
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Appendix A

A Metalanguage

Man acts as though he were the shaper and master of language, while
in fact language remains the master of man.

— “Building Dwelling Thinking,” Poetry, Language, Thought
(1971), Martin Heidegger

This book explores many aspects of programming languages, including their
form and their meaning. But we need some language in which to carry out
these discussions. A language used for describing other languages is called a
metalanguage. This appendix introduces the metalanguage used in the body
of the text.

The most obvious choice for a metalanguage is a natural language, such as
English, that we use in our everyday lives. When it comes to talking about pro-
gramming languages, natural language is certainly useful for describing features,
explaining concepts at a high level, expressing intuitions, and conveying the big
picture. But natural language is too bulky and imprecise to adequately treat
the details and subtleties that characterize programming languages. For these
we require the precision and conciseness of a mathematical language.

We present our metalanguage as follows. We begin by reviewing the ba-
sic mathematics upon which the metalanguage is founded. Next, we explore
two concepts at the core of the metalanguage: functions and domains. We
conclude with a summary of the metalanguage notation.

A.1 The Basics

The metalanguage we will use is based on set theory. Since set theory serves
as the foundation for much of popular mathematics, you are probably already

769

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

770 APPENDIX A. A METALANGUAGE

familiar with many of the basics described in this section. However, since some
of our notation is nonstandard, we recommend that you at least skim this section
in order to familiarize yourself with our conventions.

A.1.1 Sets

A set is an unordered collection of elements. Sets with a finite number of
elements are written by enclosing the written representations of the elements
within braces and separating them by commas. So {2, 3, 5} denotes the set of
the first three primes. Order and duplication don’t matter within set notation,
so {3, 5, 2} and {3, 2, 5, 5, 2, 2} also denote the set of the first three primes.
A set containing one element, such as {19}, is called a singleton. The set
containing no elements is called the empty set and is written {}.

We will assume the existence of certain sets:

Unit = {unit} ;The standard singleton
Bool = {true, false} ;Truth values
Int = {. . . , − 2, − 1, 0, 1, 2, . . .} ;Integers
Pos = {1, 2, 3, . . .} ;Positive integers
Neg = {−1, − 2, − 3, . . .} ;Negative integers
Nat = {0, 1, 2, . . .} ;Natural numbers
Rat = {0, 1, − 1, 1

2 , − 1
2 ,

1
3 , − 1

3 ,
2
3 , − 2

3 , . . .} ;Rationals
String = {“”, “a”, “b”,. . . , “foo”,. . . , “a string”,. . . } ;All text strings

(The text in slanted font following the semi-colon is just a comment and is not
a part of the definition. We use this commenting convention throughout the
book.) Unit (the canonical singleton set) and Bool (the set of boolean truth
values) are finite sets, but the other examples are infinite. Since it is impossible
to write down all elements of an infinite set, we use ellipses (“. . .”) to stand for
the missing elements, and depend on the reader’s intuition to fill them out. Note
that our definition of Nat includes 0.

We consider numbers, truth values, and the unit value to be primitive
elements that cannot be broken down into subparts. Set elements are not con-
strained to be primitive; sets can contain any structure, including other sets.
For example,

{Int , Nat , {2, 3, {4, 5}, 6}}

is a set with three elements: the set of integers, the set of natural numbers, and
a set of four elements (one of which is itself a set of two numbers). Here the
names Int and Nat are used as synonyms for the set structure they denote.

Membership is specified by the symbol ∈ (pronounced “element of” or “in”).
The notation e ∈ S asserts that e is an element of the set S, while e 6∈ S asserts

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.1. THE BASICS 771

that e is not an element of S. (In general, a slash through a symbol indicates
the negation of the property denoted by that symbol.) For example,

0 ∈ Nat

0 6∈ Neg

Int ∈ {Int , Nat , {2, 3, {4, 5}, 6}}
Neg 6∈ {Int , Nat , {2, 3, {4, 5}, 6}}
2 6∈ {Int , Nat , {2, 3, {4, 5}, 6}}

In the last example, 2 is not an element of the given set even though it is an
element of one of that set’s elements.

Two sets A and B are equal (written A = B) if they contain the same
elements, i.e., if every element of one is an element of the other. A set A is a
subset of a set B (written A ⊆ B) if every element of A is also an element of
B. Every set is a subset of itself, and the empty set is trivially a subset of every
set. E.g.,

{} ⊆ {1, 2, 3} ⊆ Pos ⊆ Nat ⊆ Int ⊆ Rat

Nat ⊆ Nat

Nat 6⊆ Pos

Note that A = B if and only if A ⊆ B and B ⊆ A. A is said to be a proper
subset of B (written A ⊂ B) if A ⊆ B and A 6= B.

Sets are often specified by describing a defining property of their elements.
The set builder notation {x |Px} (pronounced “the set of all x such that Px”)
designates the set of all elements x such that the property Px is true of x. For
example, Nat could be defined as {n | n ∈ Int and n ≥ 0}. The sets described
by set builder notation are not always well-defined. For example, {s | s 6∈ s},
(the set of all sets that are not elements of themselves) is a famous nonsensical
description known as Russell’s paradox.

Some common binary operations on sets are defined below using set builder
notation:

A ∪B = {x | x ∈ A or x ∈ B} ; union
A ∩B = {x | x ∈ A and x ∈ B} ; intersection
A−B = {x | x ∈ A and x 6∈ B} ; difference

The notions of union and intersection can be extended to (potentially infinite)
collections of sets. If A is a set of sets, then

⋃
A denotes the union of all of the

component sets of A. That is,

⋃

A = {x | there exists an a ∈ A such that x ∈ a}

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

772 APPENDIX A. A METALANGUAGE

If Ai is a family of sets indexed by elements i of some given index set I, then

⋃

i∈I

Ai =
⋃

{Ai | i ∈ I }

denotes the union of all the sets Ai as i ranges over I. Intersections of collections
of sets are defined in a similar fashion.

Two sets B and C are said to be disjoint if and only if B ∩ C = {}. A set
of sets A = {Ai | i ∈ I } is said to be pairwise disjoint if and only if Ai and
Aj are disjoint for any distinct i and j in I. A is said to partition (or be a
partition of) a set S if and only if S =

⋃

i∈I Ai and A is pairwise disjoint.

The cardinality of a set A (written |A|) is the number of elements in A.
The cardinality of an infinite set is said to be infinite. Thus |Int | is infinite, but

|{Int , Nat , {2, 3, {4, 5}, 6}}| = 3

Still, there are distinctions between infinities. Informally, two sets are said to
be in a one-to-one correspondence if it is possible to pair every element of
one set with a unique and distinct element in the other set without having any
elements left over. Any set that is either finite or in a one-to-one correspondence
with Int is said to be countable. For instance, the set Even of even integers
is countable because every element 2n in Even can be paired with n in Int.
Similarly, Nat is obviously countable, and a little thought shows that Rat is
countable as well. Informally, all countably infinite sets “have the same size.”
On the other hand, any infinite set that is not in a one-to-one correspondence
with Int is said to be uncountable. Cantor’s celebrated diagonalization proof
shows that the real numbers are uncountable.1 Informally, the size of the reals
is a much “bigger” infinity than the size of the integers.

The powerset of a set A (written P(A)) is the set of all subsets of A. For
example,

P({1, 2, 3}) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The cardinality of the powerset of a finite set is given by:

|P(A)| = 2|A|

In the above example, the powerset has size 23 = 8. The set of all subsets of the
integers, P(Int), is an uncountable set.

1A description of Cantor’s method can be found in many books on mathematical analysis
and computability. We particularly recommend [Hof80].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.1. THE BASICS 773

A.1.2 Tuples

A tuple is an ordered collection of elements. A tuple of length n, called an
n-tuple, can be envisioned as a structure with n slots arranged in a row, each
of which is filled by an element. Tuples with a finite length are written by
writing the slot values down in order, separated by commas, and enclosing the
result in angle brackets. Thus 〈2, 3, 5〉 is a tuple of the first three primes.
Length and order of elements in a tuple matter, so 〈2, 3, 5〉, 〈3, 2, 5〉, and
〈3, 2, 5, 5, 2, 2〉 denote three distinct tuples. Tuples of size 2 through 5 are
called, respectively, pairs, triples, quadruples, and quintuples. The 0-tuple,
〈〉, and 1-tuples also exist.

The element of the ith slot of a tuple t can be obtained by projection,
written t ↓ i. For example, if s is the triple 〈2, 3, 5〉, then s ↓ 1 = 2,
s ↓ 2 = 3, and s ↓ 3 = 5. If t is an n-tuple, then t ↓ i is only well-defined
when 1 ≤ i ≤ n. Two tuples s and t are equal if they have the same length n
and s ↓ i = t ↓ i for all 1 ≤ i ≤ n.

