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Chapter 5

Fixed Points

Bottom! O most courageous day! O most happy hour!

— A Midsummer Night’s Dream, William Shakespeare

Recursive definitions are a powerful and elegant tool for specifying complex
structures and processes. While such definitions are second nature to experi-
enced programmers, novices are often mystified by recursive definitions. Their
confusion often centers on the following question: “how can something be de-
fined in terms of itself?” Sometimes there is a justifiable cause for confusion —
not all recursive definitions make sense!

In this chapter, we carve out a class of recursive definitions that do make
sense, and present a technique for assigning meaning to them. The technique
involves finding a fixed point of a function derived from the recursive definition.
We will make extensive use of this technique in our denotational descriptions
of programming languages to define recursive valuation functions and recursive
domains.

5.1 The Fixed Point Game

5.1.1 Recursive Definitions

For our purposes, a recursive definition is an equation of the form

x = . . . x . . .
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156 CHAPTER 5. FIXED POINTS

where . . . x . . . designates a mathematical expression that contains occurrences
of the defined variable x. Mutually recursive definitions of the form

x1 = . . . x1 . . . xn . . .
...

xn = . . . x1 . . . xn . . .

can always be rephrased as a single recursive definition

x = 〈. . . (Proj 1 x) . . . (Proj n x) . . . ,

...

. . . (Proj 1 x) . . . (Proj n x) . . . 〉,

where x stands for the n-tuple 〈x1, . . ., xn〉 and Proj i extracts the ith element
of the tuple. For this reason, it is sufficient to focus on recursive definitions
involving a single variable.

A solution to a recursive definition is a value that makes the equation
true when substituted for all occurrences of the defined variable. A recursive
definition may have zero, one, or more solutions. For example, suppose that x
ranges over the integers. Then:

• x = 1 + x has no solutions;

• x = 4− x has exactly one solution (2);

• x = 9
x has two solutions (-3, 3);

• x = x has an infinite number of solutions (each integer).

It is important to specify the domain of the defined variable in a recursive
definition, since the set of solutions depends on this domain. For example, the
recursive definition x = 1

16x3 has

• zero solutions over the integers1;

• one solution over the positive rationals ( 1
2 );

• two solutions over the rationals ( 1
2 , −1

2);

• four solutions over the complex numbers ( 1
2 , −1

2 ,
i
2 , − i

2).

1In this case, division is interpreted as a quotient function on integers.
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In fact, many numerical domains were invented precisely to solve classes of
equations that were insoluble with existing domains.

Although we are most familiar with equations that involve numeric variables,
equations can involve variables from any domain, including product, sum, se-
quence, and function domains. For example, consider the following recursive
definitions involving an element p of the sequence domain Nat × Nat:

• p= 〈(Proj 2 p) , (Proj 1 p)〉 has an infinite number of solutions of the form
〈n,n〉, where n :Nat.

• p= 〈(Proj 2 p) , (Proj 1 p) - 1〉 has the unique solution 〈0, 0〉.2

• p= 〈(Proj 2 p) , (Proj 1 p) + 1〉 has no solutions in Nat × Nat. The first
element n of a solution p = 〈n, . . .〉 would have to satisfy the equation
n = n + 1, and this equation has no solutions.

We can also have recursive definitions involving an element s of the sequence
domain Nat*:

• s=(cons 3 (tail s)) has an infinite number of solutions: all non-empty
sequences s whose first element is 3.

• s=(cons 3 s) has no solutions in Nat*, which includes only finite se-
quences of natural numbers and so does not contain an infinite sequence of
3s. However, this equation does have a solution in a domain that includes
infinite sequences of numbers in addition to the finite ones. We shall use
the notation Nat* to designate this domain.

• s=(cons 3 (tail (tail s))) has the unique solution [3]. This definition
requires that (tail s) = (tail (tail s)), and in Nat* only a singleton se-
quence s satisfies this requirement.3 However, in Nat*, this equation has
an infinite number of solutions, since for any integer i, an infinite sequence
of is satisfies (tail s) = (tail (tail s)).

We will be especially interested in recursive definitions over function domains.
Suppose that f is an element of the domain Nat → Nat . Consider the following
recursive function definition of f :

f = λn . if (n = 0) then 0 else (2 + (f (n − 1))) fi.

2Recall that (n1 − n2 )= 0 if n1 ,n2 :Nat and (n1 < n2 ).
3Recall that (tail [ ]) is defined to be [ ].
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Intuitively, this equation is solved when f is a doubling function, but how do we
show this more formally? Recall that a function in Nat → Nat can be viewed as
its graph, the set of input/output pairs for the function. The graph associated
with the lambda expression is

{〈0, if (0= 0) then 0 else (2 + (f 0))〉,
〈1, if (1= 0) then 0 else (2 + (f 0))〉,
〈2, if (2= 0) then 0 else (2 + (f 1))〉,
〈3, if (3= 0) then 0 else (2 + (f 2))〉,
. . . }.

After simplification, this becomes

{〈0, 0〉, 〈1, (2 + (f 0))〉, 〈2, (2 + (f 1))〉, 〈3, (2 + (f 2))〉, . . . }.

If f is a doubling function, then the graph of the right-hand side can be further
simplified to

{〈0, 0〉, 〈1, 2〉, 〈2, 4〉, 〈3, 6〉, . . . }.
This is precisely the graph of the doubling function f on the left-hand side of the
equation, so the equation holds true. It is not difficult to show that the doubling
function is the only solution to the equation; we leave this as an exercise.

As with recursive definitions over other domains, recursive definitions of
functions may have zero, one, or more solutions. Maintaining the assumption
that f is in Nat → Nat , the definition

f = λn . (1 + (f n))

has zero solutions, because the result nr for any given input would have to satisfy
nr = nr + 1. On the other hand, the definition

f = λn . (f (1 + n))

has an infinite number of solutions: for any given constant nc, a function with
the graph {〈n,nc〉 | n : Nat} is a solution to the equation.

5.1.2 Fixed Points

If d ranges over domain D, then a recursive definition

d = (. . . d . . .)

can always be encoded as the D → D function

λd . ( . . . d . . .).
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We will call this the generating function for the recursive definition. For
example, if r :Real, the numeric equation

r = 1− r 2

can be represented by the Real → Real generating function

λr . (1 − (r * r)) .

Similarly, the recursive function definition

dbl : Nat → Nat = λn . if (n = 0) then 0 else (2 + (dbl (n − 1))) fi

can be represented by the generating function

gdbl : (Nat → Nat)→ (Nat → Nat)
=λf . λn . if (n = 0) then 0 else (2 + (f (n − 1))) fi,

where f :Nat → Nat. A generating function is not recursive, so its meaning can
be straightforwardly determined from its component parts.

A solution to a recursive definition is a fixed point of its associated generating
function. A fixed point of a function g :D → D is an element d :D such that
(g d) = d. If a function in D → D is viewed as moving elements around
the space D, elements satisfying this definition are the only ones that remain
stationary; hence the name “fixed point.”

To build intuitions about fixed points, it is helpful to consider functions from
the unit interval4 [0, 1] to itself. Such functions can be graphed in the following
box:

0 1
0

1

Every point where the function graph intersects the y = x diagonal is a fixed
point of the function. For example, Figure 5.1 shows the graphs of functions
with zero, one, two, and an infinite number of fixed points.

It is especially worthwhile to consider how a generating function like gdbl
moves elements around a domain of functions. Here are a few examples of how
gdbl maps various functions f :Nat → Nat :

4The unit interval is the set of real numbers between 0 and 1, inclusive.
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0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

Figure 5.1: Functions on the unit interval with zero, one, two, and an infinite
number of fixed points.

• If f is the identity function λn . n, then (gdbl f) is the function that incre-
ments positive numbers and returns 0 for 0:

λn . if (n = 0) then 0 else (n + 1) fi

• If f is the function λn .
(

(n + 1)2 − 2
)

then (gdbl f) is the function λn .n2

• If f is a doubling function, then (gdbl f) is also the doubling function, so
the doubling function is a fixed point of gdbl . Indeed, it is the only fixed
point of gdbl .

Since generating functions D → D correspond to recursive definitions, their
fixed points have all the properties of solutions to recursive definitions. In partic-
ular, such a function may have zero, one, or more fixed points, and the existence
and character of fixed points depends on the details of the function and the
nature of the domain D.

