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Chapter 3

Operational Semantics

And now I see with eye serene
The very pulse of the machine.

— She Was a Phantom of Delight, William Wordsworth

3.1 The Operational Semantics Game

Consider executing the following PostFix program on the arguments [4, 5]:

(postfix 2 (2 (3 mul add) exec) 1 swap exec sub)

It helps to have a bookkeeping notation that represents the process of applying
the informal rules presented in Chapter 1. For example, the table in Figure 3.1
illustrates one way to represent the execution of the above program. The table
has two columns: the first column in each row holds the current command
sequence; the second holds the current stack. The execution process begins
by filling the first row of the table with the command sequence of the given
program and an empty stack. Execution proceeds in a step-by-step fashion by
using the rule for the first command of the current row to generate the next row.
Each execution step removes the first command from the sequence and updates
the stack. In the case of exec, new commands may also be prepended to the
command sequence. The execution process terminates as soon as a row with an
empty command sequence is generated. The result of the execution is the top
stack element of the final row (-3 in the example).

The table-based technique for executing PostFix programs exemplifies an
operational semantics. Operational semantics formalizes the common intu-
ition that program execution can be understood as a step-by-step process that
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38 CHAPTER 3. OPERATIONAL SEMANTICS

Commands Stack

(2 (3 mul add) exec) 1 swap exec sub 4

5

1 swap exec sub (2 (3 mul add) exec)

4

5

swap exec sub 1

(2 (3 mul add) exec)

4

5

exec sub (2 (3 mul add) exec)

1

4

5

2 (3 mul add) exec sub 1

4

5

(3 mul add) exec sub 2

1

4

5

exec sub (3 mul add)

2

1

4

5

3 mul add sub 2

1

4

5

mul add sub 3

2

1

4

5

add sub 6

1

4

5

sub 7

4

5

-3

5

Figure 3.1: A table showing the step-by-step execution of a PostFix program.
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evolves by the mechanical application of a fixed set of rules. Sometimes the
rules describe how the state of some physical machine is changed by executing
an instruction. For example, assembly code instructions are defined in terms of
the effect that they have on the architectural elements of a computer: registers,
stack, memory, instruction stream, etc. But the rules may also describe how
language constructs affect the state of some abstract machine that provides a
mathematical model for program execution. Each state of the abstract machine
is called a configuration.

For example, in the PostFix abstract machine implied by the table in Fig-
ure 3.1, each configuration is modeled by one row of the execution table: a pair
of a program and a stack. The next configuration of the machine is determined
from the current one based on the first command in the current program. The
behavior of each command can be specified in terms of how it transforms the
current configuration into the next one. For example, executing the add com-
mand removes it from the command sequence and replaces the top two elements
of the stack by their sum. Executing the exec command pops an executable
sequence from the top of the stack and prepends its commands in front of the
commands following exec.

The general structure of an operational semantics execution is illustrated in
Figure 3.2. An abstract machine accepts a program to be executed along with
its inputs and then chugs away until it emits an answer. Internally, the abstract
machine typically manipulates configurations with two kinds of parts:

1. The code component: a program phrase that controls the rest of the
computation.

2. The state components: entities that are manipulated by the program
during its execution. In the case of PostFix, the single state component
is a stack, but configurations for other languages might include state com-
ponents modeling random-access memory, a set of name/object bindings,
a file system, a graphics state, various kinds of control information, etc.
Sometimes there are no state components, in which case a configuration is
just code.

The stages of the operational execution are as follows:

• The program and its inputs are first mapped by an input function into
an initial configuration of the abstract machine. The code component
of the initial configuration is usually some part of the given program, and
the state components are appropriately initialized from the inputs. For in-
stance, in an initial configuration for PostFix, the code component is the
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×

Abstract Machine
Program

Inputs

Initial Configuration

Intermediate Configuration

Rules

Intermediate Configuration

Final ConfigurationAnswer

Input
Function

Output
Function

Figure 3.2: The operational semantics “game board.”

command sequence body of the program and the single state component is
a stack containing the integer arguments in order with the first argument
at the top of the stack.

• After an initial configuration has been constructed, it’s time to “turn the
crank” of the abstract machine. During this phase, the rules governing the
abstract machine are applied in an iterative fashion to yield a sequence of
intermediate configurations. Each configuration is the result of one step
in the step-by-step execution of the program. This stage continues until a
configuration is reached that is deemed to be a final configuration. What
counts as a final configuration varies widely between abstract machines.
In the case of PostFix, a configuration is final when the code component
is an empty command sequence.

• The last step of execution is mapping the final configuration to an answer
via an output function. What is considered to be an answer differs
greatly from language to language. For PostFix, the answer is the top
stack value in a final configuration, if it’s an integer. If the stack is empty
or the top value is an executable sequence, the answer is an error token. In
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other systems, the answer might also include elements like the final state
of the memory, file system, or graphics screen.

Sometimes an abstract machine never reaches a final configuration. This can
happen for one of two reasons:

1. The abstract machine may reach a non-final configuration to which no rules
apply. Such a configuration is said to be a stuck state. For example, the
initial configuration for the PostFix program (postfix 1 sub) is a stuck
state because the rules in Figure 1.1 don’t say how to handle sub when the
stack doesn’t contain at least two elements. (The configuration is not final
because the command sequence [sub] is non-empty.) Stuck states often
model error situations.

2. The rule-applying process of the abstract machine might not terminate.
In any universal programming language1 it is possible to write programs
that loop forever. For such programs, the execution process of the abstract
machine never terminates. As a consequence of the halting theorem2, we
can’t do better than this: there’s no general way to tweak the abstract
machine of a universal language so that it always indicates when it is in
an infinite loop.

We show in Section 3.4.3 that all PostFix programs must terminate. This
implies that PostFix is not universal.

3.2 Small-step Operational Semantics (SOS)

3.2.1 Formal Framework

Above, we presented a high-level introduction to operational semantics. Here, we
iron out all the details necessary to turn this approach into a formal framework
known as small-step operational semantics (SOS3). An SOS is character-
ized by the use of rewrite rules to specify the step-by-step transformation of
configurations in an abstract machine.

To express this framework formally, we will use the mathematical metalan-
guage described in Appendix A. Before reading further, you should at least

1A programming language is universal if it can express all computable functions.
2The halting theorem states that there is no program that can decide for all programs P

and all inputs A whether P terminates on A.
3This framework, due to Plotkin [Plo81], was originally called structured operational

semantics. It later became known as the small-step approach to distinguish it from – you
guessed it – a big-step approach (see Section 3.3).
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skim this appendix to familiarize yourself with the notational conventions of the
metalanguage. Later, when you encounter an unfamiliar notation or concept,
consult the relevant section of the appendix for a detailed explanation.

Consider a programming language L with legal programs P ∈ Program, in-
puts I ∈ Inputs, and elements A ∈Answer that are considered to be valid answers
to programs. Then an SOS for L is a five-tuple SOS = 〈CF ,⇒,FC , IF ,OF 〉,
where:

• CF is the set of configurations for an abstract machine for L. The
metavariable cf ranges over configurations.

• ⇒, the transition relation, is a binary relation between configurations
that defines the allowable transitions between configurations. The notation
cf ⇒ cf ′ means that there is a (one step) transition from the configu-
ration cf to the configuration cf ′. This notation, which is shorthand for
〈cf, cf ′〉 ∈ ⇒, is pronounced “cf rewrites to cf ′ in one step.” The two
parts of a transition have names: cf is called the left hand side (LHS)
and cf ′ is called the right hand side (RHS). The transition relation is
usually specified by rewrite rules, as described below in Section 3.2.3.

The reflexive, transitive closure of ⇒ is written
∗⇒. So cf

∗⇒ cf ′ means
that cf rewrites to cf ′ in zero or more steps. The sequence of transitions
between cf and cf ′ is called a transition path. The length of a transition
path is the number of transitions in the path. The notation cf =

n
=⇒ cf ′

indicates that cf rewrites to cf ′ in n steps, i.e., via a transition path of
length n. The notation cf

∞⇒ indicates that there is an infinitely long
transition path beginning with cf.

A configuration cf is reducible if there is some cf ′ such that cf ⇒ cf ′.
If there is no such cf ′, then we write cf 6⇒ and say that cf is irreducible.
CF can be partitioned into two sets, ReducibleSOS (containing all reducible
configurations) and IrreducibleSOS (containing all irreducible ones). We
omit the SOS subscript when it is clear from context. A transition relation
⇒ is deterministic if for every cf ∈ReducibleSOS there is exactly one cf ′

such that cf ⇒ cf ′. Otherwise, ⇒ is said to be non-deterministic.

• FC , the set of final configurations, is a subset of IrreducibleSOS con-
taining all configurations that are considered to be final states in the ex-
ecution of a program. The set StuckSOS of stuck states is defined to be
(IrreducibleSOS − FC ) — i.e., the non-final irreducible configurations. We
omit the SOS subscript when it is clear from context.
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• IF : Program× Inputs→ CF is an input function that maps a program
and its inputs into an initial configuration.

• OF : FC → Answer is an output function that maps a final configura-
tion to an appropriate answer domain.

An SOS defines the behavior of a program in a way that we shall now make
precise. What are the possible behaviors of a program? As discussed above, a
program either (1) returns an answer (2) gets stuck in a non-final irreducible
configuration or (3) loops infinitely. We model these via the following Outcome
domain, where stuckout designates a stuck program and loopout designates a
infinitely looping program:

StuckOut = {stuckout}
LoopOut = {loopout}

o ∈ Outcome = Answer + StuckOut + LoopOut
stuck = (StuckOut 7→ Outcome stuckout)
∞ = (StuckOut 7→ Outcome loopout)

Suppose that an SOS has a deterministic transition relation. Then we can define
the behavior of a program P on inputs I as follows:

behdet : Program× Inputs→ Outcome

behdet 〈P, I〉 =







(Answer 7→ Outcome (OF cf)) if (IF 〈P, I〉) ∗⇒ cf ∈ FC

stuck if (IF 〈P, I〉) ∗⇒ cf ∈ Stuck

∞ if (IF 〈P, I〉) ∞⇒

In the first case, an execution starting at the initial configuration eventually
reaches a final configuration, whose answer is returned. In the second case, an
execution starting at the initial configuration eventually gets stuck at a non-final
configuration. In the last case, there is an infinite transition path starting at
the initial configuration, so the program never halts.

What if the transition relation is not deterministic? In this case, it is possible
that there are multiple transition paths starting at the initial configuration.
Some of these might end at final configurations with different answers. Others
might be infinitely long or end at stuck states. In general, we must allow for
the possibility that there are many outcomes, so the signature of the behavior
function beh in this case must return a set of outcomes — i.e., an element of the
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powerset domain P(Outcome)4

beh : Program× Inputs→ P(Outcome)

o ∈ (beh 〈P, I〉) if







o = (Answer 7→ Outcome (OF cf))

and (IF 〈P, I〉) ∗⇒ cf ∈ FC

o = stuck and (IF 〈P, I〉) ∗⇒ cf ∈ Stuck

o = ∞ and (IF 〈P, I〉) ∞⇒

An SOS with a non-deterministic transition relation won’t necessarily give rise
to results that contain multiple outcomes. Indeed, we will see later (in Sec-
tion 3.4.2) that some systems with non-deterministic transition relations can
still have a behavior that is deterministic — i.e., the resulting set of outcomes
is always a singleton.

3.2.2 Example: An SOS for PostFix

We can now formalize the elements of the PostFix SOS described informally
in Section 3.1 (except for the transition relation, which will be formalized in
Section 3.2.3). The details are presented in Figure 3.3. A stack is a sequence
of values that are either integer numerals (from domain Intlit) or executable
sequences (from domain Commands). PostFix programs take a sequence of
integer numerals as their inputs, and, when no error is encountered, return an
integer numeral as an answer. A configuration is a pair of a command sequence
and a stack. A final configuration is one whose command sequence is empty and
whose stack is non-empty with an integer numeral on top (i.e., an element of
FinalStack). The input function IF maps a program and its numeric inputs to a
configuration consisting of the body command sequence and an initial stack with
the inputs arranged from top down. If the number of arguments N expected by
the program does not match the actual number n of arguments supplied, then
IF returns a stuck configuration 〈[ ]Command, [ ]Value〉 that represents an error.
The output function OF returns the top integer numeral from stack of a final
configuration.

The PostFix SOS in Figure 3.3 models errors using stuck states. By def-
inition, stuck states are exactly those irreducible configurations that are non-
final. In PostFix, stuck states are irreducible configurations whose command
sequence is non-empty or those that pair an empty command sequence with a
stack that is empty or has an executable sequence on top. The outcome of a
program that reaches such a configuration will be stuck.

4The result of beh must in fact be a non-empty set of outcomes, since every program will
have at least one outcome.
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Domains

V ∈ Value = Intlit + Commands
S ∈ Stack = Value*

FinalStack = {S | (length S) ≥ 1 and (nth 1 S) = (Intlit 7→ Value N)}
Inputs = Intlit*
Answer = Intlit

SOS

Suppose that the PostFix SOS has the form PFSOS = 〈CF ,⇒,FC , IF ,OF 〉.
Then the SOS components are:

CF = Commands × Stack

⇒ is a deterministic transition relation defined in Section 3.2.3

FC = {[ ]Command} × FinalStack

IF : Program× Inputs→ CF
=λ〈(postfix N Q), [N1 , . . . ,Nn ]〉 .

if N = n then 〈Q, [(Intlit 7→ Value N1 ), . . . , (Intlit 7→ Value Nn )]〉
else 〈[ ]Command, [ ]Value〉 fi

OF : FC → Answer =λ〈[ ]Command, (Intlit 7→ Value N) . S ′〉 . N

Figure 3.3: An SOS for PostFix.

Although it is convenient to use stuck states to model errors, it is not strictly
necessary. With some extra work, it is always possible to modify the final config-
uration set FC and the output function OF so that such programs instead have
as their meaning some error token in Answer. Using PostFix as an example,
we can use a modified answer domain Answer ′ that includes an error token, a
modified final configuration set FC ′ that includes all irreducible configurations,
and the modified OF ′ shown below:

Error = {error}
Answer ′ = Intlit + Error

FC ′ = IrreduciblePFSOS

OF : FC ′ → Answer ′

=λ〈Q,V*〉 . matching 〈Q,V*〉
. 〈[ ]Command, (Intlit 7→ Value N) . S ′〉 [] (Intlit 7→ Answer ′ N)
. else (Error 7→ Answer ′ error)

With these modifications, the behavior of a PostFix program that encounters
an error will be (Answer ′ 7→ Outcome (Error 7→ Answer ′ error)) rather than stuck.
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¤ Exercise 3.1 Look up definitions of the following kinds of automata and express

each of them in the SOS framework: deterministic finite automata, non-deterministic

finite automata, deterministic pushdown automata, and Turing machines. Represent

strings, stacks, and tapes as sequences of symbols. ¢

3.2.3 Rewrite Rules

The transition relation, ⇒, for an SOS is often specified by a set of rewrite
rules. A rewrite rule has the form

antecedents

consequent
[rule-name]

where the antecedents and the consequent contain transition patterns (described
below). Informally, the rule asserts: “If the transitions specified by the an-
tecedents are valid, then the transition specified by the consequent is valid.”
The label [rule-name] on the rule is just a handy name for referring to the rule,
and is not a part of the rule structure. A rewrite rule with no antecedents is an
axiom; otherwise it is a progress rule. The horizontal bar is usually omitted
when writing an axiom.

A complete set of rewrite rules for PostFix appears in Figure 3.4. All of
the rules are axioms. Together with the definitions of CF , FC , IF , and OF ,
these rules constitute a formal SOS version of the informal PostFix semantics
originally presented in Figure 1.1. We will spend the rest of this section studying
the meaning of these rules and considering alternative rules.

3.2.3.1 Axioms

Since an axiom has no antecedents, it is determined solely by its consequent.
As noted above, the consequent must be a transition pattern. A transition
pattern looks like a transition except that the LHS and RHS may contain domain
variables interspersed with the usual notation for configurations. Informally, a
transition pattern is a schema that stands for all the transitions that match the
pattern. An axiom stands for the collection of all configuration pairs that match
the LHS and RHS of the transition pattern, respectively.

