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Chapter 4

Denotational Semantics

But this denoted a foregone conclusion

— Othello, William Shakespeare

4.1 The Denotational Semantics Game

We have seen how an operational semantics is a natural tool for evaluating pro-
grams and proving properties like termination. However, it is less than ideal
for many purposes. A framework based on transitions between configurations
of an abstract machine is usually better suited for reasoning about complete
programs than program fragments. In PostFix, for instance, we had to extend
the operational semantics with elaborate notions of observational equivalence
and transform equivalence in order to effectively demonstrate the interchange-
ability of command sequences. Additionally, the emphasis on syntactic entities
in an operational semantics can complicate reasoning. For example, syntacti-
cally distinct executable sequence answers in PostFix must be treated as the
same observable value in order to support a non-trivial notion of observational
equivalence for command sequences. Finally, the step-by-step nature of an op-
erational semantics can suggest notions of time and dependency that are not
essential to the language being defined. For example, an operational semantics
for the expression language EL might specify that the left operand of a binary
operator is evaluated before the right even though this order may be impossible
to detect in practice.

An alternative framework for reasoning about programs is suggested by the
notion of transform equivalence developed for PostFix. According to this no-
tion, each PostFix command sequence is associated with a stack transform that
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108 CHAPTER 4. DENOTATIONAL SEMANTICS

describes how the sequence maps an input stack to an output stack. It is natural
to view these stack transforms as functions. For example, the stack transform
associated with the command sequence [3, add] would be an add3 function with
the following graph:1

{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [2]〉, 〈[0], [3]〉, 〈[1], [4]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [8, 23]〉, 〈[5, mul2, 17, add3], [8, mul2, 17, add3]〉, . . . }.

Here, errorStack stands for a distinguished error stack analogous to Serror in
the extended PostFix SOS. Stack elements that are executable sequences are
represented by their stack transforms (e.g., add3 and mul2) rather than some
syntactic phrase.

Associating stack transform functions with command sequences has several
benefits. First, this perspective directly supports a notion of equivalence for pro-
gram phrases. For example, the add3 function is the stack transform associated
with the sequence [1, add, 2, add] as well as the sequence [3, add]. This implies
that the two sequences are behaviorally indistinguishable and can be safely in-
terchanged in any PostFix context. The fact that stack elements that are
executable sequences are represented by functions rather than syntactic entities
greatly simplifies this kind of reasoning.

The other major benefit of this approach is that the stack transform associ-
ated with the concatenation of two sequences is easily composed from the stack
transforms of the component sequences. For example, suppose that the sequence
[2, mul] is modeled by the mul2 function, whose graph is sketched below:

{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [− 2]〉, 〈[0], [0]〉, 〈[1], [2]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [10, 23]〉, 〈[5, mul2, 17, add3], [10, mul2, 17, add3]〉, . . . }.

Then the stack transform of [3, add, 2, mul] = [3, add] @ [2, mul] is simply the
function mul2 ◦ add3, whose graph is:

{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [4]〉, 〈[0], [6]〉, 〈[1], [8]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [16, 23]〉, 〈[5, mul2, 17, add3], [16, mul2, 17, add3]〉, . . . }.

1Here, and for the rest of this chapter, we rely heavily on the metalanguage concepts and
notations described in Appendix A. Consult this appendix as necessary to unravel the formal-
ism.
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4.1. THE DENOTATIONAL SEMANTICS GAME 109

Similarly the stack transform of [2, mul, 3, add] = [2, mul] @ [3, add] is the
function add3 ◦ mul2, whose graph is:

{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [1]〉, 〈[0], [3]〉, 〈[1], [5]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [13, 23]〉, 〈[5, mul2, 17, add3], [13, mul2, 17, add3]〉, . . . }.

The notion that the meaning of a program phrase can be determined from
the meaning of its parts is the essence of a framework called denotational
semantics. A denotational semantics determines the meaning of a phrase in
a compositional way based on its static structure rather than on some sort of
dynamically changing configuration. Unlike an operational semantics, a denota-
tional semantics emphasizes what the meaning of a phrase is, not how the phrase
is evaluated. The name “denotational semantics” is derived from its focus on
the mathematical values that phrases “denote.”

The basic structure of the denotational framework is illustrated in Figure 4.1.
A denotational semantics consists of three parts:

1. A syntactic algebra that describes the abstract syntax of the language
under study. This can be specified by the s-expression grammar approach
introduced in Chapter 2.

2. A semantic algebra that models the meaning of program phrases. A
semantic algebra consists of a collection of semantic domains along with
functions that manipulate these domains. The meaning of a program may
be something as simple as an element of a primitive semantic domain like
Int, the domain of integers. More typically, the meaning of a program is an
element of a function domain that maps context domains to an answer
domain, where

• Context domains are the denotational analog of state components
in an SOS configuration. They model such entities as name/value
associations, the current contents of memory, and control information.

• An answer domain represents the possible meanings of programs. In
addition to a component that models what we would normally think
of as being the result of a program phrase, the answer domain may
also include components that model context information that was
transformed by the program.

3. A meaning function that maps elements of the syntactic algebra (i.e.,
nodes in the abstract syntax trees) to their meanings in the semantic alge-
bra. Each phrase is said to denote its image under the meaning function.
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Figure 4.1: The denotational semantics “game board.”

Not any function can serve as a meaning function; the function must be
a homomorphism between the syntactic algebra and the semantic alge-
bra. This is just the technical condition that constrains the meaning of
an abstract syntax tree node to be determined from the meaning of its
subnodes. It can be stated more formally as follows:

Suppose M is a meaning function and t is a node in an abstract
syntax tree, with children t1, . . . , tk. Then

(M t) must equal (ft (M t1) . . . (M tk))

where ft is a function that is determined by the syntactic class of t.

The advantage of restricting meaning functions to homomorphisms is that
their structure-preserving behavior greatly simplifies reasoning. This design
choice accounts for the compositional nature of denotational semantics, whose
essence is summarized by the motto “the meaning of the whole is composed out
of the meaning of the parts”.

4.2 A Denotational Semantics for EL

As our first example, we will develop a denotational semantics for the EL ex-
pression language. We begin with a pared-down version of the language and
show how the semantics changes when adding features to yield full EL.
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4.2.1 Step 1: Restricted ELMM

Recall that ELMM (Figure 3.6) is a simple expression language in which pro-
grams are expressions, and expressions are trees of binary operators (+,-,*,/,%)
whose leaves are integer numerals. For the moment, let’s ignore the / and %

operations, because removing the possibility of divide-by-zero and remainder-
by-zero errors simplifies the semantics. In a version of ELMM without / and %,
the meaning of each numeral, expression, and program is just an integer.

This meaning is formalized in Figure 4.2. There is only one semantic domain:
the domain Int of integers. The meaning of an ELMM program is specified by
a collection of so-called valuation functions, one for each syntactic domain
defined by the abstract syntax for the language. For each syntactic domain,
the name of the associated valuation function is usually a script version of the
metavariable that ranges over that domain. For example, P is the valuation
function for P ∈ Program, NE is the valuation function for NE ∈ NumExp,
and so on.

The meaning P [[(elmm NE body)]] of an ELMM program (elmm NE body) is
simply the integer NE [[NE body ]] denoted by its body expression NE body . Since an
ELMM numerical expression may be either an integer numeral or an arithmetic
operation, the definition of NE has a clause for each of these two cases. In the
integer numeral case, the N function maps the syntactic representation of an
integer numeral into a mathematical integer. We will treat integer numerals as
atomic entities, but their meaning could be determined in a denotational fashion
from their component signs and digits (see Exercise 4.1). In the arithmetic
operation case, the A function maps the operator (one of +, -, and *) into a
binary integer function that determines the meaning of the operation from the
meanings of the operands.

Figure 4.3 illustrates how the denotational semantics for the restricted ver-
sion of ELMM can be used to determine the meaning of the sample ELMM
program (elmm (* (+ 1 2) (- 9 5))). Because P maps programs to their
meanings, P [[(elmm (* (+ 1 2) (- 9 5)))]] is the meaning of this program.
However, this fact is not very useful as stated because the element of Int denoted
by the program is not immediately apparent from the form of the metalanguage
expression P [[(elmm (* (+ 1 2) (- 9 5)))]]. We would like to massage the
metalanguage expression for the meaning of a program into another metalan-
guage expression more recognizable as an element of the answer domain. We
do this by using equational reasoning to simplify the metalanguage expres-
sion. That is, we are allowed to make any simplifications that are allowed by
usual mathematical reasoning about the entities denoted by the metalanguage
expressions. Equational reasoning allows such manipulations as:



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

112 CHAPTER 4. DENOTATIONAL SEMANTICS

Semantic Domain

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}

Valuation Functions

P : Program→ Int
P [[(elmm NE body)]] =NE [[NE body ]]

NE : NumExp→ Int
NE [[N]] = (N [[N]])
NE [[(A NE1 NE2)]] = (A[[A]] (NE [[NE 1 ]]) (NE [[NE2 ]]))

A : ArithmeticOperator→ (Int → Int → Int)
A[[+]] = +Int
A[[-]] = −Int

A[[*]] = ×Int

N : Intlit→ Int
N maps integer numerals to the integer numbers they denote.

Figure 4.2: Denotational semantics for a version of ELMM without / and %.

P [[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]]

= (A[[*]] (NE [[(+ 1 2)]]) (NE [[(- 9 5)]]))

= ((NE [[(+ 1 2)]]) ×Int (NE [[(- 9 5)]]))

= ((A[[+]] (NE [[1]]) (NE [[2]])) ×Int (A[[-]] (NE [[9]]) (NE [[5]])))
= ((1 +Int 2) ×Int (9−Int 5))

= (3×Int 4)

= 12

Figure 4.3: Meaning of a sample program in restricted ELMM.
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• substituting equals for equals;

• applying functions to arguments;

• equating two function-denoting expressions when, for each argument, they
map that argument to the same result (this is called extensionality).

Instances of equational reasoning are organized into equational proofs
that contain a series of equalities. Figure 4.3 presents an equational proof that
P [[(elmm (* (+ 1 2) (- 9 5)))]] is equal to the integer 12. Each equality in
the proof is justified by familiar mathematical rules. For example, the equality

NE [[(* (+ 1 2) (- 9 5))]] = (A[[*]] (NE [[(+ 1 2)]]) (NE [[(- 9 5)]]))

is justified by the arithmetic operation clause in the definition of NE , while the
equality

((1 +Int 2) ×Int (9 -Int 5)) = (3 ×Int 4)

is justified by algebraic rules for manipulating integers. We emphasize that
P [[(elmm (* (+ 1 2) (- 9 5)))]], as well as every other line in Figure 4.3,
denotes exactly the same integer. The whole purpose of the equational proof is
to simplify the original expression into another metalanguage expression whose
form more directly expresses the meaning of the program.

