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Chapter 7

Naming

A good name is rather to be chosen than great riches

— Proverbs 22:1

Naming is a central issue in programming language design. The fact that
programming languages use names to refer to various objects and processes is
at the heart of what makes them languages.

At the very least, a programming language must have a primitive set of names
(literals and standard identifiers) and a means of combining the names into com-
pound names (expressions). In a purely functional programming language, every
expression is a name for the value it computes. In FL, for instance, 9, (+ 4 5),
and ((lambda (a) (* a a)) (+ 1 2)) are just three different names for the
number nine. In non-functional languages, there are more complex relationships
between names and values that we shall explore later.

Expressions built merely out of primitives and a means of combination
quickly become complex and cumbersome. Any practical language must also
provide a means of abstraction for abbreviating a long name with a shorter one.
Programming languages typically use symbolic identifiers as abbreviations and
have binding constructs that specify the association between the abbreviation
and the entity for which it stands. FL has the binding constructs lambda, let,
letrec, and define; these are built on top of FLK’s binding constructs: proc
and rec. Using such constructs, it is possible to remove duplications to obtain
more concise, readable, and efficient expressions. For example, naming allows
us to transform the procedure:
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258 CHAPTER 7. NAMING

(lambda (a b c)

(list (+ (- 0 b)

(sqrt (- (* b b)

(* 4 (* a c)))))

(- (- 0 b)

(sqrt (- (* b b)

(* 4 (* a c)))))

into the equivalent procedure:

(lambda (a b c)

(let ((discriminant (sqrt (- (* b b)

(* 4 (* a c)))))

(-b (- 0 b)))

(list (+ -b discriminant)

(- -b discriminant))))

Naming seems like such a simple idea that it’s hard to imagine the subtleties
hidden therein. A sampling of naming facilities in modern programming lan-
guages reveals a surprising number of ways to think about names. Some of the
dimensions along which these facilities vary are:

• Denotable Values: What entities in a language can be named by global
variables? By local variables? By formal parameters of procedures? By
field names of a record?

• Parameter Passing Mechanisms: What is the relationship between the
actual arguments provided to a procedure call and the values named by
the formal parameters of the procedure?

• Scoping: How are new variables declared? Over what part of the program
text and its associated computation does a declaration extend? How are
references to a variable matched up with the associated declaration?

• Name Control: What mechanisms exist for structuring names to minimize
name clashes in large programs?

• Multiple Namespaces: Can an identifier refer to more than one variable
within a single expression?

• Name Capture: Does the language exhibit any name capture problems like
those that cropped up with näıve substitution in FLK?

• Side Effects: Can the value associated with a name change over time?
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The goal of this chapter is to explore many of the above dimensions. Our
discussion of FL already introduced some of the basic concepts and terminology
of naming, e.g., scope, free and bound variables, name capture, substitution, and
environments. Here we give a fuller account of the issues involved in naming.
Along the way, we shall pay particular attention to the effects that choices in
naming design have on the expressive power of a language.

Certain naming issues (e.g., side effects, many parameter passing mecha-
nisms) are intertwined with other aspects of dynamic semantics that we will
cover later: state, control, data, nondeterminism, and concurrency. We defer
these topics until the necessary concepts have been introduced.

7.1 Parameter Passing

Procedure application is the inverse operation to procedural abstraction. An
abstraction packages formal parameters together with a body expression that
refers to them, while application unpackages the body and evaluates it in a con-
text where the formal parameters are associated with the arguments to the call.
There are numerous methods for associating the formal parameter names with
the arguments. These methods are called parameter passing mechanisms.
Here we shall focus on two such mechanisms:

• In the call-by-name (CBN) mechanism, a formal parameter names the
computation designated by an unevaluated argument expression. This
corresponds to the non-strict argument evaluation strategy exhibited by
FL in the previous chapter. CBN evolved out of the lambda calculus,
and variants of CBN have found their way into Algol 60 and various
functional programming languages (such as Haskell and Miranda).

• In the call-by-value (CBV) mechanism, a formal parameter names the
value of an evaluated argument expression. This corresponds to the strict
argument evaluation strategy used by most modern languages (e.g., C,
Pascal, Scheme, ML, SmallTalk, PostScript, etc.).

Later we shall explore additional parameter passing mechanisms (e.g., call-by-
denotation on page 275 and call-by-reference in Chapter 8).

7.1.1 Call-by-Name and Call-by-Value: The Operational View

Figure 7.1 summarizes the difference between CBN and CBV in an operational
framework. Both mechanisms share the following progress rule for the operator
of a call expression, which is not shown in the figure:
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(call (proc I E1) E2)⇒ [E2/I]E1 [cbn-call]

Call-By-Name

E2 ⇒E2
′

(call V1 E2)⇒ (call V1 E2
′)

[cbv-rand-progress]

(call (proc I E1) V)⇒ [V/I]E1 [cbv-call]

Call-By-Value

Figure 7.1: Essential operational semantics of CBN and CBV parameter passing.

E1 ⇒E1
′

(call E1 E2)⇒ (call E1
′ E2)

[rator-progress]

Under CBN, the entire operand expression (not just its value) is substituted
for the formal parameter of the abstraction. Figure 7.2 illustrates how this
substitution works in some particular examples. Notice that the number of
times the operand expression is evaluated under CBN depends on how many
times the formal parameter is used within the body. If the formal is never used,
the operand is never evaluated.

(call (proc x (primop * x x)) (primop + 2 3))

⇒ (primop * (primop + 2 3) (primop + 2 3))

⇒ (primop * 5 (primop + 2 3))

⇒ (primop * 5 5)

⇒ 25

(call (proc x 3) (primop / 1 0)) ⇒ 3

(call (proc x 3) (call (proc a (call a a))

(proc a (call a a)))) ⇒ 3

Figure 7.2: Under CBN, the entire operand expression is substituted for a formal
parameter.

In the CBV strategy, the operand of an application is first completely evalu-
ated, and then the resulting value is substituted for the formal parameter within
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the body of the abstraction. The [cbv-call] rule is only applicable when the
operand of the application is a value in the syntactic domain ValueExp of value
expressions. The [cbv-rand-progress] rule permits evaluation of the operand. To-
gether, these two rules force complete evaluation of the operand position before
substitution.

Figure 7.3 shows some examples of CBV evaluation. The first example shows
that in CBV, the operand expression is evaluated exactly once, regardless of how
many times the formal is needed within the evaluation of the abstraction body.
The other examples illustrate that CBV can yield errors or nontermination in
cases where CBN would return a value.

(call (proc x (primop * x x)) (primop + 2 3))

⇒ (call (proc x (primop * x x)) 5)

⇒ (primop * 5 5)

⇒ 25

(call (proc x 3) (primop / 1 0)) {This stuck expression models
an error.}

(call (proc x 3) (call (proc a (call a a))

(proc a (call a a))))

⇒ (call (proc x 3) (call (proc a (call a a))

(proc a (call a a))))

⇒ . . . {An infinite loop.}

Figure 7.3: Under CBV, argument expressions are evaluated before being sub-
stituted for formal parameters.

Each of the two mechanisms has benefits and drawbacks. The above exam-
ples showed that CBN can evaluate an operand expression multiple times when
the formal parameter is referenced more than once. This is less efficient than
CBV, which is guaranteed to evaluate the operand exactly once. On the other
hand, the CBV strategy of evaluating the operand exactly once may cause the
computation to hang even when the operand value is not required by the pro-
cedure body. This is the situation where the CBN strategy of evaluating the
operand at every parameter reference pays off; since there are no references, the
operand is never evaluated. As Joseph Stoy has noted, CBN means evaluating
the operand as many times as necessary, but sometimes this means no times at
all! In this case CBN is “infinitely” more efficient than CBV, because it produces
an answer when CBV does not.

The CBN mechanism has its roots in the lambda calculus, which is essentially
a pared down version of FL that supports only applications, abstractions, and
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variable references. CBN corresponds to a leftmost, outermost reduction strat-
egy for the lambda calculus called normal order reduction. An important
feature of normal order reduction in the lambda calculus is that it is guaranteed
to find a normal form (i.e., value) for an expression if one exists. Furthermore,
if any other reduction strategy finds a normal form, it must find the same one
as the normal order strategy (modulo alpha equivalence).

The reduction strategy that corresponds to CBV, i.e., arguments must be
reduced to normal form before substitution for formals, is called applicative
order reduction.

We believe that a similar statement holds for FL:

FLK CBN/CBV Conjecture: If an FLK expression E
∗⇒CBV

V, then E
∗⇒CBN V ′, where V and V ′ are equivalent in some ap-

propriate sense.

The fuzziness of “some appropriate sense” is due to the fact that ValueExp is
different for the two mechanisms. In CBN, ValueExp includes pairs with arbi-
trary expression as parts, while in CBV, it includes only pairs with component
values. As of this writing, we are still fleshing out a formal proof of this conjec-
ture. But the intuition is clear: CBN terminates more often than CBV, and if
they both terminate, they must terminate with “equivalent” values.

From the theoretical perspective, CBN clearly seems superior to CBV. Then
why do so many languages use CBV and hardly any use CBN? As hinted above,
a pragmatic reason is that CBN implies certain implementation overheads. Per-
haps an even more important reason is that CBN and side-effects do not mix. As
we shall see in the next chapter, imperative programs using CBN are notoriously
hard to reason about. But here we shall focus only on the issue of overheads.

As a non-trivial example, let’s compare the CBN and CBV mechanisms on
the following call to an iterative factorial procedure written in FL:1

((rec fact-iter (lambda (n ans)

(if (= n 0)

ans

(fact-iter (- n 1) (* n ans)))))

3 1)

Transition sequences for the two parameter passing mechanisms are shown in
Figures 7.4 and 7.5. In the transition sequences, the abbreviation FACT-ITER
stands for the expression

1We use FL rather than FLK for this example because it would be too cumbersome to
express in FLK. We assume in the example an SOS in which FL expressions are appropriate
configurations. For instance, in this SOS, multi-argument applications are performed in a single
rewrite step.
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(rec fact-iter (lambda (n ans)

(if (= n 0)

ans

(fact-iter (- n 1) (* n ans)))))

while the abbreviation UNWOUND-FACT-ITER stands for the expression

(lambda (n ans)

(if (= n 0)

ans

(FACT-ITER (- n 1) (* n ans))))

(FACT-ITER 3 1)
∗⇒ (UNWOUND-FACT-ITER 3 1)
∗⇒ (if (= 3 0) 1 (FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (if #f 1 (FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (UNWOUND-FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (UNWOUND-FACT-ITER 2 (* 3 1)))
∗⇒ (UNWOUND-FACT-ITER 2 3)
∗⇒ (if (= 2 0) 3 (FACT-ITER (- 2 1) (* 2 3)))
∗⇒ (if #f 3 (FACT-ITER (- 2 1) (* 2 3)))
∗⇒ (FACT-ITER (- 2 1) (* 2 3))
∗⇒ (UNWOUND-FACT-ITER (- 2 1) (* 2 3))
∗⇒ (UNWOUND-FACT-ITER 1 (* 2 3))
∗⇒ (UNWOUND-FACT-ITER 1 6)
∗⇒ (if (= 1 0) 6 (FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (if #f 6 (FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (UNWOUND-FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (UNWOUND-FACT-ITER 0 (* 1 6))
∗⇒ (UNWOUND-FACT-ITER 0 6)
∗⇒ (if (= 0 0) 6 (FACT-ITER (- 0 1) (* 0 6)))
∗⇒ 6

Figure 7.4: CBV transition path computing the iterative factorial of 3.