As with sets, tuples may contain other tuples; e.g. 〈〈2, 3, 5, 7〉, 11, 〈13, 17〉〉
is a tuple of three elements: a quadruple, an integer, and a pair. Moreover, tu-
ples may contain sets and sets may contain tuples. For instance, the following
is a well-defined mathematical structure:

〈〈2, 3, 5〉, Int , {{2, 3, 5}, 〈7, 11〉}〉

If A and B are sets, then their Cartesian product (written A×B) is the
set of all pairs whose first slot holds an element from A and whose second slot
holds an element from B. This can be expressed using set builder notation as:

A×B = {〈a, b〉 | a ∈ A and b ∈ B}

For example,

{2, 3, 5} × {7, 11} = {〈2, 7〉, 〈2, 11〉, 〈3, 7〉, 〈3, 11〉, 〈5, 7〉, 〈5, 11〉}
Nat × Bool = {〈0, false〉, 〈1, false〉, 〈2, false〉, . . . , 〈0, true〉, 〈1, true〉, 〈2, true〉, . . .}

If A and B are finite, then |A×B| = |A| · |B|.
The product notion extends to families of sets. If A1, . . . , An is a family

of sets, then their product (written A1×A2× . . . ×An or
∏n
i=1Ai) is the set of

all n tuples 〈a1, a2, . . ., an〉 such that ai ∈ Ai. The notation An (=
∏n
i=1 A)

stands for the n-fold product of the set A.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

774 APPENDIX A. A METALANGUAGE

A.1.3 Relations

A binary relation on A is a subset of A × A.2 For example, the less-than
relation, <Nat , on natural numbers is the subset of Nat × Nat consisting of all
pairs of numbers 〈n,m〉 such that n is less than m:

< = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, . . . , 〈1, 2〉, 〈1, 3〉, . . . , 〈2, 3〉, . . .}

For a binary relation R on A, the notation a1 R a2 is shorthand for 〈a1, a2〉 ∈
R. Similarly, the notation a1 6R a2 means that 〈a1, a2〉 6∈ R. Thus, the assertion
1 < 2 is really just another way of saying 〈1, 2〉 ∈<, and 3 6< 2 is another way of
saying 〈3, 2〉 6∈<.

Binary relations are often classified by certain properties. Let R be a binary
relation on a set A. Then:

• R is reflexive if, for all a ∈ A, a R a.

• R is symmetric if, for all a1, a2 ∈ A, a1 R a2 implies a2 R a1.

• R is transitive if, for all a1, a2, a3 ∈ A, a1 R a2 and a2 R a3 imply a1 R a3.

• R is anti-symmetric if, for all a1, a2 ∈ A, a1 R a2 and a2 R a1 im-
plies a1 = a2. (This assumes the existence of a reflexive, symmetric, and
transitive equality relation = on A.)

For example, the < relation on integers is anti-symmetric and transitive, the “is
a divisor of” relation on natural numbers is reflexive and transitive, and the =
relation on integers is reflexive, symmetric, and transitive.

A binary relation that is reflexive, symmetric and transitive is called an
equivalence relation. An equivalence relation R on A uniquely partitions
the elements of A into disjoint equivalence classes Ai whose union is A and
that satisfy the following: a1 R a2 if and only if a1 and a2 are elements of
the same Ai. For example, let =mod3 be the “has the same remainder modulo
3” relation on natural numbers. Then it’s easy to show that =mod3 satisfies
the criteria for an equivalence relation. It partitions Nat into three equivalence
classes:

Nat0 = {0, 3, 6, 9, . . .}
Nat1 = {1, 4, 7, 10, . . .}
Nat2 = {2, 5, 8, 11, . . .}

2The notion of a relation can be generalized to arbitrary products, but binary relations are
sufficient for our purposes.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 775

The quotient of a set A by an equivalence relation R (written A/R) is the set
of equivalence classes into which R partitions A. Thus,

(Nat / =mod3) = {Nat0 , Nat1 , Nat2}

There are a number of operations on binary relations that produce new
relations. The n-fold composition of a binary relation R, written Rn, is the
unique relation such that aleft R

n aright if and only if there exist ai, 1 ≤ i ≤ n+1,
such that a1 = aleft , an+1 = aright , and for each i, ai R ai+1. The closure of a
binary relation R on A over a specified property P is the smallest relation RP

such that R ⊆ RP and RP satisfies the property P . The most important kind
of closure we will consider is the transitive closure of a relation R, written
R*: aleft R* aright if and only if aleft R

n aright for some natural number n. For
example, the transitive closure of the “is one less than” relation on integers is
the “is less than” relation on integers.

A.2 Functions

Functions are a crucial component of our metalanguage. We will devote a fair
amount of care to explaining what they are and developing notations to express
them.

A.2.1 Definition

Informally, a function is a mapping from an argument to a result. More formally,
a function f is a triple of three components:3

1. The source S of the function (written src(f)) — the set from which the
argument is taken.

2. The target T of the function (written tgt(f)) — the set from which the
result is taken.

3. The graph of a function (written gph(f)) — a subset G of S × T such
that each s ∈ S appears as the first component in no more than one pair
〈s, t〉 ∈ G.

3What we call source and target are commonly called domain and codomain, respectively.
We use different names so as not to cause confusion with the meaning of the term domain

introduced in Section A.3.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

776 APPENDIX A. A METALANGUAGE

For example, the increment function incInt on the integers can be defined as

incInt = 〈Int , Int , Ginc〉

where Ginc is the set of all pairs 〈i, i + 1〉 such that i ∈Int. That is,

Ginc = {. . . , 〈−3,−2〉, 〈−2,−1〉, 〈−1, 0〉, 〈0, 1〉, 〈1, 2〉, 〈2, 3〉, . . .}

Note that src(incInt) = Int, tgt(incInt) = Int, and gph(incInt) =Ginc .

The type4 of a function specifies its source and target. The type of a function
with source S and target T is written S → T . For example, the type of incInt is
Int → Int. The notation f : S → T means that f has type S → T .

Two functions are equal if they are equal as triples — i.e., if their sources,
targets, and graphs are respectively equal. In particular, it is not sufficient for
their graphs to be equal — they must have the same type as well. For example,
consider the following two functions

abs1 = 〈Int , Int , Gabs〉
abs2 = 〈Int ,Nat , Gabs〉

where Gabs is the set of all pairs 〈i, iabs 〉 such that i is an integer and iabs is the
absolute value of i. Then even though abs1 and abs2 have the same graph, they
are not equal as functions because the type of abs1 , Int → Int, is different from
the type of abs2 , Int → Nat.

Many programming languages use the term “function” to refer to a kind of
subroutine. To avoid confusion, we will use the term procedure for a program-
ming language subroutine, and will reserve the term function for the mathe-
matical notion. We wish to carefully distinguish them because they differ in
some important respects:

• We often think of procedures as methods, or sometimes even agents, for
computing an output from an input. A function doesn’t use any method or
perform any computation; it doesn’t do anything. It simply is a structure
that contains the source, the target, and all input/output pairs.

• We typically view procedures as taking multiple arguments or returning
multiple results. But a function always has exactly one argument and
exactly one result. However, we will see shortly how these procedural
notions can be simulated with functions.

4The type of a function is sometimes called its signature.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 777

• In addition to returning a value, procedures often have a side-effect —
e.g., changing the state of the memory or the status of a screen. There
is no equivalent notion of side-effect for a function. However, we will see
in Chapter 8 how to use functions to model side-effects in a programming
language.

• When viewed in terms of their input/output behavior, procedures can only
specify a subset of functions known as the computable functions. The
most famous example of a non-computable function is the halting function,
which maps the text of a program to a boolean that indicates whether or
not the program will halt when executed.

The above points do not necessarily apply to the procedural entities in all lan-
guages. In particular, the subroutines in so-called functional programming
languages are very close in spirit to mathematical functions.

A.2.2 Application

The primary operation involving a function is the application of the function
to an argument, an element in its source. The function is called the operator
of the application, while the argument is called the operand of the application.
The result of applying an operator f to an operand s is the unique element t in
the target of f such that 〈s, t〉 is in the graph of f . If there is no pair 〈s, t〉 in
the graph of f , then the application of f to s is said to be undefined.

A total function is one for which application is defined for all elements of
its source. If there are source elements for which the function is undefined, the
function is said to be partial. Most familiar numerical functions are total, but
some are partial. The reciprocal function on rationals is partial because it is not
defined at 0. And a square root function defined as

sqrt = 〈Int , Int , {〈i2, i〉 | i ∈ Int}〉

is partial because it is defined only at perfect squares. For any function f , we use
the notation dom(f) to stand for the the source elements at which f is defined.
That is,

dom(f) = {s | 〈s, t〉 ∈ gph(f)}.

For example, dom(sqrt) is the set of perfect squares. A function f is total if
dom(f) = src(f) and otherwise is partial. We will use the type notation S → T
to designate the class of total functions and the special notation S ⇀ T to
designate the class of partial functions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

778 APPENDIX A. A METALANGUAGE

It is always possible to turn a partial function into a total function by adding
a distinguished element to the target that represents “undefined” and altering
the graph to map all previously unmapped members of the source to this “un-
defined” value. By convention, this element is called bottom and is written ⊥.
Using this element, we can define a total reciprocal function whose type is Rat
→ (Rat∪{⊥}) and whose graph is:

{〈0,⊥〉} ∪ {〈q, 1/q〉 | q ∈ Rat , q 6= 0}

Bottom plays a crucial role in the explanation of fixed points in Chapter 5.

We use the juxtaposition f s to denote the application of a function f to an
element s.5 For instance, the increment of 3 is written incInt 3. Parentheses are
used to structure nested applications. Thus,

incInt (incInt 3)

expresses the increment of the increment of 3. In the metalanguage, parentheses
that don’t affect the application structure can always be added without changing
the meaning of an expression.6 The following is equivalent to the above:

((incInt) (incInt (3)))

By default, function application associates to the left, so that the expression
a b c d parses as (((a b) c) d).