5.1.3 The Iterative Fixed Point Technique

Above, we saw that recursive definitions can make sense over any domain. How-
ever, the methods we used to find and/or verify solutions in the examples were
rather ad hoc. In the case of numeric definitions, there are many familiar tech-
niques for manipulating equations to find solutions. Are there any techniques
that will help us solve recursive definitions over more general domains?

There is a class of recursive definitions for which an iterative fixed point
technique will find a distinguished solution of the definition. This technique
finds a unique fixed point to the generating function encoding the recursive
definition. The iterative fixed point technique is motivated by the observation
that it is often possible to find a fixed point for a generating function by iterating
the function starting with an appropriate initial value.
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As a graphical example of the iteration technique, consider a transformation
T on two-dimensional line drawings that is the sequential composition of the
following three steps:

1. Rotate the drawing 90 degrees counter-clockwise about the origin.

2. Translate the drawing right by one unit.

3. Add a line from (0,0) to (0,1).

Figure 5.2 shows what happens when T is iterated starting with the empty
drawing. Each of the first four applications of T adds a new line until the unit
square is produced. Subsequent applications of T do not modify the square; it
is a fixed point of T .

T T T T T

Figure 5.2: Iterating the transformation T starting with an empty line drawing
leads to a fixed point in four steps.

In the line drawing example, a fixed point is reached after four iterations of
the transformation. Often, iterating a generating function does not yield a fixed
point in a finite number of steps, but only approaches one in the limit. A classic
numerical example is finding square roots. The square root of a non-negative
rational number n is a solution of the recursive definition

x =
x+ n

x

2
.

Iterating the generating function for this definition starting with n yields a
sequence of approximations that converge to

√
n. For example, for n = 3 the

generating function is

gsqrt3 : Rat → Rat = λq .
q + 3

q

2
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and the first few iteration steps are:

(
g0sqrt3 3

)
= 3

(
g1sqrt3 3

)
= 2

(
g2sqrt3 3

)
=

7

4
= 1.75

(
g3sqrt3 3

)
=

97

56
≈ 1.7321428571428572

(

g4sqrt3 3
)

=
18817

10864
≈ 1.7320508100147276

...

Since
√
3 is not a rational number, the fixed point clearly cannot be reached in

a finite number of steps, but it is approached as the limit of the sequence of
approximations.

Even in non-numeric domains, generating functions can produce sequences
of values approaching a limiting fixed point. For example, consider the following
recursive definition of the even natural numbers:

evens = {0} ∪ {(n + 2) | n ∈ evens}.

The associated generating function is

gevens : P(Nat)→ P(Nat) = λs . {0} ∪ {(n + 2) | n ∈ s},

where s ranges over the powerset of Nat. Then iterating gevens starting with the
empty set yields a sequence of sets that approaches the set of even numbers in
the limit:

(
g0evens {}

)
= {}

(
g1evens {}

)
= {0}

(
g2evens {}

)
= {0, 2}

(
g3evens {}

)
= {0, 2, 4}

(
g4evens {}

)
= {0, 2, 4, 6}
...

The above examples of the iterative fixed point technique involve different
domains but exhibit a common structure. In each case, the generating function
maps an approximation of the fixed point into a better approximation, where
the notion of “better” depends on the details of the function:
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• In the line drawing example, picture b is better than picture a if b contains
at least as many lines of the unit square as a.

• In the square root example, number b is a better approximation to
√
n

than number a if |b2 − n| ≤ |a2 − n|.

• In the even number example, set b is better than set a if a ⊆ b.

Moreover, in each of the examples, the sequence of approximations produced
by the generating functions converges to a fixed point in the limit. This doesn’t
necessarily follow from the fact that each approximation is better than the pre-
vious one. For example, each element of the series 0, 0.9, 0.99, 0.999, . . . is closer
to
√
2 than the previous element, but the series converges to 1, not to

√
2. The

notion of approaching a limiting value is central to the iterative fixed point
technique.

The basic structure of the iterative fixed point technique is depicted in Fig-
ure 5.3. The generating function g :D → D is defined over a domain D whose
values are assumed to be ordered by their information content. A line connects
two values when the lower value is an approximation to the higher value. That
is, the higher value contains all the information of the lower value plus some ex-
tra information. What counts as “information” and “approximation” depends
on the problem domain. When values are sets, for instance, a line from a up to
b might indicate that a ⊆ b.

In the iterative fixed point technique, iteratively applying g from an appro-
priate starting value d0 yields a sequence of values with increasing information
content. Intuitively, iterative applications of g climb up through the ordered
values by refining the information of successive approximations. If this process
reaches a value di such that di = (g di), then the fixed point di has been found.
If this process never actually reaches a fixed point, it should at least approach
a fixed point as a limiting value.

We emphasize that the iterative fixed point technique does not work for every
generating function. It depends on the details of the domain D, the generating
function g :D → D, and the the starting point d0. The technique must certainly
fail for generating functions that have no fixed points. Even when a generating
function has a fixed point, the iterative technique won’t necessarily find it. For
example, iterating the generating function for n = 3

n
starting with any non-zero

rational number q yields an alternating sequence q, 3
q
, q, 3

q
, . . . that never gets

any closer to the fixed point
√
3. presented earlier in this section. As shown in

Figure 5.4, if we start with an “X” in the upper right quadrant, the iterative
fixed point technique yields a different fixed point than when we start with an
empty picture. Figure 5.5 shows an example in which the technique does not
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Figure 5.3: The “game board” for the iterative fixed point technique.

find a fixed point of T for an initial picture. Instead, it eventually cycles between
four distinct pictures.

T T T T T

Figure 5.4: A different initial picture can lead to a different fixed point for the
picture transformation T .

In the next section, we describe an important class of generating functions
that are guaranteed to have a fixed point. A fixed point of these functions can
be found by applying the iterative fixed point technique starting with a special
informationless element called bottom. Such functions may have more than one
fixed point, but the one found by iterating from bottom has less information than
all the others — it is the least fixed point. We will choose this distinguished
fixed point as the solution of the associated recursive definition. This solution
matches our operational intuitions about what solution the computer will find
when the recursive definition is expressed as a program. We are guaranteed
to be able to solve any recursive definition whose generating function is in this
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T T T

T

T T T

T

Figure 5.5: An example in which the iterative fixed point technique cannot find
a fixed point of the picture transformation T for a non-empty initial picture.

special class.

¤ Exercise 5.1 Above, we showed two fixed points of the picture transformation T .

a. Draw a third line drawing that is a fixed point of T .

b. How many fixed points does T have?

c. Characterize all the fixed points of T . That is, what properties must a picture
have in order to be a fixed point of T ?

d. Figure 5.5 shows an initial picture for which the iterative technique finds a cycle
of four distinct pictures related by T rather than a fixed point of T . Give an
initial picture for which the iterative technique finds a cycle containing only two
distinct picture related by T . In the case of T , can the iterative technique find
cycles of pictures with periods other than 1, 2, and 4? ¢

¤ Exercise 5.2 For each of the following classes of functions from the unit interval to
itself, indicate the minimum and maximum number of fixed points of functions in the
class.

a. constant functions (i.e., functions of the form λx . a);

b. linear functions (i.e., functions of the form λx . ax+ b);

c. quadratic functions (i.e., functions of the form λx . ax2 + bx+ c);

d. continuous functions (i.e., functions whose graph is an unbroken curve);

e. non-decreasing functions (i.e., functions f for which a ≤ b implies (f a) ≤ (f b).

f. non-increasing functions (i.e., functions f for which a ≤ b implies (f a) ≥ (f b).
¢
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e f

d

a b c

Figure 5.6: A Hasse diagram for the partial order PO.

5.2 Fixed Point Machinery

In this section we (1) present the mathematical machinery for defining a class
of functions for which a distinguished fixed point always exists and (2) illustrate
the use of this machinery via several examples.

5.2.1 Partial Orders

A partial order is a pair 〈D,v〉 of a domainD and a relation v that is reflexive,
transitive, and anti-symmetric. A relation is anti-symmetric if a v b and b v
a together imply a = b. The notation a v b is pronounced “a is weaker than b”
or “b is stronger than a.” Later, we shall be ordering elements by information
content, so we will also pronounce a v b as “a approximates b.” When the
relation v is understood from context, it is common to refer to the partial order
〈D,v〉 as D.