As indicated by the figures, CBN can be much less efficient than CBV. There
are two important sources of overhead:

1. CBN often requires more time2 than CBV in the case where an argument

2Here we assume that the time taken by an evaluation is related to the number of evaluation
steps in the operational semantics. This is often a reasonable assumption.
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(FACT-ITER 3 1)
∗
⇒ (UNWOUND-FACT-ITER 3 1)
∗
⇒ (if (= 3 0) 1 (FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (if #f 1 (FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (UNWOUND-FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (if (= (- 3 1) 0) (* 3 1) (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (if (= 2 0) (* 3 1) (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (if #f (* 3 1) (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1)))
∗
⇒ (UNWOUND-FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1)))
∗
⇒ (if (= (- (- 3 1) 1) 0)

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (if (= (- 2 1) 0)

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (if (= 1 0)

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (if #f

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (UNWOUND-FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (if (= (- (- (- 3 1) 1) 1) 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if (= (- (- 2 1) 1) 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if (= (- 1 1) 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1)

(* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if (= 0 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if #t

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))
∗
⇒ (* (- 2 1) (* (- 3 1) (* 3 1)))
∗
⇒ (* 1 (* (- 3 1) (* 3 1)))
∗
⇒ (* 1 (* 2 (* 3 1)))
∗
⇒ (* 1 (* 2 3))
∗
⇒ (* 1 6)
∗
⇒ 6

Figure 7.5: CBN transition path computing the factorial of 3.
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is used more than once in the body of an abstraction, because then the
same argument expression must be evaluated multiple times. For example,
in Figure 7.5, the value of (- 3 1) is calculated five times, compared to
only once in Figure 7.4.

2. CBN often requires more space than CBV because expressions whose values
are not currently needed may grow as their evaluations are deferred until
later. For example, the expression in the ans operand position of a call to
FACT-ITER grows by one multiplication with every recursive call.

In practice, there are techniques for ameliorating both of these sources of
overhead. The time inefficiency is typically finessed by memoization, a tech-
nique that evaluates an operand and caches its value the first time it is refer-
enced. Further references simply return the cached value rather than evaluating
the operand again. We shall bump into it again when we study lazy evaluation
in Chapter 8.

The space overhead is perhaps more insidious. It can be improved by graph-
based expression representations that share substructure, but this trick does not
stop the space consumed by operands for parameters like ans from growing in
size with every call. This problem, known as a dragging tail, is disturbing
because it destroys desirable space management properties for FL. The CBV
version of factorial requires only a constant amount of space to keep track of
control and state variables.3 In contrast, the CBN version requires space for the
unevaluated state variables that grows linearly with the input to factorial. When
executing these kinds of programs on a machine with finite storage resources,
a CBN strategy is more likely to run out of space than a CBV strategy. A
technique called strictness analysis can improve CBN by modifying it to use
CBV for operand evaluation when it is possible to prove that the operand will
be required at least once.

The various tricks for improving CBN make it much more palatable, but the
techniques still require overheads that some implementors find unacceptable.
For example, memoization implies that a flag must be tested at every variable
reference. Since variable references are rather common, the extra check is often
considered prohibitive without special hardware support.

Parameter passing mechanisms are used to describe not only procedure calls,
but also other constructs that bind names to values. For example, FL’s binding
constructs (lambda, let, letrec, and define) have an implicit method for as-
sociating names with values because they desugar into FLK’s abstractions and

3For simplicity, we ignore the fact that the larger numbers required for larger inputs to
factorial actually require more space.
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applications. We shall assume (unless stated otherwise) that all binding con-
structs inherit their parameter passing mechanism from procedure calls. Thus,
(let ((a (/ 1 0))) 3) evaluates to 3 in a CBN language, but generates an
error in a CBV language.

¤ Exercise 7.1 In a CBV language, it is often useful to delay the evaluation of an
argument until a later time. This behavior can be specified with the pair of constructs
(lazy E) and (touch E). Informally, (lazy E) wraps E up without evaluating it,
while (touch E) unwraps E until it is no longer embedded in a lazy. On a non-lazy
value, touch acts as an identity. For example, in CBV FL:

(touch (+ 1 2)) −−−FL→ 3

(touch (lazy (+ 1 2))) −−−FL→ 3

(touch (lazy (lazy (+ 1 2)))) −−−FL→ 3

(let ((a (lazy (+ 1 2)))

(b (lazy (/ 1 0))))

(touch a)) −−−FL→ 3

(let ((a (lazy (+ 1 2)))

(b (lazy (/ 1 0))))

(touch b)) −−−FL→ error:divide-by-zero

a. Extend the operational semantics of FLK to handle lazy and touch. Recall that
an SOS has five parts; make whatever changes are necessary to each of the parts.

b. Can lazy and touch be implemented by syntactic sugar? If so, give the desug-
arings; if not, explain why.

c. Show how to translate CBN FL into a CBV version of FL that is equipped with
lazy and touch. ¢

¤ Exercise 7.2 The desugaring rule for letrec specified in Section 6.2 was designed
for a CBN language. Does it still work in a CBV language? Explain, using concrete
example(s) to justify your answer.

¢

¤ Exercise 7.3 Show by example that an FL expression that diverges under CBN

need not diverge under CBV. How does this fact relate to the CBN/CBV conjecture

made above? ¢
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7.1.2 Call-by-Name and Call-by-Value:
The Denotational View

The denotational descriptions of CBN and CBV FL semantics have an interest-
ing and important difference. This difference is found in the kinds of things that
a formal parameter can name. In CBN, a formal parameter can name a value, an
error, or a non-terminating computation. In short, a formal parameter in CBN
can name the unrestricted meaning of an FL expression. This makes sense, as
in CBN we conceptually pass an unevaluated expression as an actual parameter,
and we only evaluate an actual parameter when absolutely necessary. In CBN,
a formal parameter can name the arbitrary result of an FL expression. A CBV
FL semantics is substantially more restrictive than a CBN semantics. In CBV,
we can only pass values (e.g., integers, booleans, pairs, etc.) as actual parame-
ters, and thus formal parameters can only name values. As we shall describe in
detail below, the difference in the kinds of entities that can be named by formal
parameters is reflected in the definition of the Denotable domain.

Rather than giving the clauses of the valuation function E in full for each
of the parameter passing mechanisms, we shall only describe clauses for those
constructs that are pertinent to parameter passing: variable references, proc,
and call. (The rec and pair clauses are also relevant, but we defer discussion of
them until later.) The valuation clause for proc is the same for both mechanisms:

E [[(proc I E)]] =λe . (val-to-comp (Procedure 7→ Value (λδ . (E [[E]] [I : δ ]e))))

Figure 7.6 gives the denotational semantics for CBN versus CBV. The essen-
tial difference is that CBN environments name elements of Computation while
CBV environments can only name elements of Value. In FL,

Computation = Expressible = (Value + Error )⊥

so that CBN environments can name all expressible values (including error and
divergence), while CBV environments can only name “regular” values.

The CBN domain equation

δ ∈ Denotable = Computation

indicates that a formal parameter can denote any computation, which in the case
of FL includes error and divergence. A CBN procedure can return an element
of Value even when it is passed one of these irregular values. Thus, call-by-name
procedures are not strict. Here’s an example of CBN (where e is an arbitrary
environment):



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

268 CHAPTER 7. NAMING

δ ∈ Denotable = Computation

E [[I]] =λe . (with-denotable (lookup e I) (λδ . δ))

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1 ]] e) (λp . (p (E [[E2 ]] e))))

Call-By-Name

δ ∈ Denotable = Value

E [[I]] =λe . (with-denotable (lookup e I) (λδ . (val-to-comp δ)))

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1 ]] e)
(λp . (with-value (E [[E2 ]] e) p)))

Call-By-Value

Figure 7.6: Essential denotational semantics of CBN and CBV parameter pass-
ing. For FLK, Computation =Expressible, but the CBN semantics will still be
valid later when Computation is updated to reflect extensions to FLK. Likewise,
the CBV semantics will still be valid when the Value domain is extended.
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(E [[(call (proc x 3) (primop / 1 0))]] e)
= (with-procedure (E [[(proc x 3)]] e) (λp . (p (E [[(primop / 1 0)]] e))))
= (with-procedure (val-to-comp

(Procedure 7→Value

(λδ . (E [[3]] [x : δ ]e))))
(λp . (p error)))

= ((λδ . (E [[3]] [x : δ ]e)) error)
= (E [[3]] [x : error]e)
= (val-to-comp (Int 7→ Value 3))

The CBV domain equation

δ ∈ Denotable = Value

indicates that identifiers may be bound to values such as integers, booleans,
symbols, procedures, and pairs, but may not be bound to objects denoting an
error or nontermination. The treatment of error and bottom is the only semantic
difference between CBV and CBN.

The CBV clause for call uses with-value to guarantee that only elements of
the domain Value are passed to p. This accounts for the strict nature of CBV
evaluation. As an illustration of CBV, let’s once again consider the meaning of
the FLK expression (call (proc x 3) (primop / 1 0)):

(E [[(call (proc x 3) (primop / 1 0))]] e)
= (with-procedure (E [[(proc x 3)]] e)

(λp . (with-value (E [[(primop / 1 0)]] e) p)) )
= (with-procedure (E [[(proc x 3)]] e) (λp . (with-value error p)))
= (with-procedure (E [[(proc x 3)]] e) (λp . error))
= (with-procedure (val-to-comp

(Procedure 7→Value

(λδ . (E [[3]] [x : δ ]e)) ))
(λp . error) )

= error

7.1.3 Discussion

7.1.3.1 Extensions

Numerous additional features may be layered on top of the above mechanisms
to yield further variations in parameter passing for functional languages. For
example, it is possible to pass parameters by keyword, to specify optional ar-
guments, or to describe formal parameters that are pattern-matched against
arguments that are compound data structures. While these are important ways
of capturing common patterns of usage, they are orthogonal to and less funda-
mental than the CBN vs. CBV distinction. The introduction of side-effects, on
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the other hand, will lead to fundamental variations of the above mechanisms.
We will explore these in Chapter 8.

It is possible to include more than one parameter passing mechanism within
a single language. This possibility is explored in Exercise 7.7.

7.1.3.2 Non-Strict vs. Strict Pairs

Data constructors (such as pair) are typically non-strict in a CBN language but
strict in a CBV language. Figure 7.7 summarizes the operational and denota-
tional differences between non-strict and strict pairs. In both perspectives, the
difference boils down to whether the components of pair values must themselves
be values. The figure omits the semantics of the left and right primitives,
which do not differ between the non-strict and strict versions.

7.1.3.3 Denotable vs. Passable Values vs. Component Values

We have assumed in our discussion that every entity that is nameable may be
passed as an argument or bundled into a pair. While this tends to be true
in (and is a major source of power for) functional languages, it is not true
in general. For example, while procedures are almost universally nameable,
there are many languages (e.g., Fortran, Basic, Pascal) in which procedures
cannot be passed as arguments, or can only be passed in a limited way. Similarly,
many languages do not permit data structure components to be procedures.
In order to give an accurate denotational description of such languages, it is
necessary to distinguish the class of nameable entities from those which may be
passed as arguments and those which can be components of data structures. We
could therefore introduce new domains, Passable and Component, that describe
these classes of values.

