
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Chapter 6

FL: A Functional Language

Things used as language are inexhaustible attractive.

— The Philosopher, Ralph Waldo Emerson

6.1 Decomposing Language Descriptions

The study of a programming language can often be simplified if it is decomposed
into three parts:

1. A kernel language that forms the essential core of the language.

2. Syntactic sugar that extends the kernel with convenient constructs. Such
constructs can be automatically translated into kernel constructs via a
process known as desugaring.

3. A standard library of primitive constants and operators supplied with
the language.

We shall refer to the combination of a kernel, syntactic sugar, and a standard
library as a full language to distinguish it from its components.

Decomposing a programming language definition into parts relieves a com-
mon tension in the design and analysis of programming languages. From the
standpoint of reasoning about a language, it is desirable for a language to have
only a few simple parts. However, from the perspective of programming in a
language, it is desirable to concisely and conveniently express common program-
ming idioms. A language that is too pared down may be easy to reason about
but horrendous to program in — try writing factorial in PostFix+{dup}. On

195

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

196 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

the other hand, a language with many features may be convenient to program
in but difficult to reason about — try proving some non-trivial properties about
your next Java, C, Ada, or Common Lisp program.

The technique of viewing a full language as mostly sugar coating around a
kernel lets us have our cake and eat it too. When we want to reason about
the language, we consider only the small kernel upon which everything else is
built. But when we want to program in the language, we make heavy use of the
syntactic sugar and standard library to express what we want in a readable fash-
ion. Indeed, we can even add new syntactic sugar and new primitives without
changing the properties of the kernel.

There are limitations to this approach. We’d like the kernel and full language
to be close enough so that the desugaring is easy to understand. Otherwise we
might have the situation where the kernel is a machine instruction set and the
desugaring is a full-fledged compilation from high-level programs into object
code. For this reason, we require that syntactic sugar be expressed via simple
local transformations; no global program analysis is allowed.

We shall study this language decomposition technique in the context of a
mini-language we call FL (for Functional Language).1 FL provides us with
the opportunity to use the semantic tools developed in the previous chapters to
analyze a programming language that is much closer to a “real” programming
language than PostFix or EL. Along the way, we will introduce two approaches
for modeling names in a programming language: substitution and environments.

FL is a language that examplifies what is traditionally known as the func-
tional programming paradigm. As we shall see, functional programming
languages are characterized by an emphasis on the manipulation of values that
model mathematical functions. The name “functional language” is a little
bit odd, since it suggest that languages not in this paradigm are somehow
dysfunctional — a perception that many functional language aficionados ac-
tively promote! Perhaps function-oriented languages would be a more ac-
curate term for this class of languages.

6.2 The Structure of FL

FL is a typical functional programming language for computing with numeric,
boolean, symbolic, procedural, and compound data values. The computational
model of FL is based on the functional programming paradigm exemplified by

1Our FL language is not to be confused with any other similarly-named language. In partic-
ular, our FL is not related to the FL functional programming language [BWW90, BWW+89]
based on Backus’s FP [Bac78].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 197

such languages as Erlang, FX, Haskell, ML, and Scheme. FL programs
are free of side effects and make heavy use of first-class functional values (here
called procedures2. Syntactically, FL bears a strong resemblance to Scheme,
but semantically we shall see that it is closer to so-called purely functional
lazy languages like Haskell and Miranda.

6.2.1 FLK: The Kernel of the FL Language

We begin by presenting the syntax and informal semantics of FLK, the FL
kernel.

6.2.1.1 The Syntax of FLK

A well-formed FLK program is a member of the syntactic domain Program
defined by the s-expression grammar in Figure 6.1. FLK programs have the
form (flk (Iformal*) Ebody), where Iformal* are the formal parameters of the
program and Ebody is the body expression of the program. Intuitively, the
formal parameters name program inputs and the body expression specifies the
result value computed by the program for its inputs.

FLK expressions are s-expression syntax trees whose leaves are either literals
or variable references. FLK literals include the unit literal, booleans, integers,
and symbols. We adopt the Scheme convention of writing the boolean literals
as #t (true) and #f (false). The unit literal (#u) is used in situations where the
value of an expression is irrelevant, such as contexts in C and Java modeled
by the void type. For symbolic (i.e., non-numeric) processing, FLK supports
the Lisp-like notion of a symbol. Symbols are similar to strings in traditional
languages, except that they a written with a different syntax (using the keyword
symbol rather than double quotes) and they are atomic entities that cannot be
decomposed into their component characters. For simplicity, FLK assumes a
Lisp-like convention in which symbols are sequences of characters (1) that do
not include whitespace, bracket characters ({, }, (,), [,]), or quote characters
(", ‘, ’); (2) that do not begin with #; and (3) in which case is ignored. So
the symbols xcoord, xCoord, and XCOORD are considered equivalent.

2We shall consistently use the term procedure to refer to entities in programming lan-
guages that denote mathematical functions, and function to refer to the mathematical notion
of function. In some languages, these two terms are used to distinguish different kinds of pro-
gramming language entities. For example, in Pascal, “function” refers to a subroutine that
returns a result whereas “procedure” refers to a subroutine performs its work via side effect
and returns no result. Much of the functional programming literature uses the term “function”
to refer both to the programming language entity and the mathematical entity it denotes.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

198 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

P ∈ Program
E ∈ Exp
L ∈ Lit
K ∈ Keyword = {call, if, pair, primop, proc, rec, symbol, error}
Y ∈ Symlit = {x, lst, make-point, map tree, 4/3*pi*r^21, . . .}
I ∈ Identifier = Symlit − Keyword
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ Primop = Defined by standard library (Section 6.2.3).

P ::= (flk (Iformal*) Ebody) [Program]

E ::= L [Literal]
| I [Variable Reference]
| (primop Oname Earg*) [Primitive Application]
| (proc Iformal Ebody) [Abstraction]
| (call Erator Erand) [Application]
| (if Etest Ethen Eelse) [Branch]
| (pair Efst Esnd) [Pairing]
| (rec Ivar Ebody) [Recursion]
| (error Imsg) [Errors]

L ::= #u [Unit Literal]
| B [Boolean Literal]
| N [Integer Literal]
| (symbol I) [Symbolic Literal]

Figure 6.1: An s-expression grammar for FLK

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 199

A key difference between FLK and PostFix/EL is that that FLK provides
constructs (flk, proc, and rec) that introduce names for values. Syntactically,
names are expressed via identifiers. The rules for what constitutes a well-
formed identifier differs from language to language. In FLK we shall assume
that any symbol that is not one of the reserved keywords of the language
(call, if, pair, primop, proc, rec, symbol, and error) can be used as an
identifier. This means that expressions like x-y and 4/3*pi*r^2 are treated
as atomic identifiers in FLK. In many other languages, these would be infix
specifications of trees of binary operator applications.

For compound expressions, FLK supports procedural abstractions (proc)
and applications (call), primitive applications (primop), conditional branches
(if), pair creation (pair), simple recursion (rec), and error signaling (error).

Although many of the syntactic conventions of FLK are borrowed from Lisp-
like languages, especially Scheme, it’s worth emphasizing that FLK differs from
these languages in some fundamental ways. For example, in Scheme, abstrac-
tions may take any number of formal parameters, are introduced via the keyword
lambda, and are invoked via an application syntax with no keyword. In con-
trast, FLK abstractions have exactly one formal parameter, are introduced via
the keyword proc, and are applied via the keyword call.

6.2.1.2 An Informal Semantics for FLK

Intuitively, every FLK expression denotes a value that is tagged with its type in
addition to whatever information distinguishes it from other values of the same
type. The primitive values supported by FLK include the unit value, boolean
truth values, integers, and textual symbols. The unit value is the unique value
of a distinguished type that has a single element. In addition, FLK supports
pairs and procedures. A pair is a compound value that allows any two values
(which may themselves be pairs) to be glued together to form a single value. A
procedure is a value that represents a mathematical function by specifying how
to map an input value to an output value.

We will informally describe the semantics of FLK by considering some sam-
ple evaluations of FLK expressions. We use the notation E −−−−FLK→ V to indicate
that the expression E evaluates to the value V. Here are some example values
that indicate our conventions for writing FLK values:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

200 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

unit The unit value
false , true The boolean values
17 , −3 Integer values
′abstraction , ′captain Symbolic values
procedure Procedural values
〈17 , true〉, 〈procedure , 〈 ′abstraction , unit〉〉 Pair values
error:not-an-integer Errors
∞−loop Non-termination

(represents an infinite loop)

Additionally, the following abbreviation will be handy for representing lists of
values that are encoded as a unit-terminated chain of pairs:

[V1, V2, . . . , Vn] = 〈V1, 〈V2, . . . 〈Vn, unit〉 . . .〉〉

For example, the notation [17 , true, 〈 ′foo, procedure〉] is an abbreviation for a
three-element list values 〈17 , 〈true, 〈〈 ′foo, procedure〉, unit〉〉〉.

Our value notation does not distinguish procedural values that denote differ-
ent mathematical functions. For instance, a squaring procedure and a doubling
procedure are both written procedure . This is because our operational seman-
tics will not allow us to directly observe the function designated by a procedural
value that is the outcome of a program. As explained in Section 3.4.4, inten-
tionally blurring distinctions between certain values is sometimes necessary to
enable program transformations. However, our notation for errors does distin-
guish errors with different messages.

The literal expressions designate constants in the language:

#u −−−−FLK→ unit
#t −−−−FLK→ true
23 −−−−FLK→ 23

(symbol captain) −−−−FLK→ ′captain

The primitive application (primop O E1 . . . En) denotes the result of ap-
plying the primitive operator named by O to the n values of the argument
expressions Ei . The behavior of most of the primitive operators should be ap-
parent from their names. E.g.,

(primop not? #t) −−−−FLK→ false
(primop integer? 1) −−−−FLK→ true
(primop integer? #t) −−−−FLK→ false
(primop + 1 2) −−−−FLK→ 3
(primop / 17 5) −−−−FLK→ 3 {integer division}
(primop rem 17 5) −−−−FLK→ 2
(primop sym=? (symbol captain) (symbol abstraction)) −−−−FLK→ false

(primop sym=? (symbol captain) (symbol Captain)) −−−−FLK→ true

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 201

The last example illustrates that FLK symbols are case-insensitive. The full list
of primitive operations is specified by the FL standard library in Section 6.2.3.

The value of a primitive application is not defined when primitive functions
are given the wrong number of arguments, when an argument has an unexpected
type, or when integer division or remainder by 0 is performed. These situations
are considered program errors:

(primop + 1) −−−−FLK→ error:too-few-args
(primop not? 1) −−−−FLK→ error:not-a-bool
(primop + #t 1) −−−−FLK→ error:not-an-integer

(primop / 1 0) −−−−FLK→ error:divide-by-zero

The abstraction (proc I E) specifies a procedural value that represents a
mathematical function. The application (call E1 E2) stands for the result of
applying the procedure denoted by E1 to the operand value denoted by E2 . It
is an error to use any value other than a procedure as an operator. Multiple-
argument procedures can be simulated by currying (see Section A.2.5.1).

(proc x (primop * x x)) −−−−FLK→ procedure
(call (proc x (primop * x x)) 5) −−−−FLK→ 25
(call (call (proc a (proc b (primop - b a))) 2) 3) −−−−FLK→ 1
(call 3 5) −−−−FLK→ error:non-procedural-rator
(call not? #t) −−−−FLK→ error:unbound-variable
{not? is a primop, not a variable name}

(call (proc x (call x x)) (proc x (call x x))) −−−−FLK→ ∞-loop

As in Haskell, FLK’s procedures are non-strict. This means that a call to
a procedure may return a value even if one of its arguments denotes an error
or a non-terminating computation. Intuitively, non-strictness indicates that an
expression will never be evaluated if the rest of the computation does not require
its value. For example:

(call (proc x 3) (primop / 1 0)) −−−−FLK→ 3
(call (proc x (primop + x 3))

(primop / 1 0)) −−−−FLK→ error:divide-by-zero
(call (proc x 3)

(call (proc x (call x x))

(proc x (call x x)))) −−−−FLK→ 3
(call (proc x (primop + x 3))

(call (proc x (call x x))

(proc x (call x x)))) −−−−FLK→ ∞-loop

Unlike FLK, most real-world languages (including C, Java, Pascal, Scheme,
and ML) have strict procedures. In these langauges, operands of procedure
applications are always evaluated, even if they are never referenced by the pro-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

202 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

cedure body.

The branch expression (if Etest Ethen Eelse) requires the value of Etest to
be a boolean, and evaluates one of Ethen or Eelse depending on whether the test
is true or false:

(if (primop > 8 7) (primop + 2 3) (primop * 2 3)) −−−−FLK→ 5
(if (primop < 8 7) (primop + 2 3) (primop * 2 3)) −−−−FLK→ 6
(if (primop - 8 7) (primop + 2 3) (primop * 2 3))

−−−−FLK→ error:non-bool-in-if-test

The pairing expression (pair Efst Esnd) is the means of gluing two values
together into a single value of the pair type. The values of the two components
can be extracted via the primitive operators fst and snd. A chain pairs linked
by their second components and terminated by the unit value is a standard way
of encoding a list:

(pair 1 (pair 2 (pair 3 #u))) −−−−FLK→ [1 , 2 , 3]

Like procedure calls, pairing in FLK is non-strict. The result of pair is always
a well-defined pair even if one (or both) of its argument expressions is not an
FLK value. The unspecified nature of a contained value can only be detected
when it is extracted from the pair.