As an example, let’s consider in detail the axiom that defines the behavior
of PostFix numerals:

〈N . Q, S〉⇒ 〈Q, N . S〉 [num]

This axiom stands for an infinite number of pairs of configurations of the form
〈cf, cf ′〉. It says that if cf is a configuration in which the command sequence is
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〈N . Q, S〉⇒ 〈Q, N . S〉 [num]

〈(Qexec) . Qrest , S〉⇒ 〈Qrest , (Qexec) . S〉 [seq]

〈pop . Q, Vtop . S〉⇒ 〈Q, S〉 [pop]

〈swap . Q, V1 . V2 . S〉⇒ 〈Q, V2 . V1 . S〉 [swap]

〈sel . Qrest , Vfalse . Vtrue . 0 . S〉⇒ 〈Qrest , Vfalse . S〉 [sel-false]

〈sel . Qrest , Vfalse . Vtrue . Ntest . S〉⇒ 〈Qrest , Vtrue . S〉,
where Ntest 6=0 [sel-true]

〈exec . Qrest , (Qexec) . S〉⇒ 〈Qexec @ Qrest , S〉 [execute]

〈A . Q, N1 . N2 . S〉⇒ 〈Q, Nresult . S〉,
where Nresult =(calculate A N2 N1 )

[arithop]

〈R . Q, N1 . N2 . S〉⇒ 〈Q, 1 . S〉,
where (compare R N2 N1 )

[relop-true]

〈R . Q, N1 . N2 . S〉⇒ 〈Q, 0 . S〉,
where ¬ (compare R N2 N1 )

[relop-false]

〈nget . Q, Nindex . [V1 , . . . ,VNsize
]〉⇒ 〈Q, VNindex

. [V1 , . . . ,VNsize
]〉,

where (compare gt Nindex 0) ∧ ¬ (compare gt Nindex Nsize)
[nget]

Figure 3.4: Rewrite rules defining the transition relation (⇒) for PostFix.
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a numeral N followed by Q and the stack is S, then there is a transition from
cf to a configuration cf ′ whose command sequence is Q, and whose stack holds
N followed by S.

In the [num] rule, N, Q, and S are domain variables that act as patterns that
can match any element in the domain over which the variable ranges. Thus, N
matches any integer numeral, Q matches any command sequence, and S matches
any stack. When the same pattern variable occurs more than once within a
rule, all occurrences must denote the same element; this constrains the class of
transitions specified by the rule. Thus, the [num] rule matches the transition

〈(17 add swap), [19, (2 mul)]〉⇒ 〈(add swap), [17, 19, (2 mul)]〉

with N = 17, Q = [add, swap], and S =[19, [2, mul]]. On the other hand, the
rule does not match the transition

〈(17 add swap), [19, (2 mul)]〉⇒ 〈(add swap), [17, 19, (2 mul), 23]〉

because there is no consistent interpretation for the pattern variable S — it is
[19, [(2 mul)]] in the LHS of the transition, and [19, (2 mul), 23] in the RHS.

As another example, the configuration pattern 〈Q, N . N . S〉 would only
match configurations with stacks in which the top two values are the same
integer numeral. If the RHS of the [num] rule consequent were replaced with
this configuration pattern, then the rule would indicate that two copies of the
integer numeral should be pushed onto the stack.

At this point, the meticulous reader may have noticed that in the rewrite
rules and sample transitions we have taken many liberties with our notation.
If we had strictly adhered to our metalanguage notation, then we would have
written the [num] rule as

〈(Intlit 7→ Command N) . Q,S〉⇒ 〈Q, (Intlit 7→ Value N) . S〉 [num]

and we would have written the matching transition as

〈[17, add, swap]Command, [(Intlit 7→ Value 19),
(Commands 7→ Value [2, mul]Command) ]〉

⇒ 〈[add, swap]Command, [(Intlit 7→ Value 17),
(Intlit 7→ Value 19),
(Commands 7→ Value [2, mul]Command) ]〉.

However, we believe that the more rigorous notation severely impedes the read-
ability of the rules and examples. For this reason, we will stick with our stylized
notation when it is unlikely to cause confusion. In particular, in operational
semantics rules and sample transitions, we adopt the following conventions:
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• Injections will be elided when they are clear from context. For example, if
N appears as a command, then it stands for (Intlit 7→ Command N), while
if it appears as a stack element, then it stands for (Intlit 7→ Value N).

• Sequences of syntactic elements will often be written as parenthesized s-
expressions. For example, the PostFix command sequence

[3, [2, mul]Command, swap]Command

will be abbreviated as

(3 (2 mul) swap).

The former is more precise, but the latter is easier to read. In PostFix
examples, we have chosen to keep the sequence notation for stacks to
visually distinguish the two components of a configuration.

Despite these notational acrobatics, keep in mind that we are manipulat-
ing well-defined mathematical structures. So it is always possible to add the
appropriate decorations to make the notation completely rigorous.5

Some of the PostFix rules ([arithop], [relop-true], [relop-false], [sel-true],
and [nget]) include side conditions that specify additional restrictions on the
domain variables. For example, consider the axiom which handles a conditional
whose test is true:

〈sel . Qrest , Vfalse . Vtrue . Ntest . S〉⇒ 〈Qrest , Vtrue . S〉,
where Ntest 6=0 [sel-true]

This axiom encodes the fact that sel treats any nonzero integer numeral as true.
It says that as long as the test numeral Ntest (the third element on the stack)
is not the same syntactic object as 0, then the next configuration is obtained
by removing sel from the command sequence, and pushing the second stack
element on the result of popping the top three elements off of the stack. The
domain variable Ntest that appears in the side condition Ntest 6=0 stands for the
same entity that Ntest denotes in the LHS of the consequent, providing the link
between the transition pattern and the side condition. Note how the domain
variables and the structure of the components are used to constrain the pairs
of configurations that satisfy this rule. This rule only represents pairs 〈cf, cf ′〉
in which the stack of cf contains at least three elements, the third of which is
a nonzero integer numeral. The rule does not apply to configurations whose
stacks have fewer than three elements, or whose third element is an executable
sequence or the numeral 0.

5But those who pay too much attention to rigor may develop rigor mortis!
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The side conditions in the [arithop], [relop], and [nget] rules deserve some
explanation. The calculate function used in the side condition of [arithop] re-
turns the numeral Nresult resulting from the application of the operator A to the
operands N2 and N1 ; it abstracts away the details of such computations.6 We
assume that calculate is a partial function that is undefined when A is div and
N1 is 0, so division by zero yields a stuck state. The [relop-true] and [relop-false]
rules are similar to [arithop]; here the auxiliary compare function is assumed to
return the truth value resulting from the associated comparison. The rules then
convert this truth value into a PostFix value of 1 (true) or 0 (false). In the
[nget] rule, the compare function is used to ensure that the numeral Nindex is a
valid index for one of the values on the stack. If not, the configuration is stuck.
In the side conditions, the symbol ¬ stands for logical negation and ∧ stands
for logical conjunction.

You should now know enough about the rule notation to understand all of
the rewrite rules in Figure 3.4. The [num] and [seq] rules push the two different
kinds of values onto the stack. The [swap], [pop], [sel-true], and [sel-false] rules
all perform straightforward stack manipulations. The [exec] rule prepends an
executable sequence from the stack onto the command sequence following the
current command.

It is easy to see that the transition relation defined in Figure 3.4 is determin-
istic. The first command in the command sequence of a configuration uniquely
determines which transition pattern might match, except for the case of sel,
where the third stack value distinguishes whether [sel-true] or [sel-false] matches.
The LHS of each transition pattern can match a given configuration in at most
one way. So for any given PostFix configuration cf, there is at most one cf ′

such that cf ⇒ cf ′.

3.2.3.2 Operational Execution

The operational semantics can be used to execute a PostFix program in a way
similar to the table-based method presented earlier. For example, the execution
of the PostFix program shown earlier in Figure 3.1 is illustrated in Figure 3.5.
The input function is applied to the program to yield an initial configuration,
and then a series of transitions specified by the rewrite rules are applied. In the

6Note that calculate manipulates numerals (i.e., names for integers) rather than the integers

that they name. This may seem pedantic, but we haven’t described yet how the meaning of an
integer numeral is determined. In fact, integers are never even used in the SOS for PostFix.
If we had instead defined the syntax of PostFix to use integers rather than integer numerals,
then we could have used the usual integer addition operation here. But we chose integer
numerals to emphasize the syntactic nature of operational semantics.
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figure, the configuration resulting from each transition appears on a separate
line and is labeled by the applied rule. When a final configuration is reached,
the output function is applied to this configuration to yield -3, which is the
result computed by the program. We can summarize the transition path from
the initial to the final configuration as

〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉 =10=⇒ 〈(), [-3, 5]〉,

where 10 is the number of transitions. If we don’t care about this number, we
write ∗ in its place.

(IF 〈(postfix 2 (2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉)
= 〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉
⇒ 〈(1 swap exec sub), [(2 (3 mul add) exec), 4, 5]〉 [seq]
⇒ 〈(swap exec sub), [1, (2 (3 mul add) exec), 4, 5]〉 [num]
⇒ 〈(exec sub), [(2 (3 mul add) exec), 1, 4, 5]〉 [swap]
⇒ 〈(2 (3 mul add) exec sub), [1, 4, 5]〉 [execute]
⇒ 〈((3 mul add) exec sub), [2, 1, 4, 5]〉 [num]
⇒ 〈(exec sub), [(3 mul add), 2, 1, 4, 5]〉 [seq]
⇒ 〈(3 mul add sub), [2, 1, 4, 5]〉 [execute]
⇒ 〈(mul add sub), [3, 2, 1, 4, 5]〉 [num]
⇒ 〈(add sub), [6, 1, 4, 5]〉 [arithop]
⇒ 〈(sub), [7, 4, 5]〉 [arithop]
⇒ 〈(), [-3, 5]〉 ∈ FC [arithop]
(OF 〈(), [-3, 5]〉) = -3

Figure 3.5: An SOS-based execution of a PostFix program.

Not all PostFix executions lead to a final configuration. For example,
executing the program (program 2 add mul 3 4 sub) on the inputs [5, 6] leads
to the configuration 〈(mul 3 4 sub), [11]〉. This configuration is not final
because there are still commands to be executed. But it does not match the
LHS of any rewrite rule consequent. In particular, the [arithop] rule requires
the stack to have two integers at the top, and here there is only one. This is an
example of a stuck state. As discussed earlier, a program reaching a stuck state
is considered to signal an error. In this case the error is due to an insufficient
number of arguments on the stack.

¤ Exercise 3.2 Use the SOS for PostFix to determine the values of the PostFix

programs in Exercise 1.1. ¢

¤ Exercise 3.3 Consider extending PostFix with a rot command defined by the
following rewrite rule:
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〈rot . Q, N . V0 . V1 . . . . . VN . S〉⇒ 〈Q, V1 . . . . . VN . V0 . S〉,
where (compare gt N 0)

[rot]

a. Give an informal English description of the behavior of rot.

b. What is the contents of the stack after executing the following program on zero
arguments?

(postfix 0 1 2 3 1 2 3 rot rot rot)

c. Using rot, write a PostFix executable sequence that serves as subroutine for
reversing the top three elements of a given stack.

d. List the kinds of situations in which rot can lead to a stuck state, and give a
sample program illustrating each one. ¢

¤ Exercise 3.4 The SOS for PostFix specifies that a configuration is stuck when
the stack contains an insufficient number of values for a command. For example,
〈(2 mul), [ ]〉 is stuck because multiplication requires two stack values.
a. Modify the semantics of PostFix so that, rather than becoming stuck, it uses
sensible defaults for the missing values when the stack contains an insufficient
number of values. For example, the default value(s) for mul would be 1:

〈(2 mul), [ ]〉 ⇒ 〈(2), [ ]〉
〈(mul), [ ]〉 ⇒ 〈(1), [ ]〉

b. Do you think this modification is a good idea? Why or why not? ¢

¤ Exercise 3.5 Suppose the Value domain in the PostFix SOS is augmented with a

distinguished error value. Modify the rewrite rules for PostFix so that error configura-

tions push this error value onto the stack. The error value should be “contagious” in the

sense that any operation attempting to act on it should also push an error value onto

the stack. Under the revised semantics, a program may return a non-error value even

though it encounters an error along the way. E.g., (postfix 0 1 2 add mul 3 4 sub)

should return -1 rather than signaling an error when called on zero inputs. ¢

¤ Exercise 3.6 An operational semantics for PostFix2 (the alternative PostFix
syntax introduced in Figure 2.9) can be defined by making minor tweaks to the opera-
tional semantics forPostFix. Assume that the set of configurations remains unchanged.
Then most commands from the secondary syntax can be handled with only cosmetic
changes. For example, here is the rewrite rule for a PostFix2 numeral command:

〈(int N) . Q, S〉⇒ 〈Q, N . S〉 [numeral ′]
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a. Define an input function that maps PostFix2 programs (which have the form
(postfix2 N C)) into an initial configuration.

b. Give rewrite axioms for the PostFix2 commands (exec), (skip), and
(: C1 C2).

(See Exercise 3.7 for another approach to defining the semantics of PostFix2.) ¢

¤ Exercise 3.7 A distinguishing feature of PostFix2 (the alternative PostFix syn-

tax introduced in Figure 2.9) is that its grammar makes no use of sequence domains. It

is reasonable to expect that its operational semantics can be modeled by configurations

in which the code component is a single command rather than a command sequence.

Based on this idea, design an SOS for PostFix2 in which CF =Command × Stack.

(Note: do not modify the Command domain.) ¢

¤ Exercise 3.8 The Hugely Profitable Calculator Company has hired you to design
a calculator language called RPN that is based on PostFix. RPN has the same syntax
as PostFix command sequences (an RPN program is just a command sequence that is
assumed to take zero arguments) and the operations are intended to work in basically
the same manner. However, instead of providing a arbitrarily large stack, RPN limits
the size of the stack to four values. Additionally, the stack is always full in the sense that
it contains four values at all times. Initially, the stack contains four 0 values. Pushing a
value onto a full stack causes the bottommost stack value to be forgotten. Popping the
topmost value from a full stack has the effect of duplicating the bottommost element
(i.e., it appears in the last two stack positions after the pop).

a. Develop a complete SOS for the RPN language.

b. Use your SOS to find the results of the following RPN programs:

i. (mul 1 add)

ii. (1 20 300 4000 50000 add add add add)

c. Although PostFix programs are guaranteed to terminate, RPN programs are
not. Demonstrate this fact by writing an RPN program that loops infinitely. ¢

¤ Exercise 3.9 A class of calculators known as four-function calculators supports
the four usual binary arithmetic operators (+, -, *, /) in an infix notation.7 Here we
consider a language FF based on four-function calculators. The programs of FF are any
parenthesized sequence of numbers and commands, where commands are +, -, *, /, and
=. The = command is used to compute the result of an expression, which may be used
as the first argument to another binary operator. The = may be elided in a string of
operations.

7The one described here is based on the TI-1025. See [You81] for more details.
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(1 + 20 =) −−−FF→ 21

(1 + 20 = + 300 =) −−−FF→ 321

(1 + 20 + 300 =) −−−FF→ 321 {Note elision of first =.}
(1 + 20) −−−FF→20 {Last number returned when no final =.}

Other features supported by FF include:

• Calculation with a constant. Typing a number followed by = uses the number as
the first operand in a calculation with the previous operator and second operand:

(2 * 5 =) −−−FF→ 10

(2 * 5 = 7 =) −−−FF→ 35

(2 * 5 = 7 = 11 =) −−−FF→ 55

• Implied second argument. If no second argument is specified, the value of the
second argument defaults to the first.

(5 * =) −−−FF→ 25

• Operator correction. An operator key can be corrected by typing the correct one
after (any number of) unintentional operators.

(1 * - + 2 ) −−−FF→ 3

a. Design an SOS for FF that is consistent with the informal description given above.

b. Use your SOS to find the final values of the following command sequences. (Note:
some of the values may be floating point numbers.) Comment on the intended
meaning of the unconventional command sequences.

i. (8 - 3 + * 4 =)

ii. (3 + 5 / = =)

iii. (3 + 5 / = 6 =) ¢

3.2.3.3 Progress Rules

Introduction

The commands of PostFix programs are interpreted in a highly linear fash-
ion in Figure 3.4. Even though executable sequences give the code a kind of
tree structure, the contents of an executable sequence can only be used when
they are prepended to the single stream of commands that is executed by the
abstract machine. The fact that the next command to execute is always at the
front of this command stream leads to a very simple structure for the rewrite
rules in Figure 3.4. Transitions, which appear only in rule consequents, are all
of the form

〈Cfirst . Q, S〉⇒ 〈Q ′, S ′〉,
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where Q ′ is either the same as Q or is the result of prepending some commands
onto the front of Q. In all rules, the command Cfirst at the head of the current
command sequence is consumed by the application of the rule.

These simple kinds of rules are not adequate for programming languages ex-
hibiting a more general tree structure. Evaluating a node in an arbitrary syntax
tree usually requires the recursive evaluation of its subnodes. For example, con-
sider the evaluation of a sample numerical expression written in the EL language
described in Section 2.3:

(+ (* (- 5 1) 2) (/ 21 7)).

Before the sum can be performed, the results of the product and division must
be computed; before the multiplication can be performed, the subtraction must
be computed. If the values of operand expressions are computed in a left-to-
right order, we expect the evaluation of the expression to occur via the following
transition path:

(+ (* (- 5 1) 2) (/ 21 7))

⇒ (+ (* 4 2) (/ 21 7))

⇒ (+ 8 (/ 21 7))

⇒ (+ 8 3)

⇒ 11.