4.2.2 Step 2: Full ELMM

What happens to the denotational semantics for ELMM if we add back in the /
and % operators? We now have to worry about the meaning of expressions like
(/ 1 0) and (% 2 0). We will model the meaning of such expressions by the
distinguished token error. Since ELMM programs, numerical expressions, and
arithmetic operators can now return errors in addition to integers, we invent an
Answer domain with both of these kinds of entities to represent their meanings
and change the valuation functions P , NE , and A accordingly (Figure 4.4).
The integer numeral clause for NE now needs the injection Int 7→ Answer, and
the arithmetic operation clause must now propagate any errors found in the
operands. The A clauses for / and % handle specially the case where the second
operand is zero, and Int 7→ Answer injections must be used in the “regular” cases
for all operators.

In full ELMM, the sample program (elmm (* (+ 1 2) (- 9 5))) has the
meaning (Int 7→ Answer 12). Figure 4.5 presents an equational proof of this fact.
All the pattern matching clauses appearing in the proof are there to handle
the propagation of errors. The sample program has no errors, but we could
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Semantic Domains

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
Error = {error}

a ∈ Answer = Int + Error

Valuation Functions

P : Program→ Answer

P [[(elmm NE )]] = NE [[NE ]]

NE : NumExp→ Answer

NE [[N]] = (Int 7→ Answer (N [[N]]))
NE [[(A NE1 NE2)]] = matching 〈NE [[NE 1 ]],NE [[NE 2 ]]〉

. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[A]] i1 i2 )

. else (Error 7→ Answer error) endmatching

A : ArithmeticOperator→ (Int → Int → Answer)

A[[+]] = λi1 i2 . (Int 7→ Answer (i1 +Int i2 ))
- and * are handled similarly.

A[[/]] = λi1 i2 . if i2 = 0
then (Error 7→ Answer error)
else (Int 7→ Answer (i1 /Int i2 )) fi

% is handled similarly.

N : Intlit→ Int
N maps integer numerals to the integer numbers they denote.

Figure 4.4: Denotational semantics for a version of ELMM with / and %.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

4.2. A DENOTATIONAL SEMANTICS FOR EL 115

P [[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]]

= matching 〈NE [[(+ 1 2)]],NE [[(- 9 5)]]〉
. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )
. else (Error 7→ Answer error) endmatching

= matching 〈matching 〈NE [[1]],NE [[2]]〉
. 〈(Int 7→ Answer i3 ), (Int 7→ Answer i4 )〉 [] (A[[+]] i3 i4 )
. else (Error 7→ Answer error) endmatching ,
matching 〈NE [[9]],NE [[5]]〉
. 〈(Int 7→ Answer i5 ), (Int 7→ Answer i6 )〉 [] (A[[-]] i5 i6 )
. else (Error 7→ Answer error) endmatching 〉

. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )

. else (Error 7→ Answer error) endmatching

= matching 〈matching 〈(Int 7→ Answer 1), (Int 7→ Answer 2)〉
. 〈(Int 7→ Answer i3 ), (Int 7→ Answer i4 )〉 [] (A[[+]] i3 i4 )
. else (Error 7→ Answer error) endmatching ,
matching 〈(Int 7→ Answer 9), (Int 7→ Answer 5)〉
. 〈(Int 7→ Answer i5 ), (Int 7→ Answer i6 )〉 [] (A[[-]] i5 i6 )
. else (Error 7→ Answer error) endmatching 〉

. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )

. else (Error 7→ Answer error) endmatching

= matching 〈(A[[+]] 1 2) , (A[[-]] 9 5)〉
. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )
. else (Error 7→ Answer error) endmatching

= matching 〈(Int 7→ Answer (1 +Int 2)), (Int 7→ Answer (9 +Int 5))〉
. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )
. else (Error 7→ Answer error) endmatching

= matching 〈(Int 7→ Answer 3), (Int 7→ Answer 4)〉
. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )
. else (Error 7→ Answer error) endmatching

= (A[[*]] 3 4)
= (Int 7→ Answer (3×Int 4))

= (Int 7→ Answer 12)

Figure 4.5: Meaning of a sample program in full ELMM.
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introduce one by replacing the subexpression (- 9 5) by (/ 9 0). Then the
part of the proof beginning

= matching 〈(A[[+]] 1 2) , (A[[-]] 9 5)〉 . . .
would become:

= matching 〈(A[[+]] 1 2) , (A[[/]] 9 0)〉
. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )
. else (Error 7→ Answer error) endmatching

= matching 〈(Int 7→ Answer (1 +Int 2)), (Error 7→ Answer error)〉
. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 [] (A[[*]] i1 i2 )
. else (Error 7→ Answer error) endmatching

= (Error 7→ Answer error).

Expressing error propagation via explicit pattern matching makes the equa-
tional proof in Figure 4.5 rather messy. As in programming, in denotational
semantics it is good practice to create abstractions that capture common pat-
terns of behavior and hide messy details. This can improve the clarity of the
definitions and proofs while at the same time making them more compact.

We illustrate this kind of abstraction by introducing the following higher-
order function for simplifying error handling in ELMM:

with-int : Answer → (Int → Answer)→ Answer
=λaf . matching a

. (Int 7→ Answer i) [] (f i)

. else (Error 7→ Answer error) endmatching .

with-int takes an answer a and a function f from integers to answers and returns
an answer. It automatically propagates errors, in the sense that it maps an input
error answer to an output error answer. The function f specifies what is done for
inputs that are integer answers. Thus, with-int hides details of error handling
and extracting integers from integer answers.

A metalanguage expression of the form (with-int a (λi . E)) serves as a kind
of binding construct, i.e., a construct that introduces a name for a value. One
way to pronounce this is:

“If a is an integer answer, then let i name the integer in E and return
the value of E. Otherwise, a must be an error, in which case an error
should be returned.”

The following equalities involving with-int are useful:

(with-int (Error 7→ Answer error) f ) = (Error 7→ Answer error)

(with-int (Int 7→ Answer i) f ) = (f i)

(with-int (NE [[N]]) f ) = (f (N [[N]]))
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P [[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]]

= with-int (NE [[(+ 1 2)]])
(λi1 . with-int (NE [[(- 9 5)]])

(λi2 . (A[[*]] i1 i2 )))

= with-int (with-int (NE [[1]])
(λi3 . with-int (NE [[2]])

(λi4 . (A[[+]] i3 i4 ))))
(λi1 . with-int (with-int (NE [[9]])

(λi5 . with-int (NE [[5]])
(λi6 . (A[[-]] i5 i6 ))))

(λi2 . (A[[*]] i1 i2 )))

= with-int (A[[+]] 1 2)
(λi1 . with-int (A[[-]] 9 5)

(λi2 . (A[[*]] i1 i2 )))

= with-int (Int 7→ Answer (1 +Int 2))
(λi1 . with-int (Int 7→ Answer (9−Int 5))

(λi2 . (Int 7→ Answer (i1 ×Int i2 ))))

= (Int 7→ Answer ((1 +Int 2) ×Int (9−Int 5)))
= (Int 7→ Answer (3×Int 4))

= (Int 7→ Answer 12)

Figure 4.6: Example illustrating how with-int hides error propagation.

Using with-int, the NE valuation clause for arithmetic expressions can be
redefined as:

NE [[(A NE1 NE2)]]
= with-int (NE [[NE1 ]]) (λi1 . (with-int (NE [[NE 2 ]]) (λi2 . (A[[A]] i1 i2 )))).

With this modified definition and the above with-int equalities, details of er-
ror propagation can be hidden in equational proofs for ELMM meanings (see
Figure 4.6).

One of the powers of lambda notation is that it supports the invention of new
binding constructs like with-int via higher-order functions without requiring any
new syntactic extensions to the metalanguage. We will make extensive use of
this power to simplify our future denotational definitions. Later we will see how
this idea appears in practical programming under asmonadic style (Chapter 8)
and continuation passing style (Chapters 9 and 17).
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4.2.3 Step 3: ELM

The ELM language (Exercise 3.10) is obtained from ELMM by adding indexed
input via the expression (arg Nindex), where Nindex specifies the index (start-
ing at 1) of a program argument. The program form is (elm Nnumargs NE body),
where Nnumarg indicates the number of integer arguments expected by the pro-
gram when it is executed. Intuitively, the meaning of ELM programs and nu-
merical expressions must now be extended to include the program arguments.
In Figure 4.7, this is expressed by modeling the meaning of programs and ex-
pressions as functions with signature Int* → Answer that map a sequence of
integers (the program arguments) to an answer (either an integer or an error).
The program argument sequence i* must be “passed down” the syntax tree to
the body of a program and the operands of an arithmetic operation so that they
can eventually be referenced in an arg form at a leaf of the syntax tree. The
elm program form must check that the number of supplied arguments matches
the expected number of arguments inumargs , and the arg form must check that
the index iindex is between 1 and the number of arguments, inclusive.

Figure 4.8 uses denotational definitions to find the result of applying the
ELM program (elm 2 (+ (arg 2) (* (arg 1) 3))) to the argument sequence
[4, 5]. The equational proof assumes the following equalities, which are easy to
verify:

(with-int (NE [[N]] i*) f ) = (f (N [[N]]))
(with-int (NE [[(arg N)]] [i1 , . . . , ik , . . . , in ]) f ) = (f ik ) , where N [[N]] = k

(with-int (A[[A]] i1 i2 ) f ) = (f ires) , where (A[[A]] i1 i2 ) = (Int 7→ Result ires)

In Figure 4.8, if we replace the concrete argument integers 4 and 5 by abstract
integers iarg1 and iarg2 , respectively, then the result would be

(Int 7→ Answer (iarg2 +Int (iarg1 ×Int 3))).

Based on this observation, we can give a meaning to the sample program itself
(i.e., without applying it to particular arguments). Such a meaning must be
abstracted over an arbitrary argument sequence:

P [[(elmm 2 (+ (arg 2) (* (arg 1) 3)))]]
= λi* . matching i*

. [iarg1 , iarg2 ] [] (Int 7→ Answer (iarg2 +Int (iarg1 ×Int 3)))

. else (Error 7→ Answer error) endmatching .

Here we have translated the if that appears in the P definition in Figure 4.7
into an equivalent matching construct that gives the names iarg1 and iarg2 to
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Semantic Domains

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
Error = {error}

a ∈ Answer = Int + Error

Valuation Functions

P : Program→ Int*→ Answer

P [[(elm Nnumargs NE body)]]
=λi* . if (length i*) =N [[Nnumargs ]]

then NE [[NE ]] i*
else (Error 7→ Answer error) fi

NE : NumExp→ Int*→ Answer

NE [[Nnum ]] =λi* . (Int 7→ Answer N [[Nnum ]])

NE [[(arg Nindex)]] =λi* . if (1 ≤ N [[Nindex ]]) and (N [[Nindex ]] ≤ (length i*))
then (Int 7→ Answer (nth (N [[Nindex ]]) i*))
else (Error 7→ Answer error) fi

NE [[(A NE1 NE2)]]
= (with-int (NE [[NE 1 ]] i*) (λi1 . (with-int (NE [[NE 2 ]] i*) (λi2 . (A[[A]] i1 i2 )))))

A and N are unchanged from ELMM.