(pair (primop not? #f) (primop / 1 0))

−−−−FLK→ 〈true, error:divide-by-zero〉
(primop fst (pair (primop not? #f) (primop / 1 0))) −−−−FLK→ true
(primop snd (pair (primop not? #f) (primop / 1 0)))

−−−−FLK→ error:divide-by-zero

As we shall see in Section 10.1.3, non-strict data structures are an important
mechanism for supporting modularity in programs.

We choose to make pair a special form rather than a primitive like not? or
+ to emphasize the fact that pairing is non-strict. If we made pair a primitive
operator, we would still have to treat it specially when we describe the semantics
of the primop form because all the other primitives are strict. Treating pair as
a special form provides a cleaner description of the semantics. This is a purely
stylistic decision; it is also possible to treat pair as a binary primitive operator
(see Exercise 6.20).

The recursion expression (rec I E) allows the expression of recursion equa-
tions over one variable. The value of the rec expression is the value of its body,
where the value of I within E is the value of the entire rec expression. That is,
the value returned by a recursion is the solution to the equation I = E. rec is
used to specify recursive procedures and data structures. For example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 203

(rec fact (proc n

(if (primop = n 0)

1

(primop * n (call fact (primop - n 1))))))

−−−−FLK→ procedure {A factorial procedure.}

(rec ones (pair 1 ones))

−−−−FLK→ [1 , 1 , 1 , . . .] {An infinite sequence of 1s.}

FLK programs are parameterized expressions. We use the notation P

−[V1 ,...,Vn]−−−−−−FLK → Vresult to indicate that running the FLK program P on argument
values V1 , . . ., Vn yields the result value Vresult . For example:

(flk (x) (* x x)) −[5]−−−FLK→ 25

(flk (a b) (/ (+ a b) 2)) −[2 ,8]−−−FLK→ 5

(flk (a b) (/ (+ a b) 2)) −[2 ,8 ,11]−−−−−FLK→ error:wrong-number-of-args
(flk (x nums)

(call (rec scale

(proc ys

(if (primop unit? ys) {Is ys the empty list?}
ys {If so, return it;}
(pair {otherwise, prepend the}
(primop * x (primop fst ys)) {scaled first number}
(call scale {to the result of scaling}

(primop snd xs)))))) {the rest of the numbers.}
nums)) −[4 ,[1 ,2 ,3]]−−−−−−FLK → [4 , 8 , 12]

The penultimate example illustrates that it is an error if the number of argu-
ments supplied to the program differs from the number of formal parameters
declared. The final example illustrates that FLK program arguments may in-
clude values other than integers, such as lists of integers in this case.

In general, the values considered to be valid program arguments will be a
proper subset of the values manipulated by a language. In languages such as
C and Java, program arguments must be strings, and these can be parsed into
other kinds of values (such as integers, floating-point numbers, arrays of num-
bers, etc.) where necessary. Program arguments are typically limited to literal
data with simple textual representations, which excludes procedural values as
program arguments. In the case of FLK, we shall assume that program argu-
ments may be any of the literal values (unit, booleans, integers, symbols) and
binary trees (i.e., trees with pair nodes) whose leaves are such literals. Since
s-expressions can be represented as such trees, this will allow us to write FLK
programs that manipulate representations of programming language ASTs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

204 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

This concludes our informal description of the semantics of FLK. While FLK
has considerably more expressive punch than PostFix or FL, expressing even
simple programs within FLK is rather cumbersome. In the next section, we will
see how to extend FLK to another language, FL, that maintains simplicity in
the semantics but yields a language in which it is practical to write (and read!)
non-trivial functional programs.

6.2.2 FL Syntactic Sugar

6.2.2.1 Syntactic Sugar Forms

P ∈ Program
D ∈ Def

SX ∈ SExp
E ∈ Exp
I ∈ Identifier
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}

P ::= (fl (Iformal*) Ebody Ddefinitions*) [Program]

D ::= (define Iname Evalue) [Definition]

E ::= . . . [FLK constructs]
| (lambda (Iformal*) Ebody) [Multi-Abstraction]
| (Erator Erand*) [Multi-Application]
| (list Eelement*) [List]
| (quote SX) [S-Expression]
| ’SX [S-Expression Shorthand]
| (cond (Etest Eaction)* (else Edefault)) [N-Way Branch]
| (scand Econjunct*) [Short-Circuit And]
| (scor Edisjunct*) [Short-Circuit Or]
| (let ((Ivar Edefn)*) Ebody) [Local Binding]
| (letrec ((Ivar Edefn)*) Ebody) [Recursive Binding]

SX ::= I [Symbol]
| #u [Unit]
| B [Boolean]
| N [Integer]
| (SX elt*) [List]

Figure 6.2: Grammar for FL syntactic sugar.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 205

The syntax of FL’s syntactic abbreviations are specified in the grammar
presented in Figure 6.2. In the definition of E, the ellipses . . . stand for all
the expression productions in the FLK grammar. The new expression forms
in Figure 6.2 can be used anywhere the nonterminal E appears in the kernel
FLK constructs as well as in the new syntactic abstractions. We first explain
informally the meaning of each abbreviation before showing how to desugar
them into FLK. Many of these syntactic abbreviations are inspired by constructs
in Lisp dialects, but we shall see that some of them have somewhat different
meanings in FL than in Lisp.

FL’s lambda construct can bind any number (possibly zero) of identifiers
within a procedure body. In the tagless multi-application form, a procedure
can be applied to any number (possibly zero) of arguments. Because multi-
applications are the only tagless form, the lack of an explicit tag is not am-
biguous. Because applications tend to be the most common kind of compound
expression, eliminating the explicit tag for this case makes expressions more con-
cise. The multi-abstraction and multi-application forms are inspired by Scheme
syntax. Unlike Scheme, FL supports implicit currying with these constructs.
For example, suppose that Eabs3 is the three-parameter multi-abstraction

(lambda (a b c) (primop * a (primop + b c))).

Then (Eabs3 2 3 4) denotes 14 , (Eabs3 2 3) denotes the same procedure as
(lambda (c) (primop * 2 (primop + 3 c))), and (Eabs3 2) denotes the same
procedure as (lambda (b c) (primop * 2 (primop + b c))).

The list construct is a shorthand for creating lists by a sequence of nested
pairings. (list E1 . . . En) constructs a unit-terminated, chain of n pairs
linked by their second components where the value of Ei is the value of the
first element of the ith pair in the chain. For example,

(list (primop + 1 2) (primop = 3 4) (pair 4 5))

is equivalent to

(pair (primop + 1 2)

(pair (primop = 3 4)

(pair (pair 4 5)

#u))).

The quote construct facilitates the construction of s-expressions , which
are recursively defined to be literals (unit, numeric, boolean, and symbolic) and
lists of s-expressions. Quoted s-expressions are a very concise way to specify tree-
structured data. The quote form can be viewed as a means of a constructing a
tree from a printed representation of the tree. For example, the s-expression

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

206 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

(quote (1 (#t three) (four 5 six)))

is a shorthand for

(list 1

(list #t (symbol three))

(list (symbol four) 5 (symbol six))).

To make the abbreviation even more concise, we adopt the Lisp convention
that ’SX is a shorthand for (quote SX), so the above example can also be
written ’(1 (#t three) (four 5 six)). The ability to express s-expressions
so concisely with the quotation forms makes them very handy for specifying
programs that manipulate program phrases from languages with s-expression
syntax. For example, the PostFix program (postfix 1 (2 mul) exec) can
be represented as the FL s-expression form ’(postfix 1 (2 mul) exec).

The cond construct is an n-way conditional branch that stands for a nested
sequence of if expressions. For example,

(cond ((primop > temp 80) (symbol hot))

((primop < temp 50) (symbol cold))

(else (symbol mild)))

is equivalent to

(if (primop > temp 80)

(symbol hot)

(if (primop < temp 50)

(symbol cold)

(symbol mild))).

The scand and scor expressions provide for so-called short-circuit eval-
uation of boolean conjunctions and disjunctions, respectively. If a false value
is encountered in the left-to-right evaluation of the conjuncts of a scand form,
then the result of the form is the false value, regardless of whether subsequent
conjuncts contain errors or infinite loops. So

(scand (primop = 1 2) (primop / 3 0))

evaluates to false but

(scand (primop / 3 0) (primop = 1 2))

signals a divide-by-zero error. Similarly, if a true value is encountered in the
left-to-right evaluation of the disjuncts of a scor form, then the result of the
form is the true value, regardless of whether the subsequent disjuncts contain
errors or infinite loops.

The (let ((I1 E1) . . . (In En)) E0) expression evaluates E0 in a con-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 207

text where the names I1 . . . In are bound to the values of the expressions E1 . . .
En . For example,

(let ((a (primop * 4 5))

(b (primop + 3 4)))

(/ (primop + a b) (primop - a b)))

evaluates to 2 .
The (letrec ((I1 E1) . . . (In En)) Ebody) expression is similar to the

let expression except that the names I1 . . . In are visible inside of the expressions
E1 . . . En . The letrec expression is similar to the rec expression, except that
it can be thought of as solving a group of mutually recursive equations. For
example,

(letrec ((even? (lambda (x)

(if (primop = x 0)

#t

(odd? (primop - x 1)))))

(odd? (lambda (y)

(if (primop = y 0)

#f

(even? (primop - y 1))))))

(list (even? 0) (odd? 1) (odd? 2) (even? 3)))

evaluates to [true, true , false, false].
The top-level program construct (program (Iformals*) Ebody Ddefinitions*)

evaluates the body expression Ebody in a context where

• the formal program parameters Iformals* are bound to the program argu-
ments;

• the definition names Ddefinitions* in are bound to the values of the corre-
sponding definition expressions;

• and each member of a set of standard identifiers (names in the standard
library) is bound to the value specified by the library.

The advantage of a standard library is that many primitive constants and pro-
cedures can be factored out of the syntax of the language. Of course, it is still
necessary to specify the components of the library somewhere in a language de-
scription. Typically the library is specified by listing all elements in the library
along with a description of the semantics of each one. We will do this for the
FL library in Section 6.2.3.

Definitions make it convenient to name top-level values (typically procedures)
that are used within Ebody . The value expressions of the definitions are evaluated

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

208 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

in a mutually recursive context: the expression in a definition may refer to any
name introduced by the definitions.

Consider the following sample FL program:

(fl (ns) (pair (map even? ns) (map odd? ns))

(define even? (lambda (x)

(if (= x 0)

#t

(odd? (- x 1)))))

(define odd? (lambda (y)

(if (= y 0)

#f

(even? (- y 1)))))

(define map (lambda (f xs)

(if (unit? xs)

xs

(pair (f (fst xs))

(map f (snd xs)))))))

The body expression (pair (map even? ns) (map odd? ns)) refers to the
procedures even?, odd?, and map defined via definitions within P. As above,
even? and odd? are mutually recursive. The fact that standard identifiers are
bound to appropriate procedures in the program body and definitions means
that =, -, unit?, fst, and snd can all be used without the primop tag.

6.2.2.2 Desugaring

The transformation that desugars FL into FLK is presented in Figures 6.3
and 6.4. The transformation is specified by two desugaring functions:

1. Dexp maps an FL expression to a FLK expression.

2. Dprog maps FL programs to FLK programs.

As these desugaring functions walk down FL program and expression ASTs,
they perform local transformations that replace the syntactic sugar constructs
of FL by FLK constructs. Some clauses of the functions require the introduction
of an identifier. In these cases, we want to ensure that the name does not conflict
with any identifiers used by the programmer (or other identifiers introduced by
the rules themselves). An implementation of the desugaring rules will include
a way to generate such new names. We refer to these variables as fresh. (See
page 237 for further discussion of fresh variables.)

In Figure 6.3, the top clauses descend the syntactic constructs of FL that are
inherited from FLK, recursively applying Dexp to all subexpressions. This will

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 209

Dexp : ExpFL → ExpFLK

Dexp[[L]] = L
Dexp[[I]] = I
Dexp[[(primop O E1 . . . En)]] = (primop O Dexp[[E1]] . . . Dexp[[En]])
Dexp[[(call E1 E2)]] = (call Dexp[[E1]] Dexp[[E2]])
Dexp[[(if Etest Ethen Eelse)]] = (if Dexp[[Etest]] Dexp[[Ethen]] Dexp[[Eelse]])
Dexp[[(pair Efst Esnd)]] = (pair Dexp[[Efst]] Dexp[[Esnd]])
Dexp[[(rec Ivar Ebody)]] = (rec Ivar Dexp[[Ebody]])
Dexp[[(error Imsg)]] = (error Imsg)

Dexp[[(lambda () E)]] = (proc Ifresh Dexp[[E]]) , where Ifresh is fresh
Dexp[[(lambda (I) E)]] = (proc I Dexp[[E]])
Dexp[[(lambda (I1 Irest

+) E)]] = (proc I1 Dexp[[(lambda (Irest
+) E)]])

Dexp[[(E)]] = (call Dexp[[E]] #u)
Dexp[[(E1 E2)]] = (call Dexp[[E1]] Dexp[[E2]])
Dexp[[(E1 E2 Erest

+)]] = Dexp[[((call E1 E2) Erest
+)]]

Dexp[[(list)]] = #u

Dexp[[(list E1 Erest*)]] = (pair Dexp[[E1]] Dexp[[(list Erest*)]])

Dexp[[(quote #u)]] = #u

Dexp[[(quote B)]] = B
Dexp[[(quote N)]] = N
Dexp[[(quote I)]] = (symbol I)
Dexp[[(quote (SX 1 . . . SX n))]] = Dexp[[(list (quote SX 1) . . . (quote SX n))]]

Dexp[[(cond (else Edefault))]] = Dexp[[Edefault]]
Dexp[[(cond (Etest1 Eaction1) (Etesti Eactioni)* (else Edefault))]]
= (if Dexp[[Etest1]]

Dexp[[Eaction1]]
Dexp[[(cond (Etesti Eactioni)* (else Edefault))]])

Dexp[[(scand Econjunct*)]] and Dexp[[(scor Edisjunct*)]] Left as exercises.

