
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Chapter 1

Introduction

Order and simplification are the first steps toward the mastery of a
subject — the actual enemy is the unknown.

— The Magic Mountain, Thomas Mann

1.1 Programming Languages

Programming is a great load of fun. As you have no doubt experienced, clarity
and simplicity are the keys to good programming. When you have a tangle of
code that is difficult to understand, your confidence in its behavior wavers, and
the code is no longer any fun to read or update.

Designing a new programming language is a kind of meta-level programming
activity that is just as much fun as programming in a regular language (if not
more so). You will discover that clarity and simplicity are even more important
in language design than they are in ordinary programming. Today hundreds of
programming languages are in use — whether they be scripting languages for
Internet commerce, user interface programming tools, spreadsheet macros, or
page format specification languages that when executed can produce formatted
documents. Inspired application design often requires a programmer to provide
a new programming language or to extend an existing one. This is because
flexible and extensible applications need to provide some sort of programming
capability to their end users.

Elements of programming language design are even found in “ordinary” pro-
gramming. For instance, consider designing the interface to a collection data

1

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

2 CHAPTER 1. INTRODUCTION

structure. What is a good way to encapsulate an iteration idiom over the ele-
ments of such a collection? The issues faced in this problem are similar to those
in adding a looping construct to a programming language.

The goal of this book is to teach you the great ideas in programming lan-
guages in a simple framework that strips them of complexity. You will learn sev-
eral ways to specify the meaning of programming language constructs and will
see that small changes in these specifications can have dramatic consequences
for program behavior. You will explore many dimensions of the programming
language design space, study decisions to be made along each dimension, and
consider how decisions from different dimensions can interact. We will teach
you about a wide variety of neat tricks for extending programing languages with
interesting features like undoable state changes, exitable loops, pattern match-
ing, and multitasking. Our approach for teaching you this material is based
on the premise that when language behaviors become incredibly complex, the
descriptions of the behaviors must be incredibly simple. It is the only hope.

1.2 Syntax, Semantics, and Pragmatics

Programming languages are traditionally viewed in terms of three facets:

1. Syntax — the form of programming languages.

2. Semantics — the meaning of programming languages.

3. Pragmatics — the implementation of programming languages.

Here we briefly describe these facets.

Syntax

Syntax focuses on the concrete notations used to encode programming language
phrases. Consider a phrase that indicates the sum of the product of w and x
and the quotient of y and z. Such a phrase can be written in many different
notations: as a traditional mathematical expression

wx + y/z

or as a Lisp parenthesized prefix expression

(+ (* w x) (/ y z))

or as a sequence of keystrokes on a postfix calculator

w enter x enter × y enter z enter ÷ +

or as a layout of cells and formulae in a spreadsheet

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.2. SYNTAX, SEMANTICS, AND PRAGMATICS 3

1 2 3 4
A w= w*x = A2 * B2
B x= y/z = C2 / D2
C y= ans = A4 + B4
D z=

or as a graphical tree

+

*

w x

/

y z

Although these concrete notations are superficially different, they all designate
the same abstract phrase structure (the sum of a product and a quotient). The
syntax of a programming language specifies which concrete notations (strings
of characters, lines on a page) in the language are legal and which tree-shaped
abstract phrase structure is denoted by each legal notation.

Semantics

Semantics specifies the mapping between the structure of a programming lan-
guage phrase and what the phrase means. Such phrases have no inherent mean-
ing: their meaning is only determined in the context of a system for interpreting
their structure. For example, consider the following expression tree:

*

+

1 11

10

Suppose we interpret the nodes labeled 1, 10, and 11 as the usual decimal
notation for numbers, and the nodes labeled + and * as the sum and product of
the values of their subnodes. Then the root of the tree stands for (1+11) · 10 =
120. But there are many other possible meanings for this tree. If * stands
for exponentiation rather than multiplication, the meaning of the tree could be
1210. If the numerals are in binary notation rather than decimal notation, the
tree could stand for (in decimal notation) (1 + 3) · 2 = 8. Alternatively, 1 and
11 might represent the set of odd integers, 10 might represent the set of even

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4 CHAPTER 1. INTRODUCTION

integers, and + and * might represent addition and multiplication on integer
sets; in this case, the meaning of the tree would be the set of even integers.
Perhaps the tree does not indicate an evaluation at all, and only stands for a
property intrinsic to the tree, such as its height (3), its number of nodes (5),
or its shape (perhaps it describes a simple corporate hierarchy). Or maybe the
tree is an arbitrary encoding of a particular object of interest, such as a rock or
a book.

