
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Chapter 16

Effects Describe Program
Behavior

Nothing exists from whose nature some effect does not follow.

— Ethics, I, proposition 36, Benedict Spinoza

16.1 Types, Effects, and Regions - What, How, and
Where

We have seen that types are a powerful tool for reasoning about the ideas pre-
sented in the FL, Naming, and Data Chapters (Chapter ??), yet types do not
help us reason in detail about the ideas introduced in the State, Control, and
Concurrency Chapters (Chapter ??). A formal system called an effect system
allows us to reason about many of the state, control, and storage issues that
arise in practical programs.

In this chapter, we introduce effect systems and explore their applications.
An effect system produces a concise description of the observable actions of an
expression, and this description is called the effect of the expression. Example
effects include writing into a region of the store or jumping to a non-local label.
An effect is a dual to a type. Just as a type describes what an expression
computes, an effect describes how an expression computes.

As we shall see, effects describe a wide variety of properties about a pro-
gram that are usefull to programmers, compiler writers, and language designers.
Effect systems provide three benefits to the programmer: improved documen-
tation, safety, and execution efficieny. Documentation and saftey improvements

653

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

654 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

include the ability to better understand the behavior of code, including the
ability to detemine how modules developed by others may modify state, mod-
ify files, perform non-local tranfers, or be the target of non-local jumps. Ef-
ficiency improvements include parallel expression scheduling, remote procedure
call scheduling, and storage management. For example, when expressions do not
share store dependencies, they can be reordered or executed in parallel, subject
to their input values being available.

To make effects precise we introduce the idea of regions that describewhere
objects reside. In our effect system every object resides in a single region, and
this region is described by the type of the object. We can think of regions
as colors (red, blue, green, etc.) or as distinct memory banks (Bank 1, Bank
2, Bank 3, etc.), or even machines (mit.edu, cmu.edu, etc.). However, regions
are logical locations, and may or may not correspond to physical locations in a
given implementation. For example, control points can be assigned to regions
that represent locations in code as opposed to regions in a store.

When two objects are in distinct regions mutations to one of the objects will
not cause changes to the other object. This is a consequence of our invariant
that an object is only in a single region. Thus regions can be used to prove that
object references do not alias one another. Aliasing occurs when two references
refer to the same object. Aliasing can inhibit important compiler optimizations
such as caching the values of mutable objects in registers.

To produce an accurate accounting of effects we include three key innovations
in our type system. First, the type of every mutable object includes the object’s
region. Second, we will account for the effect of a procedure in the type of the
procedure as a latent effect that is realized when the procedure is called. Latent
effects communicate the effects of a procedure from the point of the procedure’s
definition to its points of use. Third, we introduce the idea of effect and region
polymorphism to permit procedures to have effects that depend on their input
parameters.

Although in this chapter we discuss an interwoven system for effects in re-
gions, it is possible to have effects without regions and regions without effects.
In the absence of regions our effect system would be coarse, and would simply
report a limited repitore of broad effects. In the absence of an effect system,
a region system alone can not deduce when a particular region is accessed or
when it becomes inaccessible. Although decoupling effects and regions is possi-
ble, we will show that there is no advantage to doing so because we can hide the
complexity of a simulatenous effect and region system from programmers.

Ultimately, programmers must find an effect system easy to use and it must
produce valuable results. In this chapter we will make an effect system easy
to use by making it invisible to programmers. We will make it invisible by

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.1. TYPES, EFFECTS, AND REGIONS - WHAT, HOW, AND WHERE655

performing effect and region reconstruction without programmer declarations
or assistance. Early experiments with effect systems showed that programmers
had a difficult time composing appropriate effect declarations, and thus the
existance of a sound effect reconstruction algorithm is necessary for the practical
application of a novel effect system you might think of creating!

Since the types of procedures include effects, effect reconstruction naturally
depends upon type reconstruction and vice-versa. We will use FL/R as our
base langauge in this chapter, and demonstrate how to reconstruct effects fully
automatically in this language context.

In this chapter we introduce two classes of example effects. The first class,
store effects (read, write, and create), describe the creation or observation of
store based state. The second class, control effects (comefrom, goto), describe
the creation of control points (labels) and the transfer of control to control points
(gotos). As described above, both store and control effects are subscripted by
a region that delinates the scope of the effect. A store region describes a set of
cells (usually one), and a control region describes a set of control points (usually
one). We will use store and control effects for concreteness, but new effects
are readily introduced in the effect system framework, and abstract effects that
encapsulate base effects are also possible.

We will introduce store effects with a few short examples, and then provide
a complete set of effect system rules. We begin with the standard operations on
cells:

E ::= ... | (cell E) [Allocate and initialize a cell]
| (:= E E) [Cell set]
| (^ E) [Cell read]

The := and ^ procedures are respectively implemented with the cell-ref and
cell-set! primitives that we previously defined in Chapter 8.

