ K)*) E)

D == ... | (forall ((I K)*) D) | (dlambda ((I K)*) Dpoqy)

K = type | (->> (K*) K)

Figure 13.13: The grammar for FL/XSPDK (the parts not listed are the same
as in FL/XSPD).

The simplest kind is the base kind type. All legal FL./XSP types have kind
type. For example, the following expressions all have kind type:
int
(-> (bool) string)
(recordof (name string) (age int))

Description operators have a kind that reflects the kinds of the operator’s
arguments and the kind of the operator’s results. 1istof, for example, has kind
(->> (type) type) because it takes a type and returns a type. Note the double
arrow —->> is used in the kind of a description operator, whereas -> is used in
the type of a procedure. This notational difference is not strictly necessary but

serves to emphasize the distinction between the two levels.
A description is well-kinded if it can be assigned a kind according to a set of
kind checking rules. Kind checking is analogous to type checking; the notation

B+FD :: K
means that kind environment B assigns kind K to description D. Figure 13.14

includes the kind checking rules for FL/XSPD. ¢y indicates the empty kind
environment.

o78

CHAPTER 13. SUBTYPING AND POLYMORPHISM

o) Funit ::

type, ¢r - bool :: type,¢r I int :: type, P | string :: type, ¢ I sy

[literal]
[..,] = K,..]FI K [var]
Vi.(BF D; :: type)

B+ Dyoay i type [->]
BF(-> (D; ... Dy) Dpogy) :: type

Vi.(BF D; :: type)

BF (recordof (I; Dy) ... (I, D,)) :: type [recordof]
BF (oneofVi(I.l(%ll_)D.i. .:: (Jgple))n)) © type [oneof]
B+ i:fff ::D;Eyfetype [refof]

BlI; Ky, ..., I,:: K,))F Dp :: type forall

B (forall ((I; K;) ... (I, K,)) Dp) : type

BlI; « K;, ..., I,:: K,k Dp :: Kp

B (dlambda ((I; K;) ... (I, K,)) Dp) = (->> (K; ... K;,) Kp)

[dA]

BFDp o (=>> (K; ... K;) Kp)
Vi.(BFD; :: K;) [dapply]
B+ (DP D1 Dn) . KB

BlI; Ky, ..., I, : K,]F-Dp = Kgp [dlet]

BF (dlet ((I; D;) ... d, D,)) D) :: Kp

B[I:: type]k D :: type

B |- (drecof I D) :: type [drecof]
B’ = B[I; :: type, ..., I : type]
Vi.(B'F D; :: type) (dletrec]

Bll—DB b KB

B F (dletrec ((I; D;) ... (I, D,)) D) :: Kp

Figure 13.14: Kind checking rules for FL/XSPDK

;1 type

13.4. KINDS AND KIND CHECKING: FL/XSPDK 579

How do kinds and kind checking interact with types and type checking? Not
only must all user-supplied descriptions in an expression be well-kinded, but
the descriptions may also be used in a context that requires them to be of a
particular kind, typically kind type. For example, the descriptions annotating
the formal parameters to a lambda expression must be of kind type. We express
these relationships by including constraints on kinds in the antecedents of type
checking rules; see, for example, the type checking rules for FL. /XSPDK shown
in Figure 13.15. The notation

ABFE:D

means that type environment A assigns F type D in the presence of kind en-
vironment B. (Note that a double colon is used for the “has-kind” relation,
whereas a single colon is used for the “has-type” relation.) The rules in Fig-
ure 13.15 suggest that the type checking and kind checking processes can be
interleaved into a single process that uses both a type environment and a kind
environment. Of course, it is also possible to perform kind checking and type

checking in separate phases.

Several of the rules in Figure 13.15 extend the type environment with some
bindings. Kind checking is used in these situations to guarantee that the ex-
tensions bind identifiers to types and not arbitrary descriptions. That is, the
notation

All;: Dy ... I,: Dy

only makes sense when all of the D; have kind type.