This example illustrates how a single program phrase can have many possible
meanings. Semantics describes the relationship between the abstract structure
of a phrase and its meaning.

Pragmatics

Whereas semantics deals with what a phrase means, pragmatics focuses on the
details of how that meaning is computed. Of particular interest is the effective
use of various resources, such as time, space, and access to shared physical
devices (storage devices, network connections, video monitors, printers, etc.).

As a simple example of pragmatics, consider the evaluation of the following
expression tree (under the first semantic interpretation described above):

/

-

+

a b

*

2 3

+

a b

Suppose that a and b stand for particular numeric values. Because the phrase
(+ a b) appears twice, a näıve evaluation strategy will compute the same sum
twice. An alternative strategy is to compute the sum once, save the result, and
use the saved result the next time the phrase is encountered. The alternative
strategy does not change the meaning of the program, but does change its use of
resources; it reduces the number of additions performed, but may require extra
storage for the saved result. Is the alternative strategy better? The answer
depends on the details of the evaluation model and the relative importance of
time and space.

Another potential improvement in the example is the phrase (* 2 3), which
always stands for the number 6. If the sample expression is to be evaluated many
times (for different values of a and b), it may be worthwhile to replace (* 2 3)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.3. GOALS 5

by 6 to avoid unnecessary multiplications. Again, this is a purely pragmatic
concern that does not change the meaning of the expression.

1.3 Goals

The goals of this book are to explore the semantics of a comprehensive set
of programming language design idioms, show how they can be combined into
complete practical programming languages, and discuss the interplay between
semantics and pragmatics. Except for establishing a few syntactic conventions
at the outset, we won’t say much about syntax at all. We will introduce a num-
ber of tools for describing the semantics of programming languages, and will
use these tools to build intuitions about programming language features and
study many of the dimensions along which languages can vary. Our coverage
of pragmatics is mainly at a high level: we will study some simple program-
ming language implementation techniques and program improvement strategies
rather than focus on squeezing the last ounce of performance out of a particular
computer architecture.

We will discuss programming language features in the context of several
mini-languages. Each of these is a simple language that captures the essen-
tial features of a class of existing programming languages. In many cases, the
mini-languages are so pared down that they are hardly suitable for serious pro-
gramming activities. Nevertheless, these languages embody all of the key ideas
in programming languages. Their simplicity saves us from getting bogged down
in needless complexity in our explorations of semantics and pragmatics. And
like good modular building blocks, the components of the mini-languages are
designed to be “snapped together” to create practical languages.

1.4 PostFix: A Simple Stack Language

We will introduce the tools for syntax, semantics, and pragmatics in the context
of a mini-language called PostFix. PostFix is a simple stack-based language
inspired by the PostScript graphics language, the Forth programming lan-
guage, and Hewlett Packard calculators. Here we give an informal introduction
to PostFix in order to build some intuitions about the language. In subsequent
chapters, we will introduce tools that allow us to study PostFix in more depth.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6 CHAPTER 1. INTRODUCTION

1.4.1 Syntax

The basic syntactic unit of a PostFix program is the command. Commands
are of the following form:

• Any integer numeral. E.g., 17, 0, -3.

• One of the following special command tokens: add, div, eq, exec, gt, lt,
mul, nget, pop, rem, sel, sub, swap.

• An executable sequence — a single command that serves as a subrou-
tine. It is written as a parenthesized list of subcommands separated by
whitespace.1 E.g., (7 add 3 swap) and (2 (5 mul) exec add).

Since executable sequences contain other commands (including other executable
sequences), they can be arbitrarily nested. An executable sequence counts as a
single command despite its hierarchical structure.

A PostFix program is a parenthesized sequence consisting of (1) the token
postfix followed by (2) a natural number (i.e., non-negative integer) indicat-
ing the number of program parameters followed by (3) zero or more PostFix
commands. For example, here are some sample PostFix programs:

(postfix 0 4 7 sub)

(postfix 2 add 2 div)

(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add)

(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec)

In PostFix, as in all the languages we’ll be studying, all parentheses are re-
quired and none are optional. Moving parentheses around changes the structure
of the program and most likely changes its behavior. Thus, while the following
PostFix executable sequences use the same numerals and command tokens in
the same order, they are distinguished by their parenthesization, which, as we
shall see below, makes them behave differently.