7.1.3.4 Semantic Derivation of Thunking

The denotational descriptions of parameter passing emphasize that CBN and
CBV differ only in their treatment of error and nontermination. They also give
another perspective on simulating CBN in a CBV language. From a denotational
view, the essence of such a simulation in CBV FL is to find a way of naming error
and ⊥Computation . It is not possible to name these directly in a CBV language,
but it is always possible to name them indirectly, via procedures. For every
computation c, we can construct a procedural value that returns c when called:

(val-to-comp (Procedure 7→ Value (λδ . c)))
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Operational:

V ∈ ValueExp = . . . ∪ {(pair E1 E2)}

Non-Strict Pairs

V ∈ ValueExp = . . . ∪ {(pair V1 V2)}

E1⇒ E1
′

(pair E1 E2)⇒ (pair E1
′ E2)

[pair-left-progress]

E2⇒E2
′

(pair V1 E2)⇒ (pair V1 E2
′)

[pair-right-progress]

Strict Pairs

Denotational:

a ∈ Pair = Computation × Computation

E [[(pair E1 E2)]] =λe . (val-to-comp (Pair 7→ Value 〈(E [[E1 ]] e), (E [[E2 ]] e)〉))

Non-Strict Pairs

a ∈ Pair = Value ×Value

E [[(pair E1 E2)]] =
λe . (with-value (E [[E1 ]] e)

(λv1 . (with-value (E [[E2 ]] e)
(λv2 . (val-to-comp (Pair 7→ Value 〈v1 , v2 〉))

Strict Pairs

Figure 7.7: Operational and denotational views of non-strict and strict pairs.
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This means that we can effectively put any computation into an environment
by transforming it into the above form before it is bound to a name and then
perform the inverse transformation when the name is looked up. Since the
parameter δ of the above form is ignored, the transform and its inverse are
equivalent to, respectively, creating a procedure of no arguments (a so-called
thunk) and calling that procedure on no arguments.

7.1.3.5 CBV Versions of rec

In an operational semantics, rec is handled by the same rule regardless of
whether the language is CBN or CBV:

(rec I E)⇒ [(rec I E)/I]E [rec]

Unforutnately, things are not so simple in a denotational semantics. In CBN,
where Denotable =Computation, the valuation clause for a CBN version of rec
is very pretty:

E [[(rec I E)]] =λe . fixComputation (λc . (E [[E]] [I : c]e))

The fixed point defined by this clause is well-defined as long as Computation is
a pointed CPO. For this reason, we will always guarantee that Computation is
a pointed domain.

However, developing a valuation clause for rec in a CBV language is rather
tricky. In CBV, the corresponding version of the CBN clause is:

E [[(rec I E)]] =λe . fixValue(λv . (E [[E]] [I : v]e))

But since Denotable=Value is not a pointed domain, the fixed point is not well
defined, and the clause is nonsensical.

There are several ways of circumventing this impasse. Here we present two
approaches:

1. In (rec I E), we can limit E to a subset of expressions that are syntac-
tically guaranteed to be procedures. In CBV,

Proc = Value → Computation

is pointed (because Computation is always pointed), so it is always possible
to fix over Procedure. That is, suppose we modify the syntax of FLK as
follows:

E ::= . . .
| (rec Ivar Abody) [Recursion]

A ::= (proc Iformal Ebody) [Abstraction]
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If we suppose that A is a valuation function of signature

Abstraction→ Environment → Procedure

then rec is definable as:

E [[(rec I A)]] =
λe . (Value 7→ Expressible

(Procedure 7→ Value

(fixProcedure
(λp . ((A [[A]])(extend e

I
(Value 7→ Denotable

(Procedure 7→ Value p) )))))))

Unfortunately, the syntactic restriction results in a restriction of the ex-
pressive power of rec. It is no longer possible to specify recursions over
pairs or over procedures whose describing expression is not a manifest
proc. The following examples, though contrived, are indicative of useful
patterns that are disallowed by an approach that requires the body of a
rec to be a manifest abstraction in a CBV language:

(rec ones (pair 1 (lambda () ones)))

(rec fact

(let ((fact-of-0 1))

(lambda (f)

(lambda (n)

(if (= n 0)

fact-of-0

(* n (fact (- n 1))))))))

2. An alternative is to make use of ⊥Binding to compute fixed points. Here is
a version that works in the case of Computation =Expressible:

E [[(rec I E)]] =λe . (fixComputation
(λc . (E [[E]] [I :: (extract-value c)]e))

extract-value : Computation → Binding
=λc . matching c

. (Value 7→ Expressible v) [] (Denotable 7→ Binding v)

. (Error 7→ Expressible error) [] ⊥Binding

endmatching

extract-value coerces a computation into a binding. The resulting binding
is either an element of Denotable =Value, or it is ⊥Binding . (Recall that
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matching is strict, so that extract-value maps ⊥Computation to ⊥Binding .)
By effectively naming a bottom element in the environment, this trick gives
a starting point for the fixed-point iteration. It would also be possible to
add a bottom element directly to the Denotable domain, but that would
not faithfully model the intuition behind CBV. The ⊥Binding element helps
to clarify the difference between using bottom to solve a recursion equation
expressed by a rec and allowing bottom to be passed as an argument to
a procedure.

It is worth noting that the extract-value function works only for
Computation=Expressible and needs to be tweaked if the domain of com-
putations changes.

7.1.3.6 The Perils of Reading Denotational Descriptions
Operationally

The valuation clause for call in CBN illustrates the potential dangers of giving
operational interpretations to denotational definitions. If (p (E [[E2 ]] e)) were
read as if it were, for example, a Lisp or Scheme program fragment, it would
say something like: “First evaluate the expression E2 in the environment e
and then call p on the resulting value.” Unfortunately, this reading introduces
inappropriate notions of evaluation order and time (based on when the argument
is evaluated) that are inherited from the CBV nature of Lisp or Scheme. Such
a reading can cause confusion in the cases where E2 denotes error or bottom;
the reader might (incorrectly) think that, as in Lisp, errors or bottom in an
argument would propagate to errors or bottom for the call.

Rather than reading E as “evaluate” (in the operational sense), it is safer to
read it as “the meaning of.” Thus (p (E [[E2 ]] e)) means “Apply p to the meaning
of E2 in the environment e.” Additionally, it is important to remember that
the application of a total function (as opposed to the application of a procedure
in a programming language) is well-defined as long as the arguments are in the
appropriate domains. In particular, the result is independent of any evaluation
strategy that might be associated with the metalanguage expressions used to
represent the application. For example, the term

(λy . 3) ((λx . xx) (λx . xx))

denotes 3 even though a CBV-like strategy for equation rewriting would not find
this value.

In the case of (p (E [[E2 ]] e)), if the meaning of E2 is error or bottom, these
are simply handed to p, which is constructed by the clause for proc. The proc
clause shows that any such argument is simply associated with an identifier in



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

7.1. PARAMETER PASSING 275

the environment, while the variable reference clause indicates that this denotable
value is retrieved upon lookup without any ado.

It is natural to wonder at this point how error or nontermination in an argu-
ment can ever lead to error or nontermination for an application in a CBN lan-
guage. That is, if an argument is simply inserted into the environment upon call
and retrieved upon lookup, who ever actually examines the value denoted by the
argument? There are several spots in the denotational definition where informa-
tion about the values is required. For example, in the clause for [[(call E1 E2)]]
the value of E1 is required to be the denotation of a procedure; the semantics
must check the value to ensure this is the case (such checks are hidden in the
abstraction with-procedure). Similarly, an if clause must not only check that
the test expression denotes a boolean, but also uses the boolean value in order to
determine which arm is denoted by the entire conditional construct. Handling
primitive operators in FLK is perhaps the most common case where details of
the values must be examined.

These facts imply that in any implementation of CBN FLK, the argument
expression E2 cannot be evaluated before the procedure p is invoked. For if E2

initiated a nonterminating computation, p would never be invoked. The moral of
this discussion is that operational conclusions of this sort aren’t always obvious
from a denotational definition. Indeed, factoring out operational concerns is a
source of power for denotational semantics. It is not necessary to worry about
details like the practical implications of binding errors or nontermination in an
environment. Instead, the denotational approach helps us to focus on high-level
descriptions like: “The essential difference between CBN and CBV is that the
former allows errors and nontermination to be named whereas the latter does
not.”

7.1.3.7 Call-by-Denotation

Sometimes a denotational semantics suggests alternative perspectives. A case
in point is call-by-denotation (CBD), a parameter passing mechanism that
is obtained by tweaking call-by-name semantics in a straightforward way (see
Figure 7.8). Whereas call-by-name determines the meaning of an argument
expression relative to the environment available at the point of call, call-by-
denotation instead determines the meaning of an argument expression relative
to the environment where the formal parameter is referenced.

In this case, the domain equation

δ ∈ Denotable = Environment → Computation

indicates that the nameable entities in the language are functions that map
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δ ∈ Denotable = Environment → Computation

E [[I]] =λe . (with-denotable (lookup e I) (λδ . (δ e)))

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1 ]] e) (λp . (p E [[E2 ]])))

Call-By-Denotation

Figure 7.8: Essential semantics of call-by-denotation.

environments to computations. The call clause simply embeds the actual pa-
rameter in a function of this type. Variable references are handled by applying
the function associated with the variable to the environment in effect where the
variable is referenced.

CBD is not very useful but does model some of the name capture problems
associated with macro expansion. As a somewhat bizarre example of CBD,
consider the meaning of the FL expression

((let ((x 3))

(lambda (y) y))

x)

in an environment e0 in which the identifier x is not bound. In both call-by-name
and call-by-value, the meaning of this expression is an error because the value
of (the outer) x is required but nowhere defined. In call-by-denotation, however,
the body of the identity procedure — i.e., the variable y — will eventually be
evaluated in an environment e1 where x is bound to

(Denotable 7→ Binding (λe . (Value 7→ Expressible (Int 7→ Value 3))))

and y is bound to

(Denotable 7→ Binding (λe . (with-denotable (lookup e x) (λδ . (δ e)))))

(We leave the details of how this point is reached as an exercise.) At this point,
the denotation of y will be applied to e1 , with the following result:

((λe . (with-denotable (lookup e x) (λδ . (δ e)))) e1 )
= (with-denotable (lookup e1 x) (λδ . (δ e1 )))
= (with-denotable (Denotable 7→ Binding

(λe . (Value 7→ Expressible (Int 7→ Value 3))))
(λδ . (δ e1 )))

= ((λδ . (δ e1 )) (λe . (Value 7→ Expressible (Int 7→ Value 3))))
= (Value 7→ Expressible (Int 7→ Value 3))

Thus, in a CBD semantics, the meaning of this expression is the number 3!



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

7.1. PARAMETER PASSING 277

The weird behavior of call-by-denotation in this example is due to a kind
of name capture. The evaluation of the outer x yields not what we would
normally think of as a value but an environment accessor that is eventually
applied to an environment with a binding for the inner x. Had the inner x been
named something other than x or y, no capture would have occurred, and the
expression would have denoted an error, as expected. But x is not the only
outer name which would cause trouble; if we replace the outer x by a reference
to y, the expression diverges! (Check it and see.) Because the semantics of call-
by-denotation are so convoluted, it is hardly surprising that this mechanism is
not used in any real programming language. (However, call-by-denotation does
exhibit some of the behavior of macro languages.)