Partial orders are commonly depicted byHasse diagrams in which elements
(represented by points) are connected by lines. In such a diagram, a v b if and
only if there is a path from the point representing a to the point representing b
such that each link of the path goes upward on the page. For example, Figure 5.6
shows the Hasse diagram for the partial order PO on six symbols whose relation
is defined by the following graph:

{〈a, a〉, 〈a, d〉, 〈a, e〉, 〈a, f〉, 〈b, b〉, 〈b, d〉, 〈b, e〉, 〈b, f〉,
〈c, c〉, 〈c, e〉, 〈c, f〉, 〈d, d〉, 〈d, e〉, 〈d, f〉, 〈e, e〉, 〈f, f〉}.

Elements of a partial order are not necessarily related. Two elements of
a partial order that are unrelated by v are said to be incomparable. For
example, here is a listing of all the pairs of incomparable elements in PO: 〈a, b〉,
〈a, c〉, 〈b, c〉, 〈c, d〉, and 〈e, f〉.
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· · ·0 1 2 3

Figure 5.7: The domain Nat is assumed to have the discrete ordering.

An upper bound of a subset X of a partial order D is an element u ∈ D
that is stronger than every element of X; i.e., for every x in X, x v u. In PO,
the subset {a, b} has upper bounds d, e, and f; the subset {a, b, c} has upper
bounds e and f; and the subset {e, f} has no upper bounds. The least upper
bound (lub5) of a subset X of D, written

⊔

DX, is the upper bound of X that
is weaker than every other upper bound of X; such an element may not exist.
In PO, the lub of {a, b} is d, but neither {a, b, c} nor {e, f} has a lub. There
are symmetric notions of lower bound and greatest lower bound (glb6),
but our fixed point machinery will mainly use upper bounds.

An element that is weaker than all other elements in a partial order D is
called the bottom element and is denoted ⊥D . Symmetrically, an element that
is stronger that all other elements in D is the top element (written >D). Bottom
and top elements do not necessarily exist. For example, PO has neither.

Any partial order D can be lifted to another partial order D⊥ that has all
the elements and orderings of D, but includes a new element ⊥D⊥ that is weaker
than all elements of D. If D already has a bottom element ⊥D , then ⊥D and
⊥D⊥ are distinct, with ⊥D⊥ being the weaker of the two. Symmetrically, the
notation D> designates the result of extending D with a new top element.

A discrete partial order is one in which every pair of elements is incom-
parable. By default, we will assume that primitive semantic domains have the
discrete ordering. For example, Figure 5.7 depicts the discrete ordering for Nat.
In this partial order, numbers are not ordered by their value, but by their infor-
mation content. Each number approximates only itself.

A flat partial order D is a lifted discrete partial order. Flat partial orders
will play an important role in our treatment of semantic domains. Figure 5.8
depicts the flat partial order Nat⊥ of natural numbers. Note that ⊥Nat⊥ acts as
an “unknown natural number” that approximates every natural number.

A total order is a partial order in which every two elements are related (i.e.,
no two elements are incomparable). For example, the natural numbers under the
traditional value-based ordering form a total order called ω. The elements of a
total order can be arranged in a vertical line in a Hasse diagram (see Figure 5.9).

5The pronunciation of “lub” rhymes with “club.”
6“glb” is pronounced “glub.”
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· · ·0 1 2 3

⊥Nat⊥

Figure 5.8: The flat partial order Nat⊥.

...

0

1

2

3

Figure 5.9: The partial order ω of natural numbers under the traditional value-
based ordering.
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G H

a

b

c

d e

Figure 5.10: Two simple partial orders.

〈b, d〉

〈a, d〉

〈b, e〉

〈a, e〉〈b, c〉

〈a, c〉

Figure 5.11: The product partial order G × H.

A chain is a totally-ordered, non-empty subset of a partial order. The chains
of PO include {a, d, e}, {c, f}, {b, f}, and {d}. In Nat⊥, the only chains are (1)
singleton sets and (2) doubleton sets containing ⊥Nat⊥ and a natural number.

Given partially ordered domains, we would like to define orderings on prod-
uct, sum, sequence, and function domains such that the resulting domains are
also partially ordered. That way, we will be able to view all our semantic do-
mains as partial orders. In the following definitions, assume that D and E are
arbitrary partial orders ordered by vD and vE , respectively. We will illustrate
the definitions with examples involving the two concrete partial orders G and
H in Figure 5.10.

5.2.1.1 Product Domains

D × E is a partial order under the following ordering:

〈d1, e1〉vD×E〈d2, e2〉 iff d1vDd2 and e1vEe2.

The partial order G ×H is depicted in Figure 5.11. Note how the Hasse diagram
for G × H is visually the product of the Hasse diagrams for G and H. G × H
results from making a copy of G at every point of H (or, symmetrically, making
a copy of H at every point of G) and adding the extra lines specified by the
ordering.
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5.2.1.2 Sum Domains

D + E is a partial order under the following ordering:

(
Inj 1D,E d1

)
vD+E

(
Inj 1D,E d2

)
iff d1 vD d2

(
Inj 2D,E e1

)
vD+E

(
Inj 2D,E e2

)
iff e1 vE e2.

This ordering preserves the order between elements of the same summand, but
treats elements from different summands as incomparable. The Hasse diagram
for a sum partial order is simply the juxtaposition of the diagrams for the sum-
mands (see Figure 5.12).

(
Inj 1G,H a

)

(
Inj 1G,H b

)

(
Inj 2G,H c

)

(
Inj 2G,H d

) (
Inj 2G,H e

)

Figure 5.12: The sum partial order G + H.

5.2.1.3 Function Domains

D → E is a partial order under the following ordering:

f 1vD→Ef 2 iff, for all d in D, (f 1 d)vE (f 2 d) .

Consider using this ordering on the elements of G → H. As usual, a total
function from G to H can be represented by a graph of input/output pairs, but
here we employ a more compact notation in which such a function is represented
as a pair of the elements that a and b map to, respectively. Thus, the function
with graph {〈a, c〉, 〈b, d〉} can be abbreviated as 〈c, d〉. Using this notation, the
partial orderG→ H is isomorphic7 to the partial orderH ×H (see Figure 5.13).

This sort of isomorphism holds whenever D is a finite domain. That is, if D
has n elements, then D → E is isomorphic to En.

7Informally, two partial orders are isomorphic if their Hasse diagrams can be rearranged
to have the same shape (ignoring the labels on the vertices). Formally, two partial orders
A and B are isomorphic if there is a bijective function f :A → B that preserves ordering in
both directions. That is, a vA a ′ implies (f a) vB (f a ′) and b vB b ′ implies

(
f −1 b

)
vA(

f −1 b ′
)
.
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〈d, d〉 〈d, e〉

〈d, c〉

〈e, d〉 〈e, e〉

〈e, c〉〈c, d〉 〈c, e〉

〈c, c〉

Figure 5.13: The function partial order G → H. Each pair 〈x, y〉 is shorthand
for a function with a graph {〈a, x〉, 〈b, y〉}.

5.2.1.4 Sequence Domains

There are two common ways to order the elements of D*. These differ in whether
sequence elements of different lengths are comparable.

• Under the prefix ordering,

[d1, d2, . . . , dk]vD*[d1
′, d2

′, . . . , dl
′]

iff k ≤ l and divDdi ′ for all 1 ≤ i ≤ k

If D is a discrete domain, this implies that a sequence s1 is weaker than
s2 if s1 is a prefix of s2 — i.e., s2 = s1 @ s ′ for some sequence s ′.

As an example, suppose that Bit is the discrete partial order of the binary
digits 0 and 1. Then Bit* under the prefix order is isomorphic to the
partial order of binary numerals shown in Figure 5.14. (For example, the
numeral 110 corresponds to the sequence [1, 1, 0].) This partial order is an
infinite binary tree rooted at the empty sequence. Each element of the tree
can be viewed as an approximation to all of the elements of the subtree
rooted at it. For example, 110 is an approximation to 1100, 1101, 11000,
11001, 11010, etc. In computational terms, this notion of approximation
corresponds to the behavior of a computation process that produces its
answer by printing out a string of 0s and 1s from left to right, one character
at a time. At any point in time, the characters already printed are the
current approximation to the final string that will be produced by the
process.

Note that if D has some non-trivial ordering relations, i.e., D is not a
discrete domain, the prefix ordering of D* is more complex than a simple
tree.
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000 001 010 011 100 101 110 111

...
...

...
...

...
...

...
...

00 01 10 11

0 1

Figure 5.14: The sequence partial order Bit* under the prefix ordering.