((1) (2 3 4) swap exec)

((1 2) (3 4) swap exec)

((1 2) (3 4 swap) exec)

1Whitespace is any contiguous sequence of characters that leave no mark on the page, such
as spaces, tabs, and newlines.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 7

1.4.2 Semantics

The meaning of a PostFix program is determined by executing its commands in
left to right order. Each command manipulates an implicit stack of values that
initially contains the integer arguments of the program (where the first argument
is at the top of the stack and the last argument is at the bottom). A value on
the stack is either (1) an integer numeral or (2) an executable sequence. The
result of a program is the integer value at the top of the stack after its command
sequence has been completely executed. A program signals an error if (1) the
final stack is empty, (2) the value at the top of the final stack is not an integer,
or (3) an inappropriate stack of values is encountered when one of its commands
is executed.

The behavior of PostFix commands is summarized in Figure 1.1. Each
command is specified in terms of how it manipulates the implicit stack. We
use the notation P −args−−→ v to mean that executing the PostFix program P on
the integer argument sequence args returns the value v. The notation P −args−−→
error means that executing the PostFix program P on the arguments signals
an error. Errors are caused by inappropriate stack values or an insufficient
number of stack values. In practice, it is desirable for an implementation to
indicate the type of error. We will use comments (delimited by squiggly braces)
to explain errors and other situations.

To illustrate the meanings of various commands, we show the results of some
simple program executions. For example, numerals are pushed onto the stack,
while pop and swap are the usual stack operations.

(postfix 0 1 2 3) −[]−→ 3 {Only the top stack value is returned.}
(postfix 0 1 2 3 pop) −[]−→ 2

(postfix 0 1 2 swap 3 pop) −[]−→ 1

(postfix 0 1 swap) −[]−→ error {Not enough values to swap.}
(postfix 0 1 pop pop) −[]−→ error {Empty stack on second pop.}
Program arguments are pushed onto the stack (from last to first) before the

execution of the program commands.

(postfix 2) −[3,4]−−→ 3 {Initial stack has 3 on top with 4 below.}
(postfix 2 swap) −[3,4]−−→ 4

(postfix 3 pop swap) −[3,4,5]−−−→ 5

It is an error if the actual number of arguments does not match the number of
parameters specified in the program.

(postfix 2 swap) −[3]−→ error {Wrong number of arguments.}
(postfix 1 swap) −[3]−→ error {Not enough values to swap.}

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8 CHAPTER 1. INTRODUCTION

• N : Push the numeral N onto the stack.

• sub : Call the top stack value v1 and the next-to-top stack value v2 . Pop these
two values off the stack and push the result of v2−v1 onto the stack. If there are
fewer than two values on the stack or the top two values aren’t both numerals,
signal an error. The other binary arithmetic operators — add (addition), mul
(multiplication), div (integer divisiona) and rem (remainder of integer division)
— behave similarly. Both div and rem signal an error if v1 is zero.

• lt : Call the top stack value v1 and the next-to-top stack value v2 . Pop these
two values off the stack. If v2 < v1 , then push a 1 (a true value) on the
stack, otherwise push a 0 (false). The other binary comparison operators — eq

(equals) and gt (greater than) — behave similarly. If there are fewer than two
values on the stack or the top two values aren’t both numerals, signal an error.

• pop : Pop the top element off the stack and discard it. Signal an error if the
stack is empty.

• swap : Swap the top two elements of the stack. Signal an error if the stack has
fewer than two values.

• sel : Call the top three stack values (from top down) v1 , v2 , and v3 . Pop these
three values off the stack. If v3 is the numeral 0, push v1 onto the stack; if v3
is a non-zero numeral, push v2 onto the stack. Signal an error if the stack does
not contain three values, or if v3 is not a numeral.

• nget : Call the top stack value vindex and the remaining stack values (from top
down) v1 , v2 , . . ., vn . Pop vindex off the stack. If vindex is a numeral i such that
1 ≤ i ≤ n and vi is a numeral, push vi onto the stack. Signal an error if the
stack does not contain at least one value, if vindex is not a numeral, if i is not
in the range [1, n], or if vi is not a numeral.