The type of an application is the type of the target of the operator of the
application. For example, if sqr : Int → Nat , then (sqr − 3) : Nat (pronounced
“(sqr − 3) has type Nat”). An application is well-typed only when the type
of the operand is the same as the source of the operator type. (The type of a
number like 3 depends on context: it can be considered a natural, an integer, a
rational, etc.) For example, if f is a function with type Nat → Int, then the ap-
plication (f − 3) is not well-typed because −3 6∈Nat. However, the application
(f (sqr − 3)) is well-typed. In our metalanguage, an application is only legal
if it is well-typed.

5The reader may find it strange that we depart from the more traditional notation for appli-
cation, which is written f(s) for single arguments, and f(s1, s2, . . . , sn) for multiple arguments.
The reason is that in the traditional notation, f is usually restricted to be a function name,
whereas we will want to allow the function position of an application to be any metalanguage
expression that stands for a function. Application by juxtaposition is a superior notation for
handling this more general case because it visually distinguishes less between the function
position and the argument position.

6This contrasts with s-expression grammars, as in Lisp-like programming languages, in
which no parentheses are optional.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 779

A.2.3 More Function Terminology

For any set A, there is an identity function idA that maps every element of A
to itself:

idA = 〈A,A, {〈a, a〉 | a ∈ A}〉
For each element a of a set A, there is a constant function consta that maps

every element of A to a:

consta = 〈A,A, {〈a ′, a〉 | a ′ ∈ A}〉

For any set B such that B ⊆ A, there is an inclusion function B↪→A that
maps every element of B to the same element in the larger set:

B ↪→ A = 〈B,A, {〈b, b〉 | b ∈ B}〉

Inclusion functions are handy for making a metalanguage expression the “right
type.” For example, if sqr has type Int → Nat, then the expression

(sqr (sqr − 3))

is not well-typed, but the expression

(sqr (Nat ↪→ Int (sqr − 3)))

is well-typed.
If f : A→ B and g : B → C, then the composition of g and f , written g ◦

f , is a function of type A → C defined as follows:

(g ◦ f) a = (g (f a)) , for all a ∈ A

The composition function7 is associative, so that

f ◦ g ◦ h = (f ◦ g) ◦ h = f ◦ (g ◦ h)

If f : A→ A then the n-fold composition of f , written f n, is

f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

n times

f0 is defined to be the identity function on A. Because of the associativity of
composition, fn ◦ fm = fn+m.

7There is not a single composition function, but really a family of composition functions
indexed by the types of their operands.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

780 APPENDIX A. A METALANGUAGE

The image of a function is that subset of the target that the function actually
maps to. That is, for f : S → T , the image of f is

{t | there exists an s such that (f s) = t}

A function is injective when no two elements of the source map to the
same target element, i.e., when (f d1) = (f d2) implies d1 = d2. A function is
surjective when every element in the target is the result of some application,
i.e., when the image is equal to the target. A function is bijective if it is both
injective and surjective. Two sets A and B are said to be in a one-to-one
correspondence if there exists a bijective function with type A → B.

A.2.4 Higher-Order Functions

The sources and targets of functions are not limited to familiar sets like numbers,
but may be sets of sets, sets of tuples, or even sets of functions. Functions
whose sources or targets themselves include functions are called higher-order
functions.

As a natural example of a function that returns a function, consider a func-
tion make-expt that, given a power, returns a function that raises numbers to
that power. The type of make-expt is

Nat → (Nat → Nat)

That is, the source of make-expt is Nat, and the target of make-expt is the
set of all functions with type Nat → Nat. The graph of make-expt is:

{〈0, 〈Nat ,Nat , {〈0, 1〉, 〈1, 1〉, 〈2, 1〉, 〈3, 1〉, 〈4, 1〉, . . .}〉〉,
〈1, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉, . . .}〉〉,
〈2, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, 〈4, 16〉, . . .}〉〉,
〈3, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 8〉, 〈3, 27〉, 〈4, 64〉, . . .}〉〉,
. . . }

That is, (make-expt 0) denotes a function that maps every number to 1, (make-expt 1)
denotes the identity function on natural numbers, (make-expt 2) denotes the
squaring function, (make-expt 3) denotes the cubing function, and so on.

As an example of a function that takes functions as arguments, consider
the function apply-to-five that takes a function between natural numbers and
returns the value of this function applied to 5. The type of apply-to-five is

(Nat → Nat)→ Nat

and its graph is

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 781

{〈idNat , 5〉, 〈incNat , 6〉, 〈decNat , 4〉, 〈squareNat , 25〉, 〈cubeNat , 125〉,
. . . , 〈〈Nat ,Nat , {. . . , 〈5, n〉, . . .}〉, n〉, . . . }

where incNat , decNat , squareNat , and cubeNat denote, respectively, the increment-
ing function, decrementing function, squaring function, and cubing function on
natural numbers.

We make extensive use of higher order functions throughout this book.

A.2.5 Multiple Arguments and Results

We noted before that every mathematical function has a single argument and
a single result. Yet, as programmers, we are used to thinking that many fa-
miliar procedures, like addition and multiplication, have multiple arguments.
Sometimes we think of procedures as returning multiple results; for instance, a
division procedure can profitably be viewed as returning both a quotient and a
remainder. How can we translate these programming language notions into the
world of mathematical functions?

A.2.5.1 Multiple Arguments

There are two common approaches for handling multiple arguments:

1. The multiple arguments can be boxed up into a single argument tuple.
For instance, under this approach, the binary addition function +Nat on
natural numbers would have type

(Nat ×Nat)→ Nat

and would have the following graph:

{〈〈0, 0〉, 0〉, 〈〈0, 1〉, 1〉, 〈〈0, 2〉, 2〉, 〈〈0, 3〉, 3〉, . . . ,
〈〈1, 0〉, 1〉, 〈〈1, 1〉, 2〉, 〈〈1, 2〉, 3〉, 〈〈1, 3〉, 4〉, . . . ,
〈〈2, 0〉, 2〉, 〈〈2, 1〉, 3〉, 〈〈2, 2〉, 4〉, 〈〈2, 3〉, 5〉, . . . ,
. . . }

Then an application of the addition function to 3 and 5, say, would be
written as (+Nat 〈3, 5〉).

2. A function of multiple arguments can be represented as a higher-order
function that takes the first argument and returns a function that takes
the rest of the arguments. This approach is named currying, after its
inventor, Haskell Curry. Under this approach, the binary addition function
+Nat on natural numbers would have type

Nat → (Nat → Nat)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

782 APPENDIX A. A METALANGUAGE

and would have the following graph:

〈〈0, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, . . .}〉〉,
〈1, 〈Nat ,Nat , {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, . . .}〉〉,
〈2, 〈Nat ,Nat , {〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 5〉, . . .}〉〉,
. . . 〉

When +Nat is applied to n, the resulting value is the increment-by-n func-
tion. So, given 0, it returns the identity function on natural numbers;
given 1, it returns the increment-by-one function; given 2, it returns the
increment-by-two function; and so on. With currying, the application of
+Nat to 3 and 5 is written as ((+Nat 3) 5) or as (+Nat 3 5), (relying on
the left-associativity of application).

In the currying approach, functions like +Nat or make-expt can be viewed
differently according to the context in which they are used. Sometimes, we
may like to think of them as functions that “take two arguments.” Other
times, it is helpful to view them as functions that take a single argument
and return a function. Of course, they are exactly the same function in
both cases; the only difference is the glasses through which we’re viewing
them.

Throughout this book, we will use the second approach, currying, as our
standard method of handling multiple arguments. We will assume that stan-
dard binary numerical function and predicate names, such as +, −, ×, /, <, =,
>, denote curried functions with type N → (N → N) or N → (N → Bool),
where N is a numerical set like the naturals, integers, or rationals. When disam-
biguation is necessary, the name of the function or predicate will be subscripted
with an indication of what numerical source is intended. So, +Nat is addition on
the naturals, while +Int is addition on the integers, etc. For example, (×Int 2)
denotes a doubling function on integers.

Since infix notation for standard binary functions is so much more familiar
than the curried prefix form, we will typically use infix notation when both
arguments are present. Thus, the expression (3+Int 4) is synonymous with
(+Int 3 4).

We will also assume the existence of a curried three-argument conditional
function ifS with type

Bool → (S → (S → S))

that returns the second argument if the first argument is true, and returns the
third argument if the first argument is false. E.g.,

(ifNat (1=Nat 1) 3 4) = 3
(ifNat (1=Nat 2) 3 4) = 4

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 783

A.2.5.2 Multiple Results

The handling of multiple return values parallels the handling of multiple argu-
ments. Again, there are two common approaches:

1. Return a tuple of the results. Under this approach, a quotient-and-remainder
function quot&rem on natural numbers would have type

Nat → (Nat → (Nat ×Nat)).

Some sample applications using this approach:

(quot&rem 14 4) = 〈3, 2〉
(quot&rem 21 5) = 〈4, 1〉

2. Suppose the goal is to define a function f of k arguments that “returns”
n results. Instead define a function f ′ that accepts the k arguments that
f would, but in addition also takes a special extra argument called a
receiver. The value returned by f ′ is the result of applying the receiver
to the n values we want f to return. The receiver indicates how the n
returned values can be combined into a single value. For example:

(quot&rem 14 4 −Int) = (3−Int 2) = 1
(quot&rem 14 4 ×Int) = (3×Int 2) = 6 l

In these examples the type of quot&rem is

Int → (Int → ((Int → (Int → Int))→ Int))

In general, the notation

(f ′ a1 . . . ak r)

can be pronounced “Apply r to the n results of the application of f to
a1 . . . ak.” Note how this pronunciation mentions the f upon which f ′ is
based.