In each transition, the structure of the expression tree remains unchanged ex-
cept at the node where the computation is being performed. Rewrite rules for
expressing such transitions need to be able to express a transition from tree to
tree in terms of transitions between the subtrees. That is, the transition

(+ (* (- 5 1) 2) (/ 21 7))⇒ (+ (* 4 2) (/ 21 7))

is implied by the transition

(* (- 5 1) 2)⇒ (* 4 2),

which is in turn is implied by the transition

(- 5 1)⇒ 4.

In some sense, “real work” is only done by the last of these transitions; the other
transitions just inherit the change because they define the surrounding context
in which the change is embedded.

These kinds of transitions on tree-structured programs are expressed by
progress rules, which are rules with antecedents. Progress rules effectively allow
an evaluation process to reach inside a complicated expression to evaluate one of
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its subexpressions. A one-step transition in the subexpression is then reflected
as a one-step transition of the expression in which it is embedded.

Example: ELMM

To illustrate progress rules, we will develop an operational semantics for an
extremely simple subset of the EL language that we will call ELMM (which
stands for EL Minus Minus). As shown in Figure 3.6, an ELMM program is
just a numerical expression, where a numerical expression is either (1) an integer
numeral or (2) an arithmetic operation. There are no arguments, no conditional
expressions, and no boolean expressions in ELMM.

Syntactic Domains:

P ∈ Program
NE ∈ NumExp
N ∈ IntegerLiteral = {-17, 0, 23, . . .}
A ∈ ArithmeticOperator = {+, -, *, /, %}

Production Rules:

P ::= (elmm NE body) [Program]

NE ::= Nnum [IntLit]
| (Arator NE rand1 NE rand2) [Arithmetic Operation]

Figure 3.6: An s-expression grammar for ELMM.

In an SOS for ELMM, configurations are just numerical expressions them-
selves; there are no state components. Numerical literals are the only final
configurations. The input and output functions are straightforward. The inter-
esting aspect of the ELMM SOS is the specification of the transition relation
⇒, which is shown in Figure 3.7. The ELMM [arithop] axiom is similar to the
same-named axiom in the PostFix SOS; it performs a calculation on integer
numerals.

To evaluate expressions with nested subexpressions in a left-to-right order,
the rules [prog-left] and [prog-left] are needed. The [prog-left] rule says that if the
ELMM abstract machine would make a transition from NE 1 to NE1

′, it should
also allow a transition from (arithop NE 1 NE2) to (arithop NE 1

′ NE 2).
This rule permits evaluation of the left operand of the operation while leaving
the right operand unchanged. The [prog-right] rule is similar, except that it
only permits evaluation of the right operand once the left operand has been
fully evaluated to an integer numeral. This forces the operands to be evaluated
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(A N1 N2)⇒Nresult ,
where Nresult =(calculate A N1 N2 )

[arithop]

NE1⇒NE1
′

(A NE1 NE2)⇒ (A NE1
′ NE2)

[prog-left]

NE2⇒NE2
′

(A N NE2)⇒ (A N NE2
′)

[prog-right]

Figure 3.7: Rewrite rules defining the transition relation (⇒) for ELMM.

in a left-to-right order. Rules like [prog-left] and [prog-left] are called progress
rules because an evaluation step performed on a subexpression allows progress
to be made on the evaluation of the whole expression.

In the case of axioms, it was easy to determine the set of transitions that were
specified by a rule. But how do we determine exactly what set of transitions are
specified by a progress rule? Intuitively, a transition is specified by a progress
rule if it matches the consequent of the rule and it’s possible to show that
the antecedent transition patterns are also satisfied. For example, since the
ELMM transition (- 7 4) ⇒ 3 is justified by the [arithop] rule, the transition
(* (- 7 4) (+ 5 6) ⇒ (* 3 (+ 5 6)) is justified by the [prog-left] rule, and
the transition (* 2 (- 7 4)) ⇒ (* 2 3) is justified by the [prog-right] rule.
Furthermore, since the above transitions themselves satisfy the antecedents of
the [prog-left] and [prog-right] rules, it is possible to use these rules again to
justify the following transitions:

(/ (* (- 7 4) (+ 5 6) (% 9 2))) ⇒ (/ (* 3 (+ 5 6) (% 9 2)))

(/ (* 2 (- 7 4)) (% 9 2)) ⇒ (/ (* 2 3) (% 9 2))

(/ 100 (* (- 7 4) (+ 5 6))) ⇒ (/ 100 (* 3 (+ 5 6)))

(/ 100 (* 2 (- 7 4))) ⇒ (/ 100 (* 2 3))

These examples suggest that we can justify any transition as long as we can
give a proof of the transition based upon the rewrite rules. Such a proof can
be visualized as a so-called proof tree (also known as a derivation) that
grows upward from the bottom of the page. The root of a proof tree is the
transition we are trying to prove, its intermediate nodes are instantiated progress
rules, and its leaves are instantiated axioms. A proof tree is structured so
that the consequent of each instantiated rule is one antecedent of its parent
(below) in the tree. For example, the proof tree associated with the transition
of (/ 100 (* (- 7 4) (+ 5 6))) appears in Figure 3.8. We can represent the
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(- 7 4)⇒ 3,
where (calculate - 7 4) = 3

[arithop]

(- 7 4)⇒ 3

(* (- 7 4) (+ 5 6))⇒ (* 3 (+ 5 6))
[prog-left]

(* (- 7 4) (+ 5 6))⇒ (* 3 (+ 5 6))

(/ 100 (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 (+ 5 6)))
[prog-right]

(/ 100 (* (- 7 4) (+ 5 6))) ⇒ (/ 100 (* 3 (+ 5 6)))

Figure 3.8: A proof tree for a ELMM transition involving nested expressions.
The root of the tree is at the bottom of the page; the leaf is at the top.

proof tree in the figure much more concisely by displaying each transition only
once, as shown below:

[arithop]
(- 7 4)⇒ 3

[prog-left]
(* (- 7 4) (+ 5 6))⇒ (* 3 (+ 5 6))

[prog-right]
(/ 100 (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 (+ 5 6)))

The proof tree in this particular example is linear because each of the progress
rules involved has only one antecedent transition pattern. A progress rule with n
antecedent transition patterns would correspond to a tree node with a branching
factor of n. For example, suppose we added the following progress rule to the
ELMM SOS:

NE1 ⇒ NE1
′ ; NE2 ⇒ NE2

′

(arithop NE 1 NE2)⇒ (arithop NE 1
′ NE2

′)
[prog-both]

This rule allows simultaneous evaluation of both operands. It leads to proof
trees that have branching, such as the following tree in which three arithmetic
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operations are performed simultaneously:

[arithop]
(+ 25 75)⇒ 100

[arithop]
(- 7 4)⇒ 3

[arithop]
(+ 5 6)⇒ 11

[prog-both]
(* (- 7 4) (+ 5 6))⇒ (* 3 11)

[prog-both]
(/ (+ 25 75) (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 11))

It is possible to express any proof tree (even one with branches) in the more
traditional linear textual style for a proof. In this style, a proof of a transition
is a sequence of transitions where each transition is justified either by an axiom
or by a progress rule whose antecedent transitions are justified by transitions
earlier in the sequence. A linear textual version of the branching proof tree
above would be:

# Transition Justification
[1] (+ 25 75) ⇒100 [arithop]
[2] (- 7 4) ⇒3 [arithop]
[3] (+ 5 6) ⇒11 [arithop]
[4] (* (- 7 4) (+ 5 6)) ⇒(* 3 11) [prog-both] & [2] & [3]
[5] (/ (+ 25 75) (* (- 7 4) (+ 5 6)))

⇒ (/ 100 (* 3 11)) [prog-both] & [1] & [4]

The elements of the linear textual proof sequence have been numbered, and justi-
fications involving progress rules include the numbers of the transitions matched
by their antecedents. There are many alternative proof sequences for this exam-
ple that differ in the ordering of the elements. Indeed, the legal linear textual
proof sequences for this example are just topological sorts of the original proof
tree. Because such linearizations involve making arbitrary choices, we prefer to
use the tree based notation, whose structure highlights the essential dependen-
cies in the proof.

When writing down a transition sequence to show the evaluation of an
ELMM expresssion we will not explicitly justify every transition with a proof
tree, even though such a proof tree must exist. However, if we are listing justi-
fications for transitions, then we will list the names of the rules that would be
needed to perform the proof. See Figure 3.9 for an example. (This example uses
the original SOS, which does not include the [prog-both] rule.)

We shall see in Section 3.4 that the fact that each transition has a proof
tree is key to proving properties about transitions. Transition properties are
often proven by structural induction on the structure of the proof tree for the
transition.

¤ Exercise 3.10



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

60 CHAPTER 3. OPERATIONAL SEMANTICS

(IF (elmm (/ (+ 25 75) (* (- 7 4) (+ 5 6)))))
= (/ (+ 25 75) (* (- 7 4) (+ 5 6)))

⇒ (/ 100 (* (- 7 4) (+ 5 6))) [prof-left] & [arithop]
⇒ (/ 100 (* 3 (+ 5 6))) [prog-right] & [prof-left] & [arithop]
⇒ (/ 100 (* 3 11)) [prog-right] (twice) & [arithop]
⇒ (/ 100 33) ∈ FC [prog-right] & [arithop]
(OF 3) = 3

Figure 3.9: An example illustrating evaluation of ELMM expressions.

a. Consider a language ELM (short for EL Minus) that extends ELMM with
indexed references to program inputs. The syntax for ELM is like that of ELMM
except that (1) ELM programs have the form (elm Nnumargs NE body), where
Nnumargs specifies the number of expected program arguments and (2) numerical
expressions are extended with EL’s (arg Nindex) construct, which gives the value
of the argument whose index is given by Nindex (assume indices start at 1).

Write a complete SOS for ELM. Your configurations will need to include a state
component representing the program arguments.

b. Write a complete SOS for the full EL language described in Section 2.3.2. You
will need to define two kinds of configurations: one to handle numeric expressions
and one to handle boolean expressions. Each kind of configuration will be a
pair of an expression and a sequence of numeric arguments and will have its own
transition relation. ¢

Example: PostFix

As another example of progress rules, we will consider an alternative ap-
proach for describing the exec command of PostFix. The [execute] axiom in
Figure 3.4 handled exec by popping an executable sequence off the stack and
prepending it to the command sequence following the exec command. Fig-
ure 3.10 presents a progress rule, [exec-prog ], that, together with the axiom
[exec-done], can replace the [execute] rule. The [exec-prog ] rule says that if
the abstract machine would make a transition from configuration 〈Qexec, S〉
to configuration 〈Qexec

′, S ′〉 then it should also allow a transition from the
configuration 〈exec . Qrest , Qexec . S〉 to 〈exec . Qrest , Qexec

′ . S ′〉.
Rather than prepending the commands in Qexec to Qrest , the [exec-prog ] rule

effectively executes the commands in Qexec while it remains on the stack. Note
that, unlike all the rules that we have seen before, this rule does not remove
the exec command from the current command sequence. Instead, the exec

command is left in place so that the execution of the command sequence at the
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〈Qexec, S〉⇒ 〈Qexec
′, S ′〉

〈exec . Qrest , Qexec . S〉⇒ 〈exec . Qrest , Qexec
′ . S ′〉 [exec-prog ]

〈exec . Qrest , () . S〉⇒ 〈Qrest , S〉 [exec-done]

Figure 3.10: A pair of rules that could replace the [execute] axiom.

top of the stack will continue during the next transition. Since the commands
are removed from Qexec after being executed, the executable sequence at the top
of the stack will eventually become empty. At this point, the [exec-done] rule
takes over, and removes both the completed exec command and its associated
empty executable sequence.

Figure 3.11 shows how the example considered earlier in Figure 3.1 and
Figure 3.5 would be handled using the [exec-prog ] and [exec-done] rules. Each
transition is justified by a proof tree that uses the rules listed as a justification.
For example, the transition

〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉

is justified by the following proof tree:

[arithop]
〈(mul add), [3, 2, 1, 4, 5]〉 ⇒ 〈(add), [6, 1, 4, 5]〉

[exec-prog]
〈(exec), [(mul add), 3, 2, 1, 4, 5]〉 ⇒ 〈(exec), [(add), 6, 1, 4, 5]〉

[exec-prog]
〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉

The Meaning of Progress Rules

There are some technical details about progress rules that we glossed over
earlier. When we introduced progress rules, we blindly assumed that they were
always reasonable. But not all progress rules make sense.

For example, suppose we extend PostFix with a loop command defined by
the following progress rule:

〈loop . Q, S〉⇒ 〈Q, S〉
〈loop . Q, S〉⇒ 〈Q, S〉 [loop]
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(IF 〈(postfix 2 (2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉)
= 〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉
⇒ 〈(1 swap exec sub), [(2 (3 mul add) exec), 4, 5]〉 [seq]
⇒ 〈(swap exec sub), [1, (2 (3 mul add) exec), 4, 5]〉 [num]
⇒ 〈(exec sub), [(2 (3 mul add) exec), 1, 4, 5]〉 [swap]
⇒ 〈(exec sub), [((3 mul add) exec), 2, 1, 4, 5]〉 [exec-prog ] & [num]
⇒ 〈(exec sub), [(exec), (3 mul add), 2, 1, 4, 5]〉 [exec-prog ] & [seq]
⇒ 〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉 [exec-prog ] (twice)

& [num]
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉 [exec-prog ] (twice)

& [arithop]
⇒ 〈(exec sub), [(exec), (), 7, 4, 5]〉 [exec-prog ] (twice)

& [arithop]
⇒ 〈(exec sub), [(), 7, 4, 5]〉 [exec-prog ]

& [exec-done]
⇒ 〈(sub), [7, 4, 5]〉 [exec-done]
⇒ 〈(), [-3]〉 ∈ FC [arithop]
(OF 〈(), [-3]〉) = -3

Figure 3.11: An example illustrating the alternative rules for exec.

Any attempt to prove a transition involving loop will fail because there are no
axioms involving loop with which to terminate the proof tree. Thus, this rule
stands for no transitions whatsoever!

We’d like to ensure that all progress rules we consider make sense. We
can guarantee this by restricting the form of allowable progress rules to outlaw
nonsensical rules like [loop]. This so-called structure restriction guarantees
that any attempt to prove a transition from a given configuration will eventually
terminate. The standard structure restriction for an SOS requires the code
component of the LHS of each antecedent transition to be a subphrase of the
code component of the LHS of the consequent transition. Since program parse
trees are necessarily finite, this guarantees that all attempts to prove a transition
will have a finite proof.8

While simple to follow, the standard structure restriction prohibits many
reasonable rules. For example, the [exec-prog ] rule does not obey this restriction,
because the code component of the LHS of the antecedent is unrelated to the
code component of the LHS of the consequent. Yet, by considering the entire
configuration rather than just the code component, it is possible to design a
metric in which the LHS of the antecedent is “smaller” than the LHS of the

8This restriction accounts for the term “Structured” in Structured Operational Semantics.
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consequent (see Exercise 3.11). While it is sometimes necessary to extend the
standard structure restriction in this fashion, most of our rules will actually obey
the standard version.

¤ Exercise 3.11 To guarantee that a progress rule is well-defined, we must show that
the antecedent configurations are smaller than the consequent configurations. Here we
explore a notion of “smaller than” for the PostFix configurations that establishes the
well-definedness of the [exec-prog ] rule. (Since [exec-prog ] is the only progress rule for
PostFix, it is the only one we need to consider.)

Suppose that we define a relation < on PostFix configurations such that

〈Q1 , S〉 < 〈exec . Q2 , Q1 . S〉

for any command sequences Q1 and Q2 and any stack S. This is the only relation
on PostFix configurations; two configurations not satisfying this relation are simply
incomparable.

a. A sequence [a1, a2, . . .] is strictly decreasing if ai+1 < ai for all i. Using the
relation < defined above for configurations, show that every strictly decreasing
sequence [cf1, cf2, . . .] of PostFix configurations must be finite.

b. Explain how the result of the previous part implies the well-definedness of the
[exec-prog ] rule. ¢

¤ Exercise 3.12 The abstract machine for PostFix described thus far employs con-
figurations with two components: a command sequence and a stack. It is possible to
construct an alternative abstract machine for PostFix in which configurations consist
only of a command sequence. The essence of such a machine is suggested by the tran-
sition sequence in Figure 3.12, where the primed rule names are the names of rules for
the new abstract machine, not the abstract machine presented earlier.

a. The above example shows that an explicit stack component is not necessary to
model PostFix evaluation. Explain how this is possible. (Is there an implicit
stack somewhere?)

b. Write an SOS for PostFix in which a configuration is just a command sequence.
The SOS should have the behavior exhibited above on the given example. Recall
that an SOS has five components; describe all five. Use only axioms to specify
your transition relation.

c. In the above example, the exec command is handled by replacing it and the exe-
cutable sequence Q to its left by the contents of Q. This mirrors the prepending
behavior of [execute] in the original abstract machine. Write rules for the new
abstract machine that instead mirror the behavior of [exec-prog ] and [exec-done].

d. Develop an appropriate notion of “smaller than” that establishes the well-definedness
of your new [exec-prog ] rule. (See Exercise 3.11.)
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((swap exec swap exec) (1 sub) swap (2 mul) swap 3 swap exec)

⇒ ((1 sub) (swap exec swap exec) (2 mul) swap 3 swap exec) [swap ′]

⇒ ((1 sub) (2 mul) (swap exec swap exec) 3 swap exec) [swap ′]

⇒ ((1 sub) (2 mul) 3 (swap exec swap exec) exec) [swap ′]

⇒ ((1 sub) (2 mul) 3 swap exec swap exec) [exec ′]

⇒ ((1 sub) 3 (2 mul) exec swap exec) [swap ′]

⇒ ((1 sub) 3 2 mul swap exec) [exec ′]

⇒ ((1 sub) 6 swap exec) [arithop ′]

⇒ (6 (1 sub) exec) [swap ′]

⇒ (6 1 sub) [exec ′]

⇒ 5 [arithop ′]

Figure 3.12: Sample transition sequence for an alternative PostFix abstract
machine whose configurations are command sequences.

e. Sketch how you might prove that the new SOS and the original SOS define the
behavior. ¢

3.2.3.4 Context-based Semantics

Axioms and progress rules are not the only way to specify the transition relation
of a small-step operational semantics. Here we introduce another approach to
specifying transitions that is popular in the literature. This approach is based
on a notion of context that specifies the position of a subphrase in a larger
program phrase. Here we will explain this notion and show how it can be used
to specify transitions.