Our effect system will produce a summary of how we use these procedures
in an expression. The simple effect system we discuss here does not keep track
of the ordering or number of times a particular effect is used. However, we will
keep track of what region of the store is subject to an effect. We will use “!” as
the “has effect” relation for expressions as a complement to the “:” relation for
“has type.”

First, we create a mutable cell that contains an integer. The expression that
creates the cell is assigned an init (initialize) effect in a new store region named
?r-1:

(cell 1) : (cellof int ?r-1) ! (init ?r-1)

Next, we create a boolean cell, set it to true, and read out the contents of the
cell. Note that the effects on this boolean cell are in a new store region called

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

656 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

?r-2. Whenever possible, we will use a new region for each object we create:

(let ((x (cell #f)))

(begin

(:= x #t)

(^ x))) : bool ! (maxeff (init ?r-2) (write ?r-2) (read ?r-2))

Higher order procedures, such as the apply-twice procedure below, can
be polymorphic both in type and effect. In this example, the application of
apply-twice has the store effects (read ?r-3) and (write ?r-3):

(let ((apply-twice (lambda (f x) (f (f x))))

(add-one (lambda (c)

(begin (:= c (+ (^ c) 1))

c)))

(counter (cell 0)))

(begin (apply-twice add-one counter)

(^ counter))))) : int

! (maxeff (init ?r-3)

(write ?r-3)

(read ?r-3))

The type schema of apply-twice in this example is

apply-twice : (generic (tf ft) ; tf is input and output type of f

; ft is latent effect of f

(-> ((-> (tf) ft tf) ; f

tf) ; x

ft ; latent effect of apply-twice

tf)) ; result

Note in this instance that effect polymorphism carries the effect of the procedure
provided to apply-twice to apply-twice itself.

Procedure types in standard environment now have latent effects. Here are
the entries in the standard type envirnoment for the free variables in the above
example:

+ : (-> (int int) pure int)

cell : (generic (t r) (-> (t) (init r) (cellof t r)))

:= : (generic (t r) (-> ((cellof t r) t) (write r) unit))

^ : (generic (t r) (-> ((cellof t r)) (read r) t))

When we generalize over a region in a type schema we are indicating that any
region can be assigned. For example, every time that cell is used we assign
a new region variable to the newly created cell. Thus we try to maximize the
number of distinct regions used in a program to provide a fine grained accounting

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.2. AN EFFECT SYSTEM FOR FL/R 657

of storage (or other assets). However, keep in mind that we assign a single region
for each static occurance of cell, and all of the dynamically created cells from
a single static occurance of cell will wind up in the same region. In addition,
when cells are used interchangably, their types will be unified, forcing them to
be in the same region.

Of course, many expressions will not have any effects:

(+ 1 2) : int ! pure

When an expression has no effects we say that the expression is pure, and con-
versely when it has effects we call it impure. The pure effect is a shorthand
for the effect (maxeff). A pure expression is guaranteed to be referentially
transparent. An expression is referentially transparent when different syntac-
tic occurrences of the expression are guaranteed to have the same value assuming
identical bindings for all of the free variables in the expression. We have already
discussed the idea of referential transparency in the chapter on state (Chapter 8).
Programming languages do not guarantee referential transparency when expres-
sions observe mutable state with expressions that have effects. Thus when an
expression is pure, it will be referentially transparent becuase it can not observe
mutable state.

Advanced properties of effect systems are beyond the scope of this book,
including effect algebras that can associate execution times or storage costs with
expressions. These advanced effect algebras require different approaches to type
and effect reconstruction than the one we discuss below. The interested reader
can consult the bibliography at the end of this chapter for reserach papers on
these topics.

In the rest of this chapter, we introduce rules for assigning effects to expres-
sions (Section 16.2), we will discuss how effects can be used to analyze program
behavior (Section 16.3), and how effects can be reconstructed as an integral part
of a type and effect system (Section 16.4).

16.2 An Effect System for FL/R

Formally, an effect system is a set of rules for assigning an effect and a type to
an expression. Our effect system needs to assign types to expressions to permit
us to analyze the behavior of user defined procedures. Thus, we first extend the
syntax of procedure types to include latent effects:

(-> (T*) F T)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

658 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

where the T* are the types of the procedure’s parameters, F describes the pro-
cedure’s latent effect, and T is the output type of the procedure.

Figure 16.1 shows the grammar for FL/R language with types that include
latent effects. An effect system inherits the names of effects from the latent ef-
fects of the primitive operators and procedures that are available in the standard
top-level environment. We combine effects with the effect union operator maxeff
that is associative (A), commutative (C), unitary (U), and has an identity (I)
(pure is the identity element). Thus, effect combination is an ACUI algebra.