We will use both of these approaches for returning multiple values. The
second approach probably seems mighty obscure and bizarre at first reading,
but it will prove to be a surprisingly useful technique in many situations. In
fact, it is just a special case of a more general technique called continuation-
passing style that is studied in Chapters 9 and 17.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

784 APPENDIX A. A METALANGUAGE

A.2.6 Lambda Notation

Up to this point, the only notation we’ve had to express new functions is a com-
bination of tuple notation and set builder notation. For example, the squaring
function on natural numbers can be expressed by the notation:

square = 〈Nat ,Nat , {〈n,n2〉 | n ∈ Nat}〉

This notation is cumbersome for all but the simplest of functions.
For our metalanguage, we will instead adopt lambda notation as a more

compact and direct notation for expressing functions. The lambda notation
version of the above square function is:

square : Nat → Nat = λn . (n ×Nat n)

Here, the source and target of the function are encoded in the type that is
attached to the function name. The Greek lambda symbol, λ, introduces an
abstraction that specifies the graph of the function, i.e., how the function
maps its argument to a result. An abstraction has the form

λ formal . body

where formal is a formal parameter variable that ranges over the source of the
function, and body is a metalanguage expression, possibly referring to the formal
parameter, that specifies a result in the target of the function. The abstraction
λ formal . body is pronounced “A function that maps formal to body.”

For a function with type A → B, an abstraction defines the graph of the
function to be the following subset of A×B:

{〈formal, body〉 | formal ∈ A and body is defined}

Thus, the abstraction λn . (n ×Nat n) specifies the graph:

{〈n, (n ×Nat n)〉}

The condition that body be defined (i.e., is not undefined) handles the fact that
the function defined by the abstraction may be partial. For example, consider a
reciprocal function defined as:

recip : Rat → Rat = λq . (1 /Rat q)

The graph of recip defined by the abstraction contains no pair of the form 〈0, i0 〉
because (1 /Rat 0) is undefined.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 785

An important advantage of lambda notation is that it facilitates the ex-
pression of higher-order procedures. For example, suppose that expt is a binary
exponentiation function on natural numbers. Then the make-expt function from
Section A.2.4 can be expressed succinctly as:

make-expt : Nat → (Nat → Nat) = λn1 . (λn2 . (expt n2 n1))

The abstraction λn1 can be read as “The function that maps n1 to an
exponentiating function that raises its argument to the n1 power.” Similarly,
the apply-to-five function can be concisely written as:

apply-to-five : (Nat → Nat)→ Nat = λf . (f 5)

By the type of apply-to-five, the argument f is constrained to range over func-
tions with the type Nat → Nat. The lambda notation says that such a function
f should map to the result of applying f to 5.

Like applications, all abstractions in our metalanguage must be well-typed.
An abstraction is well-typed if there is a unique way to assign a type to its formal
parameter such that its body expression is well-typed. If the type of body is T
when the formal parameter is assumed to have type S, then the abstraction has
type S → T .

The type of an abstraction is often explicitly specified, as in the above def-
initions of square, make-expt, and apply-to-five. If the type of an abstraction
has been explicitly specified to be S → T , then the type of the formal parameter
must be S. For example, in the definition

square : Nat → Nat = λn . (n ×Nat n)

the formal parameter n has type Nat within the body expression (n ×Nat n).
This body expression has type Nat and so is well-typed. On the other hand, the
definition

dec : Nat → Nat = λn . (−1 +Nat n)

is not well-typed because in the body of the abstraction +Nat is applied to an
argument, −1, that is not of type Nat.

The type of a formal parameter can always be extracted from a type explic-
itly specified for an abstraction. However, even when the type of the abstraction
is not supplied, it is often possible to determine the type of a formal parame-
ter based on constraints implied by the body expression. For example, in the
abstraction

λx . (1 +Int x)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

786 APPENDIX A. A METALANGUAGE

the formal parameter x must be of type Int because the application involving
+Int is only legal when both arguments are elements of type Int. However,
sometimes there aren’t enough constraints to unambiguously reconstruct the
types of formal parameters. For example, in

λf . (f 5)

the type of the formal parameter f must be of the form N → T , where N is a
numeric type; but there are many choices for N , and T is totally unconstrained.
This is a case where an explicit type must be given to the abstraction.

An abstraction of type S → T can appear anywhere that an expression of
type S → T is allowed. For example, an application of the squaring function to
the result of adding 2 and 3 is written:

((λn . (n ×Nat n)) (2 +Nat 3))

Such an application can be simplified by any manipulation that maintains the
meaning of the expression. For instance:

((λn . (n ×Nat n)) (2+Nat 3))
= ((λn . (n ×Nat n)) 5)
= (5×Nat 5)
= 25

In the next to last step above, the number 5 was substituted for the formal
n in the body expression (n ×Nat n). This step is justified by the meaning of
application in conjunction with the function graph specified by the abstraction.
As another sample application, consider:

(make-expt 3)
= ((λn1 . (λn2 . (expt n2 n1))) 3)
=λn2 . (expt n2 3)

In this case, the result of the application is a cubing function.

Often the same abstraction can be used to define many different functions.
For example, the expression λa.a can be used to define the graph of any identity
or inclusion function. Because the variable a ranges over the source, though, the
resulting graphs are different for each source. A family of functions defined by
the same abstraction is said to be a polymorphic function. We will often
parameterize such functions over a type or types to take advantage of their
common structure. Thus, we can define the polymorphic identity function as

identityA : A→ A = λa . a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 787

where the subscript A means that identityA defines a family of functions indexed
by the type A. We specify a particular member of the family by fixing the
subscript to be a known type. So identityInt is the identity function on integers,
and identityBool is the identity function on booleans.

There are several conventions that are used to make lambda notation more
compact:

• It is common to abbreviate nested abstractions by collecting all the formal
parameters and putting them between a single λ and dot. Thus,

λa1 . λa2 λan . body

can also be written as
λa1a2 . . . an . body

This abbreviation promotes the view that curried functions accept “mul-
tiple arguments”: λa1a2 . . . an . body can be considered a specification for
a function that “takes n arguments.”

• Formal parameter names are almost always single characters, perhaps an-
notated with a subscript or prime. This means that whitespace separating
such names can be removed without resulting in any ambiguity. In com-
bination with the left-associativity of application, these conventions allow
λa b c . ((b c) a) to be written as λabc . bca.

• Nested abstractions are potentially ambiguous since it’s not always appar-
ent where the body of each abstraction ends. For example, the abstraction
λx . λy . yx could be parsed either as λx . λy . (yx) or as λx . (λy . y)x. The
following disambiguating convention is used in such cases: the body of an
abstraction is assumed to extend as far right as explicit parentheses allow.
By this convention, λx . λy . yx means λx . (λy . (yx)).

A.2.7 Recursion

Using lambda notation, it is possible to write recursive function specifications:
functions that are directly or indirectly defined in terms of themselves. For
example, the factorial function fact on natural numbers can be defined as:

fact : Nat → Nat = λn . (ifNat (n =Nat 0) 1 (n ×Nat (fact (n −Nat 1))))

We can argue that fact is defined on all natural numbers based on the principle
of mathematical induction. That is, for the base case of an argument equal to
0, the definition clearly specifies the value of fact to be 1. For the inductive

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

788 APPENDIX A. A METALANGUAGE

case, assume that fact is defined for the argument m. Then, according to the
definition, the value of (fact (m+ 1)) is ((m+ 1) ×Nat (fact m)). But by the
assumption that (fact m) is defined, this expression has a clear meaning. So
(fact (m+ 1)) is also defined. By induction, fact is defined on every element of
Nat, so the above definition determines a unique total function.

There are many recursive definitions for which the above kind of inductive
argument fails. Consider the definition of the strange function given below:

strange : Nat → Nat = λn . (ifNat (even?Nat n) 0 (strange (n +Nat 2)))

(Assume that even?Nat is a predicate that tests whether its argument is even.)
Clearly the function strange maps every even number to 0. But what does it
map odd numbers to? Induction does not help us because the argument never
gets smaller. If we think in terms of function graphs, then we see that for any
natural number c, the above definition is consistent with a graph of the form

{〈2n, 0〉 | n ∈ Nat} ∪ {〈2n+ 1, c〉 | n ∈ Nat}

So the specification for strange is ambiguous; it designates any of an infinite
number of function graphs!

The strange example illustrates that recursive definitions need to be handled
with extreme care. For now, we will assume that the only case in which a
recursive definition has a well-defined meaning is one for which it is possible to
construct an inductive argument of the sort used for fact. Chapter 5 presents a
technique for determining the meaning of a broad class of recursive definitions
that includes functions like strange.

A.2.8 Lambda Notation is not Lisp!