In general, a context is a phrase with a single hole node in the abstract
syntax tree for the phrase. A sample context C in the ELMM language is
(+ 1 (- 2 2)), where where 2 denotes the hole in the context. “Filling” this
hole with any ELMM numerical expression yields another numerical expression.
For example, filling C with (/ (* 4 5) 3), written C{(/ (* 4 5) 3)}, yields
the numerical expression (+ 1 (- (/ (* 4 5) 3) 2)).

Contexts are useful for specifying a particular occurrence of a phrase that
may occur more than once in an expression. For example, (+ 3 4) appears
twice in (* (+ 3 4) (/ (+ 3 4) 2)). The leftmost occurrence is specified
by the context (* 2 (/ (+ 3 4) 2)), while the rightmost one is specified by
(* (+ 3 4) (/ 2 2)). Contexts are also useful for specifying the part of a
phrase that remains unchanged (the evaluation context) when a basic com-
putation (known as a redex) is performed. For example, consider the evaluation
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of the ELMM expression (/ 100 (* (- 7 4) (+ 5 6))). If operands are eval-
uated in a left-to-right order, the next redex to be performed is (- 7 4). The
evaluation context E for this redex is (/ 100 (* 2 (+ 5 6))). The result of
performing the redex (3 in this case) can be plugged into the evaluation context
to yield the result of the transition: E{3} = (/ 100 (* 3 (+ 5 6))).

Evaluation contexts and redexes can be defined via grammars, such as the
ones for ELMM in Figure 3.13. In ELMM, a redex is an arithmetic operator
applied to two integer numerals. An ELMM evaluation context is either a
hole or an arithmetic operation one of whose two operands is an evaluation
context. If the evaluation context is in the left operand position ([Eval Left])
the right operand can be an arbitrary numerical expression. But if the evaluation
context is in the right operand position ([Eval Right]), the left operand must
be a numeral. This structure enforces left-to-right evaluation in ELMM in a
way similar to the [prog-left] and [prog-right] progress rules. Indeed, evaluation
contexts are just another way of expressing the information in progress rules —
namely, how to find the redex (i.e., where an axiom can be applied).

Redexes

R ∈ ElmmRedex

R ::= (A N1 N2) [Arithmetic operation]

Reduction relation (Ã)

(A N1 N2) Ã Nresult , where Nresult =(calculate A N1 N2 )

Evaluation Contexts

E ∈ ElmmEvalContext

E ::= 2 [Hole]
| (A E NE ) [Eval Left]
| (A N E) [Eval Right]

Transition relation (⇒)

E{R} ⇒ E{R ′}, where R Ã R ′

Figure 3.13: A context-based specification of the ELMM transition relation.

Associated with redexes is a reduction relation (Ã) that corresponds to the
basic computations axioms we have seen before. The left hand side of the relation
is the redex, while the right hand side is the reduct. The transition relation
(⇒) is defined in terms of the reduction relation using evaluation contexts: the
expression E{R} rewrites to E{R ′} as long as there is a reduction R Ã R ′.
The transition relation is deterministic if there is at most one way to parse an
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expression into a evaluation context filled with a redex (which is the case in
ELMM).

The following table shows the context-based evaluation of an ELMM ex-
pression:

Expression Evaluation Context Redex Reduct

(/ (+ 25 75) (* (- 7 4) (+ 5 6))) (/ 2 (* (- 7 4) (+ 5 6))) (+ 25 75) 100

⇒ (/ 100 (* (- 7 4) (+ 5 6))) (/ 100 (* 2 (+ 5 6))) (- 7 4) 3

⇒ (/ 100 (* 3 (+ 5 6))) (/ 100 (* 3 2)) (+ 5 6) 11

⇒ (/ 100 (* 3 11)) (/ 100 2) (* 3 11) 33

⇒ (/ 100 33) 2 (/ 100 33) 3

⇒ 3

Context-based semantics are most convenient in an SOS where the config-
urations consist solely of a code component. But they can also be adapted
to configurations that have state components. For example, Figure 3.14 is a
context-based semantics for ELM, the extension to ELMM that includes in-
dexed input via the form (arg Nindex) (see Exercise 3.10). An ELM config-
uration is a pair of (1) an ELM numerical expression and (2) a sequence of
numerals representing the program arguments. Both the ELM reduction rela-
tion and transition relation must include the program arguments so that the arg
form can access them.

¤ Exercise 3.13 Starting wih Figure 3.14, develop a context-based semantics for the

full EL language. ¢

¤ Exercise 3.14 The most natural context-based semantics for PostFix is based

on the approach sketched in Exercise 3.12, where configurations consist only of a com-

mand sequence. Figure 3.15 is the skeleton of a context-based semantics that defines

the transition relation for these configurations. It uses a command sequence context

EQ whose hole can be filled with a command sequence that is internally appended to

other command sequences. For example, if EQ = [1, 2,2, sub], then EQ{[3, swap]}
= [1, 2, 3, swap, sub]. Complete the semantics in Figure 3.15 by fleshing out the missing

details. ¢

3.3 Big-step Operational Semantics

A small-step operational semantics is a framework for describing program execu-
tion as an iterative sequence of small computational steps. But this is not always
the most natural way to view execution. We often want to evaluate a phrase
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Redexes

R ∈ ElmRedex

R ::= (A N1 N2) [Arithmetic operation]
| (arg Nindex) [Indexed Input]

Reduction relation (Ã)

〈(A N1 N2),N*〉 Ã Nresult where Nresult =(calculate A N1 N2 )
〈(arg Nindex), [N1 , . . . ,NNsize

]〉 Ã NNindex

where (compare > Nindex 0) ∧ ¬ (compare > Nindex Nsize)

Evaluation Contexts

E ∈ ElmEvalContext

E ::= 2 [Hole]
| (A E NE ) [Eval Left]
| (A N E) [Eval Right]

Transition relation (⇒)

〈E{R},N*〉 ⇒ 〈E{R ′},N*〉 where 〈R,N*〉 Ã R ′

Figure 3.14: A context-based specification of the ELM transition relation.

Redexes

R ∈ PostFixRedex

R ::= [V, pop] [Pop]
| [V1 ,V2 , swap] [Swap]
| [N1 ,N2 ,A] [Arithmetic operation]
| . . . left as an exercise . . .

Reduction relation (Ã)

[V, pop] Ã [ ]
[V1 ,V2 , swap] Ã [V2 ,V1 ]
[N1 ,N2 ,A] Ã [Nresult ] where Nresult =(calculate A N2 N1 )
. . . left as an exercise . . .

Evaluation Contexts

EQ ∈ PostfixEvalSequenceContext

EQ ::= V* @ 2 @ Q

Transition relation (⇒)

EQ{R} ⇒ EQ{R ′}, where R Ã R ′

Figure 3.15: A context-based specification of the transition relation for a subset
of PostFix.
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by recursively evaluating its subphrases and then combining the results. This
is the key idea of denotational semantics, which we shall study in Chapter 4.
However, this idea also underlies an alternative form of operational semantics,
called big-step operational semantics (BOS) (also known as natural se-
mantics). Here we briefly introduce big-step semantics in the context of a few
examples.

Let’s begin by defining a BOS for the simple expression language ELMM, in
which programs are numerical expressions that are either numerals or arithmetic
operations. A BOS typically has an evaluation relation for each non-trivial
syntactic domain that directly specifies a result for a given program phrase or
configuration. The BOS in Figure 3.16 defines two evaluation relations:

1. −−→NE ∈ NumExp × Intlit specifies the evaluation of an ELMM numerical
expression; and

2. −−→P ∈ Program × Intlit specifies the evaluation of an ELMM program.

NE −−→NE Nans

(elmm NE ) −−→P Nans
[prog ]

N −−→NE N [num]

NE1 −−→NE N1 ; NE2 −−→NE N2

(A NE1 NE2) −−→NE Nresult
[arithop]

where Nresult =(calculate A N1 N2 )

Figure 3.16: Big-step operational semantics for ELMM.

There are two rules specifying−−→NE. The [num] rule says that numerals evaluate
to themselves. The [arithop] rule says that evaluating an arithmetic operation
(A N1 N2) yields the result (Nresult) of applying the operator to the results
(N1 and N2 ) of evaluating the operands. The single [prog ] rule specifying −−→P

just says that the result of an ELMM program is the result of evaluating its
numerical expression.

As with SOS transitions, each instantiation of a BOS evaluation rule is jus-
tified by a proof tree, which we shall call an evaluation tree. Below is the
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proof tree for the evaluation of the program (elmm (* (- 7 4) (+ 5 6))):

[num]
7 −−→NE 7

[num]
4 −−→NE 4

[arithop]
(- 7 4) −−→NE 3

[num]
5 −−→NE 5

[num]
6 −−→NE 6

[arithop]
(+ 5 6) −−→NE 11

[arithop]
(* (- 7 4) (+ 5 6)) −−→NE 33

[prog]
(elmm (* (- 7 4) (+ 5 6))) −−→P 33

Unlike the proof tree for an SOS transition, which justifies a single computational
step, the proof tree for a BOS transition justifies the entire evaluation! This is
the sense in which the steps of a BOS are “big”; they tell how to go from a phrase
to an answer (or something close to an answer). In the case of ELMM, the leaves
of the proof tree are always trivial evaluations of numerals to themselves.

With BOS evaluations there is no notion of a stuck state. In the ELMM
BOS, there is no proof tree for an expression like (* (/ 7 0) (+ 5 6)) that
contains an error. However, we can extend the BOS to include an explicit
error token as a possible result and modify the rules to generate and propagate
such a token. Since all ELMM programs terminate, a BOS with this extension
completely specifies the behavior of a program. But in general, the top-level
evaluation rule for a program only partially specifies its behavior, since there is
no tree (not even an infinite one) asserting that a program loops. What would
the answer A of such a program be in the relation P −−→P A?

The ELMM BOS rules also do not specify the order in which operands are
evaluated, but this is irrelevant anyway since there is no way in ELMM to
detect whether one operation is performed before another. The ELMM BOS
rules happen to specify a (necessarily deterministic) function, but since they can
specify general relations, a BOS can describe non-determistic evaluation as well.

In ELMM, the evaluation relation maps a code phrase to its result. In gen-
eral, the LHS (and RHS) of an evaluation relation can be more complex, con-
taining state components in addition to a code component. This is illustrated in
the BOS for ELM, which extends ELMM with an indexed input construct (Fig-
ure 3.17). Here, the two evaluation relations have different domains than before:
they include an integer numeral sequence to model the program arguments.

1. −−→NE ∈ (NumExp × Intlit*) × Intlit specifies the evaluation of an ELM
numerical expression; and

2. −−→P ∈ (Program × Intlit*) × Intlit specifies the evaluation of an ELM
program.

Each of these relations can be read as “evaluating a program phrase relative
to the program arguments to yield a result”. As a notational convenience, we
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NE −[N1 ,...,NNsize
]−−−−−−−−→NE Nans

(elm Nnumargs NE ) −[N1 ,...,NNsize
]−−−−−−−−→P Nans

[prog ]

where (compare = Nnumargs Nsize)

N −N*−−→NE N [num]

NE1 −N*−−→NE N1 ; NE2 −N*−−→NE N2

(A NE1 NE2) −N*−−→NE Nresult

[arithop]

where Nresult =(calculate A N1 N2 )

(arg Nindex) −[N1 ,...,NNsize
]−−−−−−−−→NE NNindex

[input]

where (compare > Nindex 0) ∧ ¬ (compare > Nindex Nsize)

Figure 3.17: Big-step operational semantics for ELM.

abbreviate 〈X,Nargs*〉 −−→X Nans as X −Nargs*−−−→X Nans , where X ranges over P and
NE . The [prog ] rule is as in ELMM, except that it checks that the number of
arguments is as expected and passes them to the body for its evaluation. These
arguments are ignored by the [num] and [arithop] rules, but are used by the
[input] rule to return the specified argument.

Here is a sample ELM proof tree showing the evaluation of the program
(elm 2 (* (arg 1) (+ 1 (arg 2)))) on the two arguments 7 and 5:

[input]
(arg 1) −[7,5]−−→NE 7

[num]
1 −[7,5]−−→NE 1

[input]
(arg 2) −[7,5]−−→NE 5

[arithop]
(+ (arg 2) 1) −[7,5]−−→NE 6

[prog]
(elm 2 (* (arg 1) (+ 1 (arg 2)))) −[7,5]−−→P 42

Can we describe PostFix execution in terms of a BOS? Yes – via the eval-
uation relations −−→P (for programs) and −−→Q (for command sequences) in Fig-
ure 3.18. The −−→Q relation ∈ (Commands × Stack) × Stack treats command
sequences as “stack transformers” that map an input stack to an output stack.
We abbreviate 〈Q,S〉 −−→Q S ′ as Q −S−→Q S ′. The [non-exec] rule “cheats” by
using the SOS transition relation ⇒ to specify how a non-exec command C
transforms the stack to S ′. Then −−→Q specifies how the rest of the commands
transform S ′ into S ′ ′. The [exec] rule is more interesting because it uses −−→Q

in both antecedents. The executable sequence commands Qexec transform S to
S ′, while the remaining commands Qrest transform S ′ to S ′ ′. The [exec] rule
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illustrates how evaluation order (in this case, executing Qexec before Qrest) can
be specified in a BOS by “threading” a state component (in this case, the stack)
through an evaluation.

Q −[NNsize ,...,N1 ]−−−−−−−→Q Nans . S

(postfix Nnumargs Q) −[N1 ,...,NNsize
]−−−−−−−−→P Nans

[prog ]

where (compare = Nnumargs Nsize)

〈C . Q, S〉 ⇒ 〈Q, S ′〉 ; Q −S ′−→Q S ′ ′

C . Q −S−→Q S ′ ′
[non-exec]

where C 6= exec

Qexec −S−→Q S ′ ; Qrest −S
′−→Q S ′ ′

exec . Qrest −(Qexec) . S−−−−−−−−→Q S ′ ′
[exec]

Figure 3.18: Big-step operational semantics for PostFix.

It is convenient to define −−→Q so that it returns a stack, but stacks are not
the final answer we desire. The [prog ] rule ∈ (Program × Intlit*) × Stack
takes care of creating the initial stack from the arguments and extracting the
top integer (if it exists) from the final stack.

How do small-step and big-step semantics stack up against each other? Each
has its advantages and limitations. A big-step semantics is often more concise
than a small-step semantics and one of its proof trees can summarize the entire
execution of a program. The recursive nature of a big-step semantics also cor-
responds more closely to structure of interpreters for high-level languages than
a small-step semantics. On the other hand, the iterative step-by-step nature of
a small-step semantics corresponds more closely to the way low-level languages
are implemented, and it is often a better framework for reasoning about compu-
tational resources, errors, and termination. Furthemore, infinite loops are easy
to model in a small-step semantics but not in a big-step semantics.

We will use small-step semantics as our default form of operational seman-
tics throughout the rest of this book. This is not because big-step semantics are
not useful — they are — but because we will tend to use denotational seman-
tics rather than big-step operational semantics for language specifications that
compose the meanings of whole phrases from subphrases.

¤ Exercise 3.15 Construct a BOS evaluation tree that shows the evaluation of

(postfix 2 (2 (3 mul add) exec) 1 swap exec sub) on arguments 4 and 5. ¢
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¤ Exercise 3.16 Extend the BOS in Figure 3.16 to handle the full EL language. You

will need a new evaluation relation, −−→BE , to handle boolean expressions. ¢

¤ Exercise 3.17 Modify each of the BOS specifications in Figures 3.16–3.18 to

generate and propagate an error token that models signalling an error. Be careful to

handle all error situations. ¢

3.4 Operational Reasoning

3.4.1 Programming Language Properties

The suitability of a programming language for a given purpose largely depends
on many high-level properties of the language. Important global properties of a
programming language include:

• universality: the language can express all computable programs;

• determinism: the set of possible outcomes from executing a program on
any particular inputs is a singleton;

• termination: all programs are guaranteed to terminate (i.e., it is not
possible to express an infinite loop);

• static checkability: a class of program errors can be found by static
analysis without resorting to execution;

• referential transparency: different occurrences of an expression within
the same context always have the same meaning.