• (C1 . . . Cn) : Push the executable sequence (C1 . . . Cn) as a single value onto
the stack. Executable sequences are used in conjunction with exec.

• exec : Pop the executable sequence from the top of the stack, and prepend
its component commands onto the sequence of currently executing commands.
Signal an error if the stack is empty or the top stack value isn’t an executable
sequence.

aThe integer division of n and d returns the integer quotient q such that n = qd+r, where
r (the remainder) is such that 0 ≤ r < |d| if n ≥ 0 and −|d| < r ≤ 0 if n < 0.

Figure 1.1: English semantics of PostFix commands.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 9

Note that program arguments must be integers — they cannot be executable
sequences.

Numerical operations are expressed in postfix notation, in which each oper-
ator comes after the commands that compute its operands. add, sub, mul, and
div are binary integer operators. lt, eq, and gt are binary integer predicates
returning either 1 (true) or 0 (false).

(postfix 1 4 sub) −[3]−→ -1

(postfix 1 4 add 5 mul 6 sub 7 div) −[3]−→ 4

(postfix 5 add mul sub swap div) −[7,6,5,4,3]−−−−−→ -20

(postfix 3 4000 swap pop add) −[300,20,1]−−−−−→ 4020

(postfix 2 add 2 div) −[3,7]−−→ 5 {An averaging program.}
(postfix 1 3 div) −[17]−−→ 5

(postfix 1 3 rem) −[17]−−→ 2

(postfix 1 4 lt) −[3]−→ 1

(postfix 1 4 lt) −[5]−→ 0

(postfix 1 4 lt 10 add) −[3]−→ 11

(postfix 1 4 mul add) −[3]−→ error {Not enough numbers to add.}
(postfix 2 4 sub div) −[4,5]−−→ error {Divide by zero.}

In all the above examples, each stack value is used at most once. Sometimes
it is desirable to use a number two or more times or to access a number that is
not near the top of the stack. The nget command is useful in these situations; it
puts at the top of the stack a copy of a number located on the stack at a specified
index. The index is 1-based, from the top of the stack down, not counting the
index value itself.

(postfix 2 1 nget) −[4,5]−−→ 4 {4 is at index 1, 5 at index 2.}
(postfix 2 2 nget) −[4,5]−−→ 5

It is an error to use an index that is out of bounds or to access a non-numeric
stack value (i.e., an executable sequence) with nget.

(postfix 2 3 nget) −[4,5]−−→ error {Index 3 is too large.}
(postfix 2 0 nget) −[4,5]−−→ error {Index 0 is too small.}
(postfix 1 (2 mul) 2 nget) −[3]−→ error {Value at index 2 is not a number.}

The nget command is particularly helpful for expressing numerical programs,
where it is common to reference arbitrary parameter values and use them mul-
tiple times.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10 CHAPTER 1. INTRODUCTION

(postfix 1 1 nget mul) −[5]−→ 25 {A squaring program.}
(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add) −[3,4,5,2]−−−−→ 25
{Given a, b, c, x, calculates ax2 + bx + c.}

As illustrated in the last example, the index of a given value increases every
time a new value is pushed on the stack.

Executable sequences are compound commands like (2 mul) that are pushed
onto the stack as a single value. They can be executed later by the exec com-
mand. Executable sequences act like subroutines in other languages; execution
of an executable sequence is similar to a subroutine call, except that transmission
of arguments and results is accomplished via the stack.

(postfix 1 (2 mul) exec) −[7]−→ 14 {(2 mul) is a doubling subroutine.}
(postfix 0 (0 swap sub) 7 swap exec) −[]−→ -7
{(0 swap sub) is a negation subroutine.}

(postfix 0 (7 swap exec) (0 swap sub) swap exec) −[]−→ -7

(postfix 0 (2 mul)) −[]−→ error {Final top of stack is not an integer.}
(postfix 0 3 (2 mul) gt) −[]−→ error

{Executable sequence where number expected.}
(postfix 0 3 exec) −[]−→ error {Number where executable sequence expected.}
(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec) −[7]−→ 9
{Given n, calculates 2n - 5.}

The last example illustrates that evaluations involving executable sequences can
be rather contorted.

The sel command selects between two values based on a test value, where
zero is treated as false and any non-zero integer is treated as true. It can be
used in conjunction with exec to conditionally execute one of two executable
sequences.