Our algebra of effects is important to consider because the equality of latent
effects that occur in procedure types must be considered with respect to our
ACUI effect algebra. Because effect combination is commutative, the order in
which effects occur is not preserved when effects are combined. Thus procedures
that perform equivent operations in different orders will have the same effect
according to our algebra of effects.

E ::= L | (if E E E) | (primop O E*) | (let ((I E)*) E)
| (letrec ((I E)*) E) | (lambda (I*) E) | (E E*)

T ::= I | (I T) | (-> (T*) F T) | (cellof T R)

F ::= pure | (maxeff F*) | (I R)

R ::= I

TS ::= (generic (I*) T)

Figure 16.1: Grammar for FL/R with latent effects.

We will now introduce a set of rules for assigning types and effects to FL/R
expressions. The rules show us how to deduce the type T and effect F of an
expression E given a type environment A:

A ` E : T ! F

The standard environment A includes a library of standard procedures (such as
^, :=, etc.), and the types of these procedures include latent effects that describe
their actions.

The effect system shown in Figure 16.2 consists of rules that simultaneously
compute the type and effect of an expression. FL/R’s [lambda] and application
[app] typing rules are extended to permit latent effects to move in and out
of procedure types. The [lambda] rule moves the effect of a procedure’s body
into the procedure type of the lambda expression, and the [app] rule moves the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.2. AN EFFECT SYSTEM FOR FL/R 659

latent effect of a procedure type into the effect of a procedure application. Latent
effects and these rules are the mechanism that communicates effect information
from the point of procedure definition to the point of procedure call. Other rules
such as [if] simply combine the effects of all subexpressions of E to compute a
conservative approximation of the effects of E.

When our typing rules require that two types T1 and T2 be equal, any latent
effects that are in identical positions in T1 and T2 must be equivalent according
to our effect algebra. This occurs when T1 and T2 are procedure types since
procedure types include latent effects. Recall that effect equivalence is considered
with respect to the ACUI algebra for effects, and thus the order of effects does
not matter. For example the effects (maxeff (read ?r-1) (write ?r-2)) and
(maxeff (write ?r-2) (read ?r-1)) are identical.

However, even with our algebra of equivalence over effects, it is a simple
matter to construct a program that does not “effect check.” We say a program
does not effect check when two effects are compared during type checking and
the effects do not match. For example

(if #t ^ (lambda (c) 1))

is not well typed in a strict sense since the cell reference operator ^ and the
lambda must have identical types but their types do not contain identical latent
effects. Note that we do not insist that the consequent and alternative of an if

have the same effect. Only effects in the types of the consequent and alternative
must be the same, and this will only occur when if is returning a type that
contains a procedure type.

We can make the latent effects in two procedure types equivalent by permit-
ting expressions to take on more effects than they may actually cause to ensure
that programs always effect check. Thus our effect system for FL/R includes a
subeffecting rule called [does] that permits effect expansion. For example, the
[does] rule permits our example

(if #t ^ (lambda (c) 1))

: (-> ((cellof int ?r-1)) (read ?r-1) int) ! pure

to be well typed by expanding the latent effect of (lambda (c) 1) to be (read ?r-1)

to match the latent effect of the cell reference operator ^.

Henceforth when we refer to the effect of an expression, we will mean the
smallest effect that can be proven by our rules. This is because [does] permits
an expression to take on many possible effects. Effects form a lattice under
maxeff and thus the notion of a smallest effect is well defined. Later in this
chapter when we discuss effect reconstruction (Section 16.4), we will show how
to compute the smallest effect allowed by the rules.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

660 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

Our typing rules for let have two forms, [impure-let] and [pure-let]. As
we discussed in our introduction to FL/R, only let bindings that do not have
side effects can be generalized. In the literature, such let expressions are called
“non-expansive.” For simplicity we will assume that any expression that is not
a lambda that includes an application is expansive. It would seem logical to use
our own effect system to determine which let expressions are pure and thus can
be generalized. We leave this extension to the interested reader.

In our typing rules we use FV to denote a function that returns the free type,
effect, or region variables in a description expression (type or effect), and FDV
to denote a function that returns all of the free type, effect, or region variables
in a type environment.

16.3 Using Effects to Analyze Program Behavior

Our exploration of the application of effects will consider how effects can be
made to disappear with effect masking, how effects can be used to describe the
actions of applets, how effects can be used to describe control transfers, and how
static storage allocation can use effects.