Languages often exhibit equivalence properties that allow safe transforma-
tions: systematic substitutions of one program phrase for another that are
guaranteed not to change the behavior of the program. Finally, properties of
particular programs are often of interest. For instance, we might want to show
that a given program terminates, that it uses only bounded resources, or that it
is equivalent to some other program. For these sorts of purposes, an important
characteristic of a language is how easy it is to prove properties of particular
programs written in a language.

A language exhibiting a desired list of properties may not always exist. For
example, no language can be both universal and terminating because a universal
language must be able to express infinite loops.9

9But it is often possible to carve a terminating sublanguage out of a universal language.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

3.4. OPERATIONAL REASONING 73

The properties of a programming language are important to language design-
ers, implementers, and programmers alike. The features included in a language
strongly depend on what properties the designers want the language to have.
For example, designers of a language in which all programs are intended to ter-
minate cannot include general looping constructs, while designers of a universal
language must include features that allow nontermination. Compiler writers
extensively use safe transformations to automatically improve the efficiency of
programs. The properties of a language influence which language a programmer
chooses for a task as well as what style of code the programmer writes.

An important benefit of a formal semantics is that it provides a framework
that facilitates proving properties both about the entire language and about
particular programs written in the language. Without a formal semantics, our
understanding of such properties would be limited to intuitions and informal
(and possibly incorrect) arguments. A formal semantics is a shared language for
convincing both ourselves and others that some intuition that we have about a
program or a language is really true. It can also help us develop new intuitions.
It is useful not only to the extent that it helps us construct proofs but also to
the extent that it helps us find holes in our arguments. After all, some of the
things we think we can prove simply aren’t true. The process of constructing a
proof can give us important insight into why they aren’t true.

Below we use operational semantics to reason about EL and PostFix. We
first discuss the deterministic behavior of EL under various conditions. Then we
show that all PostFix programs are guaranteed to terminate. We conclude by
considering conditions under which we can transform one PostFix command
sequence to another without changing the behavior of a program.

3.4.2 Deterministic Behavior of EL

Recall that a programming language is deterministic if there is exactly one pos-
sible outcome for any pair of program and inputs. In Section 3.2.1, we saw that
a deterministic SOS transition relation implies that programs behave determin-
istically. In Section 3.2.3.1, we argued that the PostFix transition relation is
deterministic, so PostFix is a deterministic language.

We can similarly argue that EL is deterministic. We will give the argument
for the sublanguage ELMM, but it can be extended to full EL. We will use
the SOS for ELMM given in Figure 3.7, which has just three rules: [arithop],
[prog-left], and [prog-right]. For a given ELMM numerical expression NE , we
argue that there is at most one proof tree justifying a transition for NE . The
proof is by structural induction on the height of the AST for NE .
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• (Base cases) If NE is a numeral, it matches no rules, so there is no tran-
sition. If NE has the form (A N1 N2), it can match only the [arithop]
rule, since there are no transitions involving numerals.

• (Induction cases) NE must have the the form (A NE 1 NE2), where at
least one of NE 1 and NE2 is not a numeral. If NE 1 is not a numeral,
then NE can match only the [prog-left] rule, and only in the case where
there is a proof tree justifying the transition NE 1 ⇒ NE1

′. By induction,
there is at most one such proof tree, so there is at most one proof tree for a
transition of NE . IfNE 1 is a numeral, then NE 2 must not be a numeral, in
which case NE can match only the [prog-right] rule, and similar reasoning
applies.

Alternatively, we can prove the determinism of the ELMM transition rela-
tion using the context semantics in Figure 3.13. In this case, we need to show
that each ELMM numerical expression can be parsed into an evaluation context
and redex in at most one way. Such a proof is essentially the same as the one
given above, so we omit it.

The ELMM SOS specifies that operations are performed in left-to-right or-
der. Why does the order of evaluation matter? It turns out that it doesn’t
— there is no way in ELMM to detect the order in which operations are per-
formed! Intuitively, either the evaluation is successful, in which all operations
are performed anyway, leading to the same answer, or a divsion/remainder by
zero is encountered somewhere along the way, in which case the evaluation is
unsuccessful. Note that if we could distinguish between different kinds of errors,
the story would be different. For instance, if divide-by-zero gave a different error
from remainder-by-zero, then evaluating the expression (+ (/ 1 0) (% 2 0))

would indicate which of the two subexpressions was evaluated first. The issue
of evaluation order is important to implementers, because they sometimes can
make program execute more efficiently by reordering operations.

How can we formally show that evaluation order in ELMM does not matter?
We begin by replacing the [prog-right] rule in the SOS by the following [prog-
right ′] rule to yield a modified ELMM transition relation ⇒ ′.

NE2⇒ ′NE2
′

(A NE 1 NE2)⇒ ′ (A NE1 NE2
′)

[prog-right ′]

With this change, operands can be evaluated in either order, so the transition re-
lation is no longer deterministic. For example, the expression (* (- 7 4) (+ 5 6))

now has two transitions:

(* (- 7 4) (+ 5 6)) ⇒ ′ (* 3 (+ 5 6))

(* (- 7 4) (+ 5 6)) ⇒ ′ (* (- 7 4) 11)
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Nevertheless, we would like to argue that the behavior of programs is still de-
terministic even though the transition relation is not.

A handy property for this purpose is called confluence. Informally, conflu-
ence says that if two transition paths from a configuration diverge, there must
be a way to bring them back together. The formal definition is as follows:

Confluence: A relation →∈ X × X is confluent if and only if for
every x1, x2, x3 ∈ X such that x1 −∗−→ x2 and x1 −∗−→ x3, there exists
an x4 such that x2 −∗−→ x4 and x3 −∗−→ x4. Confluence is usually
displayed via the following diagram, in which solid lines are the given
relations and the dotted lines are assumed to exist when the property
holds. Due to the shape of the diagram, confluence is also called the
diamond property.

x1

x2 x3

x4

∗ ∗

∗ ∗

Suppose that a transition relation ⇒ is confluent. Then if an initial config-
uration cfi has transition paths to two final configurations cff1 and cff2 , these
are necessarily the same configuration! Why? By confluence, there must be a
configuration cf such that cff1

∗⇒ cf and cff2
∗⇒ cf. But cff1 and cff2 are

elements of Irreducible , so the only transition paths leaving them have length 0.
This means cff1 = cf = cff2 . Thus, a confluent transition relation guarantees
a unique final configuration. Indeed, it guarantees a unique irreducible configu-
ration: it is not possible to get stuck on one path and reach a final configuration
on the other.

Confluence by itself does not guarantee a single outcome. It is still possible
for a confluent transition relation to have some infinite paths, in which case
there is a second outcome (∞). This possibility must be ruled out to prove
deterministic behavior. In the case of ELMM, it is easy to prove there are no
loops (see Exercise 3.27).

We can now show that ELMM has deterministic behavior under ⇒ ′ by
arguing that ⇒ ′ is confluent. We will actually show a stronger property, known
as one-step confluence, in which the transitive closure stars in the diamond
diagram are removed; confluence easily follows from one-step confluence.

Suppose that NE 1 ⇒ ′ NE2 and NE1 ⇒ ′ NE3 . Using terminology from
context-based semantics, call the redex reduced in the first transition the “red”
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redex and the one reduced in the second transition the “blue” redex. Either these
are the same redex, in which case NE 2 = NE3 trivially joins the paths, or the
redexes are disjoint (i.e., one does not occur as a subexpression of another).
In the latter case, there must be an expression NE 4 that is a copy of NE 1 in
which both the red and blue redexes have been reduced. Then NE 2 ⇒ ′ NE4

by reducing the blue redex and NE 3 ⇒ ′ NE4 by reducing the red redex. So
NE4 joins the diverging transitions

We have shown that ELMM has deterministic behavior even when its op-
erations are performed in a non-deterministic order. A similar approach can be
used to show that ELM and EL have the same property. Confluence in these
languages is fairly straightforward. It becomes much trickier in languages where
redexes overlap or performing one redex can copy another.

We emphasize that confluence is a sufficient but not necessary condition for
a non-deterministic transition relation to give rise to deterministic behavior. In
general, many distinct final configurations might map to the same outcome.

¤ Exercise 3.18 Suppose that in addition to changing the ELMM SOS by replacing
[prog-right] with [prog-right ′], the rule [prog-both] introduced on page 58 is added to
the SOS.

a. In this modified SOS, how many different transition paths lead from the expression
(/ (+ 25 75) (* (- 7 4) (+ 5 6))) to the result 3?

b. Does the modified SOS still have deterministic behavior? Explain your answer ¢

¤ Exercise 3.19 Consider extending ELMM with a construct (either NE 1 NE 2)

that returns the result of evaluating either NE 1 or NE2 .

a. What are the possible behaviors of the following program?

(elmm (* (- (either 1 2) (either 3 4)) (either 5 6)))

b. The informal specification of either given above is ambiguous. For example,
must the expression (+ (either 1 (/ 2 0)) (either (% 3 0) 4)) return the
result 5, or can it get stuck? The semantics of either can be defined either way.
Give formal specifications for each interpretation of either that is consistent with
the informal description. ¢

¤ Exercise 3.20

a. Show that the two transition relations (one for NumExp, one for BoolExp) in an
EL SOS can be deterministic,

b. Suppose that both transition relations in an EL SOS allow operations to be per-
formed in any order, so that they are non-deterministic. Argue that the behavior
of EL programs is still deterministic. ¢
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3.4.3 Termination of PostFix Programs

An important property of PostFix is expressed by the following theorem:

PostFix Termination Theorem: All PostFix programs are guar-
anteed to terminate. That is, executing a PostFix program always
either returns a numeral or signals an error.10

This theorem is based on the following intuition: existing commands are con-
sumed by execution, but no new commands are ever created, so the commands
must eventually “run out.” This intuition is essentially correct, but an intuition
does not a proof make. After all, PostFix is complex enough to harbor a sub-
tlety that invalidates the intuition. The nget command allows the duplication
of numerals — is this problematic with regards to termination? Executable se-
quences are moved to the stack, but their contents can later be prepended to the
code component. How can we be certain that this shuffling between code and
stack doesn’t go on forever? And how do we deal with the fact that executable
sequences can be arbitrarily nested?

These questions indicate the need for a more convincing argument that ter-
mination is guaranteed. This is the kind of situation in which formal semantics
comes in handy. Below we present a proof for termination based on the SOS for
PostFix.

3.4.3.1 Energy

Associate with each PostFix configuration a natural number called its energy
(so called to suggest the potential energy of a dynamical system). By considering
each rewrite rule of the semantics in turn, we will prove that the energy strictly
decreases with each transition. The energy of an initial configuration must then
be an upper bound on the length of any path of transitions leading from the
initial configuration. Since the initial energy is finite, there can be no unbounded
transition sequences from the initial configuration, so the execution of a program
must terminate.

10This theorem can fail to hold if PostFix is extended with new commands, such as a dup
command that duplicates the top stack value. See Section 3.5 for details.
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The energy of a configuration is defined by the following energy functions:

Econfig [[〈Q, S〉]] = Eseq [[Q]] + Estack [[S]] (3.1)

Eseq [[[]]] = 0 (3.2)

Eseq [[C . Q]] = 1 + Ecom [[C]] + Eseq [[Q]] (3.3)

Estack [[[]]] = 0 (3.4)

Estack [[V . S]] = Ecom [[V]] + Estack [[S]] (3.5)

Ecom [[(Q)]] = Eseq [[Q]] (3.6)

Ecom [[C]] = 1, C not an executable sequence. (3.7)

These definitions embody the following intuitions:

• The energy of a configuration, sequence, or stack is greater than or equal
to the sum of the energy of its components.

• Executing a command consumes at least one unit of energy (the 1 that
appears in 3.3). This is true even for commands that are transferred from
the code component to the stack component (i.e., numerals and executable
sequences); such commands are worth one more unit of energy in the
command sequence than on the stack.11

• An executable sequence can be worth no more energy as a sequence than
as a stack value (3.6).

The following lemmas are handy for reasoning about the energy of sequences:

Ecom [[C]] ≥ 0 (3.8)

Eseq [[Q1 @ Q2 ]] = Eseq [[Q1 ]] + Eseq [[Q2 ]] (3.9)

These can be derived from the energy definitions above. Their derivations are
left as an exercise.

Equipped with the energy definitions and identity 3.9, we are ready to prove
the PostFix Termination Theorem.

3.4.3.2 The Proof of Termination

Proof: We show that every transition reduces the energy of a configuration.
Recall that every transition in an SOS has a proof in terms of the rewrite rules.
In the case of PostFix, where all the rules are axioms, the proof is trivial: every

11The invocation Ecom [[V]] that appears in 3.5 may seem questionable because Ecom [[]] should
be called on elements of Command, not elements of Value. But since every stack value is also
a command, the invocation is well-defined.
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PostFix transition is justified by one rewrite axiom. To prove a property about
PostFix transitions, we just need to show that it holds for each rewrite axiom
in the SOS. Here’s the case analysis for the energy reduction property:

• [num]: 〈N . Q, S〉 ⇒ 〈Q, N . S〉
Econfig [[〈N . Q, S〉]]
= Eseq [[N . Q]] + Estack [[S]] by 3.1
= 1 + Ecom [[N]] + Eseq [[Q]] + Estack [[S]] by 3.3
= 1 + Eseq [[Q]] + Estack [[N . S]] by 3.5
= 1 + Econfig [[〈Q, N . S〉]] by 3.1

The LHS has one more unit of energy than the RHS, so moving a numeral
to the stack reduces the configuration energy by one unit.

• [seq]: 〈Qexec . Qrest , S〉 ⇒ 〈Qrest , Qexec . S〉 Moving an executable se-
quence to the stack also consumes one energy unit by exactly the same
argument as for [num].

• [pop]: 〈pop . Q, Vtop . S〉 ⇒ 〈Q, S〉 Popping Vtop off of a stack takes
at least two energy units:

Econfig [[〈pop . Q, Vtop . S〉]]
= Eseq [[pop . Q]] + Estack [[Vtop . S]] by 3.1
= 1 + Ecom [[pop]] + Eseq [[Q]] + Ecom [[Vtop ]] + Estack [[S]] by 3.3 and 3.5
= 2 + Ecom [[Vtop ]] + Eseq [[Q]] + Estack [[S]] by 3.7
≥ 2 + Econfig [[〈Q, S〉]] by 3.1 and 3.8

• [swap]: 〈swap . Q, V1 . V2 . S〉 ⇒ 〈Q, V2 . V1 . S〉 Swapping the
top two elements of a stack consumes two energy units:

Econfig [[〈swap . Q, V1 . V2 . S〉]]
= Eseq [[swap . Q]] + Estack [[V1 . V2 . S]] by 3.1
= 1 + Ecom [[swap]] + Eseq [[Q]]

+ Ecom [[V1 ]] + Ecom [[V2 ]] + Estack [[S]] by 3.3 and 3.5
= 2 + Eseq [[Q]] + Estack [[V2 . V1 . S]] by 3.7 and 3.5
= 2 + Econfig [[〈Q, V2 . V1 . S〉]] by 3.1

• [execute]: 〈exec . Qrest , Qexec . S〉 ⇒ 〈Qexec @ Qrest , S〉 Executing the
exec command consumes two energy units:

Econfig [[〈exec . Qrest , Qexec . S〉]]
= Eseq [[exec . Qrest ]] + Estack [[Qexec . S]] by 3.1
= 1 + Ecom [[exec]] + Eseq [[Qrest ]]

+ Ecom [[(Qexec)]] + Estack [[S]] by 3.3 and 3.5
= 2 + Eseq [[Qexec]] + Eseq [[Qrest ]] + Estack [[S]] by 3.6 and 3.7
= 2 + Eseq [[Qexec @ Qrest ]] + Estack [[S]] by 3.9
= 2 + Econfig [[〈Qexec @ Qrest , S〉]] by 3.1
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• [nget], [arithop], [relop-true], [relop-false], [sel-true], [sel-false]: These cases
are similar to those above and are left as exercises for the reader. 3

The approach of defining a natural number function that decreases on every
iteration of a process is a common technique for proving termination. However,
inventing the function can sometimes be tricky. In the case of PostFix, we
have to get the relative weights of components just right to handle movements
between the program and stack.

The termination proof presented above is rather complex. The difficulty
is not inherent to PostFix, but is due to the particular way we have chosen
to formulate its semantics. There are alternative formulations in which the
termination proof is simpler (see exercise 3.25).

