
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Chapter 10

Data

Conjunction Junction, what’s their function?
I got “and”. . . and “or”,
They’ll get you pretty far.

”And”: That’s an additive, like “this and that”. . . .
And then there’s “or”:
O-R, when you have a choice like “This or that”.
“And”. . . and “or”,
Get you pretty far.

— Conjunction Junction (Schoolhouse Rock), Bob Dorough

Here’s hoping we meet now and then
It was great fun
But it was just one of those things.

— Jubilee, Cole Porter

Well-designed data structures can make programs efficient, understandable,
extensible, secure, and easy to debug. For this reason, programmers focus much
of their energy on designing and using data structures. How successful they
are depends in part on the tools provided by their programming language for
declaring and manipulating data. This chapter explores some of the key data
dimensions in programming languages.

417

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

418 CHAPTER 10. DATA

10.1 Products

Products are compound values that result from gluing other values together.
They are data structures that correspond to the product domains we have been
using in our mathematical metalanguage (see Section A.3.2) to represent struc-
tured mathematical values with components. Standard examples of products
are 2-dimensional points (consisting of x and y components), employee records
(consisting of name, sex, age, identification number, hiring date, etc.), and the
sequences of points in a polygon.

There are a wide variety of product data structures in programming lan-
guages that differ along a surprising number of dimensions:

• How are product values created and later decomposed into parts?

• Are the components of the product indexed by position or by name?

• When accessing a component, can its index be calculated or must an index
be a manifest constant?

• Are the components values (as in call-by-value) or computations (as in
call-by-name/call-by-need)?

• Are the components of the product immutable or mutable?

• Is the length of the product fixed or variable?

• Are all components of the product required to have the “same type,” i.e.,
are products homogeneous?

• When products are nested, are the nested components all required to have
the same size and/or “shape”?

• How are products passed as arguments, returned as results, and stored in
assignments?

• Can the lifetime of a product exceed the lifetime of an invocation of a
procedure in which it is created?

In this section, we will explore many of these dimensions, using our operational
and denotational tools where appropriate to explain interesting points in the
design space of products.

Products are known by a confusing variety of names — such as array, vector,
sequence, tuple, string, list, structure, record, environment, table, module, and
association list — that are used inconsistently between languages. We shall be

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 419

using some of these names in our study of products, but it is important to keep
in mind that our use of a name may denote a different kind of product than
what you might be familiar with from your programming experience.

10.1.1 Positional Products

10.1.1.1 Simple Positional Products

The simplest kind of product is a pair, which glues two values together. In
Chapter 6, we studied the semantics of pairs in call-by-name and call-by-value
versions of FL.

Pairs are an example of a positional product, in which component values
are indexed by their position in the product value. We can extend pairs into
more general positional products by adding the following two constructs to call-
by-value FL!1:

E ::= ...

| (product E*) [Product Creation]
| (proj N E) [Product Projection]

The expression (product E1 ... En) constructs an immutable positional prod-
uct value whose n components are the values of the subexpressions E1 through
En . Such a value is traditionally known as a tuple. (proj N Eprod) extracts
the component of the tuple denoted by Eprod that is at literal index N, where the
components of an n-component product are indexed from 1 to n. An attempt
to extract a component outside this index range is an error. The name proj is
short for “project,” the verb traditionally used to extract the component of a
product.

An operational semantics of immutable positional products in call-by-value
FL! is presented in Figure 10.1. A product expression with value expression
components is considered a new kind of value expression. The [product-progress]
rule evaluates the subexpressions of a product expression, so that the expression

(product (= 0 1) (* 2 3) (+ 3 4))

evaluates to the value expression

(product false 6 7).

The [product projection] rule extracts the value component at index N. If N is
not in the valid range of indices, the proj expression is stuck, modeling an error.
Using these rules, it is straightforward to show that the following FL expression
evaluates to 9 :

1We study products in the context of a stateful language to facilitate coverage of product
dimensions that involve state.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

420 CHAPTER 10. DATA

V ∈ ValueExp = . . . ∪ {(product V1 ... Vn)}

〈Ei ,S〉⇒ 〈Ei ′,S ′〉
〈(product V1 ... Vi−1 Ei Ei+1 ... En),S〉

⇒〈(product V1 ... Vi−1 Ei
′ Ei+1 ... En),S

′〉
[product progress]

〈(proj N (product V1 ... Vn)),S〉⇒ 〈VN ,S〉,
where 1 ≤ N ≤ n [product projection]

Figure 10.1: Operational semantics of immutable positional products in CBV
FL!.

(let ((p (product (= 0 1) (* 2 3) (+ 4 5))))

(if (proj 1 p) (proj 2 p) (proj 3 p)))

The corresponding denotational semantics of positional products in call-by-
value FL! is presented in Figure 10.2. The Value domain is extended with a new
summand, Prod, whose elements — sequences of values — represent product
values. The evaluation of the subexpressions of a product expression is handled
by with-values, and nth is used to extract the component at a given index in a
proj expression. The validity of the index N is determined by the predicate

1 ≤ (N N) and (N N) ≤ (length v*),

which is known as a bounds check. If the bounds check fails, the proj expres-
sion denotes an error.