16.3.1 Effect Masking Hides Invisible Effects

Effect masking is an important tool for encapsulation. It allows effects to
be erased from an expression when the effects cannot be observed from outside
of the expression. For example, let’s reconsider the effect of the expression we
introduced above:

(let ((apply-twice (lambda (f x) (f (f x))))

(add-one (lambda (c) (begin (:= c (+ (^ c) 1)) c)))

(counter (cell 0)))

(begin

(apply-twice add-one counter)

(^ counter)))))

: int ! (maxeff (init ?r-3) (write ?r-3) (read ?r-3))

Since region ?r-3 is not in the type of this expression and is not in the types
of the free variables of this expression (:=, +, ∧, cell), we know that region
?r-3 is invisible outside of the expression. It is impossible for any context for
this expression to determine if the expression has performed any side effects to
?r-3. Thus, effects on ?r-3 can be erased, leaving this expression with no effect.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.3. USING EFFECTS TO ANALYZE PROGRAM BEHAVIOR 661

A[I:T] ` I : T ! pure [id]

[. . . , I:(generic (I1 . . . In) Tbody), . . .] ` I : ([Ti/Ii]ni=1)Tbody ! pure [genvar]

A[I1:T1 . . . In:Tn] ` E : Tr ! F
A ` (lambda (I1 . . . In) E) : (-> (T1 . . . Tn) F Tr) ! pure

[lambda]

A ` Eo : (-> (T1 . . .Tn) Fp Tr) ! Fo ∀ni=1 . A ` Ei : Ti ! Fi
A ` (Eo E1 . . .En) : Tr ! (maxeff Fo F1 . . .Fn Fp)

[app]

A ` E1 : bool ! F1 A ` E2 : T ! F2 A ` E3 : T ! F3
A ` (if E1 E2 E3) : T ! (maxeff F1 F2 F3)

[if]

∀ni=1 . A ` Ei : Ti ! pure

A[I1:Gen (T1, A), . . . In:Gen (Tn, A)] ` Eb : Tb ! Fb
A ` (let ((I1 E1) ... (In En)) Eb) : Tb ! Fb

[pure-let]

∀ni=1 . A ` Ei : Ti ! Fi
A[I1:T1, . . . In:Tn] ` Eb : Tb ! Fb

A ` (let ((I1 E1) ... (In En)) Eb) : Tb ! Fb

[impure-let]

A ` E : T ! F ′ F ′ v F
A ` E : T ! F

[does]

Astandard ` O : (-> (T1 ... Tn) F T) ! pure

∀ni=1 . A ` Ei : Ti ! Fi
A ` (primop O E1 ... En) : T ! (maxeff F1 ... Fn F)

[primop]

∀ni=1 . A[I1:T1, . . . In:Tn] ` Ei : Ti ! pure

A[I1:Gen (T1, A), . . . In:Gen (Tn, A)] : Eb : Tb ! Fb
A ` (letrec ((I1 E1) . . . (In En)) Eb) : Tb ! Fb

[letrec]

Gen(T, A) = (generic (I1 . . . In) T),where {Ii} = FV(T)− FDV(A)

Figure 16.2: FL/R Type and Effect Rules

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

662 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

The general rule for effect erasure is

A ` E : T ! F
F ′ = F − {F1 . . .Fn}

where for all Rj ∈ FV(Fi), Rj /∈ FV(T) [Export restriction]
and for all Vi ∈ FreeIds[[E]], Rj /∈ FV(A[Vi]) [Import Restriction]

A ` E : T ! F ′

The effect erasure rule will detect that certain expressions, while internally im-
pure, are in fact externally pure, and thus are referentially transparent. Thus it
permits impure expressions to be included in functional programs. Thus even
in functional programs selected program expressions can take advantage of local
side effects for efficiency without losing their referential transparency. It also
allows effects that denote control transfers (as from cwcc) to be masked, indi-
cating that an expression may perform internal control transfers that are not
observable outside of the expression. (See Section 16.3.3 for more on control
effects.)

16.3.2 Effects Describe the Actions of Applets

One application of effects is to provide applet security by labeling trusted prim-
itive operations with latent effects that describe their actions. For example, all
procedures that write on the executing computer’s disk could carry a write-disk
latent effect. Other latent effects could be assigned to display and networking
procedures. These effects create a verifiable, succinct summary of the actions of
an imported applet. The effects of an applet could be presented to a security
checker — such as a user dialog box — that would accept or reject applets on
the basis of their effects. In such a system, the vocabulary of effects is defined by
the client machine and its effect system, and not by the imported applet. Thus
the client security system is able to verify the potential actions of an applet in
client defined terms.

An essential part of using types and effects for mobile code security is the
ability of the recepient of code to rapidly verify the code’s purported type and
effect. This is because the type and effect of an applet effectively document its
output and observable behavior, and the well-typedness of an applet guarantees
that the applet will not perform illegal run-time operations. In a proof carrying
code framework, a producer of code provides a series of assetions about code
that can be rapidly verified by a code consumer. In proof carrying code, these
assertions document saftey properties of the code because the underlying lan-
guage (e.g. assembly language) may be inherently unsafe. In our framework we
too can provide assertions with exported code. When an applet is provided to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.3. USING EFFECTS TO ANALYZE PROGRAM BEHAVIOR 663

a consumer we can include a parse tree of the applet with explicit types and
effects attached to each expression. With such assertions for every expression it
is a simple matter to run our type and effect rules in linear time over the code
to verify the purported type and effect of the provided applet.