• Under the sum-of-products ordering, D* is treated as isomorphic to
the infinite sum of products

D0 +D1 +D2 +D3 + · · ·

As in the prefix ordering, sequences are ordered component-wise by their
elements, but the sum-of-products ordering treats sequences of different
lengths as incomparable. For example, under the sum-of-products order-
ing, Bit⊥* is isomorphic to the partial order depicted in Figure 5.15.

· · ·

Bit⊥
0 Bit⊥

1 Bit⊥
2

0 1

⊥

00 01

0⊥

10 11

1⊥⊥0 ⊥1

⊥⊥

Figure 5.15: The sequence partial order Bit⊥* under the sum-of-products or-
dering.

Although we have stated that the above definitions are partial orders, we
have not argued that each ordering is in fact reflexive, transitive, and anti-
symmetric. We encourage the reader to show that these properties hold for each
of the definitions.
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The orderings defined above are not the only ways to order compound do-
mains, but they are relatively natural and are useful in many situations. Later,
we will refine some of these orderings (particularly in the case of function do-
mains). But, for the most part, these are the orderings that will prove useful
for our study of semantic domains.

¤ Exercise 5.3 Using the partial orders G and H in Figure 5.10, draw a Hasse
diagram for each of the following compound partial orders:

a. G × G

b. H × H

c. G→ G

d. H → H

e. H → G

f. G* under the prefix ordering (show the first four levels)

g. H* under the prefix ordering (show the first four levels)

h. G* under the sum-of-products ordering (show the first three summands)

i. H* under the sum-of-products ordering (show the first three summands) ¢

¤ Exercise 5.4 Suppose that A and B are finite partial orders with the same number
of elements, but they are not isomorphic. Partition the following partial orders into
equivalence classes based on isomorphism. That is, each class should contain all the
partial orders that are isomorphic to each other.

A × A, A × B, B × A, B × B,
A + A, A + B, B + A, B + B,
A→ A, A→ B, B → A, B → B ¢

¤ Exercise 5.5 Given a discretely ordered domain D, the powerset P(D) is a partial
order under the subset ordering:

SvP(D)S
′ if S ⊆ S ′

Draw the Hasse diagram for the partial order P({a, b, c}) under the subset ordering.
If D is a partial order that is not discrete, it turns out that there are many “natural”

ways to order the elements of the powerdomain P(D), each of which is useful for
different purposes. See [Sch86a] or [GS90] for details. ¢

¤ Exercise 5.6 For each ordering on a compound domain defined above, show that

the ordering is indeed a partial order. I.e., show that the orderings defined for product,

sum, function, and sequence domains are reflexive, transitive, and anti-symmetric. ¢
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5.2.2 Complete Partial Orders (CPOs)

A partial order D is complete if every chain in D has a least upper bound in
D. The term “complete partial order” is usually abbreviated CPO. Intuitively,
completeness means that any sequence of elements visited on an upward path
through a Hasse diagram must converge to a limit. Completeness is important
because it guarantees that the iterative fixed point technique converges to a
limiting value.

Here are some examples of CPOs:

• Any partial order with a finite number of elements is a CPO because every
chain is finite and necessarily contains its lub. PO, G, and H from the
previous section are all finite CPOs.

• Any flat partial order is a CPO because every chain has at most two
elements, the stronger of which must be the lub. Nat⊥ is a CPO with an
infinite number of elements.

• P(Nat) is a CPO in which the elements (each of which is a subset of the
naturals) are ordered by subset inclusion (see Exercise 5.5). It is complete
because the lub of every chain C is the (possibly infinite) union of the
elements of C. Unlike the previous examples of CPOs, this is one in which
a chain may be infinite and not contain its own lub. Consider the chain C
with elements ci, where ci is defined to be {n | n ≤ i,n : Nat} Then:

⊔

P(Nat)

C =
⋃

{{0}, {0, 1}, {0, 1, 2}, . . .} = Nat

The lub of C is the entire set of natural numbers, but no individual ci is
equal to this set.

• The unit interval under the usual ordering of real numbers is a CPO. It is
complete because the construction of the reals guarantees that it contains
the least upper bound of every subset of the interval. The unit interval is
another CPO in which chains do not necessarily contain their own lubs.
For example, the set of all rational numbers less than

√
.5 does not contain√

.5.

• The partial functions from Nat to Nat (denoted Nat ⇀ Nat) form a
CPO. Recall that a partial function can be represented by a graph of
input/output pairs. So the function that is undefined everywhere is rep-
resented by {}, the function that returns 23 given 17 and is elsewhere
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...

0

1

2

3

>ω>

Figure 5.16: The partial order ω> is the partial order ω of natural numbers
extended with a largest element >ω> .

undefined is represented by {〈17, 23〉}, and so on. The ordering of ele-
ments in this CPO is just subset inclusion on the graphs of the functions.
It is complete for the same reason that P(Nat) is complete.

It is worthwhile to consider examples of partial orders that are not CPOs:

• The total order ω depicted in Figure 5.9 is not a CPO because the chain
consisting of the entire set has no least upper bound (i.e., there is no
largest natural number). This partial order can be turned into a CPO ω>

by extending it with a top element >ω> that by definition is larger than
every natural number (see Figure 5.16.)

• The partial order of rational numbers (under the usual ordering) between
0 and 1, inclusive, is not complete because it does not contain irrational

numbers like
√

1
2 . It can be made complete by extending it with the

irrationals between 0 and 1; this results in the unit interval [0, 1].

• The partial order of sequences Bit* under the prefix ordering is not a CPO.
By definition, D* is the set of finite sequences whose elements are taken
from D. But the chain {[ ], [1], [1, 1], [1, 1, 1], . . . } has as its lub an
infinite sequence of 1s, which is not an element of Bit*. To make this
partial order complete, it is necessary to extend it with the set of infinite
sequences over 0 and 1, written Bit∞. So the set of strings Bit* ∪ Bit∞

under the prefix ordering is a CPO.

Generalizing Bit∞, we introduce the notation D∞ to denote the set of all
infinite sequences whose elements are taken from the domain D. We also intro-
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duce the notation D* to stand for D* ∪ D∞ under the prefix ordering. (The
overbar notation is commonly used to designate the completion of a set, which
adds to a set all of its limit points.)

As with partial orders, we are interested in combination properties of CPOs.
As indicated by the following facts, we can use ⊥, × , + , → , and * to build
new CPOs out of existing CPOs. Suppose that D and E are CPOs. Then:

• D⊥ is a CPO;

• D × E is a CPO under the partial order for products;

• D + E is a CPO under the partial order for sums;

• D → E is a CPO under the partial order for functions;

• D* is a CPO under the sum-of-products ordering for sequences;

• D* is a CPO under the prefix ordering for sequences.

¤ Exercise 5.7 For each of the compound CPOs described above, show that the com-

pound partial order is indeed complete. That is, show that the completeness property

of D and E implies that each chain of the compound domain has a lub in the compound

domain. ¢

5.2.3 Pointedness

A partial order is pointed if it has a bottom element. Pointedness is important
because the bottom element of a CPO is the natural place for the iterative fixed
point technique to start. Here are some of the pointed CPOs we have studied,
listed with their bottom elements:

• G, bottom = a;

• H, bottom = c;

• Nat⊥, bottom = ⊥Nat ;

• P(Nat), bottom = {};

• [0, 1], bottom = 0;

• Nat ⇀ Nat , bottom = the function whose graph is {};

• ω>, bottom = 0;
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• Bit*, bottom = [ ].

CPOs that we have studied that are not pointed include PO, G + H, and
Bit⊥* under the sum-of-products ordering.

In the iterative fixed point technique, the bottom element of a pointed CPO
is treated as the element with least information — the “worst” approximation
to the desired value. For example, ⊥Nat⊥ is the unknown natural number,
[ ] is a (bad) approximation to any sequence of 0s and 1s, and {} is a (bad)
approximation to the graph of any partial function from Nat to Nat.

In computational terms, the bottom element of a CPO can informally be
viewed as representing a process that diverges (i.e., gets caught in an infinite
loop). For example, a procedure that returns a boolean for even numbers but
diverges on odd numbers can be modeled as an element of the domain Int →
Bool⊥ that maps every odd number to ⊥Bool⊥ .