¤ Exercise 3.21 Show that lemmas 3.8 and 3.9 hold. ¢

¤ Exercise 3.22 Complete the proof of the PostFix termination theorem by showing

that the following axioms reduce configuration energy: [nget], [arithop], [relop-true],

[relop-false], [sel-true], [sel-false]. ¢

¤ Exercise 3.23 Bud “eagle-eye” Lojack notices that definitions 3.2 and 3.4 do not
appear as the justification for any steps in the PostFix Termination Theorem. He
reasons that these definitions are arbitrary, so he could just as well use the following
definitions instead:

Eseq [[[]]] = 17 ( 3.2 ′)
Estack [[[]]] = 23 ( 3.4 ′)

Is Bud correct? Explain your answer. ¢

¤ Exercise 3.24 Prove the termination property of PostFix based on the SOS for
PostFix2 from Exercise 3.7.

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy. ¢

3.4.3.3 Structural Induction

The above proof is based on a PostFix SOS that uses only axioms. But what if
the SOS contained progress rules, like [exec-done] from Section 3.2.3.3? How do
we prove a property like reduction in configuration energy when progress rules
are involved?
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Here’s where we can take advantage of the fact that every transition of an
SOS must be justified by a finite proof tree based on the rewrite rules. Recall
that there are two types of nodes in the proof tree: the leaves, which correspond
to axioms, and the intermediate nodes, which correspond to progress rules. Sup-
pose we can show that

• the property holds at each leaf — i.e., it is true for the consequent of every
axiom; and

• the property holds at each intermediate node — i.e., for every progress
rule, if the property holds for all of the antecedents, then it also holds for
the consequent.

Then, by induction on the height of its proof tree, the property must hold for
each transition specified by the rewrite rules. This method for proving a property
based on the structure of a tree (in this case the proof tree of a transition relation)
is called structural induction.

As an example of a proof by structural induction, we consider how the pre-
vious proof of the termination property for PostFix would be modified for an
SOS that uses the [exec-done] and [exec-prog ] rules in place of the [exec] rule.
It is straightforward to show that the [exec-done] axiom reduces configuration
energy; this is left as an exercise for the reader. To show that the [exec-prog ] rule
satisfies the property, we must show that if its single antecedent transition re-
duces configuration energy, then its consequent transition reduces configuration
energy as well.

Recall that the [exec-prog ] rule has the form:

〈Qexec, S〉⇒ 〈Qexec
′, S ′〉

〈exec . Qrest , Qexec . S〉⇒ 〈exec . Qrest , Qexec
′ . S ′〉 [exec-prog ]

We assume that the antecedent transition,

〈Qexec, S〉⇒ 〈Qexec
′, S ′〉,

reduces configuration energy, so that the following inequality holds:

Econfig [[〈Qexec, S〉]] > Econfig [[〈Qexec
′, S ′〉]].
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Then we show that the consequent transition also reduces configuration energy:

Econfig [[〈exec . Qrest , Qexec . S〉]]
= Eseq [[exec . Qrest ]] + Estack [[Qexec . S]] by 3.1
= Eseq [[exec . Qrest ]] + Ecom [[(Qexec)]] + Estack [[S]] by 3.5
= Eseq [[exec . Qrest ]] + Eseq [[Qexec]] + Estack [[S]] by 3.6
= Eseq [[exec . Qrest ]] + Econfig [[〈Qexec, S〉]] by 3.1
> Eseq [[exec . Qrest ]] + Econfig [[〈Qexec

′, S ′〉]] by assumption
= Eseq [[exec . Qrest ]] + Eseq [[Qexec

′]] + Estack [[S
′]] by 3.1

= Eseq [[exec . Qrest ]] + Ecom [[(Qexec
′)]] + Estack [[S

′]] by 3.6
= Eseq [[exec . Qrest ]] + Estack [[Qexec

′ . S ′]] by 3.5
= Econfig [[〈exec . Qrest , Qexec

′ . S ′〉]] by 3.1

The > appearing in the derivation sequence guarantees that the energy spec-
ified by the first line is strictly greater than the energy specified by the last
line. This completes the proof that the [exec-prog ] rule reduces configuration
energy. Together with the proofs that the axioms reduce configuration energy,
this provides an alternative proof of PostFix’s termination property.

¤ Exercise 3.25 Prove the termination property of PostFix based on the alternative
PostFix SOS suggested in Exercise 3.12:

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy.

c. The termination proof for the alternative semantics should be more straight-
forward than the termination proofs in the text and in Exercise 3.24. What
characteristic(s) of the alternative SOS simplify the proof? Does this mean the
alternative SOS is a “better” one? ¢

¤ Exercise 3.26 Prove that the rewrite rules [exec-prog ] and [exec-done] presented

in the text specify the same behavior as the [execute] rule. That is, show that for any

configuration cf of the form 〈exec . Q, S〉, both sets of rules eventually rewrite cf
into either (1) a stuck state or (2) the same configuration. ¢

¤ Exercise 3.27 As in PostFix, every program in the EL language terminates.

Prove this fact based on an operational semantics for EL (see Exercise 3.10). ¢

3.4.4 Safe PostFix Transformations

3.4.4.1 Observational Equivalence

One of the most important aspects of reasoning about programs is knowing when
it is safe to replace one program phrase by another. Two phrases are said to be
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observationally equivalent (or behaviorally equivalent) if an instance of
one can be replaced by the other in any program without changing the behavior
of the program.

Observational equivalence is important because it is the basis for a wide
range of program transformation techniques. It is often possible to improve
a pragmatic aspect of a program by replacing a phrase by one that is equiv-
alent but more efficient. For example, we expect that the PostFix sequence
[1, add, 2, add] can always be replaced by [3, add] without changing the mean-
ing of the surrounding program. The latter may be more desirable in practice
because it performs fewer additions.

A series of simple transformations can sometimes lead to dramatic perfor-
mance improvements. Consider the following three transformations on PostFix
command sequences, which are just three of the many safe PostFix transfor-
mations:

Before After Name
[V1 ,V2 , swap] [V2 ,V1 ] [swap-trans]
[(Q), exec] Q [exec-trans]
[N1 ,N2 ,A] [Nresult ] where Nresult = (calculate A N1 N2 ) [arith-trans]

Applying these to our running example of a PostFix command sequence yields
the following sequence of simplifications:

((2 (3 mul add) exec) 1 swap exec sub)

↪→ ((2 3 mul add) 1 swap exec sub) [exec-trans]
↪→ ((6 add) 1 swap exec sub) [arith-trans]
↪→ (1 (6 add) exec sub) [swap-trans]
↪→ (1 6 add sub) [exec-trans]
↪→ (7 sub) [arith-trans]

Thus, the original command sequence is a “subtract 7” subroutine. The trans-
formations essentially perform at compile time operations that otherwise would
be performed at run time.

It is often tricky to determine whether two phrases are observationally equiv-
alent. For example, at first glance it might seem that the PostFix sequence
[swap, swap] can always be replaced by the empty sequence [ ]. While this trans-
formation is valid in many situations, these two sequences are not observationally
equivalent because they behave differently when the stack contains fewer than
two elements. For instance, the PostFix program (postfix 0 1) returns 1 as
a final answer, but the program (postfix 0 1 swap swap) generates an error.
Two phrases are observationally equivalent only if they are interchangeable in
all programs.

Observational equivalence can be formalized in terms of the notions of be-
havior and context presented earlier. Recall that the behavior of a program
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(see Section 3.2.1) is specified by a function beh that maps a program and its
inputs to a set of possible outcomes:

beh : Program× Inputs→ P(Outcome)

The behavior is deterministic when the resulting set is guaranteed to be a sin-
gleton. A program context is a program with a hole in it (see Section 3.2.3.4).

Observational Equivalence: Suppose that P ranges over program
contexts and H ranges over the kinds of phrases that fill the holes in
program contexts. Then H1 and H2 are defined to be observation-
ally equivalent (written H1 =obs H2 ) if and only if for all program
contexts P and all inputs I, beh 〈P{H1 }, I〉 = beh 〈P{H2 }, I〉.

We will consider PostFix as an example. An appropriate notion of program
contexts for PostFix is defined in Figure 3.19. A command sequence context
Q is one that can be filled with a sequence of commands to yield another se-
quence of commands. For example, if Q = [(2 mul), 3] @ 2 @ [exec], then
Q{[4, add, swap]} = [(2 mul), 3, 4, add, swap, exec]. The [Prefix] and [Suffix]
productions allow the hole to be surrounded by arbitrary command sequences,
while the [Nesting ] production allows the hole to be nested within an executable
sequence command. (The notation [(Q)] designates a sequence containing a
single element. That element is an executable sequence that contains a single
hole.) Due to the presence of @, the grammar for PostfixSequenceContext is
ambiguous, but that will not affect our presentation, since filling the hole for
any parsing of a sequence context yields exactly the same sequence.

P ∈ PostfixProgContext
Q ∈ PostfixSequenceContext

P ::= (postfix Nnumargs Q) [Program Context]
Q ::= 2 [Hole]

| Q @ Q [Prefix]
| Q @ Q [Suffix]
| [(Q)] [Nesting]

Figure 3.19: Definition of PostFix contexts.

The possible outcomes of a program must be carefully defined to lead to
a satisfactory notion of observational equivalence. The outcomes for PostFix
defined in Section 3.2.1 are fine, but small changes can sometimes lead to sur-
prising results. For example, suppose we allow PostFix programs to return the



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

3.4. OPERATIONAL REASONING 85

top value of a non-empty stack, even if the top value is an executable sequence.
If we can observe the structure of a returned executable sequence, then this
change invalidates all non-trivial program transformations! To see why, take
any two sequences we expect to be equivalent (say, [1, add, 2, add] and [3, add])
and plug them into the context (postfix 0 (2)). In the modified semantics,
the two outcomes are the executable sequences (1 add 2 add) and (3 add),
which are clearly not the same, and so the two sequences are not observationally
equivalent.

The problem is that the modified SOS makes distinctions between executable
sequence outcomes that are too fine-grained for our purposes. We can fix the
problem by instead adopting a coarser-grained notion of behavior in which there
is no observable difference between outcomes that are executable sequences. For
example, the outcome in this case could be the token executable, indicating
that the outcome is an executable sequence without divulging which particular
executable sequence it is. With this change, all the expected program transfor-
mations become valid again.

3.4.4.2 Transform Equivalence

It is possible to show the observational equivalence of two particular PostFix
command sequences according to the definition on page 84. However, we will
follow another route. First, we will develop an easier-to-prove notion of equiva-
lence for PostFix sequences called transform equivalence. Then, after giving
an example of transform equivalence, we will prove a theorem that transform
equivalence implies observational equivalence for PostFix programs. This ap-
proach has the advantage that the structural induction proof on contexts needed
to show observational equivalence need only be proved once (for the theorem)
rather than for every pair of PostFix command sequences.

Transform equivalence is based on the intuition that PostFix command
sequences can be viewed as a means of transforming one stack to another. In-
formally, transform equivalence is defined as follows:

Transform Equivalence: Two PostFix command sequences are
transform equivalent if they always transform equivalent input
stacks to equivalent output stacks.

This definition is informal in that it doesn’t say how command sequences can
be viewed as transformers or pin down what it means for two stacks to be
equivalent. We will now flesh these notions out.

In order to view PostFix command sequences as stack transformers, we will
extend the PostFix SOS as follows:
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• Modify Stack to contain a distinguished element Serror :

S ∈ Stack = Value* + ErrorStack
ErrorStack = {Serror}

• Extend the transition relation, ⇒, so that for all stuck states cfstuck ∈
Stuck , cfstuck ⇒ 〈[ ], Serror 〉. This says that any configuration formerly
considered stuck now rewrites to a final configuration with an error stack.

• Define (finalStack Q S) to be S ′ if 〈Q, S〉 ∗⇒ 〈[ ], S ′〉. The finalStack
function is well-defined because PostFix is deterministic; with the exten-
sions for handling Serror , finalStack is also a total function.

As examples of finalStack, consider (finalStack [add, mul] [4, 3, 2, 1]) = [24, 1]
and (finalStack [add, exec] [4, 3, 2, 1]) =Serror .

The simplest notion of “stack equivalence” is that two stacks are equivalent
if they are identical sequences of values. But this notion has problems similar to
those discussed above with regard to outcomes in the context of observational
equivalence. For example, suppose we are able to show that (1 add 2 add) and
(3 add) are transform equivalent. Then we’d also like the transform equivalence
of ((1 add 2 add)) and ((3 add)) to follow as a corollary. But given identical
input stacks, these two sequences do not yield identical output stacks — the top
values of the output stacks are different executable sequences!

To finesse this problem, we need a notion of stack equivalence that treats
two executable sequence elements as the same if they are transform equivalent.
The recursive nature of these notions prompts us to define three mutually recur-
sive equivalence relations that formalize this approach: one between command
sequences (transform equivalence), one between stacks (stack equivalence), and
one between stack elements (value equivalence).

• Command sequences Q1 and Q2 are transform equivalent (written
Q1 ∼Q Q2 ) if, for all pairs of stack equivalent stacks S1 and S2 ,
(finalStack Q1 S1 ) is stack equivalent to (finalStack Q2 S2 ). The case
S1 =Serror =S2 can safely be ignored because Serror models only final
configurations, not intermediate ones.

• Stacks S1 and S2 are stack equivalent (written S1 ∼S S2 ) if

– both S1 and S2 are the distinguished error stack, Serror ; or

– S1 and S2 are equal-length sequences of values that are elementwise
value equivalent. I.e., S1 = [V1 , . . . ,Vn ], S2 = [V1

′, . . . ,Vn
′], and

Vi ∼V Vi
′ for all i such that 1 ≤ i ≤ n.
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• Stack elements V1 and V2 are value equivalent (written V1 ∼V V2 )
if V1 and V2 are the same integer numeral (i.e., V1 = N =V2 ) or if V1

and V2 are executable sequences whose contents are transform equivalent
(i.e., V1 = (Q1), V2 = (Q2), and Q1 ∼Q Q2 ).

Despite the mutually recursive nature of these definitions, we claim that all three
are well-defined equivalence relations as long as we choose the largest relations
satisfying the descriptions.

Two PostFix command sequences can be proved transform equivalent by
case analysis on the structure of input stacks. This is much easier than the case
analysis on the structure of contexts that is implied by observational equivalence.
Since (as we shall show below) observational equivalence follows from transform
equivalence, transform equivalence is a practical technique for demonstrating
observational equivalence.

As a simple example of transform equivalence, we show that [1, add, 2, add]
∼Q [3, add]. Consider two non-error stacks S1 and S2 such that S1 ∼S S2 . We
proceed by case analysis on the structure of the stacks:

• S1 and S2 are both [ ], in which case

(finalStack [3, add] [ ])
= (finalStack [add] [3])
= Serror
= (finalStack [add, 2, add] [1])
= (finalStack [1, add, 2, add] [ ])

• S1 and S2 are non-empty sequences whose heads are the same numeric
literal and whose tails are stack equivalent. I.e., S1 = N . S1

′, S2 =
N . S2

′, and S1
′∼S S2

′.

(finalStack [3, add] N . S1
′)

= (finalStack [add] 3 . N . S1
′)

= (finalStack [ ] N+3 . S1
′)

= (finalStack [N+3] S1
′)

∼S (finalStack [N+3] S2
′)

= (finalStack [ ] N+3 . S2
′)

= (finalStack [add] 2 . N+1 . S2
′)

= (finalStack [2, add] N+1 . S2
′)

= (finalStack [add, 2, add] 1 . N . S2
′)

= (finalStack [1, add, 2, add] N . S2
′)

• S1 and S2 are non-empty sequences whose heads are transform equivalent
executable sequences and whose tails are stack equivalent. I.e., S1 =
Q1 . S1

′, S2 = Q2 . S2
′, Q1 ∼Q Q2 , and S1

′∼S S2
′.
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(finalStack [3, add] Q1 . S1
′)

= (finalStack [add] 3 . Q1 . S1
′)

= Serror
= (finalStack [add, 2, add] 1 . Q2 . S2

′)
= (finalStack [1, add, 2, add] Q2 . S2

′)

In all three cases,

(finalStack [1, add, 2, add] S1 ) ∼S (finalStack [3, add] S2 ) ,

so the transform equivalence of the sequences follows by definition of ∼Q.
We emphasize that stacks can be equivalent without being identical. For

instance, given the result of the above example, it is easy to construct two
stacks that are stack equivalent without being identical:

[(1 add 2 add), 5] ∼S [(3 add), 5].

Intuitively, these stacks are equivalent because they cannot be distinguished by
any PostFix command sequence. Any such sequence must either ignore both
sequence elements (e.g., [pop]), attempt an illegal operation on both sequence el-
ements (e.g., [mul]), or execute both sequence elements on equivalent stacks (via
exec). But because the sequence elements are transform equivalent, executing
them cannot distinguish them.