Then what is our purpose in introducing so contrived a mechanism? First,
we wanted to emphasize that in a denotational semantics, names can be bound
to entities much more complex than simple values or expressible values. We
shall see many examples of this in the future. Second, we wanted to emphasize
that just because a mechanism has an elegant denotational description doesn’t
necessarily mean that it is of any use in real programming languages. Although
in some cases denotational descriptions do suggest powerful language constructs,
other extensions suggested by denotational semantics (like call-by-denotation)
turn out to be downright duds.

¤ Exercise 7.4 For each of the following FL expressions, use the denotational se-
mantics to give the meaning of the expression in CBN, CBV, and CBD. (Recall that
let and lambda inherit their semantics from proc.)

a. (let ((x 3)

(y (/ 1 0)))

x)

b. (let ((x 7))

(let ((f (lambda (y) (+ x y))))

(let ((x 10))

(f x))))

c. (let ((x 3))

((let ((y 19))

(lambda (z) y))

x))
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d. (let ((x 23))

(let ((x x))

x)) ¢

¤ Exercise 7.5

a. Write a single FL expression that has a different meaning in each of the three
parameter passing mechanisms. Give the meaning of your expression in each
mechanism.

b. Bud Lojack hopes to solve part a. above with an expression that evaluates to one
of the symbols call-by-name, call-by-value, or call-by-denotation depend-
ing on which parameter passing mechanism is being used. Kindly explain why
the expression that Bud desires does not exist. ¢

¤ Exercise 7.6

a. Can a CBN FL interpreter be written in CBV FL?

b. Can a CBV FL interpreter be written in CBN FL?

Justify your answers. ¢

¤ Exercise 7.7 In this exercise we explore combining call-by-name and call-by-value
in a single language.

Imagine a languageNAVALNAVAL (NAme/VAlue Language) that is just like CBN
FLK except that (proc I E) has been replaced by the two constructs (vproc I E)
and (nproc I E). Both of these constructs act like proc in that they create single-
argument procedures. The only difference between them is that procedures created by
nproc pass parameters using CBN, while those created by vproc use CBV.

For example:

(call (nproc x 3) (primop / 1 0)) −−−FL→ 3
(call (vproc x 3) (primop / 1 0)) −−−FL→ error:divide-by-zero

a. Provide a denotational semantics for NAVAL (only give those domain equations
and valuation clause that differ from those for CBN FLK). Hint: In a simple
approach to this problem, by-name and by-value procedures can both be elements
of a single Procedure domain. What should Denotable be?

b. Just as it was convenient to extend FLK with the notion of multiple argument
procedures, it would be nice to extend NAVAL with a similar notion. Some
method must be chosen for specifying which parameters are by name and which
are by value. For example, parameters might default to the by-value mechanism,
but could be declared by-name with the token name, as illustrated below:
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(define unless

(lambda (test (name default) (name exception))

(if test exception default)))

(unless (= 1 2) (+ 3 4) (/ 5 0)) −−−eval→ [int 7]

Give the rules for desugaring such a multiple-argument lambda construct into
NAVAL’s one-argument nproc and vproc.

c. We have seen how CBN can be simulated in a CBV language using thunks.
Formalize this transformation by showing how to translate NAVAL into CBV
FLK. ¢

¤ Exercise 7.8 Write a program that translates CBN FL into CBV FL. (Note that

a very similar program could be used to translate CBN FL into Scheme.) ¢

¤ Exercise 7.9 Show that when Computation=Expressible, the CBV valuation clause

for rec denotes the same function as the CBN valuation clause for rec. ¢

¤ Exercise 7.10 Use both the operational and denotational rec semantics to compute
the values of the following expressions in both CBN and CBV versions of FL:

a. (rec a 4)

b. (rec a (1 0))

c. (rec a a)

d. (rec a b)

e. (rec a (if #t 3 a))

f. (rec a (lambda (x) a))

g. (rec a (pair 1 a))

h. (rec a (pair (lambda (x) a)))

i. (let ((b 3)) (rec a b)) ¢

7.2 Name Control

The phrase “too much of a good thing” evokes images such as a child getting a
stomach ache after eating too much candy or the crew of the starship Enterprise
being swamped by the cute but prolific tribbles. The recent explosion in infor-
mation technology has added a new twist to this phrase. Information consumers,
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such as television viewers, magazine subscribers, and readers of electronic mail,
now have rapid access to incredible stores of information. But these changes in
the information landscape have brought new problems, perhaps the most daunt-
ing of which is information overload: there is simply too much information to
weed through, to absorb, to remember.

The area of naming in programming languages harbors its own version of
the information overload problem. While names are an indispensable means of
abstraction, the abundance of names in even modestly sized programs can lead
to a host of complications.

From a cognitive point of view, more names can mean more learning, re-
membering, and model building for programmers. One of the simplest naming
strategies, a single global namespace (in which distinct variables are named by
distinct identifiers), is also one of the most nightmarish for program writers and
readers alike. This approach foists a tremendous amount of mental bookkeeping
on the programmer:

• Nonlocality of naming structure impairs readability because there are no
constraints on which names the user needs to search or remember in order
to understand a given fragment of code. At all times, the reader must
potentially be aware of the entire namespace. For this reason, a global
namespace is not scalable in a cognitive sense; large programs are much
harder to comprehend than shorter ones.

• The reader has to infer structural groupings intended by the writer but
not expressed due to the flatness of the namespace.

• Every time a new name is needed, the writer must find one that does not
clash with any names already in use.

In order to reduce such unreasonable cognitive demands, programming languages
typically provide mechanisms for reusing names and structuring the scope of
names. Even when these are not supported by the naming system, programmers
often develop naming conventions to simulate such mechanisms.

From an engineering point of view, more names can mean more complex
interactions between program parts. One of the chief methods of controlling
the complexity of large programs is to break them up into smaller units having
well-defined interfaces that separate the use of a unit from its implementation.
An interface specifies:

• the names defined external to the unit that are to be imported for use
within the implementation of the unit; and
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• the names defined internal to the unit that are to be exported for use
outside of the unit.

It is desirable to make such interfaces narrow — i.e., importing and exporting
few names — to limit dependencies among program parts. Wide interfaces give
rise to spaghetti-like dependencies among program units that are difficult for
a programmer to keep track of. And the complexities are only exacerbated in
the more common situation where a large program is developed in collaboration
with others. In this case, wider interfaces imply increased communication and
coordination between members of a programming team.

From this engineering perspective, a programming language should provide
mechanisms that facilitate the construction of narrow interfaces. The simple
approach of a single global namespace strikes out again because it allows every
name to be used everywhere throughout a program. A crucial ingredient for
narrow interfaces is some means of name hiding, whereby names purely local
to the implementation of a unit are effectively hidden from the rest of a program.

In this section, we shall investigate techniques for name control that ad-
dress the cognitive and engineering problems outlined above. Unlike our discus-
sion of names up to this point, these issues are largely orthogonal to the choice
of denotable values. Rather, they specify the relationship between patterns of
name usage and the logical structure of variables in the program.

7.2.1 Hierarchical Scoping: Static and Dynamic

Recall the following terms from our study of variables in FLK:

• A variable is an entity that names a value.

• An identifier is a name for a variable. Distinct variables may be named
by the same identifier.

• A variable declaration is a construct that introduces a variable.

• A variable reference is a construct that stands for the value of a variable.

• The scope of a variable declaration is the portion of the program text over
which the declared variable may be referenced.

For example, in FL, variables are declared in lambda, letrec, and let expres-
sions. All variable references are written as unadorned identifiers.

For a given language, it may or may not be possible to determine the scope
of a given declaration without running the program. If the scope of a declaration
can always be determined from the abstract syntax tree of a program, the scope
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of the declaration is said to be static or lexical. In this case, the variable
declaration associated with any variable reference is apparent from the lexical
structure of the program. If the scope of the declaration depends on details of
the run-time behavior of the program, the declaration is said to have dynamic
scope. A language in which all declarations have static (dynamic) scope is said
to be a statically (dynamically) scoped language.

Figure 7.9 summarizes the difference between static and dynamic scoping.
We explain these in turn.

p ∈ Procedure = Denotable → Computation

E [[(proc I E)]] =λeproc . (val-to-comp
(Procedure 7→ Value (λδ . (E [[E]] [I : δ ]eproc))))

E [[(call E1 E2)]] =λecall . (with-procedure (E [[E1 ]] ecall ) (λp . (p (E [[E2 ]] ecall ))))

Statically (Lexically) Scoped Procedures

p ∈ Procedure = Denotable → Environment → Computation

E [[(proc I E)]] =λeproc . (val-to-comp
(Procedure 7→ Value (λδecall . (E [[E]] [I : δ ]ecall))))

E [[(call E1 E2)]] =
λecall . (with-procedure (E [[E1 ]] ecall) (λp . (p (E [[E2 ]] ecall) ecall )))

Dynamically Scoped Procedures

Figure 7.9: The essential semantics of statically and dynamically scoped CBN
procedures (CBV is analogous). In a statically (lexically) scoped procedure, free
identifiers appearing in a proc body are resolved relative to eproc , the environ-
ment determined by the text enclosing the proc expression. In a dynamically
scoped procedure, free identifiers appearing in a proc body are resolved relative
to ecall , the environment determined by the dynamic chain of procedure calls in
which the procedure is being called.
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7.2.1.1 Static Scope

All of the languages we have studied so far (other than call-by-denotation FL)
have been statically scoped. In fact, all of these languages support a particular
discipline of static scoping known as block structure. In a block structured
language, declarations can be nested arbitrarily, and every variable reference
refers to the variable introduced by the nearest lexically enclosing variable dec-
laration of that identifier. The nearest lexically enclosing declaration is found
by starting at the identifier and walking up the abstract syntax tree until a
declaration introducing the identifier name is found.

As an example, consider the CBV FL expression

(let ((x 20))

((let ((increment-by-x (lambda (y) (+ x y)))

(double (lambda (x) (* x 2))))

(letrec ((x (cons 1 x)))

(lambda (z)

(cons (double (increment-by-x (double z)))

x))))

(- x 15)))

In this expression there are three distinct variables named x introduced by three
declarations:

1. (let ((x 20)) . . .) declares x and binds it to the number 20.

2. The (lambda (x) (* x 2)) expression named by double declares x but
does not bind it; x will be bound on application of the procedural value
of this abstraction. (In fact, the binding of x may be different for every
distinct application of this procedure.)

3. (letrec ((x (cons 1 x))) . . .) declares x and binds it to an infinite list
of 1s.

There are also five variable references involving x:

1. In (+ x y), x is a reference to the let-bound variable named x, so its
meaning in this context is 20. This means that increment-by-x is a
procedure that always adds 20 to its argument, regardless of the binding
for x in whatever environment it happens to be applied.

2. In (* x 2), x is a reference to the lambda-bound variable named x, whose
meaning will be determined at application time.

3. In (cons 1 x), x is a reference to the letrec-bound variable named x, so
its meaning is an infinite list of 1s.
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4. In (cons (double (increment-by-x (double z))) x), x refers to the
variable introduced by the first lexically enclosing declaration of x, which
in this case is the letrec-bound variable. So here x is an infinite list of 1s
as well.

5. In (- x 15), x is a reference to the variable introduced by the first lexically
enclosing declaration of x, which in this case is the let-bound variable. So
here x means the number 20.