16.3.3 Effects Describe Control Transfers

Effects can be used to analyze non-local control transfers such as the behavior
produced by call-with-current-continuation (cwcc). cwcc is a procedure that
creates a local control point, continues execution, but permits the executed
code to invoke the created control point and exit from the body of the cwcc.
For example, consider the following FL/R example:

(lambda (x y)

(+ 1 (cwcc (lambda (exit)

(if (= y 0) (exit 0) x)))))

In this example, if y is 0 the outer lambda will return 1, and if y is not 0 the
outer lambda will return x+1.

cwcc can be understood by consdering the procedure P that cwcc takes as its
only input. P receives as its single parameter a continuation procedure C that,
when called with value V, will cause the computation to return from cwcc with
V as its value (see Section 9.4 for more). If C is never called, the value returned
by P is returned by cwcc. Whew! Now read that one more time following along
with the example above.

The type schema of cwcc is rather complicated:

(generic (t r t2 f)

(-> ((-> ((-> (t) (goto r) t2)) f t))

(maxeff f (comefrom r))

t))

This type schema shows that cwcc takes a procedure P with type

(-> ((-> (t) (goto r) t2)) f t)

that has a latent effect f and returns a value of type t. Procedure P will receive
the current continuation, C, as an argument. C has type (-> (t) (goto r) t2).
cwcc will return with a value when the value is either provided as an input to
C or is the return value from P. Since either of these choices will cause cwcc to
return with the provided value, both of these options must insist upon the same
type for the value as can be seen in the above type schema.

cwcc creates a comefrom effect to indicate that control may be transfered

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

664 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

back to the return point of cwcc. If the continuation C is called after cwcc

returns, the cwcc will return again! Thus the continuation procedure C has a
latent goto effect that is specific to the continuation’s region. Other effects of P
(represented by the variable f) are assigned to cwcc. (goto r) will only show
up in f if P actually invokes C. The type t2 is generic to allow C to be called
in any context because C never returns.

Returning to our example

(lambda (x y)

(+ 1 (cwcc (lambda (exit)

(if (= y 0) (exit 0) x)))))

the expression (exit 0) will have a (goto ?r-4) effect (where ?r-4 is a new re-
gion), and the call to cwcc will have the effect (comefrom ?r-4). The comefrom
effect is used because cwcc has established the exit control point that permits
control to materialize at a later time at the return from the cwcc. The effect
name comefrom is a play on the name goto. Finally, in this example, effect
masking can be used to drop the (goto ?r-4) and (comefrom ?r-4) from the
cwcc expression and thus the latent effect of the lambda.

As we have just seen in our small example, effect masking works for all effects
including the control effects comefrom and goto. When a control effect in region
R is masked from expression E, it means that any context for expression E will
not be subject to unexpected control transfers with respect to the continuation
in R. Effect masking of control effects is powerful because it allows module
implementors to use control transfers internally, while allowing clients of the
modules to insist that these internal control transfers do not alter the clients’
control flow. A client can guarantee this invariant by ensuring that it does not
call module procedures with control effects.

16.3.4 Effects Can Be Used to Deallocate Storage

In implementations of FL/R class languages, a cell is typically reclaimed by a
garbage collector (see Chapter ??) because it is difficult to statically determine
when a cell can no longer be reached. With regions, it is possible to do limited
forms of static allocation and deallocation of memory. Assuming we are consid-
ering deallocating a region R that occurs in the type of an expression, the rule

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 665

for storage deallocation is

A ` E : T ! F
R /∈ FV(F)
R /∈ FV(T)

for all Ri (comefrom Ri) /∈ F
for all Ii ∈ FreeIds[[E]], R /∈ FV(A[Ii]) , for all Ri (comefrom Ri), /∈ A[Ii]

Deallocate all storage allocated in R after E

We rely upon our effect system to make this rule sound. Consider the fol-
lowing expression:

(let ((my-cell (cell 47))

(your-cell (cell 48)))

(lambda () (^ my-cell))).

We cannot deallocate my-cell after this expression as the latent effect of the pro-
cedure returned will contain the region for my-cell. This latent effect prevents
us from deallocating storage that can be accessed by a procedure. However, we
are free to deallocate your-cell after this expression returns because it meets
the test of our deallocation rule above and thus will no longer be accessible.

Effects can also be used to manage the deallocation of lambda storage by
associating a region with every procedure type. We leave the details as an
exercise for the reader. Note that there are no allocation effects for lambda

because FL/R does not provide comparison operators on procedures. Thus it
is not possible in FL/R to distinguish procedure instances, and thus procedure
allocation is not an obervable effect.