Figure 4.7: Denotational semantics for ELM.
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P [[(elm 2 (+ (arg 2) (* (arg 1) 3)))]] [4, 5]

= if (length [4, 5]) = N [[2]]
then (NE [[(+ (arg 2) (* (arg 1) 3))]] [4, 5])
else (Error 7→ Answer error)

= (NE [[(+ (arg 2) (* (arg 1) 3))]] [4, 5])

= with-int (NE [[(arg 2)]] [4, 5])
(λi1 . with-int (NE [[(* (arg 1) 3)]] [4, 5])

(λi2 . (A[[+]] i1 i2 )))

= with-int (with-int (NE [[(arg 1)]] [4, 5])
(λi3 . with-int (NE [[3]] [4, 5])

(λi4 . (A[[*]] i3 i4 )))
(λi2 . (A[[+]] 5 i2 ))

= (with-int (A[[*]] 4 3) (λi2 . (A[[+]] 5 i2 )))

= (A[[+]] 5 12)
(Int 7→ Answer 17)

Figure 4.8: Meaning of an ELM program applied to two arguments.

the two integer arguments in the case where the argument sequence i* has two
elements. We showed above that the result in this case is correct, and we know
that an error is returned for any other length.

4.2.4 Step 4: EL

Full EL (Figure 2.4) is obtained from ELM by adding a numerical if expres-
sion and boolean expressions for controlling these expressions. Boolean expres-
sions BE include the truth literals true and false, relational expressions like
(< NE1 NE2), and logical expressions like (and BE 1 BE2). Since boolean
expressions can include numerical expressions as subexpressions and such subex-
pressions can denote errors, boolean expressions can also denote errors (e.g.
(< 1 (/ 2 0))). In Figure 4.9, we model this by having the valuation func-
tion BE for boolean expressions return an element in the domain BoolAnswer
of “boolean answers” that is distinct from the domain Answer of “integer an-
swers”. Since a numerical subexpression of a relational expression could be an
arg expression, the meaning of a boolean expression is a function with signa-
ture Int* → BoolAnswer that maps implicit program arguments to a boolean
answer. The error handling for relational and logical operations is handled by
BE , so the R and L valuation functions manipulate only non-error values.

Note that the error-handling in BE [[(Rrator NE1 NE2)]] is performed by
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Semantic Domains

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}

Error = {error}
a ∈ Answer = Int + Error
ba ∈ BoolAnswer = Bool + Error

Valuation Functions

P : Program→ Int*→ Answer

The P clause is unchanged from ELM (except the keyword elm becomes el).

NE : NumExp→ Int*→ Answer

NE [[(if BE test NE then NE else)]]
=λi* . matching (BE[[BE test ]] i*)

. (Bool 7→ BoolAnswer b) []
if b then NE [[NE then ]] i* else NE [[NE else ]] i* fi

. else (Error 7→ Answer error) endmatching

The other NE clauses are unchanged from ELM.

BE : BoolExp→ Int*→ BoolAnswer

BE [[true]] =λi* . (Bool 7→ BoolAnswer true)

BE [[false]] =λi* . (Bool 7→ BoolAnswer false)

BE [[(Rrator NE1 NE2)]]
=λi* . matching 〈NE [[NE 1 ]] i*,NE [[NE 2 ]] i*〉

. 〈(Int 7→ Answer i1 ), (Int 7→ Answer i2 )〉 []
(Bool 7→ BoolAnswer (R[[R]] i1 i2 ))

. else (Error 7→ BoolAnswer error) endmatching

BE [[(Lrator BE 1 BE2)]]
=λi* . matching 〈BE [[BE 1 ]] i*,BE[[BE 2 ]] i*〉

. 〈(Bool 7→ BoolAnswer b1 ), (Bool 7→ BoolAnswer b2 )〉 []
(Bool 7→ BoolAnswer (L[[L]] b1 b2 ))

. else (Error 7→ BoolAnswer error) endmatching

R : RelationalOperator→ (Int → Int → Bool )

R[[<]] =<Int

= and > are handled similarly.

L : LogicalOperator→ (Bool → Bool → Bool )

L[[and]] =λb1 b2 . (b1 and b2 )
or is handled similarly.

A and N are unchanged from ELM.

Figure 4.9: Denotational semantics for EL.
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pattern matching. Could it instead be done via with-int? No. The final return
value of with-int is in Answer, but the final return value of BE is in BoolAnswer.
However, we could define and use a new auxiliary function that is like with-int
but returns an element of BoolAnswer(see Exercise 4.3).

Something that stands out in our study of the denotational semantics of
the EL dialects is the importance of semantic domains and the signatures of
valuation functions. Studying these gives insight into the fundamental nature of
a language, even if the detailed valuation clause definitions are unavailable. For
example, consider the signature of the numerical expression valuation function
NE in the various dialects we studied. In ELMM without / and %, the signature

NE : NumExp→ Int

indicates that expressions simply stands for an integer. In full ELMM, the
“unwound” signature

NE : NumExp→ (Int + Error )

indicates that errors may be encountered in the evaluation of some expressions.
The ELM signature

NE : NumExp→ Int*→ (Int + Error)

has a context domain Int* representing program arguments that are passed
down the abstract syntax tree. We will see many kinds of contexts in our study
of other languages. Some, like ELM program arguments, only flow down to
subexpressions. We shall see later that other contexts can have more complex
flows, and that these flows are reflected in the valuation function signatures.

4.2.5 A Denotational Semantics is Not a Program

You may have noticed that the denotational definitions for the dialects of EL
strongly resemble programs in certain programming languages. In fact, it is
straightforward to write an executable EL interpreter that reflects the structure
of its valuation clauses, especially in functional programming languages like ML,
Haskell, and Scheme. Of course, an interpreter has to be explicit about many
of the details suppressed in the denotational definition (parsing the concrete
syntax, choosing appropriate data structures to represent domain elements, etc.).
Furthermore, details of the implementation language may complicate matters.
In particular, the correspondence will be much less direct if the implementation
programming language does not support first-class procedures.
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Although a denotational definition often suggests an approach for implement-
ing an interpreter program, it can be misleading to think of the denotational
definition itself as a program. Programming language procedures typically im-
ply computation; denotational specifications do not. An interpreter specifies a
process for evaluating program phrases, often one with particular operational
properties. In contrast, there is no notion of process associated with a valuation
function: it is simply a declarative description for a mathematical function (i.e.,
a triple of a source, a target, and a graph).

For example, consider the following metalanguage expression, which might
arise in the context of reasoning about an ELMM program:

λi0 . with-int (A[[/]] i0 2) (λi1 . (with-int (A[[-]] 3 3) (λi2 . (A[[*]] i1 i2 )))) .

If we (incorrectly) view this as an expression in a programming language like ML
or Scheme, we might think that no evaluation can take place until an integer
is supplied for i0 , and, after that happens, the division must be performed
first, followed by the subtraction, and finally the multiplication. But there is no
inherent notion of evaluation order associated with the metalanguage expression.
We can perform any mathematical simplifications in any order on this expression.
For example, observing that (A[[-]] 3 3) has the same meaning as (N [[0]]) allows
us to rewrite the expression to

λi0 . with-int (A[[/]] i0 2) (λi1 . (with-int (N [[0]]) (λi2 . (A[[*]] i1 i2 )))) .

This is equivalent to

λi0 . with-int (A[[/]] i0 2) (λi1 . (A[[*]] i1 0)) ,

which is in turn equivalent to

λi0 . with-int (A[[/]] i0 2) (λi1 . (Int 7→ Answer 0)) ,

since the product of 0 and any integer is 0. A division result cannot be an error
when the second argument is non-zero, so this can be further simplified to:

λi0 . (Int 7→ Answer 0).

The moral of this example is that many simplifications can be done with meta-
language expressions that would be difficult to justify with expressions in most
programming languages.2

2Certain real-world programming languages, particularly the purely functional language
Haskell, were designed to support the kind of mathematical reasoning that can be done with
metalanguage expressions.
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Despite the above warning, sometimes it is useful to think of denotational
descriptions as programs, if only for building intuitions about what they mean.
This situation is reminiscent of the dy/dx notation in calculus, which teachers
and textbooks commonly warn should never be viewed as a fraction. And yet,
viewing it as a fraction has many advantages for understanding its meaning as
well as for remembering formulae (the chain rule in particular). Similarly, view-
ing denotational definitions as programs can sometimes be helpful, especially for
a beginner. To avoid misleading processing intuitions from familiar program-
ming languages, you should view the lambda notation of the metalanguage as a
typed, curried, normal-order programming language.

¤ Exercise 4.1 We have treated integer numerals atomically, but we could express
them in terms of their component signs and digits via an s-expression grammar:

SN ∈ SignedNumeral
UN ∈ UnsignedNumeral

D ∈ Digit

SN ::= (+ UN ) | (- UN ) | UN

UN ::= D | (@ UN D)

D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For example, the numeral traditionally written as -273 would be written in s-expression

form as (- (@ (@ 2 7) 3)). Give a denotational semantics for numerals by providing

valuation functions for each of SignedNumeral, UnsignedNumeral, and Digit. ¢

¤ Exercise 4.2 Use the ELM semantics to determine the meaning of the following

ELM program: (elm 2 (/ (arg 1) (- (arg 1) (arg 2)))). ¢

¤ Exercise 4.3 o By analogy with the with-int auxiliary function in the ELM
semantics, define functions with the following signatures and use them to “hide” error-
handling in the EL valuation clauses for conditional expressions, relational operations,
and logical operations:

with-bool : BoolAnswer → (Bool → Answer) → Answer
with-intBA : Answer → (Int → BoolAnswer ) → BoolAnswer
with-boolBA : BoolAnswer → (Bool → BoolAnswer ) → BoolAnswer ¢

4.3 A Denotational Semantics for PostFix

We are now ready to flesh out the details of the denotational description of
PostFix that were sketched in Section 4.1. The abstract syntax for PostFix
was already provided in Figure 2.8, so the syntactic algebra is already taken
care of. We therefore need to construct the semantic algebra and the meaning
function.
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t ∈ StackTransform = Stack → Stack
s ∈ Stack = Value* + Error
v ∈ Value = Int + StackTransform
r ∈ Result = Value + Error
a ∈ Answer = Int + Error

Error = {error}
i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}

Figure 4.10: Semantic domains for the PostFix denotational semantics.

4.3.1 A Semantic Algebra for PostFix

What kind of mathematical entities should we use to model PostFix programs?
Suppose that we have some sort of entity representing stacks. Then it’s natural
to model both PostFix commands and command sequences as functions that
transform one stack entity into another. For example, the swap command could
be modeled by a function that takes a stack as an argument, and returns a stack
in which the top two elements have been swapped.