Putting together all of the above information, the value of the example expres-
sion is an infinite list whose first element is 60, and the rest of whose elements
are all 1.

Variables in a block structured language have a structure reminiscent of
variables in the lambda calculus.

As we noted before for FLK, when the scope of a declaration contains an-
other declaration of the same name, the inner declaration carves out a hole
in the scope of the outer one. The Stoy diagrams we used to represent the
structure of lambda terms could easily be adapted to show declaration/reference
relationships in any block structured language.

The essence of block structure is in the way environments are handled by
abstractions. Figure 7.9 shows the domains and valuation functions that are
crucial for block structure in CBN FLK. The clause for proc dictates that
the body of the abstraction will be evaluated with respect to the environment
in effect when the procedure was created. In particular, the environment in
which the procedure is called can have no effect on the meaning of names within
the abstraction body. This is clear from the domain definition for Procedure,
which simply maps denotable values to computations and ignores whatever the
current environment might be. Though the details of expressible and denotable
values might differ under other parameter passing mechanisms, the handling of
environments will have this form in any block structured language.

7.2.1.2 Dynamic Scope

SNOBOL4, APL, most early Lisp dialects, and many macro languages are
dynamically scoped. In each of these languages, a free variable in a procedure
(or macro) body gets its meaning from the environment at the point where
the procedure is called rather than the environment at the point where the
procedure is created. Thus, in these languages, it is not possible to determine a
unique declaration corresponding to a given free variable reference; the effective
declaration depends on where the procedure is called. It is therefore generally
impossible to determine the scope of a declaration simply by considering the
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abstract syntax tree of the program. Instead, the scope of a variable declaration
depends on the run-time tree of procedure calls.

Figure 7.9 also shows essential semantics of dynamic scoping for a CBN lan-
guage. The Procedure domain has been modified to indicate that procedures
take an extra argument: the dynamic environment (i.e., the call-time environ-
ment). In the valuation clause for proc, the body of the abstraction is evaluated
in the dynamic environment rather than the lexical one. The clause for call has
been modified to pass the current environment to the procedure being called.

As an example of static vs. dynamic scoping, consider the following expres-
sion in CBV FL:

(let ((a 1))

(let ((f (lambda (x) (primop + x a))))

(let ((a 20))

(f 300))))

Informally, we can reason as follows. The procedure named f refers to a free
variable a. Under static scoping, this variable is bound to the value of a where the
procedure is defined (i.e., 1). Thus, the binding between a and 20 is irrelevant,
and the result of the call (f 300) is 301. On the other hand, under dynamic
scoping, the free variable gets its value from whatever binding of a is dynamically
apparent. In the call (f 300), the binding between a and 20 shadows the binding
between a and 1, so the value of the call is 320.

We can use the denotational definitions of scoping to formally analyze this
example. The example FL expression desugars into the following FLK program:

(call (proc a ; Eproc:a1
(call (proc f ; Eproc:f

(call (proc a (call f 300)) ; Eproc:a20
20))

(proc x (primop + x a)))) ; Eproc:x
1)

The four proc expressions have been commented with names that will be used
to abbreviate them. Figure 7.10 and 7.11 highlight the key steps for using the
denotational definitions to derive the value of the expression under static scoping
and dynamic scoping.

A more graphical perspective of these derivations appears in Figure 7.12.
Each derivation is summarized by an environment diagram that shows key
expressions along with the environments they are evaluated in. An environment
is represented by a chain of bindings that go up the page; this helps to clarify
the relationship between the different environments. The static scoping example
is depicted in Figure 7.12(a). The arrow from within the procedural value to the
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Static Scoping

E [[(call Eproc:a1 1)]] e0

(with-procedure (E [[Eproc:a1 ]] e0 ) (λp . (p (Int 7→ Value 1))))

E [[(call Eproc:f Eproc:x)]] e1
where e1 = [a: (Int 7→ Value 1)] e0

(with-procedure (E [[Eproc:f ]] e1 )
(λp . (p (Procedure 7→ Value (λδ . (E [[(primop + x a)]] [x : δ ]e1 ))))))

E [[(call Eproc:a20 20)]] e2
where e2 = [f: (Procedure 7→ Value

(λδ . (E [[(primop + x a)]] [x : δ ]e1 )))]e1

(with-procedure (E [[Eproc:a20 ]] e2 ) (λp . (p (Int 7→ Value 20))))

E [[(call f 300)]] e3
where e3 = [a : (Int 7→ Value 20)]e2

(with-procedure (E [[f]] e3 ) (λp . (p (Int 7→ Value 300))))

((λδ . (E [[(primop + x a)]] [x : δ ]e1 )) (Int 7→ Value 300))

E [[(primop + x a)]] [x : (Int 7→ Value 300)]e1

E [[(primop + x a)]] [x : (Int 7→ Value 300)][a : (Int 7→ Value 1)]e0

=(Int 7→ Value 301)

Figure 7.10: (call Eproc:a1 1) evaluation using static scoping
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Dynamic Scoping

E [[(call Eproc:a1 1)]] e0

(with-procedure (E [[Eproc:a1 ]] e0 ) (λp . (p (Int 7→ Value 1) e0 )))

E [[(call Eproc:f Eproc:x)]] e1
where e1 = [a : (Int 7→ Value 1)]e0

(with-procedure (E [[Eproc:f ]] e1 )
(λp . (p (Procedure 7→ Value (λδe ′ . (E [[(primop + x a)]] [x : δ ]e ′)))

e1 ))

E [[(call Eproc:a20 20)]] e2
where e2 = [f: (Procedure 7→ Value

(λδe ′ . (E [[(primop + x a)]] [x : δ ]e ′)))]e1

(with-procedure (E [[Eproc:a20 ]] e2 ) (λp . (p (Int 7→ Value 20) e2 )))

E [[(call f 300)]] e3
where e3 = [a : (Int 7→ Value 20)]e2

(with-procedure (E [[f]] e3 ) (λp . (p (Int 7→ Value 300) e3 )))

((λδe ′ . (E [[(primop + x a)]] [x : δ ]e ′)) (Int 7→ Value 300) e3 )

E [[(primop + x a)]] [x: (Int 7→ Value 300)][a: (Int 7→ Value 20)] e2

=(Int 7→ Value 320)

Figure 7.11: (call Eproc:a1 1) evaluation using dynamic scoping
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E [[(call Eproc:a1 1)]] e0

E [[(call Eproc:f Eproc:x)]] [a : ]-
6

(Int 7→ Value 1)

E [[(call Eproc:a20 20)]] [f : ]

6
- (Procedure 7→ Value

(λδ . E [[(primop + x a)]] [x : δ ]•))

@@I

E [[(call f 300)]] [a : ]

6
- (Int 7→ Value 20)

(a) Environment diagram for the sample expression under static scoping.

E [[(call Eproc:a1 1)]] e0

E [[(call Eproc:f Eproc:x)]] [a : ]-
6

(Int 7→ Value 1)

E [[(call Eproc:a20 20)]] [f : ]

6
- (Procedure 7→ Value

(λδe ′ . E [[(primop + x a)]] [x : δ ]e ′))

E [[(call f 300)]] [a : ]

6

- (Int 7→ Value 20)

(b) Environment diagram for the sample expression under dynamic scoping.

Figure 7.12: Environment diagrams illustrating the difference between statically
and dynamically scoped procedures.
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environment starting with [a : 1] emphasizes that a statically scoped procedure
“remembers” the environment in which it was created. This lexical environ-
ment is determined by the text lexically surrounding the proc expression that
gave rise to the procedure value.

The dynamic scoping example is depicted in Figure 7.12(b). Here, there is
no arrow emanating from the procedural value because the environment e ′ in
which the body is evaluated will be the dynamic environment in effect when
the procedure is called. The dynamic environment is determined by the bindings
in the current branch of the tree of procedure calls made during the execution of
the program. In this example, it is constructed by the procedure calls associated
with the three nested let expressions.

Although the environment chains happen to be the same for these two exam-
ples, lexically scoped languages tend to give rise to shallow, bushy environment
diagrams, while dynamically scoped languages tend to give rise to deep thin ones
(see Exercise 7.13).

Dynamic scoping seems rather odd. Is it useful? Yes! Dynamic scope is
convenient for specifying the values of implicit parameters that are cumbersome
to list explicitly as formal parameters to procedures. For example, consider the
derivative procedure:

(define derivative

(lambda (f x)

(/ (- (f (+ x epsilon))

(f x))

epsilon)))

Note that epsilon appears as a free variable in derivative. With dynamic
scoping, it is possible to dynamically specify the value of epsilon via any binding
construct. For example, the expression

(let ((epsilon 0.001))

(derivative (lambda (x) (* x x)) 5.0))

would evaluate (derivative (lambda (x) (* x x)) 5.0) in a context where
epsilon is bound to 0.001.

However, with lexical scoping, the variable epsilon must be defined at top
level, and, without using mutation, there is no way to temporarily change the
value of epsilon while the program is running. If we really want to abstract
over epsilon with lexical scoping, we must pass it to derivative as an explicit
argument:
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(define derivative

(lamdba (f x epsilon)

(/ (- (f (+ x epsilon))

(f x))

epsilon)))

But then any procedure that uses derivative and wants to abstract over
epsilon must also include epsilon as a formal parameter. In the case of
derivative, this is only a small inconvenience. But in a system with a large
number of tweakable parameters, the desire for fine-grained specification of vari-
ables like epsilon can lead to an explosion in the number of formal parameters
throughout a program.

As an example along these lines, consider the huge parameter space of a
typical window system (colors, fonts, stippling patterns, line thicknesses, etc.).
It is untenable to specify each of these as a formal parameter to every window
routine. At the very least, all these parameters need to be bundled up into a
data structure that represents the graphics state. But then we still want a means
of executing window routines in a temporary graphics state in such a way that
the old graphics state is restored when the routines are done. Dynamic scoping
is one technique for achieving this effect; side-effects are another.

Another typical use of dynamic scope is to specify error handling routines
that are in effect during the execution of an expression. We shall see an example
of this in Chapter 9.

Although dynamic scoping is good for allowing the specification of implicit
parameters, it is seriously at odds with modularity, especially in a language that
has first-class procedure values. We explore this issue in the exercises.