Dexp[[(let ((I1 E1) . . . (In En)) E0)]]
= Dexp[[((lambda (I1 . . . In) E0) E1 . . . En)]]

Dexp[[(letrec ((I1 E1) . . . (In En)) E0)]]
= Dexp[[(call (rec IchurchList

(proc Iselector
(Iselector (IchurchList (lambda (I1 . . . In) E1))

...

(IchurchList (lambda (I1 . . . In) En)))))
(lambda (I1 . . . In) E0))]]

where IchurchList 6= Iselector are fresh and 6∈
⋃n
i = 0 FreeIds [[Ei]]

Figure 6.3: Desugaring FL expressions into FLK expressions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

210 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Dprog : ProgramFL → ProgramFLK

Dprog [[(fl (Iformal*) Ebody (define I1 E1) . . . (define In En))]]
= (flk (Iformal*)

Dexp[[(let ((unit? (lambda (x) (primop unit? x)))

(boolean? (lambda (x) (primop boolean? x)))
...

(+ (lambda (x y) (primop + x y)))
...

(unit #u)

(true #t)

(false #f)

(cons (lambda (x y) (pair x y)))

(car (lambda (p) (primop fst p)))

(cdr (lambda (p) (primop snd p)))

(null? (lambda (x) (primop unit? x)))

(null (lambda () #u))

(nil #u)

(equal? . . .) {Definition of this predicate left as an exercise.})
)

(letrec ((I1 E1)
...

(In En))
Ebody))]]

Figure 6.4: Desugaring FL programs into FLK programs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 211

expand any syntactic sugar constructs appearing in the subexpressions. Note
that Dexp acts as the identity function when applied to an FLK expression.

The rules for desugaring multi-abstraction into proc and multi-applications
into call are based on the same currying trick that we use extensively in the
metalanguage. (See Exercise 6.15 for an alternative approach to desugaring these
constructs.) The recursive list desugaring creates a unit-terminated chain of
pairs. The recursive quote desugaring descends an s-expression tree and builds
up a corresponding tree of pairs with constants as leaves. The cond construct
desugars into a nested sequence of ifs. The scand and scor desugarings are
left as exercises.

A let desugars into an application of an abstraction. This underscores the
fact that abstractions are a fundamental means of naming in FL. Note that
E1 . . . En are outside the scope of I1 . . . In and therefore cannot refer to the
variables named by these identifiers.

However, in a letrec, the E1 . . . En are inside the scope of I1 . . . In and
should refer to the variables named by these identifiers. Achieving this effect is
challenging. We will present the desugaring in two stages. Suppose that nth is
a standard identifier bound to a procedure that takes a list and an integer n and
returns the nth element of the list (where elements are numbered from 1 up).
Then an almost-correct desugaring for letrec is:

Dexp[[(letrec ((I1 E1) . . . (In En)) E0)]]
=
Dexp[[(let ((Iouter (rec Iinner

(let ((I1 (nth Iinner 1))
...

(In (nth Iinner n)))
(list E1 . . . En)))))

(let ((I1 (nth Iouter 1))
...

(In (nth Iouter n)))
E0))]]

where Iouter 6= Iinner are fresh identifiers

and Iouter , Iinner 6∈ ⋃n
i = 0 FreeIds [[Ei]]

FreeIds is defined in Section 6.3.1 and in Figure 6.10. Assume for the moment
that Iouter and Iinner are brand new names that don’t conflict with any other
names.

The basic idea of the desugaring is this: since rec can only find a single
fixed point, design that fixed point to be a list of the n fixed points we really
want. Inside the rec, the value of formal Iinner (which is a list of length n)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

212 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

is destructured into its n elements, and the list expression is evaluated in a
context where Ii is bound to the ith element of the list. Since let and list are
both non-strict in FL, the solution to the rec is nontrivial. The name Iouter is
bound to the solution of the rec and this list of length n is similarly destructured
so that the body expression E0 can be evaluated in a context where each Ii is
bound to its individual solution.

The above result is an adequate desugaring, but it is complicated, and its use
of the standard identifier nth is not only unaesthetic but also can lead to bugs
due to name capture. For this reason, we will present an alternative desugaring
that is more elegant. This desugaring is based on the same idea but represents
lists as procedures. In this representation, which we shall call a Church list,
an n-element list is a unary procedure whose single argument is an n-argument
selector procedure that is applied to the n elements of the list. If IchurchList is
bound to an n-element Church list, then the application

(IchurchList (lambda (I1 . . . In) Ii))

extracts the ith element of the list. More generally, the application

(IchurchList (lambda (I1 . . . In) E))

returns the value of E in a context where each Ii is bound to the ith element of
the list. Church lists give rise to the desugaring for recursive bindings shown in
Figure 6.3.

Dprog is defined by a single clause, which transforms the definitions and
body of a program using the let and letrec constructs. The desugaring makes
standard identifiers available to the definitions and the body of the program by
using an outer let to binding them to functions that perform the corresponding
primitive applications via primop. Since multi-argument lambdas are used in the
bindings, functions associated with the binary function names are appropriately
curried. For example, in an FL program, (+ 1) stands for the incrementing
function. The standard identifier cons makes FLK’s pair construct available
as a curried FL procedure, and the traditional Lisp names car, cdr, null?, and
nil are provided as synonyms for fst, snd, unit?, and #u. There are a few other
handy synonyms as well. The mutually recursivene nature of the definitions is
implemented by desugaring them into a letrec.

Note that Dexp is applied once again to the result of Dexp on letrec and
Dprog on program.

¤ Exercise 6.1 Provide the missing desugarings for FL’s scand and scor constructs

(see Figure 6.3). ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 213

¤ Exercise 6.2 The desugaring for letrec in Figure 6.4 requires a pair of fresh
identifiers. There is another desugaring for letrec that requires no fresh identifiers
whatsoever. This desugaring has a recursive structure not exhibited by the other ver-
sions. Below is a skeleton of the desugaring.

Dexp[[(letrec ((I1 E1) . . . (In En)) E0)]]
=
Dexp[[(let ((I1 (rec I1 21)) . . . (In (rec In 2n))) E0)]]

where the boxes 2i are to be filled in appropriately.

a. Give the general form for expressions that fill the boxes 2i in such a way that
the above skeleton defines a correct desugaring for letrec.

b. Using your approach, how many recs will appear in a desugaring of a letrec

with 5 bindings?

c. Give a closed form solution for the number of recs that will appear in a desugaring
of a letrec with n bindings.

d. Comment on the practicality of this letrec desugaring. ¢

¤ Exercise 6.3 Two constructs are said to be idempotent (roughly, “of equal power”)
if each can be expressed as a desugaring into the other. For example, multi-argument
procedures and single-argument procedures are idempotent: multi-argument abstrac-
tions and calls can be desugared into single-argument ones via currying; and single-
argument abstractions and calls are a special subcase of the multi-argument ones. On
the other hand, pairs and procedures are not idempotent; although Church’s techniques
give a desugaring of pairs into procedures, procedure abstractions and calls cannot be
desugared into pairs.

We have considered a version of FLK where rec is the kernel recursion construct

and FL’s letrec is desugared into rec. Show that rec and letrec are idempotent by

providing a desugaring of rec into letrec. ¢

¤ Exercise 6.4 Many Lisp dialects support an alternative version of define for
constructing new functions. The syntax is of the form

(define (function-name arg-1 . . . arg-n) function-body)

For example, the squaring function can be defined as:

(define (square x) (* x x))

Extend the desugaring for FL to handle this syntax. Hint: It is easier to add another

processing step for definitions rather than modifying the desugaring of program expres-

sions. ¢

¤ Exercise 6.5 It is often useful for the value of a let-bound variable to depend on
the value of a previous let-bound variable. In the current version of FL, achieving this

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

214 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

behavior requires nested let expressions. For example:

(let ((r (+ 1 2)))

(let ((square-r (* r r)))

(let ((circum (* 2 (* pi square-r))))

. . . code using r, square-r, and circum . . .
)))

Many Lisp dialects support a let* construct that looks just like let except that its
variables are guaranteed to be bound to their associated values in the order that they
appear in the list of bindings. A val expression in let* can refer to the result of
a previous binding within the same let*. Using let*, the above example could be
rendered:

(let* ((r (+ 1 2))

(square-r (* r r))

(circum (* 2 (* pi square-r))))

. . . code using r, square-r, and circum . . .
)

Write an appropriate desugaring for let*. ¢

¤ Exercise 6.6 It is common to create locally recursive procedures and then call
them immediately to start a process. For example, iterative factorial can be expressed
in FL as:

(define fact

(lambda (n)

(letrec ((iter (lambda (num ans)

(if (= num 0)

ans

(iter (- num 1) (* num ans))))))

(iter n 1)))))

Some versions of Lisp have a “named let” or “let loop” construct that makes this
pattern easier to express. The construct is of the form

(let Iname ((Ivar Eval)*) Ebody)

It looks like a let expression except that it has an additional identifier Iname . The n
variables Ivar are first bound to the values Eval and then the Ebody is evaluated in a
context where these bindings are in effect and the name Iname refers to a procedure
of the n variables Ivar that computes Ebody . Using named let, the iterative factorial
construct can be expressed more succinctly as:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 215

(define fact

(lambda (n)

(let iter ((num n) (ans 1))

(if (= num 0)

ans

(iter (- num 1) (* num ans))))))

Extend the desugaring for let to handle named let. ¢

¤ Exercise 6.7 In FL, definitions are only allowed within the program construct

at “top-level”; yet a local form of definition within lambda and let expressions would

often be useful. Generalize the idea of definitions by modifying FL to support local

definitions. Design a syntax for your change, and show how to express it in terms of a

desugaring. ¢

¤ Exercise 6.8 Ben Bitdiddle is upset by the desugaring for nullary (i.e., zero-
argument) abstractions and applications. He argues (correctly) that, according to the
desugarings, the FL expression ((lambda (x) x)) will return #u. He believes that
evaluating this expression should give an error.

One way to fix this problem is to package up multiple arguments into some sort of
data structure. See Exercise 6.15 for an example of this approach. Here we will consider
other approaches for handling nullary abstractions and applications.

a. Bud Lojack suggests desugaring (lambda () E) into E and (E) into E. Give
examples of FL expressions that have a questionable behavior under this desug-
aring.

b. Paula Morwicz suggests a desugaring in which

Dexp[[(E)]] = (call (call Dexp[[E]] #t) #u)

Dexp[[(E1 E2)]] = (call (call Dexp[[E1]] #f) Dexp[[E2]])
Dexp[[(E1 E2 Erest

+)]] = ((call (call Dexp[[E1]] #f) Dexp[[E2]])
Dexp[[Erest

+]])

i. Give the corresponding desugarings for multi-abstractions.

ii. What value does ((lambda (x) x)) have under this desugaring?

c. Ben reasons that the fundamental problem exhibited by the nullary desugarings
is that there is no way to call a procedure without passing it an argument. He
decides to extend FLK with the following kernel forms for parameterless proce-
dures:

(freeze E): Return a “frozen” value that suspends the evaluation of E.

(thaw E): Unsuspends the expression frozen within a frozen value. Gives
an error if called on any value other than one created by freeze.

Show how freeze and thaw can be used to fix Ben’s problem.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

216 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

d. Sam Antix doesn’t like the fact that multi-abstractions and multi-applications
both have three desugaring clauses. Figuring that only two clauses should suffice
in each case, he develops the following desugaring rules based on Ben’s freeze
and thaw commands:

Dexp[[(lambda () E)]] = Dexp[[(freeze E)]]
Dexp[[(lambda (I1 Irest*) E)]]
= (proc I1 Dexp[[(lambda (Irest*) E)]])

Dexp[[(E)]] = Dexp[[(thaw E)]]
Dexp[[(E1 Erest*)]] = Dexp[[((call E1 E2) Dexp[[Erest*]])]]

Discuss the strengths and weaknesses of Sam’s desugaring. ¢

¤ Exercise 6.9† Show that a desugaring process based on the rules in Figures 6.3

and 6.4 is guaranteed to terminate. ¢

6.2.3 The FL Standard Library

The FL standard library is shown in Figure 6.5. All of FLK’s primitives (those
names that can be used in primop) are included as curried procedures. Note
that FL only supports integers and not floating point numbers, so arithmetic
operations like +, *, <=, etc. only work on integers. It would be straightforward
to extend FL to support floating point numbers, and in some code examples
it will be convenient to assume that FL does support floating point numbers.
In such examples, we will use arithmetic operation names prefixed with f to
indicate floating point operations: e.g., f+, f*, and f<=.