Pointed CPOs are commonly used to encode partial functions as total func-
tions. Any partial function f in D ⇀ E can be represented as a total function
f ′ in D → E⊥ by having f ′ map to ⊥E⊥ every element d :D on which f is
undefined. For example, the partial function in PO ⇀ PO with graph

{〈a, d〉, 〈c, b〉, 〈f, f〉}.

can be represented as the total function in PO → PO⊥ with graph

{〈a, d〉, 〈b,⊥PO⊥〉, 〈c, b〉, 〈d,⊥PO⊥〉, 〈e,⊥PO⊥〉, 〈f, f〉}

Because of the isomorphism between D ⇀ E and D → E⊥, we casually perform
implicit conversions between the two representations.

The following are handy facts about the pointedness of partial orders con-
structed out of parts. Suppose that D and E are arbitrary partial orders (not
necessarily pointed). Then:

• D⊥ is pointed.

• D × E is pointed if D and E are pointed.

• D + E is never pointed.

• D → E is pointed if E is pointed.

• D* under the sum-of-products ordering is never pointed.

• D* and D* under the prefix ordering are pointed.
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Unpointed compound domains like D + E and D* under the sum-of-products
ordering can always be made pointed by lifting them with a new bottom element
or by coalescing their bottom elements if they are pointed (see Exercise 5.9).

¤ Exercise 5.8 Prove each of the facts about pointedness claimed above. ¢

¤ Exercise 5.9 The smash sum (also known as coalesced sum) of two pointed
partial orders D and E, written D ⊕ E, consists of the elements

{⊥D⊕E} ∪ {
(
Inj 1D,E d

)
| d ∈ (D −⊥D)} ∪ {

(
Inj 2D,E e

)
| e ∈ (E −⊥E)},

where ⊥D⊕E is a single new bottom element that combines the bottom elements ⊥D

and ⊥E . D ⊕ E is a partial order under the following ordering:

⊥D⊕E vD⊕E x for all x ∈ D ⊕ E
(
Inj 1D,E d1

)
vD⊕E

(
Inj 1D,E d2

)
iff d1, d2 ∈ (D −⊥D) and d1 vD d2

(
Inj 2D,E e1

)
vD⊕E

(
Inj 2D,E e2

)
iff e1, e2 ∈ (E −⊥E) and e1 vE e2.

a. Using the CPOs G and H from Figure 5.10, draw a Hasse diagram for the partial
order G ⊕ H .

b. If D and E are CPOs, show that D ⊕ E is a CPO.

c. What benefit does D ⊕ E have over D + E.

d. Suppose that D is a pointed CPO. Extend the notion of smash sum to a smash
sequence D⊕⊗ such that D⊕⊗ is a pointed CPO under an ordering analogous to
the sum-of-product ordering. What does Bit⊥⊕⊗ look like? ¢

5.2.4 Monotonicity and Continuity

Suppose that f :D → E, where D and E are CPOs (not necessarily pointed).
Then

• f is monotonic if d1 vD d2 implies (f d1) vE (f d2).

• f is continuous if, for all chains C inD, (f (
⊔

D C)) =
⊔

E{(f c) | c ∈ C}.
A monotonic function preserves order between CPOs, while a continuous func-
tion preserves limits. In the iterative fixed point technique, monotonicity is
important because when f :D → D is monotonic, the set of values

{⊥, (f ⊥) , (f (f ⊥)) , (f (f (f ⊥))) , . . .}

is guaranteed to form a chain. Continuity guarantees that this chain approaches
a limit.
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As an example of these properties, consider the CPO of functions G →
H depicted in Figure 5.13. Any function represented by the pair 〈x, y〉8 is
monotonic if and only if x v y. Although there are 32 = 9 total functions from
G to H, only five of these are monotonic:

{〈c, c〉, 〈c, d〉, 〈d, d〉, 〈c, e〉, 〈e, e〉}
The reason that there are fewer monotonic functions than total functions is that
choosing the target t for a particular source element s constrains all the source
elements stronger than s to map to a target stronger than t. For example, a
monotonic function that maps a to e must necessarily map b to e. With larger
domains, the reduction from total functions to monotonic functions can be more
dramatic.

What functions fromG toH are continuous? The only non-singleton chain in
G is {a, b}. By the definition of continuity, this means that a function f :D → E
is continuous if (

f

(
⊔

D

{a, b}
))

=
⊔

E

{(f a) , (f b)}.

In this case, this condition simplifies to (f a) vE (f b), which is equivalent to
saying that f is monotonic. Thus, the continuous functions from G to H are
exactly the five monotonic functions listed above.

The relationship between monotonic and continuous functions in this exam-
ple is more than coincidence. Monotonicity and continuity are closely related,
as indicated by the following facts:

• On finite CPOs (and even infinite CPOs with only finite chains), mono-
tonicity implies continuity.

• On any CPO, continuity implies monotonicity.

We leave the proof of these facts as exercises.
Although monotonicity and continuity coincide on finite-chain CPOs, mono-

tonicity does not imply continuity in general. To see this, consider the following
function from ω> to the two-point CPO Two= {⊥,>}:

mon-not-con : ω> → Two = λn . if (n = >ω>) then > else ⊥ fi

(See Figure 5.17 for a depiction of this function.) This function is clearly mono-
tonic, but it is not continuous because on the subset ω of ω>,
(

f

(
⊔

ω

))

= (f >ω>) = > 6= ⊥ =
⊔

Two

{⊥} =
⊔

Two

{(f n) | n ∈ ω}

8Recall that in this compact notation from page 170, we simply record the function’s value
on a and b, respectively.
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ω> Two

...

0

1

2

3

>ω> >

⊥

Figure 5.17: An example of a function that is monotonic but not continuous.

An important fact about continuous functions is that the set of continuous
functions between CPOs D and E is itself a CPO. For example, Figure 5.18
depicts the CPO of the five continuous functions between G and H. If E is
pointed, the function that maps all elements of D to ⊥E is continuous and
serves as the bottom element of the continuous function CPO.

〈d, d〉 〈e, e〉

〈c, d〉 〈c, e〉

〈c, c〉

Figure 5.18: The CPO G −C−→ H of continuous functions between G and H.

Since the CPO of total functions between D and E and the CPO of contin-
uous functions between D and E are usually distinct, it will be helpful to have
a notation that distinguishes them. We will use D −T−→ E to designate the CPO
of total functions from D to E and D −C−→ E to designate the CPO of continuous
functions from D to E. It turns out that the CPO of continuous functions is
almost always the “right thing” in semantics, so we adopt the convention that,
throughout the rest of this text, any unannotated → should be interpreted as
−C−→. We shall use −T−→ whenever we wish to discuss set-theoretic functions, and
will explicitly use −C−→ only when we wish to emphasize the difference between −T−→
and −C−→.
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A B

a

b

c

d

e f g

Figure 5.19: CPOs A and B.

¤ Exercise 5.10 Using the CPOs G and H from Figure 5.10, draw Hasse diagrams
for the following CPOs:

a. G −C−→ G

b. H −C−→ H

c. H −C−→ G ¢

¤ Exercise 5.11 Consider the CPOs A and B pictured in Figure 5.19. For each of
the following functional domains, give the number of the (1) total, (2) monotonic, and
(3) continuous functions in the domain:

a. A→ A

b. B → B

c. A→ B

d. B → A ¢

¤ Exercise 5.12

a. Show that a continuous function between CPOs is necessarily monotonic.

b. Show that a monotonic function must also be continuous if its source is a CPO
all of whose chains are finite.

c. Show that if D and E are pointed CPOs then D −C−→ E is a pointed CPO. ¢

¤ Exercise 5.13 This problem considers functions f from [0, 1] to itself. We will say

that f is continuous in the CPO sense if it is a member of [0, 1] −C−→ [0, 1], where [0, 1]
is assumed to have the traditional ordering. We will say that f is continuous in the
classical sense if for all x and ε there exists a δ such that

(f [x− δ, x+ δ]) ⊆ [(f x)− ε, (f x) + ε].

(Here we are abusing the function call notation to designate the image of all of the
elements of the interval.)
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a. Does classical continuity imply CPO continuity? If so, give a proof; if not, provide
a counter-example of a function that is continuous in the classical sense but not
in the CPO sense.

b. Does CPO continuity imply classical continuity? If so, give a proof; if not, provide
a counter-example of a function that is continuous in the CPO sense but not in
the classical sense. ¢

5.2.5 The Least Fixed Point Theorem

Suppose D is a domain and f :D → D. Then d :D is a fixed point of f if
(f d) = d. If 〈D,v〉 is a partial order, then d :D is the least fixed point of f
if it is a fixed point of f and d v d ′ for every fixed point d ′ of f .