¤ Exercise 7.11

a. Can a dynamically scoped FL interpreter be written in statically scoped FL?

b. Can a statically scoped FL interpreter be written in dynamically scoped FL? ¢

¤ Exercise 7.12 Write a single FL expression that exhibits a different behavior in
each of the four following scenarios:

a. statically scoped CBN FL

b. statically scoped CBV FL

c. dynamically scoped CBN FL

d. dynamically scoped CBV FL ¢

¤ Exercise 7.13 This problem considers a dynamically scoped variant of FL called
FLUID. The abstract syntax for FLUID is the same as that for FL except that the
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grammar for FLUID does not include any recursion constructs. That is, the FLUID
kernel does not contain the rec construct (rec I E); and FLUID does not contain
the letrec construct (letrec ((I E)*) E). The denotational semantics for FLUID
is the same for that as FL except for the changes specified in Figure 7.9.

a. For each of the expressions below, show the result of evaluating the expression
both in FL and in FLUID. Refer to the denotational semantics as necessary to
reason about the evaluation process, but don’t get lost in a symbol manipulation
quagmire. You may find environment diagrams helpful for thinking about these
problems.

i. (let ((a 1))

(let ((f (lambda (a) (primop + a 20))))

(f a)))

ii. (let ((a 1))

(let ((f (lambda (a b) (primop + a b))))

(f 20 300)))

iii. (let ((a 1))

(let ((a 20)

(b 300))

(primop + a b)))

iv. (let ((a 1))

(let ((f (lambda (b) (primop + a b))))

(f (let ((a (f 20)))

(f 300)))))

v. (let ((a 1))

(let ((f (lambda (b) (primop + a b))))

(let ((g (lambda (a) (f a))))

(g (g a)))))

b. In FLUID, the usual desugaring of multiple-argument abstractions into single
argument abstractions no longer behaves as expected. Explain what goes wrong
with the usual desugaring. (You do not need to describe how to fix the problem.)

c. In FLK, the factorial procedure is written as the expression:
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(rec fact (proc n

(if (primop = n 0)

1

(primop * n (fact (primop - n 1))))))

FLUID has no recursion constructs, but none are needed to write recursive defi-
nitions.

i. Briefly explain why the above claim is true.

ii. Show the definition for factorial procedure in FLUID.

iii. Explain why your FLUID definition for factorial wouldn’t work in FL.

d. Consider the factorial procedure from part c. When using the denotational seman-
tics to determine the meaning of (call fact 3) in environment e0 , the meaning
of (primop = n 0) is determined in four distinct environments. For both CBV
FL and for FLUID, draw an environment diagram that shows the relationship
between these four environments. ¢

¤ Exercise 7.14 Consider a version of FL called FLAT in which a procedure (a

lambda or kernel proc expression) is not allowed to have free identifiers. Can the

meaning of a FLAT expression differ under lexical and dynamic scope? If so, exhibit

such an expression; if not, explain why. ¢

¤ Exercise 7.15 Develop an operational semantics for CBV FL that uses explicit

environments instead of substitution. ¢

¤ Exercise 7.16 Develop an operational semantics for a dynamically scoped version

of CBV FL. ¢

¤ Exercise 7.17 The static scope expressed in Figure 7.9 is typical of block structured
languages. However, other kinds of static scope are imaginable. For example, suppose
that eglobal is the top-level FL environment — the one that defines the meanings of all
of the standard library names (e.g., +, boolean?, cons, etc.). Then global scoping is
a static scoping mechanism in which free identifiers in a proc expression are resolved
relative to eglobal rather than the environment at the time of procedure creation or at
the time of procedure call.

a. Write the valuation clauses for proc and call for a CBV variant of FL with
global scoping.

b. Write a single FL expression whose value is a symbol (one of global,
block-structure, or dynamic) indicating the scoping mechanism under which it
is evaluated. ¢
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¤ Exercise 7.18 In this problem, we ask you to give a translation from dynamically
scoped, call-by-value FLK to PostLisp, the language defined in Exercise 3.45. You are
only required to translate a subset of FLK, defined by the following grammar:

E ::= U | I | (proc I E) | (call E1 E2) | (primop / E1 E2)

Your translation should map every expression EFLK of the subset to a sequenceQPostLisp

of PostLisp commands such that:
EFLK −−−−−DCBV→ U if and only if (QPostLisp) −−−−−−PostLisp→ U,

EFLK −−−−−DCBV→ error if and only if (QPostLisp) −−−−−−PostLisp→ error , and

EFLK −−−−−DCBV→ ∞−loop if and only if (QPostLisp) −−−−−−PostLisp→∞−loop,
where −−−−−DCBV→ means dynamically scoped, call-by-value FLK evaluation. ¢

¤ Exercise 7.19 Alyssa P. Hacker is asked by Analog Equipment Corporation to
change their version of FL to be dynamically scoped in response to customer demand.
Alyssa is asked to do this over a weekend, but she does not panic. Instead, she realizes
that by implementing just a few new primitives, the entire job can be accomplished
with clever desugaring.

More specifically, Alyssa added the following three new primitives:

• (%new): Creates a new, empty environment.

• (%extend ENV (symbol I) V): Returns a new environment equal to ENV ,
except that I is bound to V.

• (%lookup ENV (symbol I)): Returns the value of identifier I in environment
ENV . It is is a fatal error if I is not bound in ENV .

In Alyssa’s desugaring, the *dynenv* variable is always bound to the current dy-
namic environment. For this problem, consider only single argument procedures and
calls. Here is Alyssa’s desugaring rule for call:

D[[(call E1 E2)]] = (call D[[E1 ]] *dynenv* D[[E2 ]])

a. What is the desugaring rule for I (variable reference)?

b. What is the desugaring rule for (lambda (I) E)?

c. What is the desugaring rule for (let ((I1 E1) . . . (In En)) Ebody)?

d. Do all identifiers have to be looked up in the dynamic environment? If not, state
what optimizations of the desugarings for identifiers and lambda are possible, and
when and how they could be accomplished.

e. Desugar the following expression in this dynamically scoped version of FL:

(lambda (g) (call g x))

¢
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7.2.2 Multiple Namespaces

Sometimes a single environment is not sufficient to model the naming features of
a programming language. Languages commonly supportmultiple namespaces
— i.e., several different contexts in which names are associated with values of
various sorts. For example, Figure 7.13 shows a piece of Common Lisp code in
which the name x is used to name five different entities at the same time: an
exit point, a special (dynamic) variable, a lexical variable, a procedure, and a
tagbody tag.

(block x ; x1, name of exit point

(let ((x 2)) ; x2, declared to be

(declare (special x)) ; a special variable

(let ((x 3)) ; x3, normal lexical variable

(flet ((x (y) ; x4, names a procedure that

(+ x y))) ; refers to x3 in its body

(tagbody

x ; x5, a tagbody tag

(if (> x 6) ; this x = x3 = 3

(go x) ; go to x5 if we get here

(return-from

x ; return from exit point x1
(locally (declare (special x))

; Make 2nd x special below

(x x) ; Apply procedure x4 to

)))))))) ; special x2
; The value of this expression is 5.

Figure 7.13: Common Lisp code that uses multiple namespaces

There are two typical situations in which multiple namespaces are useful:

1. The language provides multiple scoping mechanisms. In this case, differ-
ent namespaces can be used for different scoping mechanims. Common
Lisp, for example, supports both lexical and dynamic scoping of variables;
variables are ordinarily scoped lexically, but those marked as special are
dynamically scoped.

2. Different namespaces are used to name different kinds of entities. For
example, exit points, tag labels, and procedures are in non-overlapping
namespaces in Common Lisp. Namespaces used this way are especially
useful for modeling values that are not first-class.

Of course, any language with multiple namespaces must provide methods
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for both binding names and accessing names within each namespace. For ex-
ample, consider the namespaces for exit points and tags in the Common Lisp
example above. block introduces a name into the exit point namespace, and
return-from accesses the exit point name, whereas tagbody introduces new tag
names into the namespace of tags, and go can refer to these tags.

Multiple namespaces are modeled in denotational semantics by using multi-
ple environments. For example, we could modify the semantics of FL to

• support both lexical and dynamic scoping;

• make procedures second-class objects.

These modifications are left as exercises.

¤ Exercise 7.20 DYNALEX Understanding the virtues of both lexical and dynamic
scoping, Sam Antix decides to design a language, DYNALEX, that supports both kinds
of scoping mechanisms. The kernel of DYNALEX is statically scoped CBV FLK, ex-
tended with the following extra constructs to support dynamic scoping:

(dylambda (Idyn*) Ebody) is like lambda, but binds the names Idyn* in a dy-
namic environment rather than a static one.

(dyref I) looks up I in the dynamic environment rather than the lexical one.

The full DYNALEX language includes the usual FL sugar as well as the following sugar
for the dylet construct:

Dexp[[(dylet ((I1 E1) . . . (In En)) Ebody)]] =
((dylambda (I1 . . . In) Dexp[[Ebody ]]) Dexp[[E1 ]] . . . Dexp[[En ]])

The following DYNALEX expression illustrates both dynamic and lexical scoping:

(let ((a 1) (b 20))

(let ((f (lambda () (+ a (dyref b)))))

(dylet ((a 300) (b 4000))

(f)))) −−−−−−−−DYNALEX→ 4001

a. Sketch a denotational semantics for DYNALEX that includes the the signature
of E , and the valuation clauses for the following constructs: I, proc, call, dyref,
and dylambda.

b. Explain why Sam chose to make the multi-argument dylambda abstraction a ker-
nel form rather than treating dylambda as sugar for a single argument abstraction
for dynamic variables.

c. Write a set of translation rules for translating the DYNALEX kernel into FLK.
¢
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7.2.3 Non-hierarchical Scope

7.2.3.1 Philosophy

The binding constructs we have seen so far are all hierarchical in nature. Each
construct establishes a parent-child relationship between an outer context in
which the declaration is not visible and an inner (body) context in which the
declaration is visible. In static scoping, the hierarchy is determined by the
abstract syntax tree, while in dynamic scoping, the hierarchy is determined
by the tree of procedure calls generated at run-time. In both these scoping
mechanisms, there is no natural way to communicate a declaration laterally
across the tree-structure imposed by the hierarchy.

For small programs, this is not ordinarily a problem, but when a large pro-
gram is broken into independent pieces, ormodules, the constraint of hierarchy
can be a problem. Modules connect and communicate with each other via col-
lections of bindings; a module provides services by exporting a set of bindings
and makes use of other modules’ services by importing bindings from those other
modules. In a hierarchical language, the scope of a binding is a single region of
a program, so all the clients of a module must reside in the region where the
module’s bindings are in scope.

The traditional solution to the problem of communicating modules is to use
a global namespace. All exported bindings from all modules are defined in a
single environment, so all exported bindings are available to all modules. This
technique is certainly widespread, but it has some major drawbacks:

• In order to avoid accidental name collisions, every module must be aware
of all definitions made by all other modules, even those definitions that
are completely irrelevant.

• In practice, the dependencies among modules are often poorly documented,
making intermodule dependencies difficult to track.

A way for languages to overcome the hierarchical scoping of binding con-
structs is to provide a value with named subparts. For this purpose, we will
introduce a new module value that bundles up a set of bindings at one point in
a program and can communicate them to a point that is related neither lexi-
cally nor dynamically to the declarations of those bindings. Typically, a module
defines a set of named values, especially procedures, that provide a particular
function. For example, a matrix module might provide a set of matrix manipula-
tion procedures like matrix-invert and gaussian-elimination. The modules
described here are similar to Pascal records and C structures.
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We will study modules here in the context of a record package for FL. (Chap-
ter 15 will explore a more complete module system.) Figure 7.14 lists new kernel
forms for records.

(record (I E)*) Create a record.
(select I E) Select field I from record E.
(override E1 E2) Append the named components of two records, giving prece-

dence to names in E2 .
(conceal (I*) E) Return a new record without specified fields.

Figure 7.14: Kernel record constructs.

record builds a data structure of name/value bindings. Values can be extracted
by name using the select construct. Two records can be combined into a new
record with override, which gives precedence to the bindings in the second
record argument. conceal returns a new record in which some bindings of the
original record have been removed. For example:

(define m1 (record

(a (+ 2 3))

(square (lambda (x) (* x x)))))

(select a m1) −−−FL→ 5

((select square m1) (select a m1)) −−−FL→ 25

(select b m1) −−−FL→ error:no-such-record-field

(define m2 (record (a 7) (b 11)))

(select a (override m1 m2)) −−−FL→ 7

(select a (override m1 (conceal (a) m2))) −−−FL→ 5

Notice that there is a design choice in the semantics of conceal: the language
designer must choose whether or not it is an error when conceal attempts to
hide a name that is not actually a field in the record.