The standard library also includes a number of other standard identifiers
that are convenient, such as constants (unit, true, false, and nil), Scheme-
style operations on lists (cons, car, cdr, null?), a generic binary equality tester
(equal?) that tests for equality between any two FL values that are not proce-
dures.

6.2.4 Examples

Although FL is a toy language, it packs a fair bit of expressive punch. In this
section, we illustrate the expressive power of FL in the context of a few examples.

6.2.4.1 List Utilities

As a simple example of FL procedures, consider the list procedures in Figure 6.6.
The list? procedure takes a value and determines if it is a list – i.e., a sequence
of pairs terminated with the unit value. The length procedure returns the length

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 217

Primitives (can be used in primop):
unit? Unary type predicate for the unit value.
boolean? Unary type predicate for booleans.
integer? Unary type predicate for integers.
symbol? Unary type predicate for symbols.
procedure? Unary type predicate for procedures (i.e., a functional value).
pair? Unary type predicate for pairs.

not? Unary boolean negation.
and? Binary boolean conjunction (not short-circuit).
or? Binary boolean disjunction (not short-circuit).
bool=? Binary boolean equality predicate.

+ Binary integer addition.
- Binary integer subtraction.
* Binary integer multiplication.
/ Binary integer division.
% Binary integer remainder.
= Binary integer equality predicate.
!= Binary integer inequality predicate.
< Binary integer less-than predicate.
<= Binary integer less-than-or-equal-to predicate.
> Binary integer greater-than predicate.
>= Binary integer greater-than-or-equal-to predicate.

sym=? Binary symbol equality.

fst Unary selector of the first element of a given pair.
snd Unary selector of the second element of a given pair.

Other Standard Identifiers:
unit The unit value.
true Boolean truth.
false Boolean falsity.

cons Binary list constructor.
car Unary list selector — head of list.
cdr Unary list selector — tail of list.
nil The empty list (synonym for the unit value).
null Unary empty list constructor.
null? Unary empty list predicate.

equal? Generic binary equality test

Figure 6.5: FL Standard Library.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

218 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

of a list. The member? procedure determines if a value is an element of a list.
The merge procedure takes a less-than-or-equal-to predicate leq and two lists
xs and ys that are assumed to be sorted according to this predicate and returns
the sorted list containing all the elements of both lists (including duplicates, if
any). The alts procedure returns a pair of (1) all the odd-indexed3 elements
and (2) all the even-indexed elements of a given list, preserving the relative
order of elements in each sublist. The merge-sort procedure takes an ordering
predicate and a list of elements and returns a list of the same elements ordered
according to the ordering predicate.

Here are some sample uses of these procedures:

(list? 17) −−−FL→ false
(list? (list 7 2 5)) −−−FL→ true

(list? (pair 3 (pair 4 5))) −−−FL→ false

(length (list)) −−−FL→ 0

(length (list 7 2 5)) −−−FL→ 3

(member? 2 (list 7 2 5)) −−−FL→ true
(member? 17 (list 7 2 5)) −−−FL→ false

(member? ’* ’(+ - * /)) −−−FL→ true

(merge < (null) (list 3 4 6)) −−−FL→ [3 , 4 , 6]

(merge < (list 1 6 8) (list 3 4 6)) −−−FL→ [1 , 3 , 4 , 6 , 6 , 8]

(alts (null)) −−−FL→ 〈[], []〉
(alts (list 7)) −−−FL→ 〈[7], []〉
(alts (list 7 2)) −−−FL→ 〈[7], [2]〉
(alts (list 7 2 4 5 1 4 3)) −−−FL→ 〈[7 , 4 , 1 , 3], [2 , 5 , 4]〉

(merge-sort <= (list 7 2 4 1 5 4 3)) −−−FL→ [1 , 2 , 3 , 4 , 4 , 5 , 7]
(merge-sort >= (list 7 2 4 1 5 4 3)) −−−FL→ [7 , 5 , 4 , 4 , 3 , 2 , 1]
(merge-sort (lambda (a b) (<= (% a 4) (% b 4)))

(list 7 2 4 1 5 4 3)) −−−FL→ [4 , 4 , 1 , 5 , 7 , 2 , 3]

3Assume that list elements are indexed starting with 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 219

6.2.4.2 An ELM Interpreter

As a more interesting example of an FL program, in Figure 6.7 we use FL to
write an interpreter for the ELM subset of the EL language (Exercise 3.10).
Recall that ELM is EL without conditional and boolean expressions. The
elm-eval procedure evaluates an ELM expression relative to a list of num-
bers, args, which are the the program inputs. ELM expressions are represented
as FL s-expressions. elm-eval is written as a dispatch on the type of expression,
which is determined by the syntax predicates lit?, arg?, and arithop?. The
selectors lit-num, arg-index, arithop-op, arithop-rand1, arithop-rand2

extract components of syntax nodes. The arg-index procedure returns the
indexth element of the given list nums (where indices are assumed to start at
1). The primop->proc procedure converts a symbol (such as ’+) to a binary
FL procedure (such as the addition procedure +).

Here are some examples of the elm-eval procedure in action:

(elm-eval ’(* (arg 1) (arg 1)) ’(5)) −−−FL→ 25
(elm-eval ’(/ (+ (arg 1) (arg 2)) 2) ’(6 8)) −−−FL→ 7
(elm-eval ’(+ (arg 1) (arg 2)) ’(3)) −−−FL→ error:arg-index-out-of-bounds

6.2.4.3 A Pattern Matcher

Programs that match a pattern against a tree structure are so useful that they
should be part of every programmer’s bag of tricks. Figures 6.8 and 6.9 present
a simple pattern matching program written in FL.

The pattern matcher manipulates trees represented as s-expressions. Pat-
terns are trees whose leaves are either constants (unit, booleans, integers, or
symbols) or pattern variables. We represent the pattern variable named I by
the s-expression (? I). Because of this convention, the symbol ? is considered
special and should never be used as one of the symbol constants in the pattern
or the structure being matched. Examples of legal patterns include:

(? pat)

(The (? adjective) programmer (? adverb) hacked (? noun))

((? a) is equal to (? a))

(((? a) (? b)) is the reflection of ((? b) (? a)))

A pattern p matches an s-expression s if there is some set of bindings between

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

220 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

(define list?

(lambda (val)

(scor (null? val)

(scand (pair? val) (list? (snd val))))))

(define length

(lambda (lst)

(if (null? lst)

0

(+ 1 (length (cdr lst))))))

(define member?

(lambda (elt lst)

(scand (not (null? lst))

(scor (equal? elt (car lst))

(member? elt (cdr lst))))))

(define merge

(lambda (leq xs ys)

(cond ((null? xs) ys)

((null? ys) xs)

((leq (car xs) (car ys))

(cons (car xs) (merge leq (cdr xs) ys)))

(else

(cons (car ys) (merge leq xs (cdr ys)))))))

(define alts

(lambda (ws)

(if (null ws)

(pair (null) (null))

(let ((alts-rest (alts (cdr ws))))

(pair (cons (car ws) (snd alts-rest))

(fst alts-rest))))))

(define merge-sort

(lambda (leq zs)

(if (scor (null? zs) (null? (cdr zs)))

zs

(let ((split (alts zs)))

(merge (fst split) (snd split))))))

Figure 6.6: Some list procedures written in FL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 221

(fl (pgm args)

(cond ((not? (elm-program pgm)) (error ill-formed-program))

((not? (list? args)) (error ill-formed-argument-list))

((not? (= (elm-nargs pgm) (length args)))

(error wrong-number-of-args))

(else (elm-eval (elm-body pgm) args)))

(define elm-eval

(lambda (exp args)

(cond ((lit? exp) (lit-num exp))

((arg? exp) (get-arg (arg-index exp) args))

((arithop? exp)

((primop->proc (arithop-op exp))

(elm-eval (arithop-rand1 exp) args)

(elm-eval (arithop-rand2 exp) args)))

(else (error illegal-expression)))))

(define get-arg

(lambda (index nums)

(cond ((scor (<= index 0) (null? nums))

(error arg-index-out-of-bounds))

((= index 1) (car nums))

(else (get-arg (- index 1) (cdr nums))))))

(define primop->proc

(lambda (sym)

(cond ((sym=? sym ’+) +) ((sym=? sym ’-) -)

((sym=? sym ’*) *) ((sym=? sym ’/) /)

(else (error illegal-op)))))

;; Abstract syntax

(define elm-program?

(lambda (sexp)

(scand (list? sexp) (= (length sexp) 3) (sym=? (car exp) ’elm))))

(define elm-program-nargs (lambda (sexp) (car (cdr sexp))))

(define elm-program-body (lambda (sexp) (car (cdr (cdr sexp)))))

(define lit? integer?)

(define lit-num (lambda (lit) lit))

(define arg?

(lambda (exp)

(scand (list? exp) (= (length exp) 2) (sym=? (car exp) ’arg))))

(define arg-index (lambda (exp) (car (cdr exp))))

(define arithop?

(lambda (exp)

(scand (list? exp) (= (length exp) 3) (member? (car exp) ’(+ - * /)))))

(define arithop-op (lambda (exp) (car exp)))

(define arithop-rand1 (lambda (exp) (car (cdr exp))))

(define arithop-rand2 (lambda (exp) (car (cdr (cdr exp)))))

;; List utilities

(define list? (lambda (sexp) . . .))
(define length (lambda (xs) . . .))
(define member? (lambda (x xs) . . .))

Figure 6.7: An interpreter for ELM, a subset of EL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

222 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

pattern variables and s-expressions such that instantiating the variables with
their bindings in p yields s. Constraints on the form of the pattern can be
specified by using the same pattern variable in more than one place.

For example, consider the pattern ((? a) is equal to (? a)). It matches
the following two s-expressions:

(1 is equal to 1) and

((Ben Bitdiddle) is equal to (Ben Bitdiddle))

but not

(1 is equal to 2) or

(Ben Bitdiddle is equal to Ben Bitdiddle)

In the final example, Ben Bitdiddle is two s-expressions and cannot be matched
by a single pattern.

The entry point of the pattern matcher is the match-sexp procedure, which
takes a pattern and an s-expression as arguments. If the pattern does not
match the s-expression, match-sexp returns the symbol *failed*. Otherwise,
match-sexp returns a dictionary structure that contains pattern variable bind-
ings that make the match successful. match-sexp just passes responsibility to
match-with-dict, which does the real work.

In addition to a pattern and an s-expression, match-with-dict takes a dic-
tionary. It matches the pattern to the s-expression in the context of the dictio-
nary. That is, any match of a variable in the pattern must be consistent with the
binding that is already in the dictionary. In high-level terms, match-with-dict
performs a left-to-right depth-first walk in lock-step over both the pattern tree
and s-expression tree. A dictionary representing the bindings of variables seen
so far flows along this depth-first path. Along the path, the matching process
checks whether:

• an internal node of the pattern tree has the same number of subtrees as
the corresponding internal node of the s-expression.

• a constant leaf in the pattern is matched by exactly the same constant leaf
in the corresponding position of the pattern.

• a variable leaf in the pattern is matched by an s-expression that is consis-
tent with the bindings represented by the current dictionary.

A successful check allows the dictionary to flow to the next part of the path, pos-
sibly extended with a new binding. After an unsuccessful check, the dictionary
is replaced by a failure symbol that propagates through the rest of the path.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 223

(define match-sexp (lambda (pat sexp)

(match-with-dict pat sexp (dict-empty))))

(define match-with-dict

(lambda (pat sexp dict)

(cond ((failed? dict) dict) ; Propagate failures.

((null? pat)

(if (null? sexp)

dict ; PAT and SEXP both ended.

(fail))) ; PAT ended but SEXP didn’t.

((null? sexp) (fail)) ; SEXP ended but PAT didn’t.

((pattern-constant? pat)

(if (sexp=? pat sexp) dict (fail)))

((pattern-variable? pat)

(dict-bind (pattern-variable-name pat) sexp dict))

(else (match-with-dict (cdr pat)

(cdr sexp)

(match-with-dict (car pat)

(car sexp)

dict))))))

(define pattern-variable?

(lambda (pat) (if (pair? pat)

(sexp=? (car pat) ’?)

#f)))

(define pattern-variable-name (lambda (sexp) (car (cdr sexp))))

(define pattern-constant?

(lambda (p) (or (symbol? p) (integer? p) (boolean? p) (unit? p))))

(define fail (lambda () ’*failed*))

(define failed? (lambda (dict) (sexp=? dict ’*failed*)))

Figure 6.8: A pattern matcher in FL, part 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

224 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

There are many possible representations for dictionaries. We represent a
dictionary as a list of bindings, where each binding is a pair of a pattern variable
identifier and the associated s-expression.