Those familiar with a dialect of the Lisp programming language may notice a
variety of similarities between lambda notation and Lisp. (Those unfamiliar
with Lisp may safely skip this section.) Although Lisp is in many ways related
to our metalanguage, we emphasize that there are some crucial differences:

• Our metalanguage requires all expressions to be well-typed. In particu-
lar, source and target types must be provided for every abstraction. Most
dialects of Lisp, on the other hand, have no notion of a well-typed expres-
sion, and they provide no mechanism for specifying argument and result
types for procedures.8

8The FX language [GJSO92] is a notable exception.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 789

• Most Lisp-like languages support procedures that handle multiple argu-
ments. Because abstractions specify mathematical functions, they always
take a single argument. However, the notion of multiple arguments can be
simulated by currying or tupling.

• Every parenthesis in a Lisp expression is required, but parentheses are only
strictly necessary in our lambda notation to override the default way in
which an expression is parsed. Of course, extra parentheses may be added
to clarify a metalanguage expression.

• Lisp dialects are characterized by evaluation strategies that determine de-
tails like which subexpressions of a conditional are evaluated and when
argument expressions are evaluated relative to the evaluation of a proce-
dure body. Our metalanguage, on the other hand, is not associated with
any notion of a dynamic evaluation strategy. Rather, it is just a notation
to describe the graph of a function, i.e., a set of argument/result pairs.
Any reasoning about an abstraction is based on the structure of the graph
it denotes.

For example, compare the metalanguage abstraction

λa . (ifNat (even?Nat a) (a +Nat 1) (a ×Nat 2))

with the similar Lisp expression

(lambda (a) (if (even? a) (+ a 1) (* a 2)))

In the case of Lisp, only one branch of the conditional is evaluated for any
given argument a; if a is even, then (+ a 1) is evaluated, and if it’s odd,
(* a 2) is evaluated. In the case of the metalanguage, the value of the
function for any argument a is the result of applying the if function to the
three arguments (even?Nat a), (a+Nat 1), and (a×Nat 2). Here there is no
notion of evaluation, no notion that some event does or does not happen,
and no notion of time. The expression simply designates the mathematical
function:

〈Nat ,Nat , {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 6〉, 〈4, 5〉, 〈5, 10〉, . . .}〉

In fact, a metalanguage abstraction can be viewed as simply a structured
name for a particular function.

Although there are many differences between Lisp and lambda notation,
the two obviously share some important similarities. Some functional pro-
gramming languages have features that are even more closely patterned after

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

790 APPENDIX A. A METALANGUAGE

lambda notation. (The FL language presented in Chapter 6 is an example.)
However, our purpose for introducing lambda notation here is to have a conve-
nient notation for expressing mathematical functions, not for writing programs.
The relationship between mathematical functions and programs is the essence
of semantics, which is studied in the main text of the book.

A.3 Domains

A.3.1 Motivation

Sets and set-theoretic functions have too simple a structure to model some im-
portant aspects of the semantics of programming languages. Yet, we would like
to proceed with the simplifying assumption that sets are adequate for our pur-
poses until the need for more structure arises. And when we do augment sets
with more structure (see Chapter 5), we would prefer not to throw away all of
the concepts and notations developed up to that point and start from scratch.

To protect against such a disaster, we will use the same technique that good
programmers use to guarantee that their code can be easily modified: abstrac-
tion.9 The essence of abstraction is constructing an abstraction barrier or
interface that clearly separates behavior from implementation. In program-
ming, an interface usually consists of a collection of procedures that manipulate
elements of an abstract data type. The data type is abstract in the sense that
it can only be manipulated by the procedures in the interface; its internal rep-
resentation details are hidden. The power of abstraction is that changes to
the representation of a data type are limited to the implementation side of the
barrier; as long as the interface specification is maintained, no client of the
abstraction needs to be modified.

We introduce an abstract structure called a domain that will serve as our
basic entity for modeling programming languages. Domains are set-like struc-
tures that have constituent elements, but may have other structure as well.
The interface to domains is specified by a collection of domain constructors
introduced below. In our initial näıve implementation, domains are sets. In
Chapter 5, however, we will change this implementation by extending the sets
with additional structure.

Together, domains and domain constructors define a simple domain lan-
guage. The language comes equipped with a collection of fundamental building
blocks called primitive domains. These cannot be decomposed into simpler

9Note that this use of the term “abstraction” is different from that used in the previous
section, where it meant a metalanguage expression that begins with a proc.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 791

domains. Domain constructors build more complex domains from simpler ones.
The resulting compound domains can be decomposed into the parts out of
which they were made.

In the näıve implementation of domains, primitive domains are sets whose
elements have no structure. That is, the elements of primitive domains may be
items like numbers, truth values, or the unit value; but they may not be tuples,
sets, or functions. Examples of primitive domains include Unit, Bool, Int, Nat,
and Rat.

Compound domains are built by four domain constructors: × , + , *, and
→ . We shall study these in turn.

A.3.2 Product Domains

The product of two domains, written D1 × D2, is the domain version of a Carte-
sian product. Elements of a compound domain are created by an appropriate
constructor function. In the case of products, the constructor tuple creates
elements of the product domain, which are called tuples. We will extend the
type notation d :D to indicate that d is an element of the domain D. If d1 :D1

and d2 :D2 then
(
tupleD1 ,D2

d1 d2

)
: D1 ×D2

The subscripts on tuple emphasize that it is really a family of functions indexed
by the component domains. For example, tupleNat ,Bool and tupleInt ,Int both
serve to pair elements, but the fact that they have different sources, targets, and
graphs makes them different functions.

We will abbreviate
(
tupleD1 ,D2

d1 d2

)
as 〈d1, d2〉D1 ,D2

, and will drop the
subscripts when they are clear from context. For example, the product of Nat
and Bool technically is

Nat × Bool=
{
(
tupleNat,Bool 0 false

)
,
(
tupleNat ,Bool 1 false

)
,
(
tupleNat ,Bool 2 false

)
, . . .,

(
tupleNat,Bool 0 true

)
,
(
tupleNat ,Bool 1 true

)
,
(
tupleNat ,Bool 2 true

)
, . . . }

but we will usually write it as

Nat × Bool= {〈0, false〉, 〈1, false〉, 〈2, false〉, . . . ,
〈0, true〉, 〈1, true〉, 〈2, true〉, . . . }

Domains of n-tuples (known as n-ary products) are written

n∏

i=1

Di = D1 ×D2 × · · · ×Dn = {〈d1, d2, . . . , dn〉D1 ,D2 ,...,Dn | di : Di}

The notation Dn stands for the product of n copies of D.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

792 APPENDIX A. A METALANGUAGE

Every product domain
∏n
i=1Di comes equipped with n projection func-

tions
Proj iD1 ,...,Dn

: (D1 × . . . ×Dn)→ Di

to extract the ith element from an n-tuple:

Proj iD1 ,...,Dn
〈d1, . . . , dn〉D1 ,...,Dn = di, 1 ≤ i ≤ n

For example,

Proj 1Nat ,Bool 〈19, true〉 = 19

Proj 2Nat ,Bool 〈19, true〉 = true

Again, the subscripts indicate that for each i, Proj i is a family of functions
indexed by the component domains of the tuple being operated on. They will
be omitted when they are clear from context.

Notice that we have overloaded the notation 〈. . .〉, which may now denote
either a set-theoretic tuple or a domain-theoretic one. We have done this because
in the simple implementation of domains as sets, product domains simply are
set-theoretic Cartesian products, and set-theoretic tuples are tuples. However,
thinking in terms of a concrete implementation for domains can be somewhat
dangerous. Product domains are really defined only by the behavior of tuple
and Proj i, which must satisfy the following two properties:

1. Proj iD1 ,...,Dn

(
tupleD1 ,...,Dn

d1 . . . dn
)
= di, 1 ≤ i ≤ n

2. tupleD1 ,...,Dn

(
Proj 1D1 ,...,Dn

d
)
. . .

(
ProjnD1 ,...,Dn

d
)
= d,

d :
∏n

i=1Di

Any implementation of tuple and Proj i that satisfies these two properties is
a valid implementation of products for domains. For example, it’s perfectly
legitimate to define tupleNat ,Bool by

tupleNat ,Bool n b = 〈b,n〉,

where the order of elements in the concrete (set-theoretic) representation is
reversed, as long as Proj iNat ,Bool is defined consistently:

Proj 1Nat ,Bool 〈b,n〉 = n

Proj 2Nat ,Bool 〈b,n〉 = b

From here on, and in the body of the text, the 〈. . .〉 notation will by default
denote domain-theoretic tuples rather than set-theoretic tuples.

Since writing out compound domains in full can be cumbersome, it is com-
mon to introduce synonyms for them via a domain definition of the form

name = compound-domain

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 793

For example, the domain definitions

Vector = Int × Int
Circle = Vector × Int × Bool

introduces the name Vector as a synonym for a domain of pairs of integers
and the name Circle as a synonym for a domain of triples whose components
represent the state of a graphical circle object: the position of its center (a
pair of integers), its radius (an integer), and a flag indicated whether or not
it is filled (a boolean). Domain definitions are often used merely to introduce
more mnemonic names for domains. The following set of domain definitions is
equivalent to the set above:

Vector = X-coord × Y-coord
X-coord = Int
Y-coord = Int
Circle = Position × Radius × Filled?
Position = Vector
Radius = Int
Filled? = Bool

Domain equality is purely structural and has nothing to do with names. Thus,
the assertion Position = (Int × Int) is true because both descriptions designate
the domain of pairs of integers.10

A.3.3 Sum Domains

Sum domains are analogous to variant records and unions in programming lan-
guages. The sum of two domains, written D1 + D2, is a domain that is the
disjoint union of the two domains. A disjoint union differs from the usual set
union in that each element of the union is effectively “tagged” to indicate which
component set it comes from. An element of a sum domain, which we will call
a oneof, is built by an injection function

Inj iD1 ,D2
: Di → (D1 +D2)

Here, i, which can be either 1 or 2, indicates which component domain the
element is from.