We need to make some provision for the case where the stack contains an in-
sufficient number of elements or the wrong type of elements. For this purpose we
will assume that there is a distinguished stack, errorStack, that indicates that an
error has occurred. For example, calling the transform associated with the swap
command on a stack with fewer than two elements should return errorStack. All
transforms should return errorStack when given errorStack as an argument.

Figure 4.10 presents domain equations that describe one implementation of
this approach. The StackTransform domain consists of functions from stacks to
stacks, where an element of the domain Stack is either a sequence of values or
the distinguished error stack (here modeled by the single element of the unit
domain Error). The domain Value of stackable values includes not only integers
but also stack transforms, which model executable sequences that have been
pushed on the stack. The Result domain models intermediate results obtained
via stack manipulations or arithmetic operations. It includes an error result to
model situations like popping an empty stack and dividing by zero. The Answer
domain models the final outcome of a PostFix program. Like Result, Answer
includes an error answer, but its only non-error answers are integers (because
executable sequences at the top of a final stack cannot be observed and are
treated as errors).

A somewhat unsettling property of the domain equations in the figure is that
they are defined recursively — transforms operate on stacks, which themselves
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may contain transforms. In Chapter 5 we will discuss how to understand a set
of recursively defined equations. For now, we’ll just assume that these equations
have a sensible interpretation.

We extend the semantic domains into a semantic algebra by defining a col-
lection of functions that manipulate the domains. Right now we’ll just specify
the interfaces to these functions. We’ll defer the details of their definitions un-
til after we’ve studied the meaning function. This will allow us to move more
quickly to the core of the denotational semantics — the meaning function —
without getting sidetracked by various issues concerning the definition of the
semantic functions.

Figure 4.11 gives informal specifications for the functions that we will use
to manipulate the semantic domains. We will defer studying the implemen-
tation of these functions until later. errorResult, errorAnswer, errorStack, and
errorTransform are just names for useful constants involving errors. push, pop,
and top are the usual stack operations. Their specifications are complicated
somewhat by the details of error handling. For example, top returns an element
of Result rather than just Value because it must return errorResult in the case
where the given stack is empty. push takes its argument from Result rather
than Value so that it can be composed with top. intAt is an auxiliary function
that simplifies the specification of nget. arithop simplifies the specifications for
arithmetic and relational commands; it serves to abstract over common behav-
ior (replacing the top two integers on the stack by some value that depends
on them) while suppressing error detail (return an error stack if any error is
encountered along the way). transform facilitates error handling when a result
that is expected to be a transform turns out to be an integer or an error result
instead. resToAns handles the conversion from results to answers.

The signatures of the functions, especially the stack functions, may seem
strange at first glance, because few of them explicitly refer to the Stack domain.
But recall that StackTransform is defined to be Stack → Stack , so that the
signature of push, for instance, is really

Result → (Stack → Stack ) .

From this perspective, push probably seems more familiar: it is a function that
takes an result and stack (in curried form) and returns a stack. However, since
stack transforms are the key abstraction of this semantics, we have written the
signatures to emphasize this fact. Under this view, push is a function that takes
a result and returns a stack transform. Of course, in either case push is exactly
the same mathematical entity; the only difference is in how we think about it!
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• errorResult : Result
An error in the domain Result.

• errorAnswer : Answer
An error in the domain Answer.

• errorStack : Stack
The distinguished error stack.

• errorTransform : StackTransform
A transform that maps all stacks to errorStack.

• push : Result → StackTransform
Given the result value v, return a transform that pushes v on a stack; otherwise
return errorTransform.

• pop : StackTransform
For a nonempty stack s, return the stack resulting from popping the top value;
otherwise return errorStack.

• top : Stack → Result
Given a nonempty stack s, return result that is the top element of s; otherwise
return errorResult.

• intAt : Int → Stack → Result
Given an integer iindex and a stack whose iindex th element (starting from 1) is
the integer iresult , return iresult ; otherwise return errorResult.

• arithop : (Int → Int → Result)→ StackTransform
Let f : Int → Int → Result be the functional argument to arithop. Return a
transform with the following behavior: if the given stack has two integers i1
and i2 followed by srest , then return a stack whose top value vresult is followed
by srest , where (Value 7→ Result vresult) is the result of the application (f i2 i1 ).
If the given stack is not of this form or if the result of applying f is errorResult,
then return errorStack.

• transform : Result → StackTransform
Given a result that is a stack transform, return it; otherwise return
errorTransform.

• resToAns : Result → Answer
Given a result that is an integer, return it as an answer; otherwise return
errorAnswer.

Figure 4.11: Specifications for functions on PostFix semantic domains.
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P : Program→ Int*→ Answer
Q : Commands→ StackTransform
C : Command→ StackTransform
A : ArithmeticOperator→ (Int → Int → Result)
R : RelationalOperator→ (Int → Int → Bool )
N : Intlit→ Int

Figure 4.12: Signatures of the PostFix valuation functions.

4.3.2 A Meaning Function for PostFix

Now we’re ready to study the meaning function for PostFix. As in EL, we
specify the meaning function by a collection of valuation functions, one for each
syntactic domain defined by the abstract syntax for the language.

As we learned in studying the denotational semantics of EL, the signatures
of valuation functions contain valuable information about the meaning of the
language. It is always prudent to study the signatures before delving into the
details of the definitions for the valuation functions.

The signatures for the PostFix valuation functions appear in Figure 4.12.
In the case of PostFix, one of the things the signatures say is that a PostFix
program is like an EL program: it takes a sequence of integers as arguments and
either returns an integer or signals an error. If the signature of P were instead

P : Program→ Int*→ Result,

it would indicate that some PostFix programs could return a stack transform
(i.e., an executable sequence) instead of an integer. If the signature were one of

P : Program→ Int*→ Int or P : Program→ Int*→ Value,

it would tell use that errors could not be signaled by a PostFix program.
The signatures also tell us that both commands and command sequences map

to stack transforms. Since stack transforms are easily composable, this suggests
that the meaning of a command sequence will be some sort of composition of
the meanings of its component commands. This turns out to be the case. The
return type of A matches the argument type of arithop, one of the auxiliary
functions specified in Figure 4.11. This is more than coincidence; the auxiliary
functions and valuation functions were designed to dovetail in a nice way.

Now we’re ready to study the definitions of the PostFix valuation functions,
which appear in Figure 4.13. The meaning of a program (postfix Nnumargs Q)

is a function that transforms an initial stack consisting of the integers in the ar-
gument sequence i* via the transform Q[[Q]] and returns the top integer of the
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P [[(postfix Nnumargs Q)]]
=λi* . if (length i*) =N [[Nnumargs ]]

then (resToAns (top (Q[[Q]] (Value* 7→ Stack (map Int 7→ Value i*)))))
else errorAnswer fi

Q[[C . Q]] =Q[[Q]] ◦ C[[C]]
Q[[]] =λs . s

C[[N]] = (push (Value 7→ Result (Int 7→ Value (N [[N]]))))
C[[(Q)]] = (push (Value 7→ Result (StackTransform 7→ Value Q[[Q]])))
C[[pop]] = pop

C[[swap]] =λs . (push (top (pop s)) (push (top s) (pop (pop s))))

C[[nget]] =λs . matching (top s)
. (Value 7→ Result (Int 7→ Value i)) [] (push (intAt i (pop s)) (pop s))
. else errorStack endmatching

C[[sel]] =λs . matching (top (pop (pop s)))
. (Value 7→ Result (Int 7→ Value i)) []
(push (if (i =Int 0) then (top s) else (top (pop s)) fi)

(pop (pop (pop s))) )
. else errorStack endmatching

C[[exec]] =λs . (transform (top s) (pop s))

C[[A]] = (arithop A[[A]])
C[[R]] = (arithop (λi1 i2 . (Value 7→Result

(Int 7→ Value (if (R[[R]] i1 i2 ) then 1 else 0 fi)))))

A[[sub]] =λi1 i2 . (Value 7→ Result (Int 7→ Value (i1 −Int i2 )))
Similarly for add, mul

A[[div]] =λi1 i2 . if (i2 =Int 0) then errorResult
else (Value 7→ Result (Int 7→ Value (i1 /Int i2 ))) fi

R[[lt]] = <Int

Similarly for eq and gt

N maps integer numerals to the integer numbers they denote.

Figure 4.13: Valuation functions for PostFix.
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resulting stack. The definitions of resToAns and top guarantee that an error
answer is returned when the stack is empty or does not have an integer as its
top element. An error is also signaled when the number of arguments does not
match the expected number Nnumargs .

The meaning of a command sequence is the composition of the transforms
of its component commands. The order of the composition

Q[[Q]] ◦ C[[C]] = λs . (Q[[Q]] (C[[C]] s))

is crucial, because it guarantees that the stack manipulations of the first com-
mand can be observed by the subsequent commands. Reversing the order of the
composition would have the effect of executing commands in a right-to-left order
instead. The stack transform associated with the empty command sequence is
the identity function on stacks.

Most of the clauses for the command valuation function C are straightfor-
ward. The integers and transforms corresponding to numerals and executable
sequences are simply pushed onto the stack after appropriate injections into the
Value and Result domains.3 The transform associated with the pop command
is simply the pop auxiliary function, while the transform associated with swap

is expressed as a composition of push, top, and pop. If the top stack element is
an integer i, the nget transform replaces it by the ith element from the rest of
the stack if that element is an integer; in all other cases, nget returns an error
stack. The sel transform selects one of the top two stack elements based on the
numeric value of the third stack element; an error is signaled if the third element
is not an integer. In the exec transform, the top stack element is expected to be
a stack transform t representing an executable sequence. Applying t to the rest
of the stack yields the stack resulting from executing the executable sequence. If
the top stack element is not a stack transform, an error is signaled. The meaning
of arithmetic and relational commands is determined by arithop in conjunction
with A and R, valuation functions that map operator symbols like add and lt

to the expected functions and predicates. A treats div specially so that division
by 0 signals an error.

Before we move on, a few notes about reading the PostFix denotational
definitions are in order. Valuation functions tend to be remarkably elegant and
concise. But this does not mean that they are always easy to read! To the
contrary, the density of information in a denotational definition often demands

3Whereas the operational semantics used a stack with syntactic values — integer numerals
and command sequences — the denotational semantics uses a stack of semantic values —
integers and stack transforms. This is because the valuation functions N and Q are readily
available for translating the syntactic elements to the semantic ones. Here and elsewhere, we
will follow the convention of using explicit injections in denotational descriptions.
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meticulous attention from the reader. The ability to read semantic functions
and valuation functions is a skill that requires patient practice to acquire. At
first, unraveling such a definition may seem like solving a puzzle or doing de-
tective work. However, the time invested in reading definitions of this sort pays
off handsomely in terms of deep insights into the meanings of programming
languages.

The conciseness of a denotational definition is due in large part to the lib-
eral use of higher-order functions, i.e., functions that take other functions as
arguments or return them as results. arithop is an excellent example of such a
function: it takes an argument in the function domain Int → Int → Result,
and returns a stack transform, which itself is an element of the function domain
Stack → Stack.