Examples of using match-sexp:

(match-sexp ’(a short sentence) ’(a short sentence))

−−−FL→ [] {Match succeeds with the empty dictionary.}

(match-sexp ’(a short sentence) ’(a longer sentence))

−−−FL→ ′∗failed∗ {Match failed.}

(match-sexp ’((? article) (? adjective) sentence)

’(a longer sentence))

−−−FL→ [〈 ′article , ′a〉, 〈 ′adjective , ′longer 〉]

;; Can make use of FL’s currying

(define m1 (match-sexp ’((a (b (? c))) (((? c) b) a))))

(m1 ’((a (b (c (d)))) (((c (d)) b) a))) −−−FL→ [〈 ′c, [′c, [′d]]〉]

(m1 ’((a (b (c (d)))) ((((d) c) b) a))) −−−FL→ ′∗failed∗

6.3 Variables and Substitution

Intuitively, the meaning of an FLK abstraction (proc I E) shouldn’t depend
on the particular name chosen for I, which is known as its formal parameter.
Just as we expect the meaning of an integral to be independent of the choice
of the variable of integration (so that

∫ b
a f(x)dx =

∫ b
a f(y)dy), we expect the

meaning of an FLK abstraction to be invariant under a change to the name of its
variable. Thus, the identity abstraction (proc a a) should also be expressible
as (proc x x) or (proc square square). Furthermore, the variable references
named by a, x, and square are logically distinct from any variable references
coincidentally sharing the same name in other expressions.

This section formalizes this intuition about variables in FLK expressions.

6.3.1 Terminology

First, it’s important to tease apart several related but distinct concepts in our
terminology concerning names. We reserve the word variable for the logi-
cal entity that is introduced by an abstraction and is referenced by a variable
reference. The word identifier designates the name that stands for a given
variable within an expression. The identity abstraction discussed above has a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 225

;;; Dictionaries

(define dict-bind

(lambda (sym1 sexp dict)

(let ((value (dict-lookup sym1 dict)))

(cond ((unbound? value)

(dict-adjoin-binding (binding-make sym1 sexp) dict))

((sexp=? value sexp) dict)

(else (fail))))))

(define dict-lookup

(lambda (name dict)

(cond ((dict-empty? dict) (unbound))

((sym=? name (binding-name (dict-first-binding dict)))

(binding-value (dict-first-binding dict)))

(else (dict-lookup name (dict-rest-bindings dict))))))

(define dict-empty (lambda () (list)))

(define dict-empty? null?)

(define dict-adjoin-binding cons)

(define dict-first-binding car)

(define dict-rest-bindings cdr)

(define unbound (lambda () ’*unbound*))

(define unbound? (lambda (sym) (sexp=? sym ’*unbound*)))

;;; Bindings

(define binding-make cons)

(define binding-name car)

(define binding-value cdr)

;; Utilities

(define sexp=?

(lambda (obj1 obj2)

(cond ((unit? obj1) (unit? obj2))

((and (boolean? obj1) (boolean? obj2)) (boolean=? obj1 obj2))

((and (integer? obj1) (integer? obj2)) (= obj1 obj2))

((and (symbol? obj1) (symbol? obj2)) (sym=? obj1 obj2))

((and (pair? obj1) (pair? obj2))

(and (sexp=? (car obj1) (car obj2))

(sexp=? (cdr obj1) (cdr obj2))))

(else #f))))

Figure 6.9: A pattern matcher in FL, part 2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

226 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

single variable, and the identifier that names it is arbitrary. In the expression
(proc x (call x (proc x x))) there are two logically distinct variables, but
they happen to be named by the same identifier.

Sometimes it is useful to distinguish different occurrences of an identifier
or subexpression within an expression. In the expression

(call (proc x x) (proc x x))

there are four occurrences of the identifier x and two occurrences of the subex-
pression (proc x x). In order to refer to a particular occurrence, we can imagine
that each distinct identifier or expression has been numbered from left to right
starting with 1. Thus, we could view the above application as

(call (proc x1 x2)1 (proc x3 x4)2) ,

where the superscripts distinguish the occurrences of an identifier or subexpres-
sion. When we say “the ith occurrence of x” we mean xi .

We shall say that the formal parameter I appearing in an FLK abstraction
(proc I E) is a binding occurrence of I and that the abstraction binds
I. An occurrence of an identifier in an FLK expression I is bound if it is
a binding occurrence or it occurs in the body of some abstraction that binds
I; otherwise, that occurrence of the identifier is said to be free. For exam-
ple, in (proc a (proc b (call a c))), the single occurrence of b and both
occurrences of a are bound, while the single occurrence of c is free. The
freeness or boundness of an identifier occurrence depends on the context in
which the identifier is viewed. Thus, in the previous example, the second oc-
currence of a is free in (call a c) and in (proc b (call a c)) but not in
(proc a (proc b (call a c))). It is possible in one expression to have some
occurrences of an identifier that are bound and other occurrences of the same
identifier that are free. In (call (proc a a) a) the first and second occur-
rences of a are bound, while the third occurrence is free.

An identifier (as opposed to an occurrence of an identifier) is said to be a free
identifier (likewise, bound) in an expression if at least one of its occurrences
is free (likewise, bound) in the expression. For instance, in the expression

(call b (proc a (proc b (call a c)))),

a and b are bound identifiers and b and c are free identifiers. Similarly, a variable
is said to be free (likewise, bound) in an expression if the identifier that names
it is free (likewise, bound). Note that an identifier may be both bound and free
in an expression, but a variable can only be one or the other. An expression
is closed if it contains no free identifiers (or, equivalently, no free variables).
Expressions with free variables often arise when considering subexpressions of a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 227

given expression. For instance, in the subexpression (proc b (call b a)) of
the closed expression (proc a (proc b (call b a))), the identifier a names
a free variable.

Using definition by structural induction, it is straightforward to define func-
tions FreeIds and BoundIds that map FLK expressions to sets of their free and
bound identifiers, respectively. These functions are presented in Figure 6.10.
Both functions have signature

Exp→ P(Identifier)

where P(Identifier) is the power set (set of all subsets) of Identifier. For example,

FreeIds[[(call b (proc a (proc b (call a c))))]] = {b, c}
BoundIds[[(call b (proc a (proc b (call a c))))]] = {a, b}

One subtle note deserves mention. An I that appears within double brackets
on the left hand side of the definitions stands for a variable reference that is
an element of the syntactic domain Exp. On the other hand, an unbracketed I
on the right hand side of the definitions stands for an element of the syntactic
domain Identifier.

¤ Exercise 6.10 For each of the following FLK expressions:

• Indicate for every occurrence of an identifier whether it is bound or free.
• Determine the free identifiers and bound identifiers of the expression.

a. (proc x (call x y))

b. (call (proc z (proc x (call (call x y) z))) z)

c. (call z (proc y (call (proc z (call x y)) z)))

d. (proc x (call (call (proc y (call (proc z (call x r)) y)) y) z)) ¢

6.3.2 General Properties of Variables

Throughout mathematical and computational notation, variables serve as syn-
tactic placeholders that range over some set of semantic entities. Variables are
manipulated in two different kinds of expressions:

1. A variable declaration introduces a new placeholder into an expression.

2. A variable reference uses a placeholder within an expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

228 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

FreeIds : Exp→ P(Identifier)
FreeIds[[L]] = {}
FreeIds[[I]] = {I}

FreeIds[[(primop O E1 . . . En)]] =

n⋃

i=1

FreeIds[[Ei]]

FreeIds[[(proc I E)]] = FreeIds[[E]]− {I}
FreeIds[[(call E1 E2)]] = FreeIds[[E1]] ∪ FreeIds[[E2]]

FreeIds[[(if E1 E2 E3)]] = FreeIds[[E1]]∪FreeIds[[E2]]
∪FreeIds[[E3]]

FreeIds[[(pair E1 E2)]] = FreeIds[[E1]] ∪ FreeIds[[E2]]

FreeIds[[(rec I E)]] = FreeIds[[E]]− {I}

BoundIds : Exp→ P(Identifier)
BoundIds[[L]] = {}
BoundIds[[I]] = {}

BoundIds[[(primop O E1 . . . En)]] =
n⋃

i=1

BoundIds[[Ei]]

BoundIds[[(proc I E)]] = {I} ∪ BoundIds[[E]]

BoundIds[[(call E1 E2)]] = BoundIds[[E1]] ∪ BoundIds[[E2]]

BoundIds[[(if E1 E2 E3)]] = BoundIds[[E1]]∪BoundIds[[E2]]
∪BoundIds[[E3]]

BoundIds[[(pair E1 E2)]] = BoundIds[[E1]] ∪ BoundIds[[E2]]

BoundIds[[(rec I E)]] = {I} ∪ BoundIds[[E]]

Figure 6.10: Definition of the free and bound identifiers of a FLK expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 229

The region of an expression in which a particular variable may be referenced is
called the scope of that variable.

In standard notations, variables are typically represented by identifiers, and
declarations and references are distinguished in the format of expressions. For
example, compare how variables are declared and referenced in notations for
FLK, integration, summation, union, and logical quantification (in each case,
the declaring occurrence of the variable x has been boxed):

(proc x x)

∫ b

a

x d x
n∑

x =1

x2
⋃

x ∈A

x ∀ x .f(x) = g(x)

Notations in which variables are represented by identifiers share the following
properties:

1. Modulo certain restrictions to be discussed shortly, it is possible to con-
sistently rename a variable within its scope without changing the meaning
of the entire expression. Thus, in each of the above notations, the x can
be changed to y without changing the meaning:

(proc y y)

∫ b

a

y dy

n∑

y=1

y2
⋃

y∈A

y ∀y.f(y) = g(y)

2. Within the scope S of a variable I, the declaration of a new variable
with the same name I creates a new scope S ′ in which the outer variable
cannot be referenced. The region S ′ is called a hole in the scope of S.
For example, any reference to x within the empty box (2) in the following
examples would refer to the variable declared by the inner x, not the outer
x.

(proc x (call x (proc x 2)))

∫ b

a

x ·
(∫ x

c

2 dx

)

dx

n∏

x=1

(
x∑

x=1

2

)

⋃

x∈A

〈x,
⋂

x∈B

2〉 ∀x. ((f(x) = g(x)) ∧ ∃x.2)

6.3.3 Abstract Syntax DAGs and Stoy Diagrams

The chief structural feature of variables is that they permit sharing in an ex-
pression: the same variable introduced by a declaration can be used by many
variable reference occurrences. We have said before that syntactic expressions
can be viewed as abstract syntax trees, but since trees allow no sharing of sub-
structure, they are inadequate for illustrating the sharing nature of variables.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

230 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

We need the more general directed acyclic graph (DAG) to faithfully show the
structure of an expression with variables.

As an example, consider the following FLK expression:4

(call (proc a (call a a)) (proc a (proc b a)))

In this expression, there are two distinct variables named a, and the variable
named by b is declared without being referenced. Figure 6.11 shows an abstract
syntax DAG corresponding to this expression. In the DAG, the three distinct
variables in the expression are represented by distinct nodes labeled variable.

abstraction

application

variable-
reference

variable-
reference

variable

operandoperator

body

application

abstraction

abstraction

variable

variable-
reference

variable

body

body
formal formal formal

Figure 6.11: Abstract syntax DAG for (call (proc a (call a a))

(proc a (proc b a)))

Since sharing is explicit in the structure of the DAG, no identifiers are neces-
sary in the DAG representation of the expression. The key reason variables are
traditionally represented with identifiers is that they allow DAGs to be encoded
within linear and tree-based notational frameworks. Unfortunately, encodings
of DAGs based on identifiers complicate reasoning about expressions because
of incidental properties of the identifiers. For example, the notion of a “hole
in the scope” introduced earlier is not inherent in the nature of variables, but
is a side effect of the fact that when variables are represented by identifiers, a
nested pair of variables can accidentally share the same name. We’ll see below
that identifiers are the major sore spot when defining notions of renaming and
substitution on FLK expressions.

4In the following discussion, we shall focus only on FLK expressions, but the same tech-
niques could be applied to any notation using variables.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 231

Every closed expression can always be represented by a DAG with no identi-
fiers. However, expressions containing free variables pose a problem because they
contain references to a variable without also containing its declaration. Since
expressions with free variables are common, we’d like to handle them within
the DAG framework. The DAG representation must include the names of any
free identifiers because the names of free identifiers actually matter (for exam-
ple, the expression (proc b (call b a)) does not have the same meaning as
(proc b (call b c)) in every context). Figure 6.12 shows the DAG represen-
tation of (proc b (call b a)). The free variable is declared by a special free
variable node annotated with the name of the variable.

abstraction

application

variable-
reference

variable-
reference

variable

operandoperator

body

variable

free-variable-declaration

avariable

name

formal

Figure 6.12: Abstract syntax DAG for (proc b (call b a))

Abstract syntax DAGs take up a lot of real estate on the printed page, so we
shall use a more compact notation due to Joseph Stoy [Sto85]. Stoy’s notation
is a kind of wiring diagram for expressions in which the position corresponding
to a variable reference is connected by a wire to the position corresponding to
the variable declaration. For example, a Stoy diagram for the expression

(call (proc a (call a a)) (proc a (proc b (proc c (call c a)))))

is

(call (proc (call)) (proc (proc (proc (call))))).

We extend Stoy’s notation to handle free variables by simply leaving every free
variable reference where it occurs in the expression. Thus, the Stoy diagram for
(proc b (call a (call b a))) is:

(proc (call a (call a)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

232 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Observe that all identifiers sharing the same name in a Stoy diagram must name
the same free variable.