10It may seem confusing that the equality symbol, = , is used both to test domains for
equality and to define new domain names. But this confusion is standard in mathematics. In
the first case, it is assumed that the meaning of all names is known, and = asserts that the
left and right hand sides are equal. In the second case, it is assumed that the meaning of the
left hand names are unknown, and the equations are solved to make the = assertions true.
In the examples above, the equations are trivial to solve, but domain equations with recursion
can be difficult to solve (see Chapter 5).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

794 APPENDIX A. A METALANGUAGE

A sum domain contains all oneofs that can be constructed from its component
domains. For example,

Nat + Int = {
(
Inj 1Nat ,Int 0

)
,
(
Inj 1Nat ,Int 1

)
,
(
Inj 1Nat,Int 2

)
, . . . ,

(
Inj 2Nat ,Int −2

)
,
(
Inj 2Nat ,Int −1

)
,
(
Inj 2Nat ,Int 0

)
,
(
Inj 2Nat,Int 1

)
, . . .}

If the familiar set-theoretic union were performed on the domains Nat and Int,
it would be impossible to determine the source domain for any n ≥ 0 in the
union.

The notion of sum naturally extends to n-ary sums, which are constructed
by the notation:

n∑

i=1

Di = D1 +D2 + . . . +Dn = {
(
Inj iD1 ,...,Dn

di
)
| di : Di}

When S = D1 + . . . + Dn and all the domain names Di are distinct, we
write Di 7→ S as a synonym for Inj iD1 ,...,Dn . For example, since the Bool domain
contains only two elements, we can represent it as the sum of two Unit domains:

Bool = True + False
True = Unit
False = Unit

Then the value true would be a synonym for (True 7→ Bool unit) and the value
false would be a synonym for (False 7→ Bool unit). If Bool were instead described
as the sum Unit + Unit, the mnemonic injection functions could not be used
because the name Unit 7→ Bool would be ambiguous.11

Elements of a sum domain are detagged by a matching S ,D construct that
maps an element of the domain S into an element of the domainD. Amatching S ,D

construct has one clause for each possible summand domain in S. If S =
∑n

i=1Di and s :S, then the form of this construct is:

matching S ,D s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
. . .

. (Dn 7→ S In) [] En
endmatching

where each Ei is a metalanguage expression of typeD. The subscripts onmatching
will be omitted when they are clear from context.

11Note that the alternative injection notation is one place where the name, not the structure
of a domain, matters. So even though True =Unit, the injection function True 7→ Bool is not

the same as the Unit 7→ Bool.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 795

In this notation, s is called the discriminant, and lines of the form

. (Di 7→ S Ii)[] Ei

are called clauses. The part of the clause between the . and the [] is called the
head of the clause, and the part of the clause after the [] is called the body
of the clause. This notation is pronounced “If the discriminant is the oneof
(
Inj iD1 ,...,Dn

di
)
, then the value of the matching S ,D expression is the value of

Ei in a context where the identifier Ii stands for di.”
The head of a clause is treated as a pattern that can potentially be matched

by the discriminant. That is, if the discriminant could have been injected into
the sum domain by the expression (Di 7→ S Ii), then in this expression Ii must
denote a value from Di. When such a match is successful, the body is evaluated
assuming Ii has this value.

For example, the value of

matching
(
Inj 1Nat ,Int 3

)

. ((Nat 7→ Nat + Int) Inat) [] (Nat ↪→ Int (Inat +Nat 1))

. ((Int 7→ Nat + Int) Iint) [] (Iint ×Int Iint)
endmatching

is 4, because the element
(
Inj 1Nat ,Int 3

)
matches the head of the first clause,

and when Inat is 3, the value of (Inat +Nat 1) is 4. Similarly, the value of

matching
(
Inj 2Nat ,Int 3

)

. ((Nat 7→ Nat + Int) Inat) [] (Nat ↪→ Int (Inat +Nat 1))

. ((Int 7→ Nat + Int) Iint) [] (Iint ×Int Iint)
endmatching

is 9. Note that the inclusion function Nat ↪→Int is necessary to guarantee that
body expression of the first clause has type Int.

Since a matching construct has one clause for each summand, there is
exactly one clause that matches the discriminant. However, for convenience, the
distinguished clause head . elsemay be used as a catch-all to handle all tags
unmatched by previous clauses.

When the expression Etest denotes a boolean truth value, the notation

if D Etest then Etrue else Efalse fi

is an abbreviation for the case expression

matching Bool,D Etest
. (True 7→ Bool Iignore) [] Etrue
. (False 7→ Bool Iignore) [] Efalse
endmatching .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

796 APPENDIX A. A METALANGUAGE

This abbreviation treats the Bool domain as the sum of two Unit domains
(see page 794). The if is subscripted with the domain D of the result, but we
will omit it when it is clear from context. Here, the identifier Iignore should be
an identifier that does not appear in either Etrue or Efalse .

12

Like products, the sums are abstractions defined only by the behavior of
injection functions and the matching construct. In particular, these must
satisfy the following two properties:

1.

matching (Di 7→ S di)
. (D1 7→ S I1) [] I1
...

. (Dn 7→ S In) [] In
endmatching

= di, 1 ≤ i ≤ n

2.

matching d
. (D1 7→ S I1) [] (D1 7→ S I1)
...

. (Dn 7→ S In) [] (Dn 7→ S In)
endmatching

= d, 1 ≤ i ≤ n

Any implementation of sums in which the injection functions and matching
satisfy these two properties is a legal implementation of sums.

A.3.4 Sequence Domains

Sequence domains model finite sequences of elements all taken from the same
domain. They are built by the * domain constructor; a sequence domain whose
sequences contain elements from domain D is written D*. An element of a
sequence domain is simply called a sequence. A sequence is characterized by
its length n and its ordered elements, which are indexed from 1 to n.

A length-n sequence over the domain D is constructed by the function

sequencen,D : D
n → D*.

Thus sequence3 ,Int 〈−5, 7,−3〉 is a sequence of length three with −5 at index 1,
7 at index 2, and −3 at index 3. We will abbreviate

(
sequencen,D d1 . . . dn

)
. as

[d1, . . . , dn]D . So the sample sequence above could also be written [−5, 7,−3]Int ,
and the empty sequence of integers would be written []Int .

13 As elsewhere, we
will omit the subscripts when they can be inferred from context.

12This restriction prevents the variable capture problems discussed in Section 6.3.
13The empty sequence is created using a 0-tuple.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 797

Every sequence domain D* is equipped with the following constructor, pred-
icate, and selectors:

• consD : D → (D*→ D*)
If d :D and s is a length-n sequence over D*, then (consD d s) is a length-
n+1 sequence whose first element is d and whose ith element is the i−1th
element of s, 2 ≤ i ≤ n+ 1.

• empty?D : D*→ Bool
(
empty?D s

)
is true if s = []D and false otherwise.

• headD : D*→ D
If s :D* is nonempty, (headD s) is the first element of s. Defining the head
of an empty sequence is somewhat problematic. One approach is to treat
(headD []D) as undefined, in which case head is only a partial function.
An alternative approach that treats head as a total function is to define
(headD []D) as a particular element of D.

• tailD : D*→ D*
If s :D* is nonempty, (tailD s) is the subsequence of the sequence s that
consists of all elements but the first element. If s is empty, (tailD s) is
defined as []D .

Other useful functions can be defined in terms of the above functions:

lengthD : D*→ Nat
=λd* . if

(
empty?D d*

)
then 0 else

(
1+Nat

(
lengthD (tailD d*)

))
fi

nthD : Pos → D*→ D
=λpd* . if (p =Pos 1) then (headD d*) else (nthD (p −Pos 1) (tailD d*)) fi

appendD : D*→ D*→ D*
=λd1*d2* . if

(
empty?D d1*

)
then d2*

else
(
consD (headD d1*)

(
appendD (tailD d1*) d2*

))
fi

mapD1 ,D2
: (D1 → D2) → D1*→ D2*

=λf d* . if
(
empty?D1

d*
)
then []D2

else
(
consD2

(f (headD1
d*))

(
mapD1 ,D2

f (tailD1
d*)
))

fi

lengthD returns the length of a sequence. nthD returns the element of the given
sequence at the given index. appendD concatenates a length-m sequence and a
length-n sequence to form a length-m+n sequence. Give a (D1 → D2) function f
and a length-n sequence of D1 elements [d1, . . . , dn] mapD1 ,D2

returns a length-n
sequence of D2 elements [(f d1) , . . . , (f dn)]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

798 APPENDIX A. A METALANGUAGE

In the above definitions, we use the convention that if d is a variable ranging
over the domainD, d* is a variable ranging over the domainD*. All of the above
function definitions exhibit a simple form of recursion in which the size of the
first argument is reduced at every recursive call; by the principle of mathematical
induction, all of the functions are therefore well-defined.