Figure 7.15 shows some convenient sugar constructs for records. Like many
desugarings, these capture handy idioms programmers would invent on their
own. recordrec allows the fields of a record to be mutually recursive. This is
useful when records are used to construct separate program modules that contain
procedures. with-fields provides a lexical scope that binds the specified names
exported by a record, saving the programmer the tiresome task of writing select



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

298 CHAPTER 7. NAMING

(recordrec (I E)*) A record with mutually recursive bindings.
(with-fields (I*) E1 E2) Bind the I* to the corresponding fields in the record

value E1 and then evaluate E2 .
(restrict (I*) E) Return a new record with only the specified fields.

The dual of conceal.
(rename ((Iold Inew)*) E) Rename Iold fields to Inew fields in E.

Figure 7.15: Record sugar constructs.

everywhere (or introducing the lets manually). Note that with-fields requires
the list of identifiers to be bound. This allows the bindings in this lexical scope
to be apparent,4 which is necessary in a block structured language, and it also
allows the programmer to avoid introducing unnecessary names. restrict is
the natural dual to conceal, useful when exporting comparatively few names.
rename helps programmers avoid name conflicts.

The desugarings for these constructs appear in Figure 7.16. Just as with conceal,
the language designer must choose whether names not defined by a record gen-
erate errors. In a CBV language, the desugaring rules will generate an error
when the undefined name is selected.

D[[(recordrec (I1 E1) ... (In En))]] =
(letrec ((I1 D[[E1 ]]) ... (In D[[En ]]))

(record (I1 I1) ... (In In)))

D[[(with-fields (I1 ... In) E1 E2)]] =
(let ((Ifresh D[[E1 ]]))

(let ((I1 (select I1 Ifresh)) ... (In (select In Ifresh)))
D[[E2 ]]))

D[[(restrict (I1 . . . In) E)]] =
(let ((Ifresh D[[E]]))

(record (I1 (select I1 Ifresh)) ... (In (select In Ifresh))))

D[[(rename ((I1 I1
′) . . . (In In

′)) E)]] =
(let ((Ifresh D[[E]]))

(override (conceal (I1 . . . In) Ifresh)
(record (I1

′ (select I1 Ifresh)) ... (In
′ (select In Ifresh)))))

Figure 7.16: Desugarings for the record syntactic sugar.

4We will see in Chapters ?? and 15 how a statically typed language could deduce this
information.
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7.2.3.2 Semantics

Figure 7.17 and 7.18 present a denotational semantics for records. Since both
records and environments associate names and values, it is natural to model
a record as an environment. You are encouraged to develop an operational
semantics for the record constructs.

v ∈ Value = . . .+Record
r ∈ Record = Environment

with-record : Computation → (Record → Computation)→ Computation
Defined like with-boolean and with-procedure.

extend-env* : Environment → Identifier*→ Denotable*→ Environment
=λeI*δ* . matching 〈I*, δ*〉

. 〈[], []〉 [] e

. 〈I.Irest*, δ.δrest*〉 [] (extend (extend* e Irest* δrest*) I δ)

. else (err-to-comp no-such-record-field)
endmatching

combine-env : Environment → Environment → Environment
=λe1 e2 . λI . matching (lookup e1 I)

(Denotable 7→ Binding δ) [] (lookup e1 I)
(Unbound 7→ Binding unbound)[] (lookup e2 I)
endmatching

Figure 7.17: Domains and auxiliary functions for a denotational semantics of
the kernel record constructs in a CBV language.

7.2.3.3 Examples

Figure 7.19 presents two modules for arithmetic: one for integers and one for
rational numbers.

The gcd routine is used by the rats module to remove common factors from
the numerator and denominator. Note how recordrec (and not record) is
used to create a recursive scope in which the rat constructor is visible to other
procedures in the module. Here is a sample use of the two modules:
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E [[(record (I1 E1) ... (In En))]] e =
(with-values E*[[[E1 ... En ]]]
(λv* . (val-to-comp (Record 7→ Value (extend* [I1 . . . In ] v* empty-env)))))

E [[(select I E)]]e =
(with-record (E [[E]] e)
(λr . (with-denotable (lookup (Record 7→ Environment r) I)

(λδ . (den-to-comp δ))))

E [[(override E1 E2)]]e =
(with-record (E [[E1 ]] e)
(λr1 . (with-record (E [[E2 ]] e)

(λr2 . (val-to-comp
(Record 7→Value

(combine-env (Record 7→ Environment r2 )
(Record 7→ Environment r1 ))))))))

E [[(conceal (I1 ... In) E)]]e =
(with-record (E [[E]] e)
(λr . (val-to-comp

(Record 7→Value

(λI . if I ∈ [I1 . . . In ]
then (Unbound 7→ Binding unbound)
else (lookup (Record 7→ Environment r) I)
fi)))))

Figure 7.18: Valuation functions for the kernel record constructs in a CBV
language.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

7.2. NAME CONTROL 301

(define ints (record (zero 0) (add +) (sub -) (mul *) (div quotient)

(neg (lambda (x) (- 0 x)))

(recip (lambda (x) (quotient 1 x)))

(eq =) (lt <) (gt >)))

(define gcd (lambda (a b) (if (= b 0)

a

(gcd b (rem a b)))))

(define rats

(recordrec

(rat (lambda (numer denom)

(let ((common (gcd numer denom)))

(pair (/ numer common) (/ denom common)))))

(numer car)

(denom cdr)

(zero (rat 0 1))

(add (lambda (r1 r2)

(rat (+ (* (numer r1) (denom r2)) (* (denom r1) (numer r2)))

(* (denom r1) (denom r2)))))

(sub (lambda (r1 r2) (add r1 (neg r2))))

(mul (lambda (r1 r2)

(rat (* (numer r1) (numer r2))

(* (denom r1) (denom r2)))))

(div (lambda (r1 r2) (mul r1 (recip r2))))

(neg (lambda (r) (rat (- 0 (numer r)) (denom r))))

(recip (lambda (r) (rat (denom r) (numer r))))

(eq (lambda (r1 r2)

(and (= (numer r1) (numer r2))

(= (denom r1) (denom r2)))))

(lt (lambda (r1 r2) (< (* (numer r1) (denom r2))

(* (denom r1) (number r2)))))

(gt (lambda (r1 r2) (lt r2 r1)))))

Figure 7.19: Two modules for arithmetic.
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(define sum-of-squares

(lambda (mod)

(with-fields (add mul) mod

(lambda (a b)

(add (mul a a) (mul b b))))))

((sum-of-squares ints) 3 4) −−−FL→ 25

(with-fields (rat) rats

((sum-of-squares rats) (rat 1 3) (rat 1 4))) −−−FL→ 〈25 , 144 〉

As a meatier example of using these arithmetic modules, consider the ma-
trix module generator in Figure 7.20. In this example, matrices are represented
as lists of rows.5 make-matrix-module takes a number n and an arithmetic
module a and constructs a new module that implements n× n matrices whose
components are manipulated by a. For example, if n is 3 and a is rats, then
make-matrix-module returns a module of 3× 3 matrices over the rational num-
bers. The input module a must supply a zero constant and binary add and mul

procedures. The resulting module is a matrix module that also exports these
names as matrix operations. This means it is possible to use n× n matrices as
elements of another matrix. Figures 7.21–7.23 show some matrix examples that
run on a CBV FL interpreter:

7.3 Object-Oriented Programming

Object-oriented programming has emerged as an extremely popular program-
ming paradigm. Definitions of what constitutes object-oriented programming
vary, but they typically involve state-based entities called objects that commu-
nicate via messages. The behavior of an object is defined by its class, which
specifies the object’s state variables and its responses to messages. Classes and
objects can be organized into inheritance hierarchies that describe how the
behavior of one object can be inherited from other objects or classes. Although
we will not discuss issues of state until the next chapter, it is worthwhile to
introduce object-oriented programming here because most of the issues involved
in this paradigm are issues of naming, not issues of state.

We introduce a purely functional object-oriented kernel called HOOK (Hum-
ble Object-Oriented Kernel) and its associated full language, HOOPLA (Hum-
ble Object-Oriented Programming Language). Figure 7.24 presents an s-expression
grammar for HOOK. Figure 7.25 gives the syntax of the syntactic sugar; the

5In practice, we would import the list routines from their own list module.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

7.3. OBJECT-ORIENTED PROGRAMMING 303

(define make-matrix-module

(lambda (n element-module)

(with-fields (elt-add elt-mul elt-zero)

(rename ((add elt-add) (mul elt-mul) (zero elt-zero))

element-module)

(conceal (map map2 reduce make-list)

(recordrec

(zero (make-list n (make-list n elt-zero)))

(add (lambda (m1 m2)

(map2 (lambda (row1 row2) (map2 elt-add row1 row2))

m1

m2)))

(mul (lambda (m1 m2)

(map (lambda (row1)

(map (lambda (row2)

(reduce elt-add

elt-zero

(map2 elt-mul row1 row2)))

(transpose m2)))

m1)))

(transpose (lambda (m) (if (null? (car m))

nil

(cons (map car m)

(transpose (map cdr m))))))

(map (lambda (f lst)

(if (null? lst)

nil

(cons (f (car lst)) (map f (cdr lst))))))

(map2 (lambda (f lst1 lst2)

(if (or (null? lst1) (null? lst2))

nil

(cons (f (car lst1) (car lst2))

(map2 f (cdr lst1) (cdr lst2))))))

(reduce (lambda (binop identity lst)

(if (null? lst)

identity

(binop (car lst)

(reduce binop identity (cdr lst))))))

(make-list (lambda (n elt)

(if (= n 0)

nil

(cons elt (make-list (- n 1) elt))))))))))

Figure 7.20: A generator for NxN matrix modules.
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(define 2x2-int-matrices (make-matrix-module 2 ints))

(define im1 ’((1 2) (3 4)))

(define im2 ’((2 3) (4 5)))

fl-CBV> ((select add 2x2-int-matrices) im1 im2)

(list (list 3 5) (list 7 9))

fl-CBV> ((select mul 2x2-int-matrices) im1 im2)

(list (list 10 13) (list 22 29))

Figure 7.21: 2× 2 matrices of integers.

(define 2x2-rat-matrices (make-matrix-module 2 rats))

(define rm1 (with-fields (rat) rats

(list (list (rat 1 4) (rat 2 4))

(list (rat 3 4) (rat 4 4)))))

(define rm2 (with-fields (rat) rats

(list (list (rat 1 5) (rat 2 5))

(list (rat 3 5) (rat 4 5)))))

fl-CBV> ((select add 2x2-rat-matrices) rm1 rm2)

(list (list (pair 9 20) (pair 9 10))

(list (pair 27 20) (pair 9 5)))

fl-CBV> ((select mul 2x2-rat-matrices) rm1 rm2)

(list (list (pair 7 20) (pair 1 2))

(list (pair 3 4) (pair 11 10)))

Figure 7.22: 2× 2 matrices of rationals.
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(define 2x2-matrices-of-2x2-int-matrices

(make-matrix-module 2 2x2-int-matrices))

(define im3 ’((3 4) (5 6)))

(define im4 ’((5 6) (7 8)))

(define imm1 (list (list im1 im2) (list im3 im4)))

(define imm2 (list (list im2 im3) (list im4 im1)))

fl-CBV> ((select add 2x2-matrices-of-2x2-int-matrices) imm1 imm2)

(list (list (list (list 3 5) (list 7 9))

(list (list 5 7) (list 9 11)))

(list (list (list 8 10) (list 12 14))

(list (list 6 8) (list 10 12))))

fl-CBV> ((select mul 2x2-matrices-of-2x2-int-matrices) imm1 imm2)

(list (list (list (list 41 49) (list 77 93))

(list (list 24 32) (list 48 64)))

(list (list (list 89 107) (list 125 151))

(list (list 52 70) (list 76 102))))

Figure 7.23: 2× 2 Matrices of matrices of integers.

desugarings themselves are defined in Figure 7.26.