16.4 Reconstructing Types and Effects

Our treatment of type reconstruction in Chapter ?? introduced type schemas to
permit an identifier to have different types in different contexts. For example, the
identity function (lambda (x) x) can be used on any type of input. When it is
let bound to an identifier, it has the type schema (generic (t) (-> (t) t)).
The job of a type schema is to describe all of the possible types of an identifier
by identifying type variables that can be generalized.

Effect and region reconstruction requires us to further elaborate a type
schema with effect and region variables. These type schemas also carry along
a set of constraints on the effects they describe. We call a type schema that
includes a constraint set an algebraic type schema [JG91]. A constraint set
(C) is a set of assertions (A) between effects

C ::= (A*)
A ::= (>= F1 F2)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

666 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

where (>= F1 F2) means that effect F1 contains all of the effects of effect F2 .
The general form of an algebraic type schema is:

TS ::= (generic (I*) T C)

For example, the algebraic type schema for a procedure that implements the
cell assignment operation (:=) is:

(generic (t e r)

(-> ((cellof t r)) e unit) ; type

((>= e (write r))) ; effect constraints

There are three parts to this algebraic type schema. The variables

(t e r)

describe the type, effect, and region variables that can be generalized in the type
schema. The procedure type

(-> ((cellof t r)) e unit)

describes the cell assignment operation and notes that its application will have
effect e. The constraint

((>= e (write r)))

describes the constraints upon the effect variable e. In this case, the assignment
operation can have any effect as long as it is larger than (write r).

An integer cell incrementing procedure would have the following algebraic
type schema:

(generic (e r)

(-> ((cellof int r)) e unit) ; type

((>= e (read r)) (>= e (write r)))) ; effect constraints

The constraint set in the above type schema constrains the latent effect of the
increment procedure to include read and write effects for the region of the cell
being incremented.

Type schemas that include effects and constraints are central to Algorithm
Z, our algorithm for type and effect reconstruction (Figure ??). Algorithm Z is
similar to Algorithm R from Chapter ??, except that it simultaneously computes
the type and effect of an expression. The unification algorithm U is inherited
unchanged from Algorithm R. A key intuitive insight into Algorithm Z is that
constraints are used to keep track of the effects that expressions must have,
and the constraints on an expression are solved after the type and effect of the
expression is computed. Thus types and effects returned by Z can include effect
variables that are subject to effect constraints returned by Z.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 667

The type and effect reconstruction algorithm Z takes as input an expression
E, a type environment AC , and a starting substitution S. Algorithm Z outputs
the type T of the expression, the effect F of the expression, the final substitution
S ′, and the constraint set C on effect variables in T, F, and S ′.

(Z[[E]] AC S) = 〈T,F,S ′,C〉

Note that in the type environment AC type schemas include effect constraints
as descrbed above.

An expression E is well typed if Z does not fail and if C is solvable. A
constraint set C is solvable if there is a concrete assignment of effects M to the
effect variables in C that satisfies all of the constraints in C. The substitution
of concrete effects to effect variables that satisfies C is called a model. We write
that substitution M is a model of C as M |= C. In our case, the [does] rule
allows us to increase the effect of any expression and thus we will always be able
to find a model for C.

Algorithm Z in Figures 16.4–16.5 is defined such that its results and a cor-
responding model M result in a provable type and effect

(M (S ′AC)) ` E : (M (S ′ T)) ! (M (S ′ F))

(S X) or (M X) means the result of respectively applying the substitution S
or M to X, where X can be a type, effect, or a type environment. In the case of
a type environment the substitution is applied to all of the identifiers bound in
the environment.

An integral part of Algorithm Z is the Zgen algorithm for creating algebraic
type schemas. The Zgen algorithm is identical to the Rgen algorithm from
our type reconstruction algorithm R, with the key addition of detecting generic
effect and region variables and accounting for them by carrying along a copy of a
constraint set that can later be instantiated. When a type schema is instantiated,
the constraint set carried in the type schema is updated to replace the generic
effect and region variables and is returned from Z.

Zgen(T, AC, S, C) = (generic (I1...In) T C)
{I1...In} = FV((S T)) + FV((S C)) - FDV((S AC))

In our definition of Zgen , we have used FV to denote a function that returns the
free type, effect or region variables in a type or constraint expression, and FDV
to denote a function that returns all of the free type, effect, or region variables
in a type environment .

An example helps to clarify the role of constraints kept in type schemas.
Consider the type schema of the integer cell incrementing procedure plus-one

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

668 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

(generic (e r)

(-> ((cellof int r)) e unit)

((>= e (read r)) (>= e (write r))))

and assume that c has type

c: (cellof int ?r-5)

Then

(plus-one c) : unit ! ?e-1

The constraints created by (plus-one c) will be

((>= ?e-1 (read ?r-5)) (>= ?e1 (write ?r-5)))

and thus an application of plus-one will have read and write effects. Note
that the effect of the plus-one procedure is a variable. Our algorithm for
creating procedure types always uses a unification variable to represent the effect
of a procedure in a procedure type. The effects of the procedure’s body are
placed into the constraint set to bound the newly introduced variable. The
advantage of this approach is that two procedure types always have compatible
effect components because they can be unified together. The consequence of
unifying the latent effects of two procedures is that both of the procedure bodies
will have their effect bounds combined.