Definitions involving higher-order functions can be rather daunting to read
until you acquire a knack for them. A typical problem is to think that pieces are
missing. For example, a common reaction to the valuation clause for numerals,

C[[N]] = (push (Value 7→ Result (Int 7→ Value (N [[N]])))) ,

is that a stack is somehow missing. After all, the value has to be pushed onto
something — where is it? Carefully considering types, however, will show that
nothing is missing. Recall that the signature of push is Result → StackTrans-
form. Since

(Value 7→ Result (Int 7→ Value N [[N]]))

is clearly an element of Result, the result of the push application is a stack trans-
form. Since C is supposed to map commands to stack transforms, the definition
is well-typed. It’s possible to introduce an explicit stack in this valuation clause
by wrapping the right hand side in a λ of a stack argument:

C[[N]] = λs . (push (Value 7→ Result (Int 7→ Value N [[N]])) s) .

This form of the definition probably seems much more familiar, because it’s
more apparent that the meaning of the command is a function that takes a
stack and returns a stack, and push is actually given a stack on which to push
its value. But the two definitions are equivalent. In order to stress the power
of higher-order functions, we will continue to use the more concise versions. We
encourage you to type check the definitions and expand them with extra λs as
ways of improving your skill at reading them.

Figure 4.14 illustrates using the PostFix denotational semantics to deter-
mine the result of applying the program (postfix 2 3 sub swap pop) to the
argument integers [7, 8]. To make the figure more concise, we use the shorthand
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Note: n̂ is a shorthand for (Int 7→ Value n)

P [[(postfix 2 3 sub swap pop)]] [7, 8]

= if (length [7, 8]) = N [[2]]
then resToAns

(
top

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

))

else errorAnswer fi

= resToAns
(
top

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

))

= resToAns
(
top

(
((Q[[sub swap pop]]) ◦ (C[[3]])) (Value* 7→ Stack [7̂, 8̂])

))

= resToAns
(
top

(
Q[[sub swap pop]]

(
C[[3]] (Value* 7→ Stack [7̂, 8̂])

)))

= resToAns (top ((Q[[sub swap pop]]) (push (Value 7→ Result 3̂)

(Value* 7→ Stack [7̂, 8̂]))))

= resToAns
(
top

(
Q[[sub swap pop]] (Value* 7→ Stack [3̂, 7̂, 8̂])

))

= resToAns
(
top

(
((Q[[swap pop]]) ◦ (C[[sub]])) (Value* 7→ Stack [3̂, 7̂, 8̂])

))

= resToAns
(
top

(
Q[[swap pop]]

(
C[[sub]] (Value* 7→ Stack [3̂, 7̂, 8̂])

)))

= resToAns
(
top

(
Q[[swap pop]]

(
arithop (A[[sub]]) (Value* 7→ Stack [3̂, 7̂, 8̂])

)))

= resToAns (top (Q[[swap pop]] (push (Value 7→ Result ̂(7−Int 3))

(Value* 7→ Stack [8̂]))))

= resToAns
(
top

(
Q[[swap pop]] (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
((Q[[pop]]) ◦ (C[[swap]])) (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
Q[[pop]]

(
C[[swap]] (Value* 7→ Stack [4̂, 8̂])

)))

= resToAns (top (Q[[pop]] (push
(
top

(
pop (Value* 7→ Stack [4̂, 8̂])

))

(push
(
top (Value* 7→ Stack [4̂, 8̂])

)

(
pop

(
pop (Value* 7→ Stack [4̂, 8̂])

))
))))

= resToAns (top (Q[[pop]] (push
(
top (Value* 7→ Stack [8̂])

)

(push (Value 7→ Result 4̂)
(Value* 7→ Stack [ ])))))

= resToAns
(
top

(
Q[[pop]]

(
push (Value 7→ Result 8̂) (Value* 7→ Stack [4̂])

)))

= resToAns
(
top

(
Q[[pop]] (Value* 7→ Stack [8̂, 4̂])

))

= resToAns
(
top

(
((Q[[]]) ◦ (C[[pop]])) (Value* 7→ Stack [8̂, 4̂])

))

= resToAns
(
top

(
Q[[]]

(
C[[pop]] (Value* 7→ Stack [8̂, 4̂])

)))

= resToAns
(
top

(
(λs . s) (Value* 7→ Stack [4̂])

))

= resToAns
(
top (Value* 7→ Stack [4̂])

)

= resToAns (Value 7→ Result 4̂)

= (Int 7→ Answer 4)

Figure 4.14: Equational proof that applying the PostFix program (postfix 2

3 sub swap pop) to the arguments [7, 8] yields the answer 4.
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n̂ to stand for (Int 7→ Value n). Each line of the equational proof is justified by
simple mathematical reasoning. For example, the equality

resToAns
(
top

(
((Q[[pop]]) ◦ (C[[swap]])) (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
Q[[pop]]

(
C[[swap]] (Value* 7→ Stack [4̂, 8̂])

)))

is justified by the definition of function composition, while the equality

resToAns (top (Q[[swap pop]] (push (Value 7→ Result ̂(7−Int 3))

(Value* 7→ Stack [8̂]))))

= resToAns
(
top

(
Q[[swap pop]] (Value* 7→ Stack [4̂, 8̂])

))

is justified by the definition of −Int and the specification for the push function.
The proof shows that the result of the program execution is the integer 4.

Just as programs can be simplified by introducing procedural abstractions,
equational proofs can often be simplified by structuring themmore hierarchically.
In the case of proofs, the analog of a programming language procedure is a
theorem. For example, it’s not difficult to prove a theorem stating that for any
numeral N, any command sequence Q, and any stack s, the following equality
is valid:

(Q[[N . Q]] (Value* 7→ Stack v*))
= (Q[[Q]] (Value* 7→ Stack ((Int 7→ Value N [[N]]) . v*))).

This theorem is analogous to the operational rewrite rule for handling integer
numeral commands. It can be used to justify equalities like

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

)

=
(
Q[[sub swap pop]] (Value* 7→ Stack [3̂, 7̂, 8̂])

)

A few such theorems can greatly reduce the length of the sample proof. In fact,
if we prove other theorems analogous to the operational rules, we can obtain a
proof whose structure closely corresponds to the configuration sequence for an
operational execution of the program (see Figure 4.15).

Figure 4.16 shows how the equational proof in Figure 4.15 can be generalized
two handle two arbitrary integer arguments. Based on this result, we conclude
that the meaning of the PostFix program (postfix 2 3 sub swap pop) is:

P [[(postfix 2 3 sub swap pop)]]
= λi* . matching i*

. [i1 , i2 ] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .
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P [[(postfix 2 3 sub swap pop)]] [7, 8]

= resToAns
(
top

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

))

= resToAns
(
top

(
Q[[sub swap pop]] (Value* 7→ Stack [3̂, 7̂, 8̂])

))

= resToAns
(
top

(
Q[[swap pop]] (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
Q[[pop]] (Value* 7→ Stack [8̂, 4̂])

))

= resToAns
(
top

(
Q[[]] (Value* 7→ Stack [4̂])

))

= resToAns
(
top (Value* 7→ Stack [4̂])

)

= resToAns (Value 7→ Result 4̂)

= (Int 7→ Answer 4)

Figure 4.15: Alternative equational proof with an operational flavor.

P [[(postfix 2 3 sub swap pop)]] [i1 , i2 ]

= resToAns
(

top
(

Q[[3 sub swap pop]] (Value* 7→ Stack [î1 , î2 ])
))

= resToAns
(

top
(

Q[[sub swap pop]] (Value* 7→ Stack [3̂, î1 , î2 ])
))

= resToAns
(

top
(

Q[[swap pop]] (Value* 7→ Stack [ ̂(i1 −Int 3), î2 ])
))

= resToAns
(

top
(

Q[[pop]] (Value* 7→ Stack [î2 , ̂(i1 −Int 3)])
))

= resToAns
(

top
(

Q[[]] (Value* 7→ Stack [ ̂(i1 −Int 3)])
))

= resToAns
(

top (Value* 7→ Stack [ ̂(i1 −Int 3)])
)

= resToAns (Value 7→ Result ̂(i1 −Int 3))
= (Int 7→ Answer (i1 −Int 3))

Figure 4.16: Version of equational proof for two arbitrary integer arguments.
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¤ Exercise 4.4 Use the PostFix denotational semantics to determine the values of

the PostFix programs in Exercise 1.1. ¢

¤ Exercise 4.5 Modify the PostFix denotational semantics to handle PostFix2.

Include valuation functions for :, (skip), and (exec). ¢

¤ Exercise 4.6 For each of the following, modify the PostFix denotational semantics
to handle the specified extensions:

a. The pair, left, and right commands from Exercise 3.36.

b. The for and repeat commands from Exercise 3.39.

c. The I, def, and get commands from Exercise 3.43. ¢

4.3.3 Semantic Functions for PostFix: the Details

Now that we’ve studied the core of the PostFix semantics, we’ll flesh out the
details of the functions specified in Figure 4.11. Figure 4.17 presents one imple-
mentation of the specifications. As an exercise, you should make sure that these
definitions type check, and that they satisfy the specifications in Figure 4.11.

Notice that several functions in Figure 4.17 describe similar manipulations.
push, pop, and arithop all check to see if their input stack is an error stack. If so,
they return errorStack; if not, they perform some manipulation on the sequence
of values in the stack. We can abstract over these similarities by introducing
three abstractions (Figure 4.18) similar to the with-int error hiding function
defined in the EL denotational semantics:

• with-stack-values takes a function f from value sequences to stacks and
returns a stack transform that (1) maps a non-error stack to the result of
applying f to the value sequence in the stack, and (2) maps an error stack
to an error stack.

• with-val&stack takes a function f from a value to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence
consists of the value v followed by vrest* to the result of applying f to v
and the stack whose values are vrest*, and (2) maps any stack not of this
form to the error stack.