(postfix 1 2 3 sel) −[1]−→ 2

(postfix 1 2 3 sel) −[0]−→ 3

(postfix 1 2 3 sel) −[17]−−→ 2 {Any non-zero number is “true”.}
(postfix 0 (2 mul) 3 4 sel) −[]−→ error {Test not a number.}
(postfix 4 lt (add) (mul) sel exec) −[3,4,5,6]−−−−→ 30

(postfix 4 lt (add) (mul) sel exec) −[4,3,5,6]−−−−→ 11

(postfix 1 1 nget 0 lt (0 swap sub) () sel exec) −[−7]−−→ 7
{An absolute value program.}

(postfix 1 1 nget 0 lt (0 swap sub) () sel exec) −[6]−→ 6

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 11

¤ Exercise 1.1 Determine the value of the following PostFix programs on an empty
stack.

a. (postfix 0 10 (swap 2 mul sub) 1 swap exec)

b. (postfix 0 (5 (2 mul) exec) 3 swap)

c. (postfix 0 (() exec) exec)

d. (postfix 0 2 3 1 add mul sel)

e. (postfix 0 2 3 1 (add) (mul) sel)

f. (postfix 0 2 3 1 (add) (mul) sel exec)

g. (postfix 0 0 (2 3 add) 4 sel exec)

h. (postfix 0 1 (2 3 add) 4 sel exec)

i. (postfix 0 (5 6 lt) (2 3 add) 4 sel exec)

j. (postfix 0 (swap exec swap exec) (1 sub) swap (2 mul)

swap 3 swap exec)

¢

¤ Exercise 1.2 Write executable sequences that compute the following logical oper-
ations. Recall that 0 is false and all other numerals are treated as true.

a. not: return the logical negation of a single argument.

b. and: given two numeric arguments, return 1 if their logical conjunction is true,
and 0 otherwise.

c. short-circuit-and: return 0 if the first argument is false; otherwise return the
second argument.

d. Demonstrate the difference between and and short-circuit-and by writing a Post-
Fix program that has a different result if and is replaced by short-circuit-and. ¢

¤ Exercise 1.3

a. Without nget, is it possible to write a PostFix program that squares its single
argument? If so, write it; if not, explain.

b. Is it possible to write a PostFix program that takes three integers and returns
the smallest of the three? If so, write it; if not, explain.

c. Is it possible to write a PostFix program that calculates the factorial of its single
argument (assume it’s non-negative)? If so, write it; if not, explain. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12 CHAPTER 1. INTRODUCTION

1.4.3 The Pitfalls of Informal Descriptions

The “by-example” and English descriptions of PostFix given above are typical
of the way that programming languages are described in manuals, textbooks,
courses, and conversations. That is, a syntax for the language is presented, and
the semantics of each of the language constructs is specified using English prose
and examples. The utility of this method for specifying semantics is apparent
from the fact that the vast majority of programmers learn to read and write
programs via this approach.

But there are many situations in which informal descriptions of programming
languages are inadequate. Suppose that we want to improve a program by
substituting one phrase for another throughout the program. How can we be
sure that the substitution preserves the meaning of the program?

Or suppose that we want to prove that the language as a whole has a partic-
ular property. For instance, it turns out that every PostFix program is guaran-
teed to terminate (i.e., a PostFix program cannot enter an infinite loop). How
would we go about proving this property based on the informal description?
Natural language does not provide any rigorous framework for reasoning about
programs or programming languages. Without the aid of some formal reasoning
tools, we can only give hand-waving arguments that are not likely to be very
convincing.

Or suppose that we wish to extend PostFix with features that make it easier
to use. For example, it would be nice to name values, to collect values into arrays,
to query the user for input, and to loop over sequences of values. With each new
feature, the specification of the language becomes more complex, and it becomes
more difficult to reason about the interaction between various features. We’d
like techniques that help to highlight which features are orthogonal and which
can interact in subtle ways.

Or suppose that a software vendor wants to develop PostFix into a product
that runs on several different machines. The vendor wants any given PostFix
program to have exactly the same behavior on all of the supported machines.
But how do the development teams for the different machines guarantee that
they’re all implementing the “same” language? If there are any ambiguities
in the PostFix specification that they’re implementing, different development
teams might resolve the ambiguity in incompatible ways. What’s needed in
this case is an unambiguous specification of the language as well as a means of
proving that an implementation meets that specification.