Everything is now in place to prove the following fixed point theorem:

Least Fixed Point Theorem: If D is a pointed CPO, then a con-
tinuous function f :D → D has a least fixed point (fixD f ) defined
by
⊔

D{(f n ⊥D) | n ≥ 0}.

Proof:
First we show that the above definition of (fixD f ) is a fixed point of f :

• Since ⊥D is the least element in D, ⊥D v (f ⊥D).

• Since f is monotonic (recall that continuity implies monotonicity), ⊥D

v (f ⊥D) implies (f ⊥D) v (f (f ⊥D)). By induction, (f n ⊥D) v(
f n+1 ⊥D

)
for every n ≥ 0, so {(f n ⊥D) | n ≥ 0} is a chain in D.

• Now,

(f (fixD f ))
=

(
f
⊔

D{(f n ⊥D) | n ≥ 0}
)

By definition of fixD .
=

⊔

D{(f (f n ⊥D)) | n ≥ 0} By continuity of f .
=

⊔

D{(f n ⊥D) | n ≥ 1}
=

⊔

D{(f n ⊥D) | n ≥ 0}
(
f 0 ⊥D

)
=⊥D can’t change lub.

= (fixD f ) By definition of fixD .

Thus, (f (fixD f )) = (fixD f ), showing that (fixD f ) is indeed a fixed point
of f .

To see that this is the least fixed point of f , suppose d ′ is some other fixed
point. Then clearly ⊥D v d ′, and by the monotonicity of f , (f n ⊥D) v (f n d ′)
= d ′. So d ′ is an upper bound of the set S = {(f n ⊥D) | n ≥ 0}. But then, by
the definition of least upper bound, (fixD f ) =

(⊔

D S
)
v d ′. 3
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We can treat fixD as a function of type (D → D) → D. It turns out that
fixD is itself a continuous function, and satisfies some other properties that make
it “the right thing” for many semantic purposes (see Gunter and Scott [GS90]).

The Least Fixed Point Theorem describes an important class of situations
in which fixed points exist, and we shall use it to specify the meaning of various
recursive definitions. However, we emphasize that there are many generating
functions that have least fixed points but do not satisfy the conditions of the
Least Fixed Point Theorem. In these cases, some other means must be used to
find the least fixed point.

5.2.6 Fixed Point Examples

Here we present several brief examples of the Least Fixed Point Theorem in
action. We have discussed many of these examples informally already but will
now show how the fixed point machinery formalizes the intuition underlying the
iterative fixed point technique.

5.2.6.1 Sequence Examples

As a first application of the Least Fixed Point Theorem, we consider some
examples. In order to model sequences of natural numbers, we will use the
domain

s ∈ Natseq = Nat⊥*.

We use the flat domain Nat⊥ instead of Nat to model the elements of a sequence
so that there is a distinguished bottom element to which head can map the empty
sequence. We will assume that (tail [ ]) = [ ], though we could alternatively in-
troduce a new bottom element for sequences if we wanted to distinguish (tail [ ])
from [ ]. We use Nat⊥* rather than Nat⊥* because the former is a pointed CPO
that contains all the limiting values that are missing from the latter. In order
to apply the iterative fixed point technique, we will need to assume that Natseq
has the prefix ordering on sequences rather than the sum-of-products ordering.

The equation s = (cons 3 (cons (1 + (head s)) [ ])) has as its associated
generating function the following:

gseq1 : Natseq → Natseq = λs . (cons 3 (cons (1 + (head s)) [ ])) .

Natseq is a pointed CPO with bottom element [ ], and it is not hard to show
that gseq1 is continuous. Thus, the Least Fixed Point Theorem applies, and the
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least fixed point can be found by iterating g starting with [ ]:
(
fixNatseq gseq1

)

=
⊔

Natseq {
(
g0seq1 [ ]

)
,
(
g1seq1 [ ]

)
,
(
g2seq1 [ ]

)
,
(
g3seq1 [ ]

)
, . . . }

=
⊔

Natseq{[ ], [3,⊥Nat⊥ ], [3, 4]}
= [3, 4].

In this case, the unique fixed point [3,4] of gseq1 is reached after two iterations
of gseq1 .

What happens when we apply this technique to an equation like

s = (cons (head s) (cons (1 + (head s)) [ ])) ,

which has an infinite number of fixed points? The corresponding generating
function is

gseq2 : Natseq → Natseq = λs . (cons (head s) (cons (1 + (head s)) [ ])) .

This function is continuous as long as + returns⊥Nat⊥ when one of its arguments
is ⊥Nat⊥ . The Least Fixed Point Theorem applies, and iterating gseq2 on [ ] gives:

(
fixNatseq gseq2

)

=
⊔

Natseq {
(
g0seq2 [ ]

)
,
(
g1seq2 [ ]

)
,
(
g2seq2 [ ]

)
,
(
g3seq2 [ ]

)
, . . . }

=
⊔

Natseq{[ ], [⊥Nat⊥ ,⊥Nat⊥ ]}
= [⊥Nat⊥ ,⊥Nat⊥ ]

After one iteration, the iterative fixed point technique finds the fixed point
[⊥Nat⊥ ,⊥Nat⊥ ], which is indeed less than all the other fixed points [n, (n + 1)].
Intuitively, this result indicates that the solution is a sequence of two numbers,
but that the value of those numbers cannot be determined without making
an arbitrary decision. Note the crucial roles that the bottom elements [ ] and
⊥Nat⊥ play in this example. Each represents the value of a domain with the
least information. Iterative application of the generating function may or may
not refine these values by adding information.

A similar story holds for equations like

s = (cons (1 + (head s)) (cons (head s) [ ]))

that have no solutions in Nat*. The reader can verify that this equation does
have the unique solution [⊥Nat⊥ ,⊥Nat⊥ ] in Natseq and that this solution can be
found by an application of the Least Fixed Point Theorem.

As a final sequence example, we consider the equation s = (cons 1 s), whose
associated generating function is

gseq3 : Natseq → Natseq = λs . (cons 1 s) .
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This function is continuous, and the Least Fixed Point Theorem can be invoked
to find a solution to the original equation:

(
fixNatseq gseq3

)

=
⊔

Natseq {
(
g0seq3 [ ]

)
,
(
g1seq3 [ ]

)
,
(
g2seq3 [ ]

)
,
(
g3seq3 [ ]

)
, . . . }

=
⊔

Natseq{[ ], [1], [1, 1], [1, 1, 1], . . . }
= [1, 1, 1, . . .].

In this case, the unique fixed point of gseq3 is an infinite sequence of 1s. This
fixed point is not reached in a finite number of iterations, but is the limit of

the sequence of approximations
(

gnseq3 [ ]
)

. This example underscores why it is

necessary to extend Nat⊥* with Nat⊥
∞ to make Natseq a CPO. Without the

infinite sequences in Nat⊥
∞, the iterative fixed point technique could not find a

solution to some equations.

5.2.6.2 Function Examples

In the remainder of this book, we will typically apply the iterative fixed point
technique to generating functions over function domains. Here we consider a
few examples involving fixed points over the following domain of functions:

f ∈ Natfun = Nat → Nat⊥.

Since we assume that → designates continuous functions, Natfun is a domain
of the continuous functions between Nat and Nat⊥. Natfun is a CPO because
the set of continuous functions between CPOs is itself a CPO under the usual
ordering of functions. Furthermore, Natfun is pointed because Nat⊥ is pointed.
Recall that Nat → Nat⊥ is isomorphic to Nat ⇀ Nat , so elements of Natfun
can be represented by a function graph in which pairs whose target is ⊥Nat⊥ are
omitted.

Our first example is the definition of the doubling function studied earlier:

dbl = λn . if (n = 0) then 0 else (2 + (dbl (n − 1))) fi.

A solution to this definition is the fixed point of the generating function gdbl :

gdbl : Natfun → Natfun
=λf . λn . if (n = 0) then 0 else (2 + (f (n − 1))) fi.