An expression E is well typed if Z does not fail and if the resulting con-
straint set C is solvable. A minimal solution for a constraint set C that assigns
concrete effects to effect variables can be found using Algorithm Solve shown in
Figure 16.3. Solve is used to solve the constraint set C after the final substitution
produced by Z is applied to the constraints. Solve will always succeed because
of the [does] rule, and thus every expression that is well typed without effects
will have both a type and a conservative effect in our type and effect system.
Another way to see this is that if two types contain different effects that must
be made equal, the [does] rule allows us to choose their least upper bound as a
common effect. This is precisely what Algorithm Solve does.

¤ Exercise 16.1 Complete Algorithm Z to handle impure let. ¢

¤ Exercise 16.2 Imagine that lambda is extended in FL/R to create a procedure in a
region. Thus every procedure type will have a region that identifies where the procedure
is located.

a. Give a revised type grammar for FL/R.

b. Give a revised typing rule for lambda.

c. Give the revised portion of Algorithm Z for lambda.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 669

Set all effect variables Ij := pure;
Changed := true;
While Changed
Changed := false;
For every constraint Ci
; Constraint Ci is of the form (>= Ij Ej) on variable Ij with effect Ej
; Ej is evaluated with respect to current effect variable assignments
If Ij 6= (maxeff Ej Ij) then begin

Changed := true;
Ij := (maxeff Ej Ij);
End If;

End For;
End While;

Figure 16.3: Algorithm Solve.

d. Procedures can be stack allocated when they are not returned out of the context
where they are created or stored in a cell. Give a rule using the regions in
procedure types that identifes procedure regions that can be stack allocated. ¢

¤ Exercise 16.3 Costs
Sam Antics has a new idea for a type system that is intended to help programmers

estimate the running time of their programs. His idea is to develop a set of static rules
that will assign every expression a cost as well as a type. The cost of an expression is
a conservative estimate of how long the expression will take to evaluate.

Sam has developed a new language, called Discount, that uses his cost model. Dis-
count is a call-by-value, statically typed functional language with type reconstruction.
Discount is based on FL/R, and inherits its types, with one major difference: a function
type in Discount includes the latent cost of the function, that is, the cost incurred when
the function is called on some arguments.

For example, the Discount type (-> (int int) 4 int) is the type of a function
that takes two ints as arguments, returns an int as its result, and has cost at most 4
every time it is called.

The grammar of Discount is shown in Figure 16.1 except that procedure types are
altered to include latent costs instead of latent effects:

C ::= loop | I | (sum C*) | (max C*) | 0 | 1 | 2 | . . .

T ::= int | bool | I | (-> (T*) C Tbody)

Sam has formalized his system by defining type/cost rules for Discount. The rules allow
judgments of the form

A ` E : T $ C,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

670 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

(Z[[#u]] A S) = 〈unit, pure,S, ()〉

(Z[[I]] A[. . ., I :T, . . .] S) = 〈T, pure,S, ()〉
(Z[[I]] A[. . ., I : (generic (I1..In) T C), . . .] S) =

〈[?Di/Ii]T, pure,S, [?Di/Ii]C〉
All ?Di are fresh and represet type, effect, or region variables

(Z[[I]] A S) = fail, where I unbound in A

(Z[[(if Etest Econ Ealt)]] A S) =
let 〈Ttest ,Ftest ,Stest ,Ctest 〉 be (Z[[Etest]] A S) in
let Stest

′ be U(Ttest , bool,Stest) in
let 〈Tcon ,Fcon ,Scon ,Ccon 〉 be (Z[[Econ]] A Stest

′) in
let 〈Talt ,Falt ,Salt ,Calt 〉 be (Z[[Ealt]] A Scon) in
let Salt

′ be
U(Tcon ,Talt ,Salt) in

〈Talt , (maxeff Ftest Fcon Falt),Salt
′,Ctest+Ccon+Calt 〉

(Z[[(lambda (I1 . . . In) E)]] A S) =
let 〈T,F,S,C〉 be (Z[[E]] A[I1:?v1 . . . In:?vn] S) in
〈(-> (?v1 . . . ?vn) ?en T), pure,S,C+((>= ?e F))〉

(Z[[(Erator E1 ... En)]] A S) =
let 〈Trator ,Frator ,Srator ,Crator 〉 be (Z[[Erator]] A S) in
let 〈T1 ,F1 ,S1 ,C1 〉 be (Z[[E1]] A Srator) in