The substitution ([D;/I;]")Ep in the rule for plet is assumed to do the
“right thing.” That is, only occurrences of I in descriptions (not value expres-
sions) are substituted for. We leave the formal definition of substitution in this
situation as an exercise for the reader.

A desirable goal for typechecking is that it should be guaranteed to termi-
nate. Has the introduction of general descriptions compromised this goal? For
example, it is possible to imagine description operators which go into infinite
loops when applied. Type checking an expression containing such a description
might never terminate.

The kind checking and type checking rules we have presented are carefully
constructed so that this situation can never occur. The drecof, dletrec, and
pletrec constructs are constrained so that the descriptions they introduce must
be of kind type. With these kind constraints, descriptions in FL/XSPDK
have a property called strong normalization. This property means that all
descriptions can be reduced to normal form in a finite number of steps.® Note

5There are typed versions of the lambda calculus that have the strong normalization prop-
erty; in these systems it is impossible to write a Y operator.

280 CHAPTER 13. SUBTYPING AND POLYMORPHISM

Vi.(BF D; :: type)
AlI;:Dy, ..., I,:Dy], Bt Eboqy : Diody [A]
A,BF (lambda ((I; Dy) ... Iy Dp)) Epoay) : (=> (D; ... Dp) Diogy)

Vi.(BF D; :: type)
AN =A[lI,:D;, ..., I,:D,]
Vi.(A,B*F E;: D) [letrec]
A/, AR Ebody : Dbody
A,BF (letrec ((I; Dy E;) ... Uy Dy En)) Epoay) : Diody

AB|I; = K; ... I, : K,J-E: D
Vi. (L ¢FTV (Freclds[(]E)))

A,BF (plambda ((I; K;) ... (I, K,)) E): (forall ((I; K;) ... (U, K,)) 1

A, BFE: (forall ((I; K;) ... Uy Kp)) Diody)
Vi.(BFD; = K;) [project)
A, BT (peall E D; ... D) : (IDi/LI=y) Dooay

A,Bt ([D;/L])"1)EB : Dyoay [plet]
A,BF (plet ((U; Dy) ... (Iy Dn)) Epoay) : Diody

Vi. (Bt (dletrec ((I; D;) ... (I, D,)) D;) :: type)

A" =A[I; : (dletrec ((I; Dy) ... (I, D)) Dy) ... I,:(dletrec ((I; Dy) ..}

A’,BlI; :: type ... I, :: type| b Epody : Diody

(I, D)) D)

A,Bt (pletrec ((I; D;) ... (p Dn)) Epody) : Diody

Figure 13.15: Type checking rules for FL./XSPDK. Rules not shown are anal-
ogous to those in FL/XSP.

[pletrec]

13.4. KINDS AND KIND CHECKING: FL/XSPDK 081

that strong normalization implies that it is impossible to write the Y operator
in the description language. Intuitively, this is due to the simplicity of the kind
system; there are no recursive kind constructs. Thus, in FL/XSPDK, it is
possible to write Y as an expression, but not as a description.

If you're wondering whether it’s possible for kinds themselves have something
similar to types or kinds, the answer is yes. The types of kinds are sometimes
called sorts; all kind expressions we have examined are of sort kind. But it is
possible to consider operators on kinds — kind operators — that would have
more interesting sorts. Similarly, we could construct a “typing” system for sorts
that distinguished sorts from operators on sorts. Clearly this process could be
repeated ad infinitum (and ad nauseum!), giving rise to an infinite “tower” of
typing systems. However, only the lowest levels of the tower — types and kinds
— are useful in most practical situations.

Reading

The polymorphic typed lambda calculus was invented by Girard and later rein-
vented by Reynolds [Rey74]. See [Hue90] for some papers on the polymorphic
lambda calculus.

For work on types in object-oriented programming, see [GM94].

082 CHAPTER 13. SUBTYPING AND POLYMORPHISM