3.4.4.3 Transform Equivalence Implies Observational Equivalence

We wrap up the discussion of observational equivalence by showing that trans-
form equivalence of PostFix command sequences implies observational equiv-
alence. This can be explained informally as follows. Every PostFix program
context consists of two parts: the commands performed before the hole and the
commands performed after the hole. The commands before the hole transform
the initial empty stack into Spre . Suppose the hole is filled by one of two exe-
cutable sequences, Q1 and Q2 , that are transform equivalent. Then the stacks
Spost1 and Spost2 that result from executing these sequences, respectively, on
Spre must be stack equivalent. The commands performed after the hole must
transform Spost1 and Spost2 into stack equivalent stacks Sfinal1 and Sfinal2 . Since
behavior depends only on the equivalence class of the final stack, it is impossi-
ble to construct a context that distinguishes Q1 and Q2 . Therefore, they are
observationally equivalent.

Below, we present a formal proof that transform equivalence implies obser-
vational equivalence.

PostFix Transform Equivalence Theorem: Q1 ∼Q Q2 implies
Q1 =obs Q2 .
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This theorem is useful because it is generally easier to show that two command
sequences are transform equivalent than to construct a proof based directly on
the definition of observational equivalence.

Proof: We will show that for all sequence contexts Q, Q1 ∼Q Q2 implies
Q{Q1 } ∼Q Q{Q2}. The latter equivalence implies that, for all sequence contexts
Q and initial stacks Sinit ,

(finalStack Q{Q1} Sinit)∼S (finalStack Q{Q2 } Sinit) .

This in turn implies that for all numerals Nn and arguments sequences Nargs*,

beh 〈(program Nn Q{Q1}),Nargs*〉 = beh 〈(program Nn Q{Q2}),Nargs*〉.
So Q1 =obs Q2 by the definition of observational equivalence.

We will employ the following properties of transform equivalence, which are
left as exercises for the reader:

Q1∼QQ1
′ and Q2∼QQ2

′ implies Q1 @ Q2∼QQ1
′ @ Q2

′ (3.10)

Q1∼QQ2 implies [(Q1)]∼Q[(Q2)] (3.11)

Property 3.11 is tricky to read; it says that if Q1 and Q2 are transform equiv-
alent, then the sequences that result from nesting Q1 and Q2 in executable
sequences within a singleton sequence are also transform equivalent.

We proceed by structural induction on the grammar of the PostfixSequence-
Context domain:

• (Base case) For sequence contexts of the form 2, Q1 ∼Q Q2 trivially
implies 2{Q1} ∼Q 2{Q2}.

• (Induction cases) For each of the following compound sequence contexts,
assume that Q1 ∼Q Q2 implies Q{Q1} ∼Q Q{Q2} for any Q.

– For sequence contexts of the form Q @ Q,
Q1∼QQ2

implies Q{Q1}∼QQ{Q2} by assumption
implies Q @ (Q{Q1})∼QQ @ (Q{Q2}) by reflexivity of ∼Q and 3.10
implies (Q @ Q) {Q1}∼Q (Q @ Q) {Q2} by definition of Q

– Sequence contexts of the form Q @ Q are handled similarly to those
of the form Q @ Q.

– For sequence contexts of the form [(Q)],
Q1∼QQ2

implies Q{Q1}∼QQ{Q2} by assumption
implies [(Q{Q1})]∼Q[(Q{Q2})] by 3.11
implies [(Q)]{Q1}∼Q[(Q)]{Q2} by definition of Q 3
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¤ Exercise 3.28 For each of the following purported observational equivalences, either
prove that the observational equivalence is valid (via transform equivalence), or give a
counterexample to show that it is not.

a. [N, pop] =obs [ ]

b. [add,N, add] =obs [N, add, add]

c. [N1 ,N2 ,A] =obs [Nresult ], where Nresult =(calculate A N2 N1 )

d. [(Q), exec] =obs Q

e. [(Q), (Q), sel, exec] =obs pop . Q

f. [N1 , (N2 (Qa) (Qb) sel exec), (N2 (Qc) (Qd) sel exec), sel, exec]
=obs [N2 , (N1 (Qa) (Qc) sel exec), (N1 (Qb) (Qd) sel exec), sel, exec]

g. [C1 ,C2 , swap] =obs [C2 ,C1 ]

h. [swap, swap, swap] =obs [swap] ¢

¤ Exercise 3.29 Prove lemmas 3.10 and 3.11, which are used to show that transform

equivalence implies operational equivalence. ¢

¤ Exercise 3.30

a. Modify the PostFix semantics in Figure 3.3 so that the outcome of a PostFix
program whose final configuration has an executable sequence at the top is the
token executable.

b. In your modified semantics, show that transform equivalence still implies obser-
vational equivalence. ¢

¤ Exercise 3.31 Prove the following composition theorem for observationally equiv-
alent PostFix sequences:

Q1 =obs Q1
′ and Q2 =obs Q2

′ implies Q1 @ Q2 =obs Q1
′ @ Q2

′
¢

¤ Exercise 3.32 Which of the following transformations on EL numerical expressions
are safe? Explain your answers. Be sure to consider stuck expressions like (/ 1 0).

a. (+ 1 2) ↪→ 3

b. (+ 0 NE ) ↪→ NE

c. (* 0 NE ) ↪→ 0

d. (+ 1 (+ 2 NE )) ↪→ (+ 3 NE )
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e. (+ NE NE ) ↪→ (* 2 NE )

f. (if (= N N) NE 1 NE2) ↪→ NE1

g. (if (= NE 1 NE1) NE2 NE3) ↪→ NE2

h. (if BE NE NE ) ↪→ NE ¢

¤ Exercise 3.33† Develop a notion of transform equivalence for EL that is powerful

enough to formally prove that the transformations in Exercise 3.32 that you think are

safe are really safe. You will need to design appropriate contexts for EL programs,

numerical expressions, and boolean expressions. ¢

¤ Exercise 3.34‡ Given that transform equivalence implies observational equiva-
lence, it is natural to wonder whether the converse is true. That is, does the following
implication hold?

Q1 =obs Q2 implies Q1∼QQ2

If so, prove it; if not, explain why. ¢

¤ Exercise 3.35† Consider the following TP function, which translates an ELMM
program to a PostFix program:

TP : ProgramELMM → ProgramPostFix

TP [[(elmm NE body)]] = (postfix 0 TNE [[NE body ]] )

TNE : NumExp→ Commands
TNE [[N]] = [N]
TNE [[(A NE1 NE2)]] = TNE [[NE 1 ]] @ TNE [[NE 2 ]] @ [TA[[A]] ]
TA : ArithmeticOperatorELMM → ArithmeticOperatorPostFix
TA[[+]] = add

TA[[-]] = sub, etc.

a. What is TP [[(elmm (/ (+ 25 75) (* (- 7 4) (+ 5 6))))]]?

b. Intuitively, TP maps an ELMM program to a PostFix program with the same
behavior. Develop a proof that formalizes this intuition. As part of your proof,
show that the following diagram commutes:

CELMM1 CELMM2

CPostFix1 CPostFix2

ELMM

PostF ix

TNE TNE

The nodes CELMM1
and CELMM2

representELMM configurations, and the nodes
CPostF ix1

and CPostF ix2
represent PostFix configurations of the form introduced
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in Exercise 3.12. The horizontal arrows are transitions in the respective systems,
while the vertical arrows are applications of TNE . It may help to think in terms
of a context-based semantics.

c. Extend the translator to translate (1) ELM programs and (2) EL programs. In
each case, prove that the program resulting from your translation has the same
behavior as the original program. ¢

3.5 Extending PostFix

We close this chapter on operational semantics by illustrating that slight per-
turbations to a language can have extensive repercussions for the properties of
the language.

You have probably noticed that PostFix has a very limited expressive
power. The fact that all programs terminate gives us a hint why. Any lan-
guage in which all programs terminate can’t be universal, because any universal
language must allow nonterminating computations to be expressed. Even if we
don’t care about universality (maybe we just want a good calculator language),
PostFix suffers from numerous drawbacks. For example, nget allows us to
“name” numerals by their position relative to the top of the stack, but these
positions change as values are pushed and popped, leading to programs that
are challenging to read and write. It would be nicer to give unchanging names
to values. Furthermore, nget only accesses numerals, and there are situations
where we need to access executable sequences and use them more than once.

We could address these problems by allowing executable sequences to be
copied from any position on the stack and by introducing a general way to name
any value; these extensions are explored in exercises. For now, we will consider
extending PostFix with a command that just copies the top value on a stack.
Since the top value might be an executable sequence, this at least gives us a way
to copy executable sequences — something we could not do before.

Consider a new command, dup, which duplicates the value at the top of the
stack. After execution of this command, the top two values of the stack will be
the same. The rewrite rule for dup is given below:

〈dup . Q,V . S〉⇒ 〈Q,V . V . S〉 [dup]

As a simple example of using dup, consider the executable sequence (dup mul),
which behaves as a squaring subroutine:
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(postfix 1 (dup mul) exec) −[12]−−→ 144

(posttfix 2 (dup mul) dup 3 nget swap exec swap 4 nget swap exec)

−[5,12]−−−→ 169

The introduction of dup clearly enhances the expressive power of Post-
Fix. But adding this innocent little command has a tremendous consequence
for the language: it destroys the termination property! Consider the program
(postfix 0 (dup exec) dup exec). Executing this program on zero argu-
ments yields the following transition sequence:

〈((dup exec) dup exec), [ ]〉
⇒ 〈(dup exec), [(dup exec)]〉
⇒ 〈(exec), [(dup exec), (dup exec)]〉
⇒ 〈(dup exec), [(dup exec)]〉
⇒ . . .

Because the rewrite process returns to a previously visited configuration, it is
clear that the execution of this program never terminates.

It is not difficult to see why dup invalidates the termination proof from
Section 3.4.3. The problem is that dup can increase the energy of a configuration
in the case where the top element of the stack is an executable sequence. Because
dup effectively creates new commands in this situation, the number of commands
executed can be unbounded.

It turns out that extending PostFix with dup not only invalidates the ter-
mination property, but also results in a language that is universal!12 That is,
any computable function can be expressed in PostFix+{dup}.

This simple example underscores that minor changes to a language can have
major consequences. Without careful thought, it is never safe to assume that
adding or removing a simple language feature or tweaking a rewrite rule will
change a language in only minor ways.

We conclude this chapter with numerous exercises that explore various ex-
tensions to the PostFix language.

¤ Exercise 3.36 Extend the PostFix SOS so that it handles the following commands:

• pair: Let V1 be the top value on the stack and V2 be the next to top value. Pop
both values off of the stack and push onto the stack a pair object 〈V2 ,V1 〉.

• fst: If the top stack value is a pair 〈Vfst ,Vsnd 〉, then replace it with Vfst . Oth-
erwise signal an error.

• right: If the top stack value is a pair 〈Vfst ,Vsnd〉, then replace it with Vsnd .
Otherwise signal an error. ¢

12We are indebted to Carl Witty and Michael Frank for showing us that PostFix+{dup} is
universal.
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¤ Exercise 3.37 Extend the PostFix SOS so that it handles the following commands:

• get: Call the top stack value vindex and the remaining stack values (from top
down) v1 , v2 , . . ., vn . Pop vindex off the stack. If vindex is a numeral i such that
1 ≤ i ≤ n, push vi onto the stack. Signal an error if the stack does not contain
at least one value, if vindex is not a numeral, or if i is not in the range [1, n]. (get
is like nget except that it can copy any value, not just a numeral.)

• put: Call the top stack value vindex , the next-to-top stack value vval , the remaining
stack values (from top down) v1 , v2 , . . ., vn . Pop vindex and vval off the stack. If
vindex is a numeral i such that 1 ≤ i ≤ n, change the slot holding vi on the stack
to hold vval . Signal an error if the stack does not contain at least two values, if
vindex is not a numeral, or if i is not in the range [1, n]. ¢

¤ Exercise 3.38 Write the following programs in PostFix+{dup}. You may also use
the pair commands from Exercise 3.36 and/or the get/put commands from Exercise 3.37
in your solution, but they are not necessary — for an extra challenge, program purely
in PostFix+{dup}.

a. A program that takes a single argument (call it n) and returns the nth factorial.
The factorial f of an integer is a function such that (f 0) = 1 and (f n) =
(n× (f (n− 1))) for n ≥ 1.

b. A program that takes a single argument (call it n) and returns the nth Fibonacci
number,. The Fibonacci function f is such that (f 0) = 0, (f 1) = 1, and (f n)
= ((f (n− 1)) + (f (n− 2))) for n ≥ 2. ¢

¤ Exercise 3.39 Abby Stracksen wishes to extend PostFix with a simple means
of iteration. She suggests that PostFix should have a new command of the form
(for N (Q)). Abby describes the behavior of her command with the following rewrite
axioms:

〈(for N (Qfor)) . Qrest , S〉
⇒〈N . Qfor @ [(for Ndec (Qfor))] @ Qrest , S〉 ,

where Ndec =(calculate sub N 1)
and (compare gt N 0)

[for-once]

〈(for N (Qfor)) . Qrest , S〉⇒ 〈Qrest , S〉,
where ¬ (compare gt N 0)

[for-done]

Abby calls her extended language PostLoop.

a. Give an informal specification of Abby’s for command that would be appropriate
for a reference manual.

b. Using Abby’s for semantics, what are the results of executing the followingPost-
Loop programs when called on zero arguments?
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i. (postloop 0 1 (for 5 (mul)))

ii. (postloop 0 1 (for 5 (2 mul)))

iii. (postloop 0 1 (for 5 (add mul)))

iv. (postloop 0 0 (for 17 (pop 2 add)))

v. (postloop 0 0 (for 6 (pop (for 7 (pop 1 add)))))

c. Extending PostFix with the for command does not change its termination prop-
erty. Show this by extending the termination proof described in the notes in the
following way:

i. Define the energy of the for command.

ii. Show that the transitions in the [for-once] and [for-done] rules decrease
configuration energy.

d. Bud Lojack has developed a repeat command of the form (repeat N (Q)) that
is similar to Abby’s for command. Bud defines the semantics of his command
by the following rewrite rules:

〈(repeat N (Qrpt)) . Qrest , S〉
⇒〈N . (repeat Ndec (Qrpt)) . Qrpt @ Qrest , S〉,

where Ndec =(calculate sub N 1)
and (compare gt N 0)

[repeat-once]

〈(repeat N (Qrpt)) . Qrest , S〉⇒ 〈Qrest , S〉,
where ¬ (compare gt N 0)

[repeat-done]

Does Bud’s repeat command have the same behavior as Abby’s for command?
That is, does the following observational equivalence hold?

[(repeat N (Q))] =obs [(for N (Q))]

Justify your answer. ¢

¤ Exercise 3.40 Alyssa P. Hacker has created PostSafe, an extension to PostFix
with a new command called sdup: safe dup. The sdup command is a restricted form
of dup that does not violoate the termination property of PostFix. The informal
semantics for sdup is as follows: if the top of the stack is a number or a command
sequence that doesn’t contain sdup, duplicate it; otherwise, signal an error.

As a new graduate student in Alyssa’s AHRG (Advanced Hacking Research Group),
you are assigned to give an operational semantics for sdup, and a proof that all Post-
Safe programs terminate. Alyssa set up several intermediate steps to make your life
easier.
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a. Write the operational semantics rules that describe the behavior of sdup. Model
the errors through stuck states. You can use the auxiliary function

contains sdup : Commands→ Bool

that takes a sequence of commands and checks whether it contains sdup or not.

b. Consider the product domain P = N × N (recall that N is the set of natural
numbers, starting with 0). On this domain, Alyssa defined the ordering <P as
follows:

Definition 1 (lexicographic order) 〈a1, b1〉 <P 〈a2, b2〉 iff
i. a1 < a2 or

ii. a1 = a2 and b1 < b2.

E.g., 〈3, 10000〉 <P 〈4, 0〉, 〈5, 2〉 <P 〈5, 3〉.

Definition 2 A strictly decreasing chain in P is a sequence of elements p1, p2, . . .
such that ∀i . pi ∈ P and ∀i . pi+1 <P pi.

i. Consider a finite strictly decreasing chain p1, p2, . . . , pk, where ∀i . pi =
〈ai, bi〉 ∈ P , such that k > b1 + 1 (i.e., the chain has more than b1 + 1
elements). Prove that ak < a1.

ii. Show that there is no infinite strictly decreasing chain in P .

c. Prove that each PostSafe program terminates by defining an appropriate en-
ergy function ESconfig . Note: If you need to use some helper functions that are
intuitively easy to describe but tedious to define (e.g., contains sdup), just give
an informal description of them. ¢

¤ Exercise 3.41 Sam Antix extends the PostFix language to allow programmers to
directly manipulate stacks as first-class values. He calls the resulting language Stack-
Fix. StackFix adds three commands to the PostFix collection.

• package: This command packages a copy of the stack as a first-class value, S. It
then clears the stack, leaving S as the only value on the stack.

• unpackage: This command pops the top of the stack, which must be a stack-value
S, and replaces the stack with an “unpackaged” version of S.

• switch: This command pops the top of the stack, which must be a stack-value,
S. Then the rest of the stack is packaged (as if by the package command); this
results in a new stack-value, Srest. Finally, the stack is completely replaced with
an “unpackaged” version of S, and the stack-value Srest is pushed on top of the
resulting stack. Thus, switch effectively switches the roles of the stack-value on
top of the stack and the rest of the stack.
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As a warm-up, Sam has written some simple StackFix programs. First-class stack
values may be returned as the final result of a program execution; in the case, the
outcome is the token stack-value, which hides the details of the stack value.