6.3.4 Alpha-Equivalence

Since we really care about the implied DAG structure of an expression and not
the vagaries of particular choices of identifiers for variable names, it is natural
to equate FLK expressions that share the same DAG representation. We shall
use the notation

E1 =α E2

(pronounced “E1 is alpha-equivalent to E2”) to mean that E1 and E2 designate
the same abstract syntax DAG. Thus,

(proc a (proc b (call b a))) =α (proc b (proc a (call a b)))

=α (proc one

(proc two (call two one)))

and
(proc b (call b a)) =α (proc c (call c a))

but

(proc a (proc b (call b a))) 6=α (proc a (proc a (call a a)))

and
(proc b (call b a)) 6=α (proc b (call b c))

Since alpha-equivalence is an equivalence relation, it partitions FLK ex-
pressions into equivalence classes that share the same DAG. We shall generally
assume throughout the rest of our discussion on FLK that each FLK expression
serves as a representative of its equivalence class and that syntactic manipula-
tions on expressions are functions on these equivalence classes rather than on
individual expressions. For example, FreeIds is a well-defined function not only
on FLK expressions but also on alpha-equivalence classes of FLK expressions
because

E1 =α E2

implies
FreeIds[[E1]] = FreeIds[[E2]].

On the other hand, BoundIds is not a meaningful function on alpha-equivalence
classes because it depends on syntactic details of an expression that are not
represented in its DAG structure. Thus (proc a a) =α(proc b b), but

BoundIds[[(proc a a)]] = {a} 6=α {b} = BoundIds[[(proc b b)]] .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 233

6.3.5 Renaming and Variable Capture

Equipped with a deeper understanding of the structure of variables, we’re ready
to consider the subtleties of renaming a variable introduced by an abstraction.
A correct variable renaming is one that preserves the alpha-equivalence class of
the expression — i.e., does not alter its abstract syntax DAG or Stoy diagram.
The näıve approach of consistently renaming the declaration occurrence of the
variable and all its references is not always appropriate because of a situation
known as variable capture. There are two kinds of variable capture, both of
which will be illustrated in the following example.

Consider the expression (proc a (proc b (call a c))), whose Stoy dia-
gram is shown below:

(proc (proc (call c)))

Suppose we want to rename the variable named a in this expression. For almost
all possible identifiers, a simple consistent renaming will do. For example, re-
naming a to x produces the expression (proc x (proc b (call x c))) which
has the same Stoy diagram as the original.

Suppose, however, that we choose the identifier b as the new name for
a. Then the näıve renaming method yields (proc b (proc b (call b c))),
whose Stoy diagram,

(proc (proc (call c)))

is not the same as that for the original expression. The inner binding occurrence
of b has created a hole in the scope of the outer binding occurrence of b in
which the outer b cannot be seen. Because an inner abstraction just happens to
bind the new name, all references to the new name within the body of the inner
abstraction are accidentally captured by that abstraction. We shall refer to this
situation as internal variable capture.

A slightly different problem is encountered if we choose c as the new name
for a. In that case, näıve renaming yields (proc c (proc b (call c c))),
whose Stoy diagram is

(proc (proc (call)))

The free identifier c has accidentally been captured by the declaration occur-
rence of the new name. Here the declaration of the new name has captured
a free identifier in the body of the renamed abstraction; above, the internal
abstraction captured a reference to the renamed variable. Since the captured

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

234 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

variable is declared external to the renamed abstraction, we shall refer to this
second situation as external variable capture.

Internal and external variable capture are not unique to FLK. They can
occur in any naming system in which logically distinct variables can accidentally
be identified. As we shall see later, variable capture commonly rears its ugly
head in languages supporting dynamic scoping or macro expansion.

We would like it to be the case that such coincidental choices of identifiers
in renamings do not destroy the structural integrity of an FLK expression. One
way of doing this is to guarantee that each new variable name introduced by a
renaming appears nowhere else in the FLK expression. However, this approach
is overly restrictive and gives little insight into the true nature of the problem.
Below, we shall precisely define a general syntactic renaming operator that avoids
both forms of variable capture.

6.3.6 Substitution

Variable renaming is a special case of a more general syntactic operation on
FLK expressions called substitution. It is often desirable to substitute a given
expression for all free variable references of the variable named by a given iden-
tifier within another expression. For example, we might want to replace each
free a within

(call a (proc b (call (proc a (call a b)) a)))

by the application (call c d) to yield

(call (call c d) (proc b (call (proc a (call a b)) (call c d))))

We use the notation [E/I] to denote a function that maps a given expression
into another expression in which E has been substituted for all free variable
references named by I. Thus, [E1/I]E2 denotes the result of substituting E1 for
the free occurrences of I in E2 . Using this notation, the above example can be
expressed as:

[(call c d)/a](call a (proc b (call (proc a (call a b)) a)))

= (call (call c d) (proc b (call (proc a (call a b)) (call c d))))

A correct substitution is one which preserves the logical structure both of the
expression being substituted (E1) and the expression substituted into (E2) —
except, of course, for the free variable being substituted for. Although substitu-
tion might seem like a straightforward idea, it is plagued with variable capture
subtleties similar to those that lurk in renaming. In fact, several well-known lo-
gicians gave incorrect definitions for substitution before a correct one was found.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 235

As an example of a problematic situation, suppose that (call b d) rather
than (call c d) were being substituted for a in the above example. Since the
expression being substituted into has the Stoy diagram

(call a (proc (call (proc (call)) a))),

[(call b d)/a](call a (proc b (call (proc a (call a b)) a))) should have
the Stoy diagram

(call (call b d) (proc (call (proc (call)) (call b d)))).

However, a näıve syntactic approach to substitution would yield the expression

(call (call b d) (proc b (call (proc a (call a b)) (call b d)))),

whose Stoy diagram,

(call (call b d) (proc (call (proc (call)) (call d)))),

shows that variable capture violates the integrity of the free variable b within
the second occurrence of (call b d).

Figure 6.13 presents a method of substitution that avoids variable capture.
Substitution is defined by structural induction on the expression substituted
into. However, there is sometimes more than one clause per expression type be-
cause some expression types have subcases that depend on interactions between
the variable Isubst being replaced and variables within the expression substituted
into. For example, [E/Isubst]Iexp is E if Isubst and Iexp are syntactically identical,
but is the original expression Iexp if Isubst and Iexp are not the same. These
different subcases are expressed in Figure 6.13 by implicit pattern matching or
explicit restrictions.

As seen in Figure 6.13, most of the rules straightforwardly distribute the
substitution over the subexpressions of an expression. The tricky case is substi-
tuting into a variable declaration construct (proc or rec). For example, consider
the case for proc:

[Enew/Isubst](proc Ibound Ebody),

In the case where Isubst and Ibound are the same, no substitutions can be per-
mitted inside the abstraction because Ibound declares a variable that is distinct
from the one named by Isubst . Without this restriction, we could derive results
like

[b/a](proc a (call a b)) = (proc b (call b b))

in which external variable capture invalidates the purported substitution.
When Isubst and Ibound are distinct, the crucial situation to handle is where

Isubst appears free in Ebody (so a substitution will definitely take place) and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

236 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

[Enew/Isub]L = L

[Enew/Isub]Isub = Enew

[Enew/Isub]Iexpr = Iexpr , where Isub 6= Iexpr

[Enew/Isub](primop O
E1 . . . En)

= (primop O [Enew/Isub]E1 . . . [Enew/Isub]En)

[Enew/Isub](proc Isub Ebody) = (proc Isub Ebody)

[Enew/Isub](proc I Ebody) = (proc Ifresh [Enew/Isub]([Ifresh/I]Ebody)) ,

where Isub 6=I and
Ifresh 6∈{Isub}∪FreeIds[[Enew]]

∪FreeIds[[Ebody]]

[Enew/Isub](call Erator Erand) = (call [Enew/Isub]Erator [Enew/Isub]Erand)

[Enew/Isub](if E1 E2 E3) = (if [Enew/Isub]E1
[Enew/Isub]E2
[Enew/Isub]E3)

[Enew/Isub](pair E1 E2) = (pair [Enew/Isub]E1 [Enew/Isub]E2)

[Enew/Isub](rec Isub Ebody) = (rec Isub Ebody)

[Enew/Isub](rec I Ebody) = (rec Ifresh [Enew/Isub]([Ifresh/I]Ebody)) ,

where Isub 6=I and
Ifresh 6∈{Isub}∪FreeIds[[Enew]]

∪FreeIds[[Ebody]]

Figure 6.13: The definition of substitution.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 237

Enew contains a free reference to Ibound . This reference will be captured by the
bound variable of the abstraction unless we’re careful. A simple example of this
situation is:

[b/a](proc b (call b a)).

Here, the substituted expression b contains (in fact, is) a free reference to a
variable whose name happens to be the same as the name of the variable bound
by the abstraction. A näıve substitution would yield (proc b (call b b)),
in which the outer variable named b has been accidentally captured by the
inner variable of the same name. To prevent this internal variable capture, it is
necessary to first consistently rename the bound variable of the abstraction with
an identifier that is not the same as Isubst and is free neither in Enew nor in Ebody .
After this renaming, substitution can be performed on Ebody without threat of
variable capture. In our example, the bound variable b can be renamed to
c, say, yielding the alpha-equivalent abstraction (proc c (call c a)). Then
substitution can be performed on the body to yield the correct expression

(proc c [b/a](call c a)) = (proc c (call c b)).

In the case where Isubst 6=Ibound , it is always correct to perform the described
renaming of the bound variable of the abstraction, but it is not always necessary.
If Isubst is not free in Ebody , renaming is not required because no substitution
will be performed inside the abstraction anyway. And if Ibound doesn’t appear in
Enew , no internal variable capture can arise, and it is safe to directly substitute
into the body of the abstraction without a renaming step.

In the rule for substituting into an abstraction, it is necessary to choose an
identifier that is not the same as Isubst and is free neither in Enew nor in Ebody .
The notion of choosing an identifier that satisfies certain properties often arises
when manipulating syntactic expressions in which variables are represented by
identifiers. Such an identifier is said to be fresh. When describing a syntac-
tic manipulation, it is always necessary to specify any constraints involved in
choosing the fresh identifiers.

Keep in mind that all the complexity for renaming and substitution arises
from dealing with linear (in this case, textual) representations for declaration/ref-
erence relationships that are not linear or even tree-like. If FLK expressions were
represented instead as DAGs or Stoy diagrams, renaming would be unnecessary
and substitution would be straightforward.

¤ Exercise 6.11 Use the definition of substitution in Figure 6.13 to determine the
results of the following substitutions. Assume that fresh identifiers are taken from the
list v1 , v2 , v3 , . . ., and that the first identifier from the list that satisfies the given
constraint is chosen as the fresh identifier.

a. [(call (call b c) d)/a](proc a (proc b (call (call c b) a)))

b. [(call (call b c) d)/b](proc a (proc b (call (call c b) a)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

238 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

c. [(call (call b c) d)/c](proc a (proc b (call (call c b) a)))

d. [(call (call b c) d)/d](proc a (proc b (call (call c b) a)))

e. [(call (call b c) d)/b](proc a (proc b (call c a))) ¢

¤ Exercise 6.12 Consider the case for substituting into proc abstractions,

[Enew/Isubst](proc Ibound Ebody),

where Isubst 6=Ibound . Here Ibound is consistently renamed to be a variable Ifresh that is
not free in either Enew or Ebody and is not equal to Isubst .

a. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifresh 6∈FreeIds[[Enew]] were lifted.

b. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifresh 6∈FreeIds[[Ebody]] were lifted.

c. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifresh 6=Isubst were lifted.

d. Would it be possible to consistently rename the free variables of Enew (within
both Enew and Ebody) instead of renaming Ibound? Explain your answer, using
examples where appropriate. ¢

¤ Exercise 6.13 Assuming that I1 and I2 are distinct, and that I2 6∈FreeIds[[E1]],
prove the following useful equivalence:

[E1 /I1]([E2 /I2]E3) = [([E1 /I1]E2)/I2]([E1 /I1]E3)

(Hint: Do the proof by induction on the height of E3 .) ¢

¤ Exercise 6.14 The notion of simultaneous substitution is an extension to the
substitution function we have seen. A simultaneous substitution, [E1 . . .En/I1 . . . In],
is a function of a single expression that performs the substitutions [E1/I1] . . .[En/In]
in parallel on that expression. It differs from a sequence of substitutions in that an
Ii appearing in one of the Ej is never substituted for. For example, simultaneous
substitution of I2 for I1 and I1 for I2 in the expression (call I1 I2) swaps the two
identifiers:

[I2 , I1/I1 , I2](call I1 I2) = (call I2 I1)

whereas neither ordering of two single substitutions has this behavior:

[I2/I1]([I1/I2](call I1 I2)) = (call I2 I2)

[I1/I2]([I2/I1](call I1 I2)) = (call I1 I1)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 239

Write a formal definition of simultaneous substitution for FLK. ¢

¤ Exercise 6.15 Suppose that FL is extended with the following constructs for
manipulating tuples of elements:

(tuple E*): Non-strict constructor of a tuple with any number of ele-
ments.

(tuple-ref E i): Suppose i is a positive integer i and E is a tuple t. Return
the ith element of t (assume 1-based indexing).

(tuple? E): Predicate determining if E is a tuple.
(tuple-length E): Returns the number of elements in the tuple.