The problem with informal descriptions of a programming language is that
they’re neither concise nor precise enough for these kinds of situations. English
is often verbose, and even relatively simple ideas can be unduly complicated

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 13

to explain. Moreover, it’s easy for the writer of an informal specification to
underspecify a language by forgetting to cover all the special cases (e.g., error
situations in PostFix). It isn’t that covering all the special cases is impossible;
it’s just that the natural language framework doesn’t help much in pointing out
what the special cases are.

It is possible to overspecify a language in English as well. Consider the
PostFix programming model introduced above. The current state of a pro-
gram is captured in two entities: the stack and the current command sequence.
To programmers and implementers alike, this might imply that a language im-
plementation must have explicit stack and command sequence elements in it.
Although these would indeed appear in a straightforward implementation, they
are not in any way required; there are alternative models and implementations
for PostFix (see Exercise 3.12). It would be desirable to have a more ab-
stract definition of what constitutes a legal PostFix implementation so that a
would-be implementer could be sure that an implementation was faithful to the
language definition regardless of the representations and algorithms employed.

In the remaining chapters of the first segment of this book, we introduce a
number of tools that address the inadequacies outlined above. First, in Chapter 2
we present s-expression grammars, a simple specification for syntax that we
will use to describe the structure of all of the mini-languages we explore. Then,
using PostFix as our object of study, we introduce two approaches to formal
semantics:

• An operational semantics (Chapter 3) explains the meaning of pro-
gramming language constructs in terms of the step-by-step process of an
abstract machine.

• A denotational semantics (Chapter 4) explains the meaning of pro-
gramming language constructs in terms of the meaning of their subparts.

These approaches support the unambiguous specification of programming lan-
guages and provide a framework in which to reason about properties of programs
and languages. This segment concludes in Chapter 5 with a presentation of a
technique for determining the meaning of recursive specifications.

Throughout the book, mathematical concepts are formalized in terms of the
metalanguage described in Appendix A. Readers are encouraged to familiarize
themselves with this language by skimming the appendix early on and later
referring to it in more detail on an “as needed” basis.

While we will emphasize formal tools throughout this book, we do not im-
ply that formal tools are a panacea or that formal approaches are superior to
informal ones in an absolute sense. In fact, informal explanations of language

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14 CHAPTER 1. INTRODUCTION

features are usually the simplest way to learn about a language. In addition, it’s
very easy for formal approaches to get out of control, to the point where they are
overly obscure, or require too much mathematical machinery to be of any prac-
tical use on a day-to-day basis. For this reason, we won’t dwell on nitty gritty
formal details and won’t cover material as a dry sequence of definitions, theo-
rems, and proofs. Instead, our goal is to show that the concepts underlying the
formal approaches are indispensable for understanding particular programming
languages as well as the dimensions of language design. The tools introduced in
this segment should be in any serious computer scientist’s bag of tricks.

Reading

No single book can entirely cover the broad area of programming languages. We
recommend the following books for other perspectives of the field:

• Mitchell has authored two relevant books: [Mit96] is a mathematical ex-
ploration of programming language semantics based on a series of typed
lambda calculi, while [Mit03] discusses the dimensions of programming
languages in the context of many modern programming languages.

• Friedman, Wand, and Haynes [FWH01] uses interpreters and translators
written in Scheme to study essential programming language features in
the context of some mini-languages.

• Reynolds [Rey98] gives a theoretical treatment of many programming lan-
guage features.

• Gelernter and Jaganathan [GJ90] discusses a number of popular program-
ming languages in a historical perspective and compare them in terms of
expressiveness.

• MacLennan’s text [Mac99] stands out as one of the few books on program-
ming languages to enumerate a set of principles and then analyze popular
languages in terms of these principles.

• Kamin [Kam90] uses interpreters written in Pascal to analyze the core
features of several popular languages.

• Marcotty and Ledgard [ML86] cover a wide range of programming lan-
guage features and paradigms by presenting a sequence of mini-languages.

• Gunter [Gun92] provides an in-depth overview of formal programming lan-
guage semantics.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 15

• Winskel [Win93] presents a mathematical introduction to formal program-
ming language semantics.

• Horowitz [Hor95] has collected an excellent set of classic papers on the de-
sign of programming languages that every programming language designer
should be familiar with.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16 CHAPTER 1. INTRODUCTION