(stackfix 0 1 2 package) −[ ]−→ stack-value

(stackfix 0 1 2 package unpackage) −[ ]−→ 2

(stackfix 0 1 2 package 3 switch) −[ ]−→ {error: top of stack not stack-value}
(stackfix 0 1 2 package 3 swap switch) −[ ]−→ stack-value

(stackfix 0 2 package 3 swap switch pop) −[ ]−→ 2

(stackfix 0 1 2 package 3 swap switch unpackage) −[ ]−→ 3

a. Write a definition of the Value domain for the StackFix language.

b. Give transition rules for the package, unpackage, and switch commands.

c. Does unpackage add new expressive power to StackFix? If yes, argue why. If no,
provide an equivalent sequence of commands from PostFix+{package,switch}.

d. Does every StackFix program terminate? Give a short, intuitive description of
your reasoning. ¢

¤ Exercise 3.42 Rhea Storr introduces a new PostFix command called execs that
permits executing a sequence of commands while saving the old stack. She calls her
extended language PostSave.

Rhea asks you to help her define transition rules for PostSave that in several steps
move 〈execs . Q, Qexec . S〉 to the configuration 〈Q, V . S〉. This sequence of
transformations assumes that the configuration 〈Qexec, S〉 will eventually result in a
final configuration 〈[ ]Command, V . S ′〉.

Here are some examples that contrast exec with execs:

(postsave 0 1 2 (3 mul) exec add) −[ ]−→ 7

(postsave 0 1 2 (3 mul) execs add) −[ ]−→ 8

(postsave 0 (1) execs) −[ ]−→ 1

(postsave 0 2 3 (mul) execs add add) −[ ]−→ 11

To implement the SOS for PostSave, Rhea modifies the configuration space:

cf ∈ CF = Layer*
L ∈ Layer = Commands × Stack

Rhea’s transition rule for execs is:

〈execs . Q, Qexec . S〉 . L*⇒〈Qexec, S〉 . 〈Q, S〉 . L* [execs]

Note that the entire stack is copied into the new layer!

a. If 〈Q, S〉 =PF=⇒ 〈Q ′, S ′〉 is a transition rule in PostFix, provide the correspond-
ing rule in PostSave.
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b. Provide the rule for an empty command sequence in the top layer.

c. Show that programs in PostSave are no longer guaranteed to terminate by giving
a command sequence that is equivalent to dup. ¢

¤ Exercise 3.43 One of the chief limitations of the PostFix language is that there is
no way to name values. In this problem, we consider extending PostFix with a simple
naming system. We will call the resulting language PostText.

The grammar for PostText is the same as that for PostFix except that there are
three new commands:

C ::= . . .
| I [Name]
| def [Definition]
| ref [Name-reference]

Here, I is an element of the syntactic domain Identifier, which includes all alphabetic
names except for the PostText command names (pop, exec, def, etc.), which are
treated as reserved words of the language.

The model of the PostText language extends the model of PostFix by including
a current dictionary as well as a current stack. A dictionary is an object that maintains
bindings between names and values. The commands inherited from PostFix have no
effect on the dictionary. The informal behavior of the new commands is as follows:

• I: I is a literal name that is similar to an immutable string literal in other lan-
guages. Executing this command simply pushes I on the stack. The Value domain
must be extended to include identifiers in addition to numerals and executable
sequences.

• def: Let v1 be the top stack value and v2 be the next to top value. The def
command pops both values off of the stack and updates the current dictionary
to include a binding between v2 and v1. v2 should be a name, but v1 can be any
value (including an executable sequence or name literal). It is an error if v2 is
not a name.

• ref: The ref command pops the top element vname off of the stack, where vname
should be a name I. It looks up the value vval associated with I in the current
dictionary and pushes vval on top of the stack. It is an error if there is no binding
for I in the current dictionary or if vname is not a name.

For example:

(posttext 0 average (add 2 div) def 3 7 average ref exec) −[ ]−→ 5

(posttext 0 a 3 def dbl (2 mul) def a ref

dbl ref exec 4 dbl ref exec add) −[ ]−→ 14

(posttext 0 a b def a ref 7 def b ref) −[ ]−→ 7

(posttext 0 a 5 def a ref 7 def b ref) −[ ]−→ error {5 is not a name.}
(posttext 0 c 4 def d ref 1 add) −[ ]−→ error {d is unbound.}
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In an SOS for PostText, the usual PostFix configuration space must be extended
to include a dictionary object as a new state component:

CFPostText = Commands× Stack×Dictionary

a. Suppose that a dictionary is represented as a sequence of identifier/value pairs:

D ∈ Dictionary = (Identifier × Value)*

i. Define the final configurations, input function, and output function for the
PostText SOS.

ii. Give the rewrite rules for the I, def, and ref commands.

b. Redo the above problem, assuming that dictionaries are instead represented as
functions from identifiers to values, i.e.,

D ∈ Dictionary = Identifier → (Value + {unbound})

where unbound is a distinguished token indicating an identifier is unbound in the
dictionary.

You may find the following bind function helpful:

bind : Identifier→ Value→ Dictionary→ Dictionary
=λIbindVD . λIref . if Ibind =Iref then V else (D Iref ) fi

bind takes a name, a value, and dictionary, and returns a new dictionary in
which there is a binding between the name and value in addition to the existing
bindings. (If the name was already bound in the given dictionary, the new binding
effectively replaces the old.) ¢

¤ Exercise 3.44 After several focus-group studies, Ben Bitdiddle has decided that
PostFix needs a macro facility. Below is Ben’s sketch of the informal semantics of the
facility for his extended language, which he dubs PostMac.

Macros are specified at the beginning of a PostMac program, as follows:

(postmac Nnumargs ((I1 V1) ... (In Vn)) Q)

Each macro (Ii Vi) creates a command, called Ii ∈ Identifier, that, when executed,
pushes the value Vi (which can be an integer or a command sequence) onto the stack.
It is illegal to give macros the names of existing PostFix commands, or to use an
identifier more than once in a list of macros. The behavior of programs that do so is
undefined. Here are some examples Ben has come up with:
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(postmac 0 ((inc (1 add))) (0 inc exec inc exec)) −[ ]−→ 2

(postmac 0 ((A 1) (B (2 mul))) (A B exec)) −[ ]−→ 2

(postmac 0 ((A 1) (B (2 mul))) (A C exec)) −[ ]−→ error

{undefined macro C}
(postmac 0 ((A 1) (B (C mul)) (C 2)) (A B exec)) −[ ]−→ 2

(postmac 0 ((A pop)) (1 A)) −[ ]−→ error

{Ill-formed program: macro bodies must be values, not commands}
Ben started writing an SOS for PostMac, but had to go make a presentation for

some venture capitalists. It is your job to complete the SOS.
Before leaving, Ben made the following changes/additions to the domain definitions:

M ∈ MacroList = (Identifier × Value)*
P ∈ Program = Commands × Intlit × MacroList

CF = Commands × Stack × MacroList

C ∈Commands ::= . . . | I [Macro Reference]
He also introduced an auxiliary partial function, lookup, with the following signature:

lookup : Identifier×MacroList⇀ Value

If lookup is given an identifier and a macro list, it returns the value that the identifier
is bound to in the macro list. If there is no such value, lookup gets stuck.

a. Ben’s notes begin the SOS for PostMac as follows:

〈Q, S〉 =PF=⇒ 〈Q ′, S ′〉
〈Q,S,M〉=PM==⇒〈Q ′,S ′,M〉

[PostFix commands]

where =
PF
=⇒ is the original transition relation for PostFix and =

PM
==⇒ is the new

transition relation for PostMac. Complete the SOS for PostMac. Your com-
pleted SOS should handle the first four of Ben’s examples. Don’t worry about
ill-formed programs. Model errors as stuck states.

b. Louis Reasoner finds out that your SOS handles macros that depend on other
macros. He wants to launch a new advertising campaign with the slogan: “Guar-
anteed to terminate: PostFix with mutually recursive macros!” Show that Louis’
new campaign is a bad idea by writing a nonterminating program in PostMac.

c. When Ben returns from his presentation, he finds out you’ve written a nontermi-
nating program in PostMac. He decides to restrict the language so nonterminat-
ing programs are no longer possible. Ben’s restriction is that the body (or value)
of a macro cannot use any macros. Ben wants you to prove that this restricted
language terminates.

i. Extend the PostFix energy function so that it assigns an energy to config-
urations that include macros. Fill in the blanks in Ben’s definitions of the



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

3.5. EXTENDING POSTFIX 101

functions Ecom [[C,M ]], Eseq [[Q,M ]] and Estack [[S,M ]] and use these functions
to define the configuration energy function Econfig [[〈Q,S,M〉]].

Ecom [[(Q),M]] = Eseq [[Q, M]]

Ecom [[C,M]] = 1 (C is not an identifier or
an executable sequence)

Ecom [[I,M]] =

Eseq [[[ ]Command, M]] = 0

Eseq [[C . Q, M]] =

Estack [[[ ]Value, M]] = 0

Estack [[V . S,M]] =

Econfig [[〈Q,S,M〉]] =

ii. Use the extended energy function (for the restricted form of PostMac)
to show that executing a macro decreases the energy of a configuration.
Since it is possible to show all the other commands decrease the energy
of a configuration (by adapting the termination proof for PostFix without
macros), this will show that the restricted form ofPostMac terminates. ¢

¤ Exercise 3.45 Dan M. X. Cope, a Lisp hacker, is unsatisfied with PostText, the
name binding extension of PostFix introduced in Exercise 3.43. He claims that there
is a better way to add name binding to PostFix, and creates a brand new language,
PostLisp, to test out his ideas.

The grammar for PostLisp is the same as that for PostFix except that there are
four new commands:

C ::= . . .
| I [Name]
| bind [Push new binding]
| unbind [Remove binding]
| lookup [Name lookup]

Here, I is an element of the syntactic domain Identifier, which includes all alphabetic
names except for the PostLisp command names (pop, exec, bind, etc.), which are
treated as reserved words of the language.

The model of the PostLisp language extends the model of PostFix by including
a name stack for each name. A name stack is a stack of values associated with a name
that can be manipulated with the bind, unbind, and lookup commands as described
below. The commands inherited from PostFix have no effect on the name stacks. The
informal behavior of the new commands is as follows:

• I: I is a literal name that is similar to an immutable string literal in other
languages. Executing this command simply pushes I onto the stack. The Value
domain is extended to include names in addition to numerals and executable
sequences.
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• bind: Let v1 be the top stack value and v2 be the next-to-top value. The bind
command pops both values off of the stack and pushes v1 onto the name stack
associated with v2. Thus v2 is required to be a name, but v1 can be any value
(including an executable sequence or name literal). It is an error if v2 is not a
name.

• lookup: The command lookup pops the top element vname off of the stack,
where vname should be a name I. If vval is the value at the top of the name stack
associated with I, then vval is pushed onto the stack. (vval is not popped off of
the name stack.) It is an error if the name stack of I is empty, or if vname is not
a name.

• unbind: The command unbind pops the top element vname off of the stack,
where vname should be a name I. It then pops the top value off of the name stack
associated with I. It is an error if the name stack of I is empty, or if vname is not
a name.

• In the initial state, each name is associated with the empty name stack.

For example:

(postlisp 0 a 3 bind a lookup) −[ ]−→ 3

(postlisp 0 a 8 bind a lookup a lookup add) −[ ]−→ 16

(postlisp 0 a 4 bind a 9 bind a lookup a unbind a lookup add) −[ ]−→ 13

(postlisp 0 19 a bind a lookup) −[ ]−→ error {19 is not a name.}
(postlisp 0 average (add 2 div) bind 3 7 average lookup exec) −[ ]−→ 5

(postlisp 0 a b bind a lookup 23 bind b lookup) −[ ]−→ 23

(postlisp 0 c 4 bind d lookup 1 add) −[ ]−→ error {d name stack is empty.}
(postlisp 0 b unbind) −[ ]−→ error {b name stack is empty}

In an SOS for PostLisp, the usual PostFix configuration space must be extended
to include the name stacks as a new state component. Name stacks are bundled up into
an object called a name file.

CFPostLisp = Commands × Stack × NameFile
F ∈ NameFile = Name → Stack

A NameFile is a function mapping a name to the stack of values bound to the name. If
F is a name file, then (F I) is the stack associated with I in F. The notation F[I = S]
denotes a name file that is identical to F except that I is mapped to S.

a. Define the final configurations, input function, and output function for the PostLisp
SOS.

b. Give the rewrite rules for the I, bind, unbind, and lookup commands. ¢
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¤ Exercise 3.46 Abby Stracksen is bored with vanilla PostFix (it’s not even univer-
sal!) and decides to add a new feature, which she calls the heap. A heap maps locations
to elements from the Value domain, where locations are simply integers:

Location = Intlit

Note that a location can be any integer, including a negative one. Furthermore, integers
and locations can be used interchangeably in Abby’s language, very much like pointers
in pre-ANSI C.

Abby christens her new language PostHeap. The grammar for PostHeap is the
same as that for PostFix except that there are three new commands:

C ::= . . .
| allocate [Allocation]
| store [Store in heap location]
| access [Access from heap location]

The commands inherited from PostFix have no effect on the heap. The informal
behavior of the new commands is as follows:

• allocate: Executing this command pushes onto the stack a location that is not
used in the heap.

• store: Let v1 be the top stack value and v2 be the next-to-top value. The store
command pops v1 off the stack and writes it into the heap at location v2. Thus
v1 can be any element from the Value domain and v2 has to be an Intlit. It is an
error if v2 is not an Intlit. Note that v2 remains on the stack.

• access: Let v1 be the top stack value. The access command reads from the
heap at location v1 and pushes the result onto the stack. Thus v1 has to be an
Intlit. It is an error if v1 is not an Intlit or if the heap at location v1 has not been
written with store before. Note that v1 remains on the stack.

For example:

(postheap 0 allocate) −[ ]−→ N {implementation dependent}
(postheap 0 allocate 5 store access) −[ ]−→ 5

(postheap 0 allocate 5 store 4 swap access swap pop add) −[ ]−→ 9

(postheap 0 4 5 store) −[ ]−→ 4

(postheap 0 4 5 store access) −[ ]−→ 5

(postheap 0 access) −[ ]−→ error {no location given}
(postheap 0 allocate access) −[ ]−→ error {location has not been written}
(postheap 0 5 store) −[ ]−→ error {no location given}

After sketching this initial description of the heap, Abby realizes that it is already
8:55 on a Friday night and she goes off to watch the X-Files. It is your task to flesh out
her initial draft:
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a. Give the definition of the Heap domain and the configuration domain CF .

b. Let access-from-heap be a partial function that, given a Location and a Heap in
which Location has been bound, returns an element from the Value domain. In
other words, access-from-heap has the following signature and definition:

access-from-heap: Location → Heap⇀Value

(access-from-heap N 〈N,V〉 . H) =V

(access-from-heap N1 〈N2 ,V〉 . H) = (access-from-heap N1 H), where N1 6=N2

Give the rewrite rules for the allocate, store, and access commands. You may
use access-from-heap.

c. Is PostHeap a universal programming language? Explain your answer.

d. Abby is concerned about security because PostHeap treats integers and loca-
tions interchangeably. Since her programs don’t use this “feature”, she decides to
restrict the language by disallowing pointer arithmetic. She wants to use tags to
distinguish locations from integers. Abby redefines the Value domain as follows:

V ∈ Value = (Intlit × Tag) + Command
Tag = {integer, pointer}

Informally, integers and locations are represented as pairs on the stack: integers
are paired with the integer tag, while locations are paired with the pointer tag.

Give the revised rewrite rules for integers, add, allocate, store, and access. ¢

¤ Exercise 3.47‡ Prove that PostFix+{dup} is universal. This can be done by
showing how to translate any Turing machine program into a PostFix+{dup} program.
Assume that integer numerals may be arbitrarily large in magnitude. ¢

Reading

Early approaches to operational semantics defined the semantics of programming
languages by translating them to standard abstract machines. Landin’s SECD
machine [Lan64] is a classic example of such an abstract machine. Plotkin [Plo75]
used it to study the semantics of the lambda calculus.

Later, Plotkin introduced Structured Operational Semantics [Plo81] as a
more direct approach to specifying an operational semantics. The context-based
approach to specifying transition relations for small-step operational semantics
was invented by Felleisen and Friedman in [FF86] and explored in a series of
papers culminating in [FH92]. Big-step (natural) semantics was introduced by
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Kahn in [Kah87]. A concise overview of various approaches to semantics, includ-
ing several forms of operational semantics, can be found in the first chapter of
[Gun92]. The early chapters of [Win93] present an introduction to operational
semantics in the context of a simple imperative language.

Other popular forms of operational semantics include term rewriting sys-
tems ([DJ90, BN98]) and graph rewriting systems ([Cou90]).
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