Tuples provide an alternate way to desugar multi-abstractions and multi-applications.
Multi-applications can package arguments into a tuple that is unpackaged by a multi-
abstraction.

a. Provide tuple-based desugarings for multi-abstractions and multi-applications.
You may find substitution helpful. Explain any design choices that you make.

b. Discuss the advantages and disadvantages of the tuple-based desugaring versus
the desugaring based on currying. ¢

6.4 An Operational Semantics for FLK

6.4.1 An SOS for FLK

Figure 6.14 presents an SOS for FLK. In addition to the semantic domains of
FLK, the SOS uses the following domains:

• The ValueExp domain is a subset of ExpFLK consisting of expressions
that model the values manipulated by FLK programs. The notations
{(symbol I)}, {(proc I E)}, {(pair E1 E2)}, and {(error Imsg)} in-
dicate the set of all expressions that match the given pattern. The value
expressions include all the literals, as well as abstractions (representing
procedural values), pairings (representing pair values), and error expres-
sions.

• Each input to an FLK program is an s-expression value from the SExpVal
domain. This is a subset of ValueExp that excludes all proc and error

forms.

• The Answer domain models final answers in the execution of FLK pro-
grams. It is similar to ValueExp except that it replaces all proc expressions
by the procedure value token procval and replaces all pair expressions

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

240 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Domains

V ∈ ValueExp = {#u} ∪ Boollit ∪ Intlit ∪ {(symbol I)}
∪{(proc I E)} ∪{(pair E1 E2)} ∪{(error Imsg)}

SV ∈ SExpVal = {#u} ∪ Boollit ∪ Intlit ∪ {(symbol I)}
{(pair SV 1 SV 2)}

I ∈ Inputs = SExpVal*
A ∈ Answer = {#u} ∪ Boollit ∪ Intlit ∪ {(symbol I)}

∪{procval} ∪{pairval} ∪{(error Imsg)}

SOS

The FLK SOS has the form FLKSOS = 〈ExpFLK ,⇒,ValueExp, IF ,OF 〉, where:
⇒ is a deterministic transition relation defined in Figures 6.15 and 6.16.

IF : ProgramFLK × Inputs→ ExpFLK
=λ〈(flk (I1 . . . In) Ebody), [SV 1 , . . . ,SV k]〉 .

if n = k then ([SV i/Ai]
n
i=1)Ebody

else (error wrong-number-of-args) fi

OF : ValueExp→ Answer
=λV . matching V

. (proc I E) [] procval

. (pair E1 E2) [] pairval

. elseV endmatching

Figure 6.14: An SOS for FLK.

by the pair value token pairval. These tokens distinguish the types of
procedure and pair values, but the structure of these values is not observ-
able.

The configuration space for the FLK SOS consists of FLK expressions. The
input function IF maps an FLK program and a sequence of s-expression ar-
gument values to an initial configuration by substituting the arguments for the
formal parameter names in the body of the program. The final configurations of
the SOS are modeled by the ValueExp domain. The output function OF erases
the details of all procedure and pair values.

The SOS rewrite relation ⇒ is defined by the rewrite rules in Figures 6.15
and 6.16. Applications are handled by the [call-apply] and [call-operator] rules.
The [call-apply] rule makes use of the FLK substitution operator to evaluate the
application of an abstraction. The [call-operator] progress rule permits rewrites
on the operator. No rewrites are performed on the operand so these rules are
non-strict, like if and unlike primop.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 241

(call (proc I E1) E2)⇒ [E2/I]E1 [call-apply]

E1⇒ E1
′

(call E1 E2)⇒ (call E1
′ E2)

[call-operator]

(if #t E1 E2)⇒E1 [if-true]

(if #f E1 E2)⇒E2 [if-false]

E1⇒E1
′

(if E1 E2 E3)⇒ (if E1
′ E2 E3)

[if-test]

(rec I E)⇒ [(rec I E)/I]E [rec]

E⇒E ′

(primop O E)⇒ (primop O E ′)
[unary-arg]

E1⇒E1
′

(primop O E1 E2)⇒ (primop O E1
′ E2)

[binary-arg-1]

E2⇒E2
′

(primop O V E2)⇒ (primop O V E2
′)

[binary-arg-2]

Figure 6.15: FLK rewrite rules, part 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

242 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Strict languages would include progress rules for operands of procedure calls
(as FLK does for primitives), and these rules would reflect constraints on evalu-
ation order. However, even strict languages have non-strict conditionals to avoid
errors (e.g., division by zero) and infinite loops (the base case of a recursion, such
as the factorial of 0).

The semantics of recursion is especially simple in the SOS framework. It is
obtained by simply “unwinding” the recursion equation one level. Programmers
often follow the same approach when trying to hand-simulate the behavior of
recursive procedures.

The three progress rules [unary-arg], [binary-arg-1], and [binary-arg-2] suf-
fice for forcing the evaluation of arguments in a primitive application. The
metavariable V in rule [binary-arg-2] is used to express a constraint that the
first operand must be a value; thus the first argument must be fully evalu-
ated before the second argument is evaluated. These three rules are actually
instantiations of a single general rule to evaluate any number of arguments in
left-to-right order:

Ei⇒Ei
′

(primop O V1 . . .Vi−1 Ei . . .En)
⇒(primop O V1 . . .Vi−1 Ei

′ . . .En)
[prim-arg]

where n can be any nonnegative integer (including 0) and i ranges between 0
and n. The notation is intended to indicate that the first i− 1 arguments have
all been fully evaluated, and the ith expression is in the process of evaluation.

A sampling of the remaining primitive operator rules are given in Figure 6.16.
These rules define the behavior of each primitive operator. The calculate func-
tion used in the [+] rule serves the same purpose as it did in the PostFix
SOS.

Like the PostFix SOS, the FLK SOS models most errors with stuck states.
If the final configuration happens to be an error form, then this will be returned
as the outcome of the program. But if a configuration is stuck because it contains
a problematic subexpression such as (primop + 1 #t) or an error form, the
outcome of the program will be stuck. See Exercise 6.21 for an alternative
approach to handle errors in FLK.

6.4.2 Example

Figure 6.17 illustrates a sample proof-structured evaluation of the expression

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 243

• not: (primop not? #f)⇒ #t [not-1]

(primop not? #t)⇒ #f [not-2]

• left and right: (primop left (pair E1 E2))⇒E1 [left]

(primop right (pair E1 E2))⇒E2 [right]

• integer? (other predicates are defined similarly):
(primop integer? N)⇒ #t [integer?-integer]

(primop integer? #u)⇒ #f [integer?-unit]

(primop integer? B)⇒ #f [integer?-boolean]

(primop integer? (symbol I))⇒ #f [integer?-symbol]

(primop integer? (proc I E))⇒ #f [integer?-abstraction]

(primop integer? (pair E1 E2))⇒ #f [integer?-pair]

• and? (or? is defined similarly):
(primop and? #t #t)⇒ #t [and-true-true]

(primop and? #t #f)⇒ #f [and-true-false]

(primop and? #f #t)⇒ #f [and-false-true]

(primop and? #f #f)⇒ #f [and-false-false]

• + (other binary operators are similar, except for / and rem):
(primop + N1 N2)⇒ (calculate + N2 N1) [+]

• / (rem is similar):
(primop / N1 N2)⇒ (calculate / N2 N1),

where N2 6= 0
[/]

Figure 6.16: FLK rewrite rules, part 2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

244 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

based on the above rewriting rules. Each rewriting step is annotated with a
justification that explains how the step follows from previous steps and a rewrite
rule.

A more condensed form of the evaluation in Figure 6.17 treats as a single
rewrite any axiom rewrite in conjunction with any number of rewrites implied by
progress rules. This gives rise to a linear sequence of rewrites, where the rewrite
arrow can be subscripted with the name of the axiom applied. The example
from the figure then becomes:

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)

⇒[call-apply] (call (call (proc a (proc b (primop - b a)))

(primop + 4 1))

3)

⇒[call-apply] (call (proc b (primop - b (primop + 4 1)))

3)

⇒[call-apply] (primop - 3 (primop + 4 1))

⇒[+] (primop - 3 5)

⇒[−] -2

¤ Exercise 6.16 Use the rewrite rules to show the evaluation of the following expres-
sions:

a. (primop left (pair 1 (primop not? 3)))

b. (primop left (primop right (primop right

(rec p (pair 1 (pair 2 p))))))

The first expression illustrates the non-strictness of pair while the second illustrates

the unwinding nature of rec. ¢

¤ Exercise 6.17 Since FLK is non-strict, it is not necessary for if to be a dis-
tinguished construct. Instead, if could be a unary primitive operator that returns a
(curried) binary function. That is, instead of being written (if E1 E2 E3), condi-
tionals could be expressed as

(call (call (primop if E1) E2) E3)

Give the rewrite rules for if as a unary primitive operator. ¢

¤ Exercise 6.18 Functional computation in a dynamically typed language can be
viewed as a bureaucracy where envelopes (values containing a type and other informa-
tion) are shuffled around by the interpreting agent that performs the computation.5

In many steps of the computation, envelopes are simply moved around without being

5Phil Agre introduced us to this point of view.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 245

(call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

⇒ (call (proc a (proc b (primop - b a))) 1: call-apply
(primop + 4 1))

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)

⇒ (call (call (proc a (proc b (primop - b a))) 2: 1 & call-operator
(primop + 4 1))

3)

(call (proc a (proc b (primop - b a)))

(primop + 4 1))

⇒ (proc b (primop - b (primop + 4 1))) 3: call-apply

(call (call (proc a (proc b (primop - b a)))

(primop + 4 1))

3)

⇒ (call (proc b (primop - b (primop + 4 1))) 4: 3 & call-operator
3)

(call (proc b (primop - b (primop + 4 1)))

3)

⇒ (primop - 3 (primop + 4 1)) 5: call-apply

(primop + 4 1) ⇒ 5 6: +

(primop - 3 (primop + 4 1)) ⇒ (primop - 3 5) 7: binary-arg-2

(primop - 3 5) ⇒ -2 8: +

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)
∗⇒ -2 9: 2 & 4 & 5 & 7 & 8

Figure 6.17: Example evaluation of an FLK expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

246 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

opened. In the formation of a non-strict pair, for instance, two envelopes are simply
stuffed into a larger envelope without ever having their contents examined. During
other stages — a primitive addition, for instance — the contents (type and content
information) of envelopes must definitely be examined.

With this perspective in mind, for each FLK expression describe when the contents

of envelopes must be examined. In other words, which contexts demand the value of an

expression? ¢

¤ Exercise 6.19 Suppose we want to extend FL with a least construct. Given
a numeric predicate, least returns the least non-negative integer that satisfies the
predicate. For example,

(least (proc (x) (= x (* x x)))) −−−FL→ 0
(least (proc (a) (> (* a a) 10))) −−−FL→ 4
(least (proc (x) (< x 0))) −−−FL→ ∞-loop {Looks, but no solution}
(least (proc (x) x)) −−−FL→ error:Non-bool-in-if-test

a. Must the argument to least always be an abstraction? If so, explain why; if not,
give a counterexample.

b. One way to add least is to extend the syntax of FLK to include (least E) as
a new expression type. Extend the operational semantics of FLK to handle the
least expression. Keep in mind that a SOS has five parts; make the appropriate
modifications to each of the parts.

Hint: In addition to adding (least E) to the configuration space, it is also
desirable to add a configuration of the form (*least* E N). Configurations like
least that are not valid as expressions in the language are often useful for
representing intermediate states of computations.

c. Alternately, least could be written as a user-defined procedure that is standardly
available in the body of a program. Show how to implement least with this
approach. ¢

¤ Exercise 6.20 In FLK, pair is a primitive construct built into the syntax. In a
non-strict language, though, there is no need for pair to be primitive.

a. One option is to include pair as a primitive primop operator. Implement this
change by modifying the operational semantics of FLK.

b. Is it possible to define pair as a user-defined procedure? How would you imple-
ment left, right, and pair? ? ¢

¤ Exercise 6.21 Like the PostFix SOS, the FL SOS uses stuck states to model
errors. For example, all of the following stuck states correspond to error situations:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 247

a ; Unbound variable

(primop / 1 0) ; Division by 0

(primop + 1 #t) ; Inappropriate argument type

(primop + 1 2 3) ; Inappropriate number of arguments

(call 1 2) ; Attempt to apply a non-procedure

(if (symbol nonbool) 2 3) ; Non-boolean test in an IF.

Rather than using stuck states to model errors, we can use the fact that ValueExp
includes the form (error Imsg) to explicit represent and propagate errors. For this
approach, the rewrite rules need to (1) convert stuck expressions to an appropriate error
form and (2) propagate error forms so that they eventually become final configurations.
For example, we could have the rule

(call N E)⇒ (error non-procedural-rator) [integer-operator-error]

to express the fact that it is an error to use an integer in the operator position of an
application.