• with-int&stack takes a function f from an integer to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence
consists of an integer i followed by vrest* to the result of applying f to v
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empty-stack : Stack =(Value* 7→ Stack [ ]Value)
errorStack : Stack =(Error 7→ Stack error)
errorTransform : StackTransform =λs . errorStack
errorResult : Result =(Error 7→ Result error)
errorAnswer : Answer =(Error 7→ Answer error)

push : Result → StackTransform
=λrs . matching 〈r, s〉

. 〈(Value 7→ Result v), (Value* 7→ Stack v*)〉 [] (v . v*)

. (Error 7→ Result error) [] errorStack endmatching

pop : StackTransform
=λs . matching s

. (Value* 7→ Stack (vhead . vtail*)) [] (Value* 7→ Stack vtail*)

. else errorStack endmatching

top : Stack → Result
=λs . matching s

. (Value* 7→ Stack (vhead . vtail*)) [] (Value 7→ Result vhead)

. else errorResult endmatching

intAt : Int → Stack → Result
=λis . matching s

. (Value* 7→ Stack v*) []
if (1≤Int iindex ) and (iindex ≤Int (length v*))
then matching (nth i v*)

. (Int 7→ Value iresult ) [] (Value 7→ Result (Int 7→ Value iresult ))

. else errorResult
else errorResult fi

. else errorResult endmatching

arithop : (Int → Int → Result)→ StackTransform
=λf s . matching s

. (Value* 7→ Stack ((Int 7→ Value i1 ) . (Int 7→ Value i2 ) . vrest*)) []
(push (f i2 i1 ) vrest*)

. else errorStack endmatching

transform : Result → StackTransform
=λr . matching r

. (Value 7→ Result (StackTransform 7→ Value t)) [] t

. else errorTransform endmatching

resToAns : Result → Answer
=λr . matching r

. (Value 7→ Result (Int 7→ Value i)) [] (Int 7→ Answer i)

. else errorAnswer endmatching

Figure 4.17: Functions manipulating the semantic domains for PostFix.
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with-stack-values : (Value*→ Stack)→ StackTransform
=λf s . matching s

. (Value* 7→ Stack v*) [] (f v*)

. else errorStack endmatching

with-val&stack : (Value → StackTransform)→ StackTransform
=λf . (with-stack-values

(λv* . matching v*
. v1 . vrest* [] (f v1 (Value* 7→ Stack vrest*))
. else errorStack endmatching ))

with-int&stack : (Int → StackTransform)→ StackTransform
=λf . (with-val&stack

(λv . matching v
. (Int 7→ Value i) [] (f i)
. else errorTransform endmatching ))

push : Result → StackTransform
=λr . matching r

. (Value 7→ Result v) [] (with-stack-values (λv* . (Value* 7→ Stack (v . v*))))

. else errorTransform
endmatching

pop : StackTransform = with-val&stack (λvhdstl . stl )

arithop : (Int → Int → Result)→ StackTransform
=λf . (with-int&stack (λi1 . (with-int&stack (λi2 . (push (f i2 i1 ))))))

Figure 4.18: The auxiliary functions with-stack-values, with-val&stack, and
with-integer&stack simplify some of the semantic functions for PostFix. (Only
the modified functions are shown.)
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and the stack whose values are vrest*, and (2) maps any stack not of this
form to the error stack.

The purpose of these new functions is to hide the details of error handling in
order to highlight more important manipulations. As shown in Figure 4.18,
rewriting push in terms of with-stack-values removes an error check from the
definition. Using with-val&stack and with-int&stack greatly simplify pop and
arithop; the updated versions concisely capture the essence of these functions
without the distraction of case analyses and error checks.

As with the valuation functions, these highly condensed semantic functions
can be challenging for the uninitiated to read. The fact that push, pop, and
arithop are ultimately manipulating a stack is even harder to see in the new
versions than it was in the original ones. As suggested before, reasoning about
types and inserting extra λs can help. For example, since the result of a call to
with-int&stack is a stack transform t, and t is equivalent to λs . (t s), the new
version of arithop can be rewritten as:

λf s0 . ((with-int&stack
(λi1 s1 . ((with-int&stack

(λi2 s2 . (push (f i2 i1 ) s2 )))
s1 )))

s0 ).

At least in this form it’s easier to see that there are stacks from which each
occurrence of with-int&stack can extract an integer and substack.

Even more important is recognizing the pattern

((with-int&stack (λisrest . E)) s)

as a construct that binds names to values. This pattern can be pronounced as:

“Let i be the top value of s and srest be all but the top value of s in
the expression E. Return the value of E, except when s is empty or
its top value isn’t an integer, in which cases the error stack should
be returned instead.”

Some of the PostFix valuation functions can be re-expressed using the
error hiding functions directly. For example, the valuation clause for swap can
be written as:

C[[swap]] =with-val&stack (λv1 . (with-val&stack (λv2 . (push v2 ) ◦ (push v1 ))))

You should convince yourself that this has the same meaning as the version
written using push, top, and pop.

¤ Exercise 4.7
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a. By analogy with with-int&stack, define a function with-trans&stack whose sig-
nature is (StackTransform → StackTransform) → StackTransform.

b. Rewrite the valuation clauses for the commands nget, sel, and exec using
with-val&stack, with-int&stack, and with-trans&stack to eliminate all occur-
rences of top, pop, transform, and matching. ¢

4.4 Denotational Reasoning

The denotational definitions of EL and PostFix presented in the previous sec-
tion are mathematically elegant, but how useful are they? We have already
shown how they can be used to determine the meanings of particular programs.
In this section we show how denotational semantics helps us to reason about pro-
gram equality and safe program transformations. The compositional structure
of the denotational semantics makes it more amenable to proving certain prop-
erties than the operational semantics. We also study the relationship between
operational semantics and denotational semantics.

4.4.1 Program Equality

Above, we studied the PostFix program (postfix 2 3 sub swap pop), which
takes two integer arguments and returns three less than the first argument:

P [[(postfix 2 3 sub swap pop)]]
= λi* . matching i*

. [i1 , i2 ] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .

Intuitively, the purpose of the swap pop is to get rid of the second argument,
which is ignored by the program. But in a PostFix program, only the integer at
the top of the final stack can be observed and any other stack values are ignored.
So we should be able to remove the swap pop from the program without changing
its behavior.

We can formalize this reasoning using denotational semantics. Figure 4.19
shows a derivation of the meaning of the program (postfix 2 3 sub) when
it is applied to two arguments. From this, we deduce that the meaning of
(postfix 2 3 sub) is:

P [[(postfix 2 3 sub)]]
= λi* . matching i*

. [i1 , i2 ] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .
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P [[(postfix 2 3 sub)]] [i1 , i2 ]

= resToAns
(

top
(

Q[[3 sub]] (Value* 7→ Stack [î1 , î2 ])
))

= resToAns
(

top
(

Q[[sub]] (Value* 7→ Stack [3̂, î1 , î2 ])
))

= resToAns
(

top
(

Q[[]] (Value* 7→ Stack [ ̂(i1 −Int 3), î2 ])
))

= resToAns

(

top (Value* 7→ Stack [ ̂(i1 −Int 3) , î2 ])
)

= resToAns (Value 7→ Result ̂(i1 −Int 3))
= (Int 7→ Answer (i1 −Int 3))

Figure 4.19: The meaning of (postfix 2 3 sub) on two arguments.

Since (postfix 2 3 sub) and (postfix 2 3 sub swap pop) have exactly the
same meaning, they cannot be distinguished as programs.

Denotational semantics can also be used to show that programs from different
languages have the same meaning. For example, it is not hard to show that the
meaning of the EL program (el 2 (- (arg 1) 3)) is:

P [[(el 2 (- (arg 1) 3)]]
= λi* . matching i*

. [i1 , i2 ] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .

If you review the semantic domains for EL and PostFix, you will see that
the Answer domain is the same for both languages. So the above fact means
that this EL program is interchangeable with the two PostFix programs whose
meanings are given above.

4.4.2 Safe Transformations: A Denotational Approach

Because denotational semantics is compositional, it is a natural tool for proving
that it is safe to replace one phrase by another. Recall the following three facts
from the operational semantics of PostFix:

1. Two PostFix command sequences are observationally equivalent if they
behave indistinguishably in all program contexts.

2. Two PostFix command sequences are transform equivalent if they map
equivalent stacks to equivalent stacks.

3. Transform equivalence implies observational equivalence.
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Since the PostFix denotational semantics models command sequences as stack
transforms, the denotational equivalence of PostFix command sequences cor-
responds to transform equivalence in the observational framework. So we expect
the following theorem:

PostFix Denotational Equivalence Theorem:
Q[[Q1 ]] =Q[[Q2 ]] implies Q1 =obs Q2 .

This theorem is a consequence of a so-called adequacy property of PostFix,
which we will study later in Section 4.4.4.2.

We can use this theorem to help us prove the behavioral equivalence of two
command sequences. For instance, consider the pair of command sequences
[1, add, 2, add] and [3, add]. Figure 4.20 shows that these are denotationally
equivalent, so, by the above theorem, they must be observationally equivalent.
The equational reasoning in Figure 4.20 uses the following three equalities, whose
proofs are left as exercises:

(Q[[C1 C2 . . .Cn ]]) = (C[[Cn ]]) ◦ . . . ◦ (C[[C2 ]]) ◦ (C[[C1 ]]) (4.1)

(with-int&stack f ) ◦ (push (Value 7→ Result (Int 7→ Value i))) = (f i) (4.2)

t ◦ (with-int&stack f ) = (with-int&stack (λi . (t ◦ (f i)))) (4.3)
where t maps errorStack to errorStack

It is worth noting that the denotational proof that [1, add, 2, add] =obs [3, add]
has a very different flavor than the operational proof of this fact given in Sec-
tion 3.4.4. The operational proof worked by case analysis on the initial stack.
The denotational proof in Figure 4.20 works purely by equational reasoning —
there is no hint of case analysis here. This is because the all the case analyses
are hidden within the carefully chosen abstractions with-int&stack and push and
equalities (4.1)–(4.3). The case analyses would become apparent if these were
expanded to show explicit matching expressions.

Denotational justifications for the safety of transformations are not limited
to PostFix. For example, Figure 4.21 shows that EL numerical expressions
(+ NE NE ) and (* 2 NE) have the same meaning. So one can safely be
substituted for the other in any EL program without changing the meaning of
the program.

¤ Exercise 4.8

a. Prove equalities (4.1)–(4.3).

b. Equality (4.3) requires that t maps errorStack to errorStack. Show that the
equality is not true if this requirement is violated. ¢
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(Q[[1 add 2 add]])

= (C[[add]]) ◦ (C[[2]]) ◦ (C[[add]]) ◦ (C[[1]]) , by (4.1)
= (with-int&stack

(λi1
′ . (with-int&stack

(λi2
′ . (push (Value 7→ Result (Int 7→ Value (i2

′ + i1
′))))))))

◦ (push (Value 7→ Result (Int 7→ Value (N [[2]]))))
◦ (with-int&stack

(λi1 . (with-int&stack
(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + i1 ))))))))

◦ (push (Value 7→ Result (Int 7→ Value (N [[1]])))) , by definition of C
=(with-int&stack

(λi2
′ . (push (Value 7→ Result (Int 7→ Value (i2

′ + 2))))))
◦ (with-int&stack

(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + 1)))))) , by (4.2)

= (with-int&stack
(λi2 . (with-int&stack

(λi2
′ . (push (Value 7→ Result (Int 7→ Value (i2

′ + 2))))))
◦ (push (Value 7→ Result (Int 7→ Value (i2 + 1)))))), by (4.3)

= (with-int&stack
(λi2 . (push (Value 7→ Result (Int 7→ Value ((i2 + 1) + 2)))))) , by (4.2)

= (with-int&stack
(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + 3)))))) , by definition of +Int

=(with-int&stack
(λi3 . (with-int&stack

(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + i3 ))))))))
◦ (push (Value 7→ Result (Int 7→ Value (N [[3]])))) , by (4.2)

= (C[[add]]) ◦ (C[[3]]) , by definition of C
=(Q[[3 add]]) , by (4.1)

Figure 4.20: Proof that [1, add, 2, add] and [3, add] are denotationally equivalent.
This implies that the two sequences are observationally equivalent.
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NE [[(+ NE NE )]]

=λi* . with-int (NE [[NE ]] i*) (λi1 . with-int (NE [[NE ]] i*) (λi2 . (A[[+]] i1 i2 )))

=λi* . with-int (NE [[NE ]] i*) (i2 +Int i2 )
=λi* . with-int (NE [[NE ]] i*) (2×Int i2 )

=λi* . with-int (NE [[NE ]] i*) (λi2 . (A[[+]] i2 i2 ))

=λi* . with-int (NE [[NE ]] i*) (λi2 . (A[[*]] 2 i2 ))

=λi* . with-int (NE [[2]] i*) (λi1 . with-int (NE [[NE ]] i*) (λi2 . (A[[*]] i1 i2 )))

= NE [[(* 2 NE )]]

Figure 4.21: Denotational proof that (+ NE NE) may safely be replaced by
(* 2 NE) in EL.