In many programming languages, the size of all products is known by the
implementation, and a bounds check for every projection can be performed either
at compile time or at run time. Important exceptions are C and C++, in which
arrays carry no size information and bounds checks are not performed when array
components are accessed. Programmers in these languages must pass array
size information separately from the array itself and are expected to perform
their own bounds checks. The lack of automatic bounds checks in C/C++
is the root cause of a high percentage of security flaws in modern software
applications, many of which are due to so-called buffer overrun exploits that
take advantage of C’s permissiveness to fill memory with malicious code that
can then be executed by a privileged process.

Product values with n components are often drawn as a box with n slots,
sometimes with explicit indices. For example, the three-component product
from above would be drawn as

false 6 7
1 2 3

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 421

Prod = Value*
v ∈ Value = . . . + Prod

E [[(product E*)]] =λe . (with-values (E*[[E*]] e) Prod 7→ Value)

E [[(proj N Eprod)]] =
λe . with-value (E [[Eprod]] e)

(λv . matching v
. (Prod 7→ Value v*) [] if 1 ≤ (N N) and (N N) ≤ (length v*)

then (val-to-comp (nth (N N) v*))
else error-comp
fi

. else error-comp
endmatching)

Figure 10.2: Denotational semantics of immutable positional products in CBV
FL!.

Such a diagram suggests a low-level implementation in which the n components
of a product are stored as the contents of n successive addresses in the memory
of the computer, something we shall explore in more detail in Chapter 17.

We emphasize that tuples in FL! are immutable: there is no way to change
the value stored in a slot. We will consider mutable products later. In the fol-
lowing subsections, we discuss many possible variants to the products presented
above.

10.1.1.2 Sequences

In the projection expression considered above, the index is an integer literal,
not an integer expression. This means that the projection index cannot be
calculated. One benefit of this restriction is that the bounds check can always
be performed at compile time and so need never be performed at run time. As we
discuss later (page 423), literal indices also facilitate reasoning about programs
written in statically typed languages.

The positional products studied above do not include any way to dynami-
cally determine the size of the product, i.e., the number of components. It is
assumed that the programmer knows the size of every tuple when writing the
program. However, there are many situations where it is necessary or convenient
to determine the size of a product and to extract a product component at an
index calculated from an expression. For instance, given an arbitrary product
containing numbers, determining the average of these numbers requires know-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

422 CHAPTER 10. DATA

ing the number of components and looping through all indices of the product
to find the sum of the components. Such capabilities are normally associated
with products called arrays. But since arrays usually imply mutable structures,
we will instead use the name sequence for immutable products with calculated
indices and dynamically determinable sizes. This terminology is consistent with
our use of the term “sequence” in our mathematical metalanguage.

We can extend FL! with immutable sequences by adding the following con-
structs to the language:

E ::= ...

| (sequence E*) [Sequence Creation]
| (seq-proj Eindex Eseq) [Sequence Projection]
| (seq-size Eseq) [Sequence Size]

The expression (sequence E1 ... En) creates and returns a size-n se-
quence whose components are the values of the expressions E1 through En . The
expression (seq-proj Eindex Eseq) returns the ith component of the sequence
denoted by Eseq , where i is the integer denoted by the arbitrary expression
Eindex (which must be checked against the bounds of the sequence). The ex-
pression (seq-size Eseq) returns the number of components in the sequence.
The formal semantics of sequences is left as an exercise.

As an example of sequence manipulation, here is a procedure that finds the
average of a sequence of numbers:

(define (average s)

(letrec ((n (seq-size s))

(sum-loop

(lambda (i sum)

(if (= i 0)

(/ sum n)

(sum-loop (- i 1)

(+ sum (seq-proj i s)))))))

(sum-loop n 0)))

10.1.1.3 Product indexing

The positional products discussed above use 1-based indexing, in which the
components of an n-component tuple are accessed via the indices 1 . . . n. Many
languages instead have 0-based indexing, in which the slots are accessed via
the indices 0 . . . n− 1. For example:

false 6 7
0 1 2

Why use the index 0 to access the first slot of a product? One reason is
that it can simplify some addressing calculations in the compiled code, which

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 423

results in the execution of fewer low-level instructions when projecting compo-
nents from products. Another reason is that 0-based indexing simplifies certain
addressing calculations for the programmer. For example, compare the follow-
ing expressions for accessing the slot in row i and column j of a conceptually
2-dimensional matrix m with width w and height h that is actually represented as
a one-dimensional sequence with w×h components stored in so-called row-major
order2:

; 0-based indexing of matrices and sequences

(nth (+ (* w i) j) m)

; 1-based indexing of matrices and sequences

(nth (+ (* w (- i 1)) j) m)

The 0-based approach is simpler because it does not require the subtraction by
1 seen in the 1-based approach.

Using 0 or 1 as the index for the first component are not the only choices.
Some languages allow using any integer range for product indices. Some, such
as Pascal, even allow using as index ranges any range of values that is iso-
morphic to an integer range. For instance, a Pascal array can be indexed by
the alphabetic characters from ’p’ to ’u’ or the days of the week from monday

through friday (where an enumeration of days has been declared elsewhere).

10.1.1.4 Types

FL is a dynamically typed language in which each value is conceptually
tagged with its type and type errors are not detected until the program is run.
In contrast, many modern languages are statically typed languages, in which
the type of every expression is known when the program is compiled. The goal
of static typing