Make all necessary modifications and additions to the FLK rewrite rules in order
to handle the explicit introduction and propagation of error forms. Make sure that
errors propagate appropriately; e.g.,

(primop + 1 (primop / 1 0))

should rewrite to an error because it has a subexpression that rewrites to an error. ¢

¤ Exercise 6.22 After carefully studying the SOS for FLK, Paula Morwicz proclaims
that it is safe to use a naive substitution strategy (i.e., one that does not rename bound
variables) in the [call-apply] and [rec] rules as long as the original expression being
evaluated does not contain any unbound variables (i.e., free identifiers).

a. Show that Paula is right. That is, show that the name capture problems addressed
by the definition of substitution in Figure 6.13 cannot occur during the evaluation
of an FLK expression that has no unbound variables.

b. Give an example of an FLK expression containing an unbound variable that
evaluates to the wrong answer if the the naive substitution strategy is used.

c. Suppose that every FLK expression were alpha-renamed so that all variables had
distinct identifiers and no bound variable used the same identifier as any unbound
variable. Under these conditions, is it always safe to use the naive substitution
strategy? If so, explain; if not, give a counter-example. ¢

¤ Exercise 6.23 After reading up on the the lambda calculus, Sam Antix decides to
experiment with some new rewrite rules for the FL SOS.

a. The first rule he tries is the so-called eta rule:

(proc I (E I))⇒ E,
where I 6∈ FreeIds[[E]]

[eta]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

248 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Although this rule is reasonable in the lambda calculus, it greatly changes the
semantics of FLK. Demonstrate this fact by showing a FLK expression that can
evaluate to two different values along two different transition paths.

b. The eta rule can be made safe by restricting the form of E. Describe such a
restriction, and explain why the rule is safe.

c. After getting rid of the [eta] rule, Sam experiments with a rule that allows rewrites
within the body of an abstraction:

E⇒E ′

(proc I E)⇒ (proc I E ′)
[proc-body]

How does the addition of this rule change the semantics of FLK? For example,
does it make it possible for an expression to rewrite to two different values via
two different transition paths? Does it enable new kinds of transition paths? ¢

6.5 A Denotational Definition for FLK

In this section, we develop a denotational semantics for FLK. A complete deno-
tational semantics for FLK appears in Figures 6.18–6.22. The semantic algebras
for this semantics appear in Figure 6.18, and Figures 6.19 and 6.20 define auxil-
iary functions and values. These definitions provide the landscape that serves as
the backdrop for our future denotational definitions, as well as for the valuation
functions in Figures 6.21 and 6.22.

It is always best to begin a study of a denotational semantics with a careful
look at the semantic algebras. Here is what we can see by looking at the FLK
semantic algebras in Figure 6.18.

The values that can be expressed by an FLK expression are modeled by
the Expressible domain, which is a lifted sum of Value and Error. Errors, like
symbols, are modeled as identifiers.6 Value contains unit, boolean, integer, and
symbol values, as well as pair and procedure values, which are defined recursively
in terms of Expressible. The bottom element of the Expressible domain represents
a non-terminating computation in FLK.

Whereas the SOS for FLK used substitution to model naming, the denota-
tional semantics uses environments as a kind of virtual substitution. When a
value is bound to an identifier, that binding is stored in the environment used to
evaluate expressions within the scope of that binding. Identifiers that represent

6We are being a little loose here. Program identifiers often exclude language key words, like
let. Such restrictions should not be applied to program data or errors.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 249

c ∈ Computation = Expressible
δ ∈ Denotable = Computation
p ∈ Procedure = Denotable → Computation
β ∈ Binding = (Denotable +Unbound)⊥
e ∈ Environment = Identifier→ Binding

Unbound = {unbound}
x ∈ Expressible = (Value + Error)⊥
v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure

Unit = {unit}
i ∈ Int = {. . . , -2, -1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}
y ∈ Sym = Identifier
a ∈ Pair = Computation × Computation

Error = Identifier

Figure 6.18: The semantic algebras for FLK.

variable references are looked up in the current environment. Environments map
identifiers to bindings, where Binding is a lifted sum of denotable values and the
trivial domain Unbound. The trivial element acts as an “unbound marker” that
indicates that an identifier is not bound in an environment.

The environment functions (Figure 6.19) have been updated to be consistent
with the Binding domain. In particular, there is now a distinction between
extend, which associates a name with a denotable in an environment, and bind,
which associates a name with a binding in an environment. The figure introduces
shorthand notation for these functions that will be used in future valuation
clauses.

There is no a priori reason why the class of entities that can be named in an
environment has to be the same as that denoted by arbitrary expressions. For
this reason, there is a separate semantic domain, Denotable, for the set of values
that can be associated with names in environments. There are many possible
relationships between Denotable and Expressible:

• Denotable may be the same as Expressible. This is the case in FL.

• Denotable may be a superset of Expressible — some entities may be named
but not computed. For example, languages in which procedures are not
first-class typically have ways to name procedures (usually via a declara-
tion) even though procedures cannot be values of expressions.

• Denotable may be a subset of Expressible — some entities may be com-
puted, but not named. For example, in certain languages variables cannot

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

250 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Environment operations:

empty-env : Environment
= λI . (Unbound 7→ Binding unbound)

lookup : Environment → Identifier→ Binding
= λeI . (e I)

bind : Environment → Identifier→ Binding → Environment
= λeI1β . λI2 . if (same-identifier? I1 I2) then β else (lookup e I2) fi

(bind e I β) will be abbreviated [I :: β]e; this notation associates to the right:
[I2 :: β2][I1 :: β1]e = [I2 :: β2]([I1 :: β1]e)

extend : Environment → Identifier→ Denotable → Environment
= λeIδ . (bind e I (Denotable 7→ Binding δ))

(extend e I δ) will be abbreviated [I : δ]e; this notation associates to the right:
[I2 : δ2][I1 : δ1]e = [I2 : δ2]([I1 : δ1]e)

Figure 6.19: Auxiliary functions and values for FLK, Part II.

name values that represent errors and nontermination. We shall study this
example in detail when we discuss call-by-value semantics in Chapter 7.

• The relationship between Denotable and Expressible may be more complex.
Consider a language in which procedures are denotable but not express-
ible, and errors are expressible but not denotable. (Fortran is in this
category.)

Thus, the definitions of Denotable and Expressible in the denotational semantics
of a given language contain some important information about high-level features
of the language. The availability of this kind of information is the reason why,
when reading a denotational semantics, it is advisable to first carefully study
domain equations and function signatures before delving into the details of the
valuation functions.

The meaning of an expression with respect to an environment depends on
the formulation of the meaning function used. To provide a level of abstraction,
we will define a new domain called Computation. The Computation domain
names the domain of meanings that we can get from evaluating an expression
in an environment:

E : Exp→ Environment → Computation

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 251

The Computation domain, with the helper functions in Figure 6.20 (described
more below), allows us to factor out some complex details and have compact
clauses in our valuation functions. In FLK, the benefit is largely that we can
factor out much of the error checking. When we extend FL, e.g., in order to add
state in Chapter 8, Computation will become more complex, but it will allow
the valuation functions to remain relatively simple.

The Computation, Denotable, and Value domains all serve as knobs that can
be tweaked to specify different languages. The Procedure domain’s argument
value must be denotable (otherwise the argument could not be named by a
formal parameter).

We assume that the Computation domain comes equipped with a set of helper
functions shown in Figure 6.20. val-to-comp treats a value as computation,
while err-to-comp treats an error as one. with-value is a generalized version
of the various functions we have already seen with this name. It unpackages
a computation into a value (if possible) and applies to this value a function
that returns another computation. In the case where the computation cannot
be coerced to a value, it is passed along unchanged. The other with- functions
(which can be written in terms of with-value), are similar, except that they may
also generate new error computations rather than just passing along old ones.

The valuation functions of Figures 6.21 and 6.22 are relatively compact,
thanks in large part to the Computation abstraction and the associated helper
functions. However, semantics written in this style can take some time to get
used to. It is helpful to keep in mind the signatures of all functions, as well as the
purposes of the various auxiliary functions. To see how much more complicated
the valuation clauses would be, compare the one-line if clause of Figure 6.21
with:

E [[(if E1 E2 E3)]] =
λe . matching (E [[E1]] e)

. (Value 7→ Computation v) [] matching v
. (Bool 7→ Value b) []
if b then (E [[E2]] e) else (E [[E3]] e) fi

. else (err-to-comp non-bool-in-if-test)
endmatching

. else (E [[E1]] e)
endmatching

This sort of error checking would be repeated throughout the valuation clauses.

¤ Exercise 6.24 Recall that the integer division and remainder operators (/ and rem)

are different than other binary operators because they are ill-defined when the second

argument is 0. Write the valuation clause for P [[/]]. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

252 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Usual operations on Bool: not, and, or
Usual operations on Int: +, -, *, /, . . .
Equality operation on Identifier: same-identifier?

val-to-comp : Value → Computation =Value 7→ Computation

err-to-comp : Error → Computation =Error 7→ Computation

den-to-comp : Denotable → Computation =λδ . δ
error-comp : Computation =(err-to-comp error)

with-value : Computation → (Value → Computation)→ Computation
=λcf . matching c

. (Value 7→ Computation v) [] (f v)

. else c
endmatching

with-values : Computation*→ (Value*→ Computation)→ Computation
=λc*f . matching c*

. []Computation [] (f []Value)

. cfst . crest* [] (with-value cfst
(λvfst . (with-values crest* (λvrest* . (f (vfst . vrest*)))))

endmatching

with-boolean-val : Value → (Bool → Computation)→ Computation
=λv . matching v

. (Bool 7→ Value b) [] (f b)

. else (err-to-comp not-a-boolean)
endmatching

Similar for with-unit-val, with-integer-val, with-symbol-val, with-pair-val.

with-boolean-comp : Computation → (Bool → Computation)→ Computation
=λcf . (with-value c (λv . (with-boolean-val v f)))
Similar for with-procedure-comp.

with-denotable : Binding → (Denotable → Computation)→ Computation
=λβ f . matching β

. (Denotable 7→ Binding δ) [] (f δ)

. (Unbound 7→ Binding Unbound) [] (err-to-comp unbound-var)
endmatching

Figure 6.20: Auxiliary functions and values for FLK, Part I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 253

E : Exp→ Environment → Computation
E* : Exp*→ Environment → Computation*
L : Lit→ Value
P : Primop→ Value*→ Computation
B : Boollit→ Bool
N : Intlit→ Int

E [[L]] =λe . (val-to-comp L[[L]])

E [[I]] =λe . (with-denotable (lookup e I) λδ . (den-to-comp δ))

E [[(proc I E)]] =
λe . (val-to-comp (Procedure 7→ Value (λδ . (E [[E]] [I : δ]e))))

E [[(call E1 E2)]] =λe . (with-procedure-comp (E [[E1]] e) (λp . (p (E [[E2]] e))))

E [[(if E1 E2 E3)]] =
λe . (with-boolean-comp (E [[E1]] e) (λb . if b then (E [[E2]] e) else (E [[E3]] e) fi))

E [[(rec I E)]] =λe . (fixComputation (λc . (E [[E]] [I : c]e)))

E [[(pair E1 E2)]] =λe . (val-to-comp (Pair 7→ Value 〈(E [[E1]] e), (E [[E2]] e)〉))

E [[(primop O E*)]] =λe . (with-values (E*[[E*]] e) (λv* . (P [[O]] v*)))

E [[(error I)]] =λe . (err-to-comp I)

E*[[]] =λe . []Computation

E*[[Efst . Erest*]] =λe . (E [[Efst]] e) . (E*[[Erest*]] e)

L[[#u]] = (Unit 7→ Value unit)
L[[B]] = (Bool 7→ Value B[[B]])
L[[N]] = (Int 7→ Value N [[N]])
L[[(symbol I)]] = (Sym 7→ Value I)

B and N defined as usual.

Figure 6.21: Valuation functions for FLK, Part I

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

254 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

P [[not?]] =λv* . matching v*
. [v]Value [] (with-boolean-val

v
λb . (val-to-comp (Bool 7→ Value (not b))))

. else (err-to-comp not?-wrong-number-of-args)
endmatching

P [[left]] =λv* . matching v*
. [v]Value [] (with-pair-val v λclcr . cl)
. else (err-to-comp left-wrong-number-of-args)
endmatching

Similarly for right

P [[integer?]] =
λv* . matching v*

. [v]Value [] matching v
. (Int 7→ Value i) [] (val-to-comp (Bool 7→ Value true))
. else (val-to-comp (Bool 7→ Value false))
endmatching

. else (err-to-comp integer?-wrong-number-of-args)
endmatching

Similarly for other predicates

P [[+]] =λv* . matching v*
. [v1 v2]Value [] (with-integer v1

(λi1 . (with-integer v2
(λi2 . (val-to-comp

(Int 7→ Value (+ i1 i2)))))))
. else (err-to-comp +-wrong-number-of-args)
endmatching

Similarly for other binary operators, except / and rem, which give an error on a
second argument of 0.

Figure 6.22: Valuation functions for FLK, Part II

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 255

¤ Exercise 6.25 In FLK, error expressions take a manifest constant as the name of
the error. There are other possible error strategies. One is to have only a single error
value, which might simplify the semantics while making errors less helpful in practice.
Another approach is to allow the argument of error to be a computed value. If we alter
the syntax of FLK to support the form (error E), then

a. Write the evaluation clause for (error E).

b. What is the meaning of an error expression whose argument results in an error?
¢

¤ Exercise 6.26 Construct an operational semantics for FLK that uses explicit

environments rather than substitutions. [Hint: it is a good idea to introduce a closure

object that pairs a lambda expression with the environment it is evaluated in.] ¢

¤ Exercise 6.27 Write a denotational semantics for FL that does not depend on

its desugaring into FLK. That is, the valuation clauses should directly handle features

such as define, let, letrec, and procedures with multiple arguments. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

256 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