Natfun is a pointed CPO, and Natfun’s bottom element is the function whose
graph is {}. In this CPO,

⊔
on a chain of functions in Nat → Nat is equivalent

to
⊔

on a chain of graphs of functions in Nat ⇀ Nat . It can be shown that gdbl
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is continuous, so the Least Fixed Point Theorem applies:

(fixNatfun gdbl)
=

⊔

Natfun {
(
g0dbl {}

)
,
(
g1dbl {}

)
,
(
g2dbl {}

)
,
(
g3dbl {}

)
, . . . }

=
⊔

Natfun{{}, {〈0, 0〉}, {〈0, 0〉, 〈1, 2〉}, {〈0, 0〉, 〈1, 2〉, 〈2, 4〉}, . . . }
= {〈n, 2n〉 | n : Nat}.

Each (gndbl {}) is a finite approximation of the doubling function that is only
defined on the naturals 0 ≤ i ≤ n − 1. The least (and only) fixed point is the
limit of these approximations: a doubling function defined on all naturals.

As an example of a function with an infinite number of fixed points, consider
the following recursive definition of a function in Natfun:

even0 : Natfun = λn . if (n = 0) then 0 else (even0 (n mod 2)) fi.

Here (amod b) returns the remainder of dividing a by b. For each constant c in
Nat⊥, the function whose graph is

⋃

n :Nat

{〈2n, 0〉, 〈2n + 1, c〉}

is a solution for even0. Each solution maps all even numbers to zero, but maps
every odd number to the same constant c, where c is a parameter that distin-
guishes one solution from another. Each of these solutions is a fixed point of the
generating function geven0 :

geven0 : Natfun → Natfun
=λf . λn . if (n = 0) then 0 else (f (n mod 2)) fi.

It turns out that this function is continuous, so the Least Fixed Point Theorem
gives:

(fixNatfun geven0 )
=

⊔

Natfun {
(
g0even0 {}

)
,
(
g1even0 {}

)
,
(
g2even0 {}

)
,
(
g3even0 {}

)
, . . . }

=
⊔

Natseq{{}, {〈0, 0〉}, {〈0, 0〉, 〈2, 0〉}, {〈0, 0〉, 〈2, 0〉, 〈4, 0〉}, . . . }
= {〈2n, 0〉 | n : Nat}.

The least fixed point is a function that maps every even number to zero, but
is undefined (i.e., yields ⊥Nat⊥) on the odd numbers. Indeed, this is the least
element of the class of fixed points described above; it uses the least arbitrary
value for the constant c.

The solution for even0 matches our intuitions about the operational behavior
of programming language procedures for computing even0. For example, the
definition for even0 can be expressed in the Scheme programming language via
the following procedure:
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(define (even0 n)

(if (= n 0)

0

(even0 (mod n 2)))).

We expect this procedure to return zero in a finite number of steps for an even
natural number, but to diverge for an odd natural number. The fact that the
function even0 maps odd numbers to ⊥Nat⊥ can be interpreted as signifying that
the procedure even0 diverges on odd-numbered inputs.

¤ Exercise 5.14 For each of the following equations:

• Characterize the set of all solutions to the equation in the specified solution
domain;

• Use the iterative fixed point technique to determine the least solution to the
equation.

Assume that s :Natseq, p :P(Nat), f :Natfun, and h : Int → Int⊥.

a. s =(cons 2 (cons (head (tail s)) s))

b. s =(cons (1 + (head (tail s))) (cons 3 s))

c. s =(cons 5 (mapinc s)), where mapinc is a function in Natseq → Natseq that
maps every sequence [n1 ,n2 ,n3 , . . .] into the sequence
[(1 + n1 ), (1 + n2 ), (1 + n3 ), . . .]

d. p = {1} ∪{x+ 3 | x ∈ p}

e. p = {1} ∪{2x | x ∈ p}

f. p = {1} ∪{|2x− 4| | x ∈ p}

g. f = λn . (f n)

h. f = λn . (f (1 + n))

i. f = λn . (1 + (f n))

j. f = λn . if (n = 1)
then 0
else if (even? n)

then (1 + (f (n / 2)))
else (f (n + 2))
fi

fi

where even? is a predicate determining if a number is even.

k. h = λi . if (i = 0) then 0 else (h (i − 2)) fi ¢
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¤ Exercise 5.15 Section 5.1.3 sketches an example involving the solution of an
equation on line drawings involving the transformation T . Formalize this example by
completing the following steps:

a. Represent line drawings as an appropriate pointed CPO Lines.

b. Express the transformation T as a continuous function gT in Lines → Lines .

c. Use the iterative fixed point technique to find the least fixed point of gT . ¢

¤ Exercise 5.16 A binary relation R on a set A is a subset of A × A. The reflexive
transitive closure of R is the smallest subset R ′ of A × A satisfying the following
properties:

• If a ∈A, then 〈a, a〉 ∈R ′;

• If 〈a, b〉 is in R ′ and 〈b, c〉 is in R, then 〈a, c〉 is in R ′.

a. Describe how the reflexive transitive closure of a binary relation can be expressed
as an instance of the Least Fixed Point Theorem. What is the pointed CPO?
What is the bottom element? What is the generating function?

b. Use the iterative fixed point technique to determine the reflexive transitive closure
of the following relation on the set {a, b, c, d, e}:

{〈a, c〉, 〈c, e〉, 〈d, a〉, 〈d, b〉, 〈e, c〉} ¢

¤ Exercise 5.17 Show that each of the generating functions gseq1 , gseq2 , gseq3 , gdbl ,

geven0 is continuous. ¢

5.2.7 Continuity and Strictness

We have seen how compound CPOs can be assembled out of component CPOs
using the domain operators ⊥, × , + , *, and → . We have also seen how the
pointedness of a compound CPO is in some cases dependent on the pointedness
of its components.

But a pointed CPO D is not the only prerequisite of the Least Fixed Point
Theorem. The other prerequisite is that the generating function f :D → D
must be continuous. In the examples of the previous section, we waved our
hands about the continuity of the generating functions, but did not actually
prove continuity in any of the cases. The proofs are not difficult, but they are
tedious. Below, we argue that all generating functions that can be expressed in
the metalanguage summarized in Section A.4 are guaranteed to be continuous, so
we generally do not need to worry about the continuity of generating functions.
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We also introduce strictness, an important property for characterizing functions
on pointed domains.

Recall that metalanguage expressions include:

• constants (both primitive values and primitive functions on such values);

• variables;

• assembly and disassembly operators for compound domains (e.g., 〈 . . . 〉
and Proj i notation for products, Inj i and matching notation for sums,
cons, empty?, head, and tail for sequences, λ abstraction and application
for functions);

• syntactic sugar like if and the generalized pattern-matching version of
matching .

It turns out that all of the assembly and disassembly operators for compound
domains are continuous and that the composition of continuous functions is con-
tinuous (see [Sch86a] for the details). This implies that any function expressed
as a composition of assembly and disassembly operators is continuous. As long
as primitive functions are continuous and the if and matching notations pre-
serve continuity, all functions expressible in this metalanguage subset must be
continuous. Below, we refine our interpretation of primitive functions and the
sugar notations so that continuity is guaranteed.

Assume for now that all primitive domains are flat CPOs. What does it
mean for a function between primitive domains to be continuous? Since all
chains on a flat domain D can contain at most two elements (⊥D and a non-
bottom element d), the continuity of a function f :D → E between flat domains
D and E is equivalent to the following monotonicity condition:

(f ⊥D)vE (f d) .

This condition is only satisfied in the following two cases:

• f maps ⊥D to ⊥E, in which case d can map to any element of E;

• f maps all elements of D to the same non-bottom element of E.

In particular, f is not continuous if it maps ⊥D and d to distinct non-bottom
elements of E.

For example, a function sqr in Nat⊥ → Nat⊥ that maps ⊥Nat⊥ to ⊥Nat⊥

and every number to its square is continuous. So is the constant function three
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that maps every element of Nat⊥ (including ⊥Nat⊥) to 3. But a function f that
maps every non-bottom number n to its square and maps ⊥Nat⊥ to 3 is not
continuous, because (f n) is not a refinement of the approximation (f ⊥Nat⊥)
= 3.

From a computational perspective, the continuity restriction makes sense
because it only permits the modeling of computable functions. Uncomputable
functions cannot be expressed without resorting to non-continuous functions.
The celebrated halting function, which determines whether or not a program
halts on a given input, is an example of an uncomputable function. Intuitively,
the halting function requires a mechanism for detecting whether a computation
is caught in an infinite loop; such a mechanism must map ⊥ to one non-bottom
element and other inputs to different non-bottom elements.