Figure 7.27 contains some sample HOOPLA classes. For example, a point
is created by sending make to the point class. The resulting point responds to
the x, y, and move messages. The language does not support side-effects; move
does not change the existing point but creates a new one. Every method has as
its first formal parameter a self variable that names the object that originally
received the message. This self variable is crucial for getting inheritance to
work. The turtle class inherits behavior from both points and directions.
Figure 7.28 shows some examples of interacting with a HOOPLA interpreter.

7.3.1 Semantics of HOOK

The inheritance structure in HOOK programs is reminiscent of records in FL.
In fact, the similarity is so great that we will define the semantics of HOOK
programs by compiling them into a version of the FL language extended with
records. The key to this transformation is that objects are represented as records
that bind message names to procedures that represent methods. A message
send is then handled by simply looking up the method/procedure in the receiver
record and applying it to the actual arguments.
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E ∈ Exp
M ∈ Message = Identifier
I ∈ Identifier
L ∈ Lit = Intlit + Boollit + . . .

E ::= L [Literal]
| I [Identifier]
| (method Mmessage (Iself Iformal*) Ebody) [Simple Object]
| (object-compose Eobj1 Eobj2) [Object Composition]
| (null-object) [Null Object]
| (send Mmessage Ereceiver Earg*) [Message Send]

Figure 7.24: The abstract syntax for HOOK.

P ∈ Program
D ∈ Def

P ::= (program Ebody Ddef *) [Program]

D ::= (define Iname Evalue) [Definition]

E ::= . . .
| (object Eobject*) [Object]
| (class (Iinit*) Einstance*) [Class]
| (lambda (Iformal*) Ebody) [Abstraction]
| (Erator Erand*) [Application]
| (let ((Iname Evalue)*) Ebody) [Local-Binding]
| (if Etest Econsequent Ealternative) [Branch]

Figure 7.25: The syntax of the HOOPLA language.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

7.3. OBJECT-ORIENTED PROGRAMMING 307

D[[(object)]] = (null-object)

D[[(object Efst Erest*)]] = (object-compose D[[Efst ]] D[[(object Erest*)]])

D[[(class (Iinit*) Einst1 . . . Einstn)]] =
(method make (Iignore Iinit*) D[[(object Einst1 . . . Einstn )]])
where Iignore 6∈

⋃n
i=1 FreeIds[[Einsti ]]

D[[(lambda (Iformal*) Ebody)]] = (method call (Iignore Iformal*) D[[Ebody ]])
where Iignore 6∈FreeIds[[Ebody ]]

D[[(Erator Erand*)]] = (send call D[[Erator ]] D[[Erand*]])

D[[(let ((Ivar Eval)*) Ebody)]] = D[[((lambda (Ivar*) Ebody) Eval*)]]

D[[(if Etest Econ Ealt)]] = (send if-true D[[Etest ]]
D[[(lambda () Econ)]]
D[[(lambda () Ealt)]])

Figure 7.26: Rules for desugaring HOOPLA into HOOK.

We formally define the transformation from HOOK code to CBV FL code
in terms of the compilation function T : ExpHOOK → ExpFL. This function is
defined in Figure 7.29. To be complete, we also would need functions that map
HOOK programs to FL programs and HOOK definitions to FL definitions,
but since these are straightforward, we will leave them out.

The core of the compilation is the handling of methods, objects, and mes-
sage sends. A HOOK method construct is transformed into an FL record

construct with a single binding of the message name to a procedure that does
the work of the method. A HOOK object-compose construct compiles into an
FL override construct; the semantics of override are such that methods from
Eobj1 will take precedence over methods from Eobj2 . A HOOK message send
compiles to a procedure application in FL; the procedure is found by looking
up the message name in the record that represents the receiver.

The handling of literals (via T lit ) is perhaps the trickiest part of the compi-
lation. HOOK literals stand not for simple values but for full-fledged message-
passing objects. A HOOK number object, for instance, must compile into an
FL record that has methods for all the numeric operations. In addition, such
a record must also be able to supply the unadorned version of the value it is
holding onto; this is the purpose of the binding involving Iint . The identifier
Iint must be the same for all literal objects. Note that operations returning the
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(define point

(class (init-x init-y)

(method x (self) init-x)

(method y (self) init-y)

(method move (self dx dy)

(object (send make point

(send + (send x self) dx)

(send + (send y self) dy))

self) ; Allows mixins

)))

(define direction

(class (init-angle)

(method angle (self) init-angle)

(method turn (self delta)

(object (send make direction

(send + (send angle self) delta))

self)) ; Allows mixins

))

(define turtle

(class (x y angle)

(method home (self)

(object (send make turtle x y angle)

self)) ; Allows mixins

(send make point x y)

(send make direction angle)))

(define color

(class (clr)

(method color (self) clr)

(method new-color (self new)

(object (send make color new)

self))))

(define colored-point

(class (x y col)

(send make point x y)

(send make color col)))

Figure 7.27: Sample HOOPLA classes.
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;;; Define a turtle T1

(define t1 (send make turtle 0 0 0))

(send x t1) −−−−−−−HOOPLA→ 0 {This is the object 0}
(send y t1) −−−−−−−HOOPLA→ 0

(send angle t1) −−−−−−−HOOPLA→ 0

;;; Define T2 as a rotated and translated version of T1.

(define t2 (send move (send turn t1 45) 17 23))

(send x t2) −−−−−−−HOOPLA→ 17

(send y t2) −−−−−−−HOOPLA→ 23

(send angle t2) −−−−−−−HOOPLA→ 45)

;;; Note that T1 is unchanged. E.g.:

(send x t1) −−−−−−−HOOPLA→ 0

;;; Now define T3 as a version of T2 sent home.

(define t3 (send home t2))

(send x t3) −−−−−−−HOOPLA→ 0

(send y t3) −−−−−−−HOOPLA→ 0

(send angle t3) −−−−−−−HOOPLA→ 0

Figure 7.28: Example interactions with a HOOPLA interpreter.

same kind of object being defined (e.g., +, *) return an extended version of self
rather than just a fresh instance of the object. This means that the returned
object retains all the behavior of the receiver that is not explicitly specified by
the definition.

Booleans, symbols, and whatever other literals or standard identifiers we
might support are handled like integers.

¤ Exercise 7.21 What is the value of the following HOOPLA expression?

(let ((ob1 (object (method value (self) 1)))

(ob2 (object (method value (self) 2)))

(ob3 (object (method value (self) 3)

(method evaluate (self) (send value self)))))

(send evaluate (object ob1 ob2 ob3))) ¢

¤ Exercise 7.22 Following the example for integer literals, show how boolean literals

in HOOK compile into FL. HOOK boolean objects handle the messages not?, and?,

or?, if-true, and if-false. ¢



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

310 CHAPTER 7. NAMING

T : ExpHOOK → ExpFL
T lit : LitHOOK → ExpFL

T [[I]] =I

T [[L]] =T lit [[L]], where T lit is described below.

T [[(method Mmessage (Iself Iformal*) Ebody)]] =
(record (Mmessage (lambda (Iself Iformal*) T [[Ebody ]])))

T [[(object-compose Eobj1 Eobj2 )]] =(override T [[Eobj2 ]] T [[Eobj1 ]])

T [[(null-object)]] =(record)

T [[(send Mmessage Ereceiver Earg1 . . .Eargn)]] =
(let ((Ireceiver T [[Ereceiver ]]))
((select Mmessage Ireceiver) Ireceiver T [[Earg1 ]] . . .T [[Eargn ]]))

where Ireceiver 6∈
⋃n
i=1 FreeIds[[Eargi ]]

T lit [[N]] =(letrec ((make-integer

(lambda (n)

(record

(Iint n)

(+ (lambda (self arg)

(override self

(make-integer

(primop + n (select Iint arg))))))

(* (lambda (self arg)

(override self

(make-integer

(primop * n (select Iint arg))))))
...

))))

(make-integer N))
where Iint is the same for all integers but distinct from all other message names.

Similarly for other literals.

Figure 7.29: The rules for translating HOOK to FL.
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¤ Exercise 7.23 Anoop Hacker is confused about namespace issues in HOOPLA. In
the syntax of the full language, there are several binding constructs: class, lambda,
let, and method. The first three constructs all bind formal parameters; the last one
binds a message name and a name for self in addition to the formal parameters of the
method. You have volunteered to help Anoop answer the following questions. Carefully
study the definitions of HOOPLA to HOOK desugaring and HOOK to FL translation
to justify your answers. Give examples where appropriate.

a. How many distinct namespaces are there in HOOPLA?

b. Is it possible for a method formal parameter named x to be shadowed by a message
named x?

c. Is it possible for a message named x to be shadowed by a method formal parameter
named x?

d. Do the answers to parts b and c change if the record in the translation for
object-compose becomes a recordrec instead? If so, how? ¢

¤ Exercise 7.24 Does HOOPLA’s lambda construct support currying? Explain. ¢

¤ Exercise 7.25 Paula Morwicz doesn’t like the fact that it’s always necessary to
explicitly name self within a HOOPLA method. She decides to implement a version
of HOOPLA called Selfish in which a reserved word self is implicitly bound within
every method body. For example, in Selfish the point class would be written as follows:

(define point

(class (init-x init-y)

(method x () init-x)

(method y () init-y)

(method move (dx dy)

(object (send make point

(send + (send x self) dx)

(send + (send y self) dy))

self) ; Allows mixins

)))

In this example, the instances of self within the move method evaluate to the receiver
of the move message. Because self is a reserved word in Selfish, it is illegal to use it
as a formal parameter to a method.

a. Describe what modifications would have to be made to the following in order to
specify the semantics of Selfish:

i. The HOOK grammar.

ii. The HOOPLA to HOOK desugarer.

iii. The HOOK to FL translator.
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b. Unfortunately, SELFISH doesn’t always give the behavior Paula expects. For
example, she makes a simple modification to the definition of the point class:

(define point

(class (init-x init-y)

(method x () init-x)

(method y () init-y)

(method move (dx dy)

(let ((new-x (send + (send x self) dx))

(new-y (send + (send y self) dy)))

(object (method x () new-x)

(method y () new-y)

self)

))))

After this change, turtle objects (which are implemented in terms of points) no
longer work as expected. Explain what has gone wrong.

c. Show how to get Paula’s new point definition to work as expected. You can add
new code, but not remove any. You may perform alpha-renaming where necessary.

d. Which do you think is better: the explicit self approach of HOOPLA or the
implicit self approach of SELFISH? Explain your answer. ¢