The cons and append functions are common enough to warrant some con-
venient abbreviations:

• d . d* is an abbreviation of (cons d d*). The dot (“.”) is an infix binary
function that naturally associates to the right. Thus, d1 . d2 . d* is parsed
as d1 . (d2 . d*).

• d1* @ d2* is an abbreviation of (append d1* d2*). The at sign, @, is an
associative infix binary operator.

As with products and sums, sequences are defined purely in terms of their
abstract behavior. A legal implementation of sequence domains is one which
satisfies the following properties for all domains D, all d :D and d* :D*

1.
(
empty?D []D

)
= true

2.
(
empty?D (d . d*)

)
= false

3. (headD (d . d*)) = d

4. (headD []D) = demptyHead, where demptyHead is a particular element of D chosen
for this purpose.

5. (tailD (d . d*)) = d*

6. (tailD []D) = []D

7. (consD (headD d*) (tailD d*)) = d*

A.3.5 Function Domains

The final constructor we will consider is the binary infix function domain con-
structor, → . In the näıve implementation of domains as sets, D1 → D2 is the
domain of all total functions with D1 as their source and D2 as their target. El-
ements of a function domain are called functions. As with tuples, there is the
possibility for confusion between set-theoretic functions and domain-theoretic
functions. These are the same in the näıve implementation, but differ when
we change the implementation of domains. In the body of the text, “function”
means domain-theoretic function; we explicitly refer to “set-theoretic functions”
when necessary. The same holds for arrow notation, which refers to the function
domain constructor unless otherwise specified.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 799

The arrow notation meshes nicely with the use of arrows already familiar
from set-theoretic function types. Thus, the notation f : Int → Bool can now be
interpreted as “f is an element of the function domain Int → Bool .” Elements of
this domain are predicates on the integers, such as functions for testing whether
an integer is even or odd, or for testing whether an integer is positive or negative.
Similarly, the domain Int → (Int → Int) is the domain of partial functions on
two (curried) integer arguments that return an integer. The (curried) binary
integer addition, multiplication, etc., functions are all elements of this domain.

The → constructor is right-associative:

D1 → D2 → · · · → Dn−1 → Dn means (D1 → (D2 → · · · (Dn−1 → Dn) · · ·))

The right-associativity of → interacts nicely with the left associativity of ap-
plication in lambda notation. That is, if a :A, b :B, and f : (A → B → C), then
(fa) :B → C, so that (f a b) :C =((f a) b) :C, just as we’d like.

We write particular elements of a function domain using lambda notation.
Thus

(λn . (n ×Nat n)) : Nat → Nat

is the squaring function on natural numbers, and

(λi . (i >Int 0)) : Int → Bool

is a predicate for testing whether an integer is positive.

As before, we require all abstractions to be well-typed. We can always specify
the type of an abstraction by giving it an explicit type. So

λx . x : Int → Int

specifies the identity function on integers, while

λx . x : Bool → Bool

specifies the identity function on booleans.

However, to enhance the readability of abstractions, we will use a convention
in which each domain of interest has associated with it a domain variable that
ranges over elements of the domain. For example, consider the following domain
definitions:

b ∈ Bool
n ∈ Nat
p ∈ Nat-Pred = Nat → Bool

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

800 APPENDIX A. A METALANGUAGE

The domain variable b ranges over the Bool domain, the domain variable n
ranges over the Nat domain, and the domain variable p ranges over the function
domain Nat → Bool.

Domain variables, possibly in subscripted or primed form, are used in meta-
language expressions to indicate that they denote only entities from their asso-
ciated domain. Thus (λb . b) and (λb1 . b1) unambiguously denote the identity
function in the domain Bool → Bool, (λn . n) and (λn ′ . n ′) both denote the
identity function in the domain Nat → Nat, and (λp . p) denotes the identity
function in the domain

Nat − Pred → Nat − Pred = (Nat → Bool)→ (Nat → Bool) .

As another example, the expression (λn . λp . pn) is an element of the function
domain

Nat → Nat − Pred → Bool = Nat → (Nat → Bool)→ Bool .

In practice, we will use both explicit and implicit typing of domain elements.
When we define a value named v from a domain D, we will first write a type
of the form v : D that specifies that v names an element from D. Then we will
give a definition for the name that uses domain variables where appropriate. So
an integer identity function is written

integer-identity : Int → Int = λi . i

and the notation for an identity parameterized over a domain D is:

identityD : D → D = λd . d

In fact, we have already used this notation to describe the operations on a
sequence domain in Section A.3.4.

Our description of function domains in this section has a different flavor than
the description of product, sum, and sequence domains. With the other domains,
elements of the compound domain were abstractly defined by assembly functions
that had to satisfy certain properties with respect to disassembly functions.
But with function domains, we concretely specify the elements as set-theoretic
functions designated by lambda notation. Is there a more abstract approach to
defining function domains? Yes, but it is rather abstract and not important to
our current line of development. See Exercise A.3.

¤ Exercise A.1 It is natural to represent a oneof in
∑n

i=1Di as a set-theoretic pair
containing the tag i and an element di of Di:

(
Inj iD1 ,...,Dn

di
)
= 〈i, di〉

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 801

Assuming that oneofs are represented as pairs, use lambda notation to construct a
set-theoretic function of a oneof argument s ∈ D1 +D2 that has the same meaning as
the following matching expression:

matching s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
endmatching

(Use the three argument ifT function on page 782 rather than the if abbreviation on

page 795, which itself is implemented in terms of a matching expression. Assume E1
and E2 are of type T .) ¢

¤ Exercise A.2 Suppose that A, B, C, and D are any domains. Extend the notation
× so that it defines a binary infix operator on functions with the following signature:

((A→ B) × (C → D))→ ((A× C)→ (B ×D))

If f :A → B, g :C → D, a :A, and c :C, then f × g : (A× C) → (B ×D) is defined
by:

〈f, g〉〈a, c〉 = 〈(f a) , (g c)〉f × g = 〈f ◦ Proj 1, g ◦ Proj 2〉
Suppose that h : (A× C)→ (B ×D) is a set-theoretic function. Show that

h = (Proj 1 h) × (Proj 2 h) ¢

¤ Exercise A.3 This exercise explores some further properties of function domains.
Consider the following two functions:

• applyA,B : ((A→ B) ×A)→ B If f :A→ B and a :A, then
(
applyA,B 〈f, a〉

)
denotes the result of applying f to a.

• curryA,B ,C : ((A×B)→ C)→ (A→ (B → C)) If f : (A×B)→ C, then
(
curryA,B ,C f

)
denotes a curried version of f — i.e., it denotes a function g such

that (g a b) = (f 〈a, b〉) for all a∈A and b∈B.

a. Use lambda notation to define set-theoretic versions of apply and curry.

b. Using your definitions from above, show that if f : (A×B)→ C, then

f = applyB ,C ◦
((
curryA,B ,C f

)
× idB

)

The meaning of × on functions is defined in Exercise A.2. Recall that idD is the
identity function on domain D.

c. Using your definitions from above, show that if g :A→ (B → C), then

g =
(
curryA,B ,C

(
applyB ,C ◦ (g × idB)

))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

802 APPENDIX A. A METALANGUAGE

It turns out that any domain implementation with an apply and a curry function that

satisfy the above properties is a legal implementation of a function domain. This is the

abstract view of function domains alluded to above. ¢

A.4 Metalanguage Summary

So far we’ve introduced many pieces of the metalanguage. The goal of this
section is to put all of the pieces together. We’ll summarize the metalanguage
notation introduced so far, and introduce a few more handy notations.

In the study of programming languages, it is often useful to break up the
description of a language into two parts: the core of the language, called the ker-
nel, and various extensions that can be expressed in terms of the core, called the
syntactic sugar. We shall use this approach to summarize the metalanguage.
(See Section 6.2 for an example of using this approach to specify a programming
language.)

A.4.1 The Metalanguage Kernel

The entities manipulated by the metalanguage are domains and their elements.
Domains are either primitive, in which case they can be viewed as sets of un-
structured elements, or compound, in which case they are built out of component
domains. Domains are denoted by domain expressions. Domain expressions
are either domain names (such as Bool, Nat, etc.) or are the application of the
domain operators × , + , *, and → to other domain expressions. New names
can be given to domains via domain definitions. Domain definitions can also
introduce domain variables that range over elements of the domains.

Domain elements are denoted by element expressions. The kernel element
expressions are summarized in Figure A.1.

Constants are names for primitive domain elements and functions; these
include numbers, booleans, and functions. We will assume that the domain
of every constant is evident from context. Variables are names introduced as
formal parameters in abstractions or as the defined name of a definition. Every
variable ranges over a particular domain. If a variable is the domain variable
introduced by some domain definition, it is assumed to range over the specified
domain; otherwise, the type of the variable should be explicitly provided to
indicate what domain it ranges over.

Applications are compound expressions in which an operator is applied to an
operand. The operator expression must denote an element of a function domain
S → T , and the operand expression must denote an element of the domain S;

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 803

• constants: e.g., 0, true, +Nat , tupleNat ,Bool , Proj iNat,Bool

• variables: e.g., a, b ′, c2 , fact

• applications: e.g, (fact 5), ((+Nat 2) 3), ((λa . a) 1)

• abstractions: e.g., (λa . a), (λb . 1), (λa . λb . λc . (ca)b)

• case analysis: matching s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
. . .

. (Dn 7→ S In) [] En
endmatching

or matching s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
. . .