¤ Exercise 4.9

a. We have seen that (postfix 2 3 sub swap pop) and (postfix 2 3 sub) are
equivalent programs. But in general it is not safe to replace the command se-
quence 3 sub swap pop by 3 sub. Give a context in which this replacement
would change the meaning of a program.

b. Use denotational reasoning to show that it is safe to replace any of the following
command sequences by 3 sub swap pop:

i. swap pop 3 sub

ii. (3 sub) swap pop exec

iii. 3 2 nget swap sub swap pop swap pop ¢

¤ Exercise 4.10 Use the PostFix denotational semantics to either prove or disprove

the purported observational equivalences in Exercise 3.28. ¢

¤ Exercise 4.11 Use the EL denotational semantics to either prove or disprove the

safety of the EL transformations in Exercise 3.32. ¢

4.4.3 Technical Difficulties

The denotational definition of PostFix depends crucially on some subtle details.
As a hint of the subtlety, consider what happens to our denotational definition
if we extend PostFix with our old friend dup. A valuation clause for dup seems
straightforward:

C[[dup]] = λs . (push (top s) s) .
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At the same time we know that adding dup to the language introduces the
possibility that programs may not terminate. Yet, the signature for P declares
that programs map to the Answer domain, and the Answer domain does not
include any entity that represents nontermination. What’s going on here?

The source of the problem is the recursive structure of the semantic domains
for PostFix. As the domain equations show, the StackTransform, Stack, and
Value domains are mutually recursive:

StackTransform = Stack → Stack
Stack = Value* + Error
Value = Int + StackTransform

It turns out that solving such recursive domain equations sometimes requires
extending some domains with an element that models nontermination, written
⊥ and pronounced “bottom.” We will study this element in more detail in the
next chapter, where it plays a prominent role. In the case of PostFix, it turns
out that both the Stack and Answer domains must include ⊥, and this is able
to model the meaning of non-terminating command sequences.

4.4.4 Relating Operational and Denotational Semantics

We have presented the operational and denotational semantics of several simple
languages, but have not studied the connection between them. What is the
relationship between these two forms of semantics? How can we be sure that
reasoning done with one form of semantics is valid in the other?

4.4.4.1 Soundness

Assume that an operational semantics has a deterministic behavior function of
the form

behdet : (Program× Inputs)→ Outcome

and that the related denotational semantics has a meaning function

meaning : (Program× Args)→ Answer ,

where Args is a domain of program arguments and Answer is the domain of
final answers. Also suppose that there is a function in that maps between the
syntactic and semantic input domains and a function out that maps between
the syntactic and semantic output domains:

in : Inputs→ Args
out : Outcome→ Answer .

Then we define the following notion of soundness:
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I ∈ Inputs = Intlit*
o ∈ Outcome = Intlit + StuckOut

StuckOut = {stuckout}
ar ∈ Args = Int*
a ∈ Answer = Int + Error

Error = {error}

in : Inputs→ Args
in = λN* . (map N N*)

out : Outcome→ Answer
out = λo . matching o

. (Intlit 7→ Outcome N) [] (Int 7→ Answer (N [[N]]))

. else (Error 7→ Answer error) endmatching

behdet : (Program× Inputs)→ Outcome
behdetEL is defined in Exercise 3.10
and behdetPostFix is defined in Section 3.2.2.

meaning : (Program×Args)→ Answer
meaningEL = λ〈P, ar 〉 . (PEL[[P]] ar ) , where PEL is defined in Section 4.2.4.
meaningPostFix = λ〈P, ar 〉 . (PPostFix [[P]] ar ),
where PPostFix is defined in Section 4.3.2.

Figure 4.22: Instantiation of soundness components for EL and PostFix.

Denotational Soundness: A denotational semantics is sound
with respect to (wrt) an operational semantics if for all programs
P and inputs I,

meaning 〈P, (in I)〉 = (out (behdet 〈P,I〉)) .

This definition says that the denotational semantics agrees with the operational
semantics on the result of executing a program on any given inputs. Figure 4.22
shows how the parts of the soundness definition can be instantiated for EL and
PostFix.

We will now sketch a proof that the denotational semantics for PostFix is
sound wrt the operational semantics for PostFix. The details of this proof,
and a denotational soundness proof for EL, are left as exercises. The essence
of the denotational soundness proof for PostFix is to define the meaning of
an operational configuration, and show that each step in the PostFix SOS
preserves this meaning. Recall that a configuration in the PostFix SOS has
the form Commands × Stack, where
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V : Value→ Value
‘ = λV . matching V

. (Intlit 7→ Value N) [] (Int 7→ Value (N [[N]]))

. (Commands 7→ Value Q) [] (StackTransform 7→ Value (Q[[Q]]))
endmatching

S : Stack→ Stack = λV* . (Value* 7→ Stack (map V V*))

CF : Commands× Stack→ Answer = λ〈Q,S〉 . resToAns (top (Q[[Q]] (S [[S]])))

Figure 4.23: Meaning of a PostFix configuration.

S ∈ Stack = Value*
V ∈ Value = Intlit + Commands

Figure 4.23 defines a function CF that maps an operational configuration to an
element of Answer. We establish the following lemmas:

1. For any PostFix program P = (postfix Nnumargs Q) and numerals N*,

(P [[P]] (in N*)) = CF [[(IF 〈P,N*〉)]],

where IF is the input function defined in Figure 3.3 that maps a PostFix
program and inputs into an initial SOS configuration. There are two cases:

(a) WhenN [[Nnumargs ]] = (length N*), both the left and right hand sides
of the equation denote

resToAns (top (Q[[Q]] (Value* 7→ Stack (map (Int 7→ Value ◦ N ) N*)))) .

(b) When N [[Nnumargs ]] 6= (length N*), the left hand side of the equation
denotes errorAnswer and the right hand side denotes

CF [[(IF 〈P,N*〉)]]
= CF [[〈[ ]Commands, [ ]Stack〉]]
= resToAns (top (Q[[[ ]Commands]] (Value* 7→ Stack [ ]Stack )))

= resToAns (top (Value* 7→ Stack [ ]Stack ))

= errorAnswer.

2. For any transition cf ⇒ cf ′, CF [[cf]] = CF [[cf ′]]. This can be shown by
demonstrating this equality for each of the PostFix transition rules in
Figure 3.4. For example, one such rule is:
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〈exec . Qrest , (Qexec) . S〉⇒ 〈Qexec @ Qrest , S〉 [execute]

For this rule we have

CF [[〈exec . Qrest , (Qexec) . S〉]]
= resToAns (top (Q[[exec . Qrest ]] (Value* 7→ Stack (V[[(Qexec)]] . v*)))),

where v* = (map V S)

= resToAns
(top (Q[[Qrest ]] (C[[exec]] (Value* 7→ Stack (V[[(Qexec)]] . v*)))))

= resToAns
(top (Q[[Qrest ]]

(transform (top (Value* 7→ Stack (V [[(Qexec)]] . v*)))
(pop (Value* 7→ Stack (V[[(Qexec)]] . v*))))))

= resToAns
(top (Q[[Qrest ]]

(transform (Value 7→ Result (StackTransform 7→ Value (Q[[Qexec]])))
(Value* 7→ Stack v*))))

= resToAns (top (Q[[Qrest ]] (Q[[Qexec]] (Value* 7→ Stack v*))))

= resToAns (top ((Q[[Qrest ]] ◦ Q[[Qexec]]) (Value* 7→ Stack v*)))

= resToAns (top (Q[[Qrest @ Qexec]] (Value* 7→ Stack (map V S))))

= CF [[〈Qexec @ Qrest , S〉]].

3. For any stuck configuration cf, CF [[cf]] = errorAnswer. This can be shown
by enumerating the finite number of configuration patterns that stand for
configurations in IrreduciblePFSOS, and showing that each denotes the
error answer. For example, one such pattern is 〈swap . Q, [V]〉:

CF [[〈swap . Q, [V]〉]]
= resToAns (top (Q[[swap . Q]] (Value* 7→ Stack [V V])))

= resToAns
(top (Q[[Q]] (push (top (pop (Value* 7→ Stack [V V])))

(push (top (Value* 7→ Stack [V V]))
(pop (pop (Value* 7→ Stack [V V])))))))

= resToAns (top (Q[[Q]] (push (top (Value* 7→ Stack [ ]))
(push (Value 7→ Result (V [[V]]))

(pop (Value* 7→ Stack [ ]))))))

= resToAns (top (Q[[Q]] (push errorResult
(push (V[[V]]) errorStack))))

= resToAns (top (Q[[Q]] errorStack))
= resToAns (top errorStack)

= errorAnswer.
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We’re now ready to put the lemmas together to show denotational soundness
for a PostFix program (postfix Nnumargs Qbody) executed on inputs Ninputs*.
There are two cases:

1. N [[Nnumargs ]] = (length Ninputs*) and the initial program configuration
has a transition path to a final configuration:

〈Qbody , Ninputs*〉 ∗⇒ 〈[ ]Commands, Nans . Vrest*〉

In this case,

meaning 〈(postfix Nnumargs Qbody), (in Ninputs*)〉
=P[[(postfix Nnumargs Qbody)]] (in Ninputs*)

= CF [[(IF 〈(postfix Nnumargs Qbody),Ninputs*〉)]] , by lemma 1
= CF [[〈Qbody , (map Intlit 7→ Value Ninputs*)〉]]
= CF [[〈[ ]Commands, (Intlit 7→ Value Nans) . Vrest*〉]] , by lemma 2 on each ⇒
= resToAns

(top (Q[[]] (Value* 7→ Stack ((Int 7→ Value (N [[Nans ]])) . (map V Vrest*)))))

= resToAns (top (Value* 7→ Stack ((Int 7→ Value (N [[Nans ]])) . (map V Vrest*))))

= (Int 7→ Answer (N [[Nans ]]))

= (out (Intlit 7→ Outcome Nans))

= (out (behdetPostFix 〈(postfix Nnumargs Qbody),Ninputs*〉)).