...

let 〈Tn ,Fn ,Sn ,Cn 〉 be (Z[[En]] A Sn−1 Cn−1) in
let Sfinal be U(Trator , (− > (T1 . . . Tn) ?e ?t)) in
〈?t, (maxeff Frator F1 . . .Fn ?e),Sfinal ,Crator+C1+. . .+Cn〉

(Z[[(let ((I1 E1)..(In En)) E)]] A S) = ; Pure LET

let 〈T1 ,F1 ,S1 ,C1 〉 be (Z[[E1]] A S) in
...

let 〈Tn ,Fn ,Sn ,Cn 〉 be (Z[[En]] A Sn−l) in
let 〈T,F,S,C〉 be

(Z[[E]]
A[I1 : Zgen (T1, A, Sn, Cn), . . ., In : Zgen (Tn, A, Sn, Cn)]
Sn) in

〈T, (maxeff F F1 . . .Fn ,S,C+C1+. . .+Cn 〉

Figure 16.4: Algorithm Z reconstructs Types, Regions, and Effects, Part I

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 671

(Z[[(letrec ((I1 E1) . . . (In En)) E)]] A S) =
let A1 be A[I1 : ?t1,. . .,An : ?tn] in
let 〈T1 ,F1 ,S1 ,C1 〉 be (Z[[E1]] A1 S) in

...

let 〈Tn ,Fn ,Sn ,Cn 〉 be (Z[[En]] A1 Sn−1 Cn−1) in
let Sb be U((?t1 . . .?tn), (T1 . . . Tn),Sn) in
let 〈T,F,S,C〉 be
(Z[[E]]
A[I1 : Zgen (T1, A, Sn, Cn), . . ., In : Zgen (Tn, A, Sn, Cn)]
Sb) in

〈T, (maxeff F F1 . . .Fn ,S,C+C1+. . .+Cn 〉

Figure 16.5: Algorithm Z reconstructs Types, Regions, and Effects, Part II

which is pronounced, “in the type environment A, expression E has type T and cost
C.”

For example, here are Sam’s type/cost rules for literals and(non-generic) identifiers:

A ` U : int $ 1

A ` B : bool $ 1

A[I : T] ` I : T $ 1

That is, Sam assigns both literals and identifiers a cost of 1. In addition:

• The cost of a lambda expression is 2.
• The cost of an if expression is 1 plus the cost of the predicate expression plus
the maximum of the costs of the consequent and alternate.

• The cost of an N argument application is the sum of the cost of the operator, the
cost of each argument, the latent cost of the operator, and N .

• The cost of an N argument primop application is the sum of the cost of each
argument, the latent cost of the primop, and N . The latent cost of the primop
is determined by a signature Σ, a function from primop names to types. For
example,

Σ(+) = (-> (int int) 1 int).

Here are some example judgments that hold in Sam’s system:

A ` (primop + 2 1) : int $ 5

A ` (primop + (primop + 1 2) 4) : int $ 9

A ` (primop + 2 ((lambda (y) (primop + y 1)) 3)) : int $ 13

Loop is the cost assigned to expressions that may diverge. For example, the expression

(letrec ((my-loop (lambda () (my-loop))))

(my-loop))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

672 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

is assigned cost loop in Discount. Because it is undecidable whether an arbitrary
expression will diverge, we cannot have a decidable type/cost system in which exactly
the diverging expressions have cost loop. We will settle for a system that makes a
conservative approximation: every program that diverges will be assigned cost loop,
but some programs that do not diverge will also be assigned loop.

Because Discount has non-numeric costs, like loop and cost identifiers (which we
won’t discuss), it is not so simple to define what we mean by statements like “the
cost is the sum of the costs of the arguments. . . .” That is the purpose of the costs
(sum C1 C2) and (max C1 C2). Part of Sam’s system ensures that sum and max

satisfy sensible cost equivalent axioms, such as the following:

(sum U1 U2) = U1 +U2

(sum loop U) = loop

(sum U loop) = loop

(sum loop loop) = loop

(max U1 U2) = the max of U1 and U2

(max loop U) = loop

(max U loop) = loop

(max loop loop) = loop

You do not have to understand the details of how cost equivalences are proved in order
to solve this problem.

a. Give a type/cost rule for lambda.

b. Give a type/cost rule for application.

c. Give a type/cost rule for if.

¢

Reading

The first paper on effect systems outlined the need for a new kind of static anal-
ysis [LG88], and this early effect system was later extended to include regions in
the FX-89 programming language [?]. Region and and effect inference were de-
veloped next [JG91]. A wide variety of effect systems have been developed, from
systems for cost accounting [DJG92, RG94], to control effects [JG89], to region
based memory management [?]. The FX-91 programming language [GJSO92]
included all of these features.