. else [] Eelse
endmatching

Figure A.1: The kernel element expressions.

in this case, the application denotes an element of type T . Applications with
multiple operands are usually expressed by currying. Elements of primitive
domains are often the operands to functions (such as arithmetic and logical
functions) associated with the domain. Elements of product, sum, and sequence
domains can be built by the application of constructor functions (tupleD1 ,...,Dn ,
Di 7→ S, or sequencen,D , respectively) to the appropriate arguments. Compound
domains are equipped with many other useful functions that operate on elements
of the domain.

Abstractions are compound expressions that denote the elements of function
domains. Structurally, an abstraction consists of a formal parameter variable
and a body element expression. An abstraction (λI . Ebody) specifies the func-
tion graph containing all pairs 〈I, t〉 where I ranges over the source domain of
the function and t is the target domain element that is the value of the body
expression Ebody for the given I. The type of the abstraction should either be
given explicitly or should be inferable from the structure of the parts of the
abstraction.

While the parts of products and sequences are extracted by function appli-
cation, elements of a sum domain are disassembled by thematching construct.
A matching construct consists of a discriminant and a set of clauses, each of
which has a pattern and a body. There must be one clause to handle each
summand in the domain of the discriminant. All body expressions must denote
elements of the same domain so that the domain of the value denoted by the
matching expression is clear.

The element expressions in Figure A.1 are often used in conjunction with

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

804 APPENDIX A. A METALANGUAGE

definitions to specify a domain element. A definition has the form

name : type = expression

where name is the name of the element being defined, type is a domain ex-
pression that denotes the domain to which the defined element belongs, and
expression is a metalanguage expression that specifies the element. Definitions
may only be recursive in the case where it can be shown that they define a
unique element in the domain specified by the type. One way to do this is to use
induction; another way is to use the iterative fixed point technique developed in
Chapter 5.

A.4.2 The Metalanguage Sugar

It is possible to write all element expressions using the kernel element expressions,
but it is not always convenient to do so. We have introduced various notational
conventions to make the metalanguage more readable and concise. We review
those notations here, and introduce a few more.

Figure A.2 summarizes the syntactic sugar for element expressions. Ap-
plications and abstractions are simplified by various conventions. The default
left-associativity of application simplifies the expression of multi-argument appli-
cations; thus, (expt 2 5) is an abbreviation for ((expt 2) 5). This default can
be overridden by explicit parenthesization. Applications of familiar functions
like +Nat are often written in infix style to enhance readability. For example,
(2 +Nat 3) is an abbreviation for ((+Nat 2) 3). The formal parameters of nested
abstractions are often coalesced into a single abstraction. For instance, λabc . ca
is shorthand for λa . λb . λc . ca.

The construction of elements in product, sum, and sequence domains is aided
by special notation. Thus,

〈1, true〉 is shorthand for
(
tupleNat ,Bool 1 true

)

((Nat 7→ Nat + Int) 3) is shorthand for
(
Inj 1Nat ,Int 3

)

[5, 3, 2, 7] is shorthand for sequence4 ,Nat 〈5, 3, 2, 7〉

(We have assumed in all these examples that the numbers are elements of Nat
rather than of some other numerical domain.) The notations d .d* and d1*@d2*
are abbreviations for cons and append respectively, so that the following nota-
tions all denote the same sequence of natural numbers:

[5, 3, 2, 7] = 5 . [3, 2, 7] = [5, 3] @ [2, 7]

The if conditional expression

if Ebool then Eif−true else Eif−false fi

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 805

• applications: e.g., (expt 2 5), (2 +Nat 3)

• abstractions: e.g., (λabc . ca)

• tuples: e.g., 〈1, true〉
• oneofs: e.g., ((Nat 7→ Nat + Int) 3)

• sequences: e.g., [5, 3, 2, 7], 5 . [3, 2, 7], [5, 3] @ [2, 7]

• if: if Ebool then Eif−true else Eif−false fi

• let: let I1 be E1 and
I2 be E2 and
...
In be En
in Ebody

• matching: matching Edisc
. p1 [] E1
. p2 [] E2
...
. pn [] En
endmatching

or matching Edisc
. p1 [] E1
. p2 [] E2
...
. else [] En
endmatching

Figure A.2: Sugar for element expressions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

806 APPENDIX A. A METALANGUAGE

is an abbreviation for the following case analysis:

matching Ebool
. (True 7→ Bool Iignore) [] Eif−true
. (False 7→ Bool Iignore) [] Eif−false
endmatching

where Ebool is an expression that denotes an element of the domain Bool and
Eif−true and Eif−false denote elements from the same domain. The variable
Iignore can be any variable that does not appear in Eif−true or Eif−false . This
notation assumes that the Bool domain is represented as a sum of two Unit
domains.

The let expression is new:

let I1 be E1 and
I2 be E2 and
...
In be En
in Ebody

is pronounced “Let I1 be the value of E1 and I2 be the value of E2 . . . and In
be the value of En in the expression Ebody .” The let expression is used to name
intermediate results that can then be referenced by name in the body expression.
The value of a let expression is the value of its body in a context where the
specified bindings are in effect. The let expression is just a more readable form
of an application of a manifest abstraction:

((λI1 I2 . . . In . Ebody) E1 E2 . . . En)

The matching expression is extended to simplify the extraction of tuple
and sequence components:

matching Edisc
. p1 [] E1
. p2 [] E2
...
. pn [] En
endmatching

As before, a matching expression consists of a discriminant and a number
of clauses. The two parts of a matching clause are called the pattern and
the body. A pattern is composed out of constants, variables, and tuple and
sequence constructors; for example, the following are typical patterns:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 807

〈n, 1〉,
〈〈w, x〉, y, z〉,
[i1 ,−3, i2],
n . n*,

A pattern is said to match a value v if it is possible to assign values to the
variables such that the pattern would denote v if it were interpreted as an
element expression with the assignments in effect. Thus, the pattern 〈n, 1〉
matches the value 〈2, 1〉 with n =2, but it does not match the values 〈3, 4〉 or
〈2, 1, 3〉. Similarly, n . n* matches [3, 7, 4] with n = 3 and n*= [7, 4], but it does
not match [].

The value of the matching expression is determined by the first clause
(reading top down) whose pattern matches the discriminant. In this case, the
value of the matching expression is the value of the clause body in a context
where all the variables introduced by the pattern are assumed to denote the
value determined by the match. For example, consider the following expression,
where d :Nat × Nat:

matching d
. 〈n, 1〉 [] (n −Nat 1)
. 〈n, 2〉 [] (n ×Nat n)
. 〈n1 ,n2 〉 [] (n1 +Nat n2)
endmatching

If the second component of d is 1, then the value of the matching expression is
one less than the first component; if the second component is 2, then the value
of the matching expression is the square of the first component; otherwise, the
value of the matching expression is the sum of the two components. As before,
the last clause of the matching expression can have an . else pattern that
handles any discriminant that did not successfully match the preceding patterns.
A matching expression is ill-formed if no pattern matches the discriminant.

A matching expression can always be rewritten in terms of conditional
expressions and explicit component extraction functions. Thus, the matching
clause above is equivalent to:

if
(
Proj 2Nat ,Nat d

)
=Nat 1

then
(
Proj 1Nat ,Nat d

)
−Nat 1

else if
(
Proj 2Nat ,Nat d

)
=Nat 2

then
(
Proj 1Nat ,Nat d

)
×Nat

(
Proj 1Nat ,Nat d

)

else
(
Proj 1Nat ,Nat d

)
+Nat

(
Proj 2Nat ,Nat d

)

fi
fi

In this case, the matching expression is more concise and more readable than
the desugared form.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

808 APPENDIX A. A METALANGUAGE

In fact, the pattern matching approach is such a powerful notational tool that
we shall extend many of our other notations to use implicit pattern matching.
For example, we shall allow formal parameters to an abstraction to be patterns
rather than just variables. Thus, the abstraction

λ〈n1 ,n2 〉 . (n1 +Nat n2)

specifies a function with type (Nat ×Nat) → Nat that is shorthand for

λd . matching d
. 〈n1 ,n2 〉 [] (n1 +Nat n2)
endmatching

where d is assumed to range over Nat × Nat. Similarly, we will allow the variable
positions of let expressions to be filled by general pattern expressions.

The great flexibility of patterns in matching are also useful in defining
functions. Throughout the book, we will often avoid a very long (even multi-
page) matching construct by using patterns to define a function by cases. For
example, we could write a function that maps sequences of identifiers to the
length of the sequence:

length-example : Identifier*→ Nat
length-example [] = 0
length-example (Ifist . Irest*) = 1 + (length-example Irest*)

which is equivalent to:

length-example : Identifier*→ Nat
=λI* . matching I*

. [] [] 0

. Ifist . Irest* [] 1 + (length-example Irest*)
endmatching

This notation is especially helpful when we define functions that operate
over programs, where each clause defines the function for a particular type of
program expression.

Reading

The concept of domains introduced in this appendix is refined in Chapter 5. See
the references there for reading on domain theory.

Defining products, sums, and functions in an abstract way is at the heart of
category theory. [Pie91] and [BW90] are accessible introductions to category
theory aimed at computer scientists.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 809

For coverage of computability issues, we recommend [HU79], [Min67], and
[Hof80].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

810 APPENDIX A. A METALANGUAGE