2. N [[Nnumargs ]] 6= (length Ninputs*) or the initial program configuration has
a transition path to a stuck configuration. In these cases,

IF 〈(postfix Nnumargs Qbody),N*〉 ∗⇒ cfstuck,

where cfstuck is a stuck configuration. Then we have:

meaning 〈(postfix Nnumargs Qbody), (in Ninputs*)〉
=P[[(postfix Nnumargs Qbody)]] (in Ninputs*)

= CF [[(IF 〈(postfix Nnumargs Qbody),Ninputs*〉)]] , by lemma 1
= CF [[cfstuck]] , by lemma 2 on each ⇒
= errorAnswer, by lemma 3

= (out stuck)

= (out (behdetPostFix 〈(postfix Nnumargs Qbody),Ninputs*〉)).
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This completes the sketch of the proof that the denotational semantics for
PostFix is sound with respect to the operational semantics for PostFix. The
fact that all PostFix programs terminate simplifies the proof, because it is not
necessary to consider the case of infinitely long transition paths (in which case
(behdet 〈P, I〉) = ∞). For languages containing nonterminating programs, a
denotational soundness proof must also explicitly handle this case.

¤ Exercise 4.12 Complete the proof that the denotational semantics for PostFix is
sound with respect to its operational semantics by fleshing out the following details:

a. Show that lemma 2 holds for each transition rule in Figure 3.4.

b. Make a list of all stuck configuration patterns in the PostFix SOS and show that
lemma 3 holds for each such pattern. ¢

¤ Exercise 4.13 Show that the denotational semantics for each of the following

languages is sound with respect to its operational semantics: (1) a version of ELMM

whose operators include only +, -, and *; (2) full ELMM; (3) ELM; and (4) EL. ¢

4.4.4.2 Adequacy

The notion of soundness developed above works at the level of a whole pro-
gram. But often we want to reason about smaller phrases within a program.
In particular, we want to reason that we can substitute one phrase for another
without changing the operational behavior of the program. The following ade-
quacy property says that denotational equivalence implies the operational notion
of observational equivalence:

Adequacy: Suppose that P ranges over program contexts, H ranges
over the kinds of phrases that fill the holes in program contexts, and
H is a denotational meaning function for phrases. A denotational
semantics is adequate with respect to (wrt) an operational se-
mantics if the following holds:

H[[H1 ]] = H[[H2 ]] implies H1 =obs H2 .

Recall from page 84 that H1 =obs H2 means that for all program contexts P and
all inputs I, beh 〈P{H1 }, I〉 = beh 〈P{H2 }, I〉

In the case of a deterministic behavior function, the following reasoning
shows that adequacy is almost implied by denotational soundness:

H[[H1 ]] = H[[H2 ]]
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implies P [[P{H1}]] = P [[P{H2}]] , by compositionality of denotational semantics
implies meaning 〈P{H1}, (in I)〉 = meaning 〈P{H2}, (in I)〉 for any inputs I
implies (out (behdet 〈P{H1}, I〉)) = (out (behdet 〈P{H2}, I〉)) , by soundness

But demonstrating the observational equivalence requires showing

behdet 〈P{H1}, I〉 = behdet 〈P{H2 }, I〉.

To conclude this from the above line of reasoning requires an additional prop-
erty. Suppose that A ranges over observable answer expressions in the syntactic
domain Answer. Then we need a property we shall call denotational distinct-
ness of observables:

(out A1 ) = (out A2 ) implies A1 = A2 .

Recall that out maps syntactic answers to semantic ones. So the above property
requires that syntactically distinct answers be denotationally distinct. That
is, we cannot have two observationally distinct answers answers with the same
meaning.

Both EL and PostFix have denotational distinctness of observables. In
each language, observable answers are either integer numerals or an error token.
Assuming that only canonical integer numerals are used (e.g., 17 rather than
017 or +17) distinct integer numerals denote distinct integers. Note that Post-
Fix would not have this property if executable sequences at the top of a final
stack could be returned as observable answers. For example, the syntactically
distinct sequences (1 add 2 add) and (3 add) would both denote the same
transformation:

(push (Value 7→ Result (Int 7→ Value 3))) .

The above discussion allows us to conclude that any language with denota-
tional soundness and denotational distinctness of observables has the adequacy
property. In turn, this property justifies the use of denotational reasoning for
proving the safety of program transformations. For example, the PostFix De-
notational Equivalence Theorem on page 141 is a corollary of the adequacy of
PostFix.

4.4.4.3 Full Abstraction

Changing the unidirectional implication of adequacy to a bidirectional implica-
tion yields a stronger property called full abstraction:
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Full Abstraction: Suppose that P ranges over program contexts,
H ranges over the kinds of phrases that fill the holes in program
contexts, and H is a denotational meaning function for phrases. A
denotational semantics is adequate with respect to (wrt) an
operational semantics if the following holds:

H[[H1 ]] = H[[H2 ]] iff H1 =obs H2 .

In addition to adequacy, full abstraction requires that observational equivalence
imply denotational equivalence. That is, program fragments that behave the
same in all contexts must have the same denotational meaning.

The various dialects of EL we have considered are all fully abstract. Consider
the restricted version of ELMM in which the only operations are +, -, and *. In
this language, every numerical expression denotes an integer. We already know
that this language is adequate; to prove full abstraction, we need to show that
observational equivalence implies denotational equivalence. We will prove this
by contradiction. Suppose that NE 1 =obs NE2 , but NE [[NE 1 ]] 6= NE [[NE 2 ]].
Consider the ELMM context P = (elmm 2). Modeling the non-existent inputs
in this case by unit, we have:

(out (behdet 〈P{NE1}, unit〉))
=P[[P{NE1}]] , by soundness
=NE [[NE1 ]] , by definition of P
6=NE [[NE2 ]] , by assumption

=P[[P{NE2}]] , by definition of P
=(out (behdet 〈P{NE2}, unit〉)) , by soundness

Because ELMM has denotational distinctness of observables, we conclude that
NE1 6=obs NE2 , contradicting our original assumption. A similar proof works
to show full abstraction for the other dialects of EL we have studied.

Surprisingly, PostFix is not fully abstract! As argued in Section 4.4.3, even
though all PostFix programs terminate, the denotational domains for answers
and stacks in PostFix must include an entity denoting nontermination, which
we will write as ⊥. This is the denotational analog of the operational token ∞.
Even though no PostFix command sequence can loop, the presence of ⊥ in
the semantics can distinguish the meanings of some observationally equivalent
command sequences.

For example, consider the following two command sequences:

Q1 = 1 0 div

Q2 = exec 1 0 div.
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Q1 signals an error for any stack. Q2 first executes the top value Vtop on the
stack and then executes 1 0 div. We argue that Q2 is observationally equivalent
to Q1 , because it will also signal an error for any stack:

• if the stack is empty or if Vtop is not an executable sequence, the attempt
to perform exec will fail with an error;

• if Vtop is an executable sequence, Q2 will execute it. Since all PostFix
command sequences terminate, the execution of Vtop will either signal an
error, or it will terminate without an error. In the latter case, the execution
continues with 1 0 div, which necessarily signals an error.

Even though Q1 =obs Q2 , they do not denote the same stack transform! To
see this, consider a stack transform tweird =λs .⊥ and a stack sweird whose top
value is (StackTransform 7→ Value tweird ). Both tweird and sweird are “weird” in
the sense that they can never arise during a PostFix computation, in which
all stack transforms necessarily terminate. Nevertheless, tweird is a legal element
of the domain StackTransform, and it must be considered as a legal stack ele-
ment in denotational reasoning. Observe that (Q[[Q1 ]] sweird ) = errorStack, but
(Q[[Q2 ]] sweird ) = ⊥ — i.e., the latter computation does not terminate. So Q1

and Q2 denote distinct stack transforms even though they are observationally
equivalent.

Intuitively, full abstraction says that the semantic domains don’t contain any
extra “junk” that can’t be expressed by phrases in the language. In the case
of PostFix, the domains harbor ⊥ even though it cannot be expressed in the
language.

4.4.5 Operational vs. Denotational: A Comparison

We have noted in this chapter that a denotational semantics expresses the mean-
ing of a program in a much more direct way than an operational semantics. Fur-
thermore, the compositional nature of a denotational semantics is a real boon
for proving properties of programs and languages. Why would we ever want to
choose an operational semantics over a denotational semantics?

For one thing, an operational semantics is usually a more natural medium for
expressing the step-by-step nature of program execution. The notion of “step”
is an important one: it is at the heart of a mechanistic view of computation; it
provides a measure by which computations can be compared (e.g., which takes
the fewest steps); and it provides a natural way to talk about nondeterminism
(choice between steps) and concurrency (interleaving the steps of more than one
process). What counts as a natural step for a program is explicit in the rewrite
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rules of an SOS. These notions cannot always be expressed straightforwardly in
a denotational approach. Furthermore, in computer science, the bottom line is
often what actually runs on a machine, and the operational approach is much
closer to this bottom line.

From a mathematical perspective, the advantage of an operational seman-
tics is that it’s often much easier to construct than a denotational semantics.
Since the objects manipulated by an SOS are simple syntactic entities, there
are very few constraints on the form of an operational semantics. Any SOS
with a deterministic set of rewrite rules specifies a well-defined behavior func-
tion from programs to answer expressions. Creating or extending a set of rewrite
rules is fairly painless since it rarely requires any deep mathematical reasoning.
Of course, the same emphasis on syntax that facilitates the construction of an
operational semantics limits its usefulness for reasoning about programs. For
example, it’s difficult to see how some local change to the rewrite rules affects
the global properties of a language.

Constructing a denotational semantics, on the other hand, is mathematically
much more intensive. It is necessary to build consistent mathematical represen-
tations for each kind of meaning object. The difficulty of building such models
in general is illustrated by the fact that there was no mathematically viable in-
terpretation for recursive domain equations until Dana Scott invented one in the
early 1970s. Since then, a variety of tools and techniques have been developed
that make it easier to construct a denotational semantics that maps programs
into a restricted set of meanings. Extending this set of meanings requires po-
tentially difficult proofs that the extensions are sound, so most semanticists are
content to stick with the well-understood meanings. This class of meanings
is large enough, however, to facilitate a wide range of formal reasoning about
programs and programming languages.

Reading

Denotational semantics was invented by Christopher Strachey and Dana Scott.
For a tutorial introduction to denotational semantics, we recommend the articles
[Ten76] and [Mos90]. Coverage of both operational and denotational semantics
along with their use in reasoning about several simple programming languages
can be found in several semantics textbooks [Gun92, Win93, Mit96]. Full-length
books devoted to denotational semantics include [Gor79, Sto85, Sch86a].

Our notions of denotational soundness and adequacy are somewhat different
than (but related to) those in the literature. For a discussion of (the traditional
approach to) soundness, adequacy, and full abstraction, see [Gun92].



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

154 CHAPTER 4. DENOTATIONAL SEMANTICS