If D and E are pointed domains, a function f :D → E is strict if (f ⊥D)
=⊥E. Otherwise, f is non-strict. For example, the sqr function described
above is strict, while the three function is non-strict. Although strictness and
continuity are orthogonal properties in general, strictness does imply continuity
for functions between flat domains (see Exercise 5.18).

Strictness is important because it captures the operational notion that a
computation will diverge if it depends on an input that diverges. For example,
strictness models the parameter-passing strategies of most modern languages,
in which a procedure call will diverge if the evaluation of any of its arguments
diverges. Non-strictness models the parameter-passing strategies of so-called
lazy languages. See Chapters 7 and 11 for a discussion of these parameter-
passing mechanisms.

When pointed CPOs are manipulated in our metalanguage, we shall assume
the strictness of various operations:

• All the primitive functions on flat domains are strict. When such a function
has multiple arguments, we will assume it is strict in each of its arguments.
Thus, +Nat⊥ returns ⊥Nat⊥ if either argument is ⊥Nat⊥ , and =Nat⊥ returns
⊥Bool⊥ if either argument is ⊥Nat⊥ .

• An if expression is strict in its predicate whenever it is an element of
Bool⊥ rather than Bool. Thus the expression

if x =Nat⊥ y then 3 else 3 fi

is guaranteed to return ⊥Nat⊥ (not 3) if either x or y is ⊥Nat⊥ . Together
with the strictness of =Nat⊥ , the strictness of if predicates thwarts at-
tempts to express non-computable functions. For example, the expression

if x = ⊥Nat⊥ then true else false fi
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will always return ⊥Bool⊥ .

• A matching expression is strict in its discriminant whenever it is an
element of a pointed CPO. As with the strictness of if predicates, this
restriction matches computational intuitions and prevents the expression
of non-computable functions.

• If D is a pointed domain, we require the head operation on sequences to
be strict on D* under the prefix ordering. That is, (head [ ]) must equal
⊥D. If D is not pointed, or if D* has the sum-of-products ordering, head
is undefined for [ ]; i.e., it is only a partial function.

With the above provisions for strictness, it turns out that all functions express-
ible in the metalanguage are continuous.

Since we often want to specify new strict functions, it is helpful to have
a convenient notation for expressing strictness. If f is any function between
pointed domains D and E, then (strictD ,E f ) is a strict version of f . That is,
(strictD ,E f ) maps ⊥D to ⊥E and maps every non-bottom element d of D to
(f d). As usual, we will omit the subscripts on strict when they are clear from
context. For example, a strict function in Nat⊥ → Nat⊥ that returns 3 for all
non-bottom inputs can be defined as:

strict-three = (strict (λn . 3)) .

We adopt the abbreviation λ . . . . for (strict (λ . . . .)), so λn . 3 is another
way to write the above function.

¤ Exercise 5.18

a. Show that strictness and continuity are orthogonal by exhibiting functions in
D → D that have the properties listed below. You may choose different Ds for
different parts.

i. Strict and continuous;

ii. Non-strict and continuous;

iii. Strict and non-continuous;

iv. Non-strict and non-continuous.

b. Which combinations of properties from the previous part cannot be achieved if
D is required to be a flat domain? Justify your answer. ¢
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5.3 Reflexive Domains

Reflexive domains are domains that are defined by recursive domain equa-
tions. We have already seen reflexive domains in the context of PostFix:

StackTransform = Stack → Stack
Stack = Value* + Error
Value = Int + StackTransform.

These equations imply that a stack may contain as one of its values a function
that maps stacks to stacks. A simpler example of reflexive domains is provided
by the lambda calculus (see Chapter 6), which is based upon a single domain
Fcn defined as follows:

Fcn = Fcn → Fcn.

We know from set theory that descriptions of sets that contain themselves
(even indirectly) as members are not necessarily well-defined. In fact, a simple
counting argument shows that equations like the above are nonsensical if inter-
preted in the normal set-theoretic way. For example, if we (improperly) view
→ as the domain constructor for set theoretic functions from Fcn to Fcn, by
counting the size of each set we find:

|Fcn| = |Fcn||Fcn |.

For any set Fcn with more than one element, |Fcn ||Fcn| is bigger than |Fcn|.
Even if |Fcn | is infinite, |Fcn||Fcn | is a “bigger” infinity! In the usual theory of
sets, the only solution to this equation is a trivial domain Fcn with one element.
A computational world with a single value is certainly not a very interesting,
and is a far cry from computationally complete world of the lambda calculus!

Dana Scott had the insight that the functions that can be implemented on
a computer are limited to continuous functions. There are fewer continuous
functions than set theoretic functions on a given CPO, since the set theoretic
functions do not have to be monotonic (you can get more information out of
them than you put in!). If we treat → as a constructor that describes com-
putable (continuous) functions and we interpret “equality” in domain equations
as isomorphisms, then we have a much more interesting world. In this world,
we can show an isomorphism between Fcn and Fcn → Fcn:

Fcn ≈ Fcn → Fcn .

The breakthrough came when Scott [Sco77] provided a constructive tech-
nique (the so-called inverse limit construction) that showed how to build
such a domain and prove the isomorphism. Models exist as well for all of the
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other domain constructors we have introduced (lifting, products, sums, sum-of-
products, prefix ordering of sequences) and as long as we stick to well defined
domain constructors, we can be assured that there is a non-trivial solution to
our reflexive domain equations.

The beauty of this mathematical approach is that there is a formal way of
giving meaning to programming language constructs without any use of compu-
tation. We shall not describe the details of the inverse limit construction here.
For these, see Scott’s 1976 Turing Award Lecture [Sco77], Chapter 11 of Schmidt
[Sch86a], and Chapter 7 of Stoy [Sto85].

It is important to note that this construction requires that certain domains
have bottom elements. For example, in order to solve the PostFix domain
equations, we need to lift the Stack and Answer domains:

StackTransform = Stack → Stack
Stack = (Value* + Error )⊥
Value = Int + StackTransform
Answer = (Int + Error)⊥

This lifting explains how non-termination can “creep in” when PostFix is ex-
tended with dup.

The inverse limit construction is only one way to understand reflexive do-
main equations. Many approaches to interpreting such equations have been
proposed over the years. One popular modern approach is based on the no-
tion of information systems. You can find out more about this approach in
[GS90, Gun92, Win93].

5.4 Summary

Here are the “big ideas” of this chapter:

• The meaning of a recursive definition over a domain D can be understood
as the fixed point of a function D → D.

• Complete partial orders (CPOs) model domain elements as approximations
that are ordered by information. In a CPO, every sequence of information-
consistent approximations has a well-defined limit.

• A CPO D is pointed if it has a least element (bottom, written ⊥D). The
bottom element, which stands for “no information,” is used as a starting
point for the fixed point process. Bottom can be used to represent a partial
function as a total function. It is often used to model computations that
diverge (go into an infinite loop). A function between CPOs is strict if it
preserves bottom.
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• Functions between CPOs are monotonic if they preserve the information
ordering and continuous if they preserve the limits. Continuity implies
monotonicity, but not vice versa.

• If D is a pointed CPO, every continuous function f :D → D has a least
fixed point (fixd f ) that is defined as the limit of iterating f starting at
⊥D .

• The domain constructors ⊥, × , + , → , and * can be viewed as
operators on CPOs. In particular, D1 → D2 is interpreted as the CPO
of continuous functions from D1 to D2. Only some of these constructors
preserve pointedness. The new domain constructor ⊥ extends a domain
with a new bottom element, guaranteeing that it is pointed.

• Functions that can be expressed in the metalanguage of Section A.4 are
guaranteed to be continuous. Intuitively, such functions correspond to the
computable functions.

• Recursive domain equations that are not solvable when domains are viewed
as sets can become solvable when domains are viewed as CPOs. The key
ideas (due to Scott) are to interpret equality as isomorphism and to focus
only on continuous functions rather than all set-theoretic functions. There
are restricted kinds of CPOs for which any domain equations over a rich
set of operators are guaranteed to have a solution.

Reading

This chapter is based largely on Schmidt’s presentation in Chapter 6 of [Sch86a].
The excellent overview article by Gunter and Scott [GS90] presents alternative
approaches involving more restricted domains and touches upon many technical
details omitted above. See Mosses’s article on denotational semantics [Mos90]
to see how these more restricted domains are used in practice. Gunter’s book
[Gun92] discusses many domain issues in detail.

For an introduction to the techniques of solving recursive domain equations,
see [Sto85, Sch86a, GS90, Gun92, Win93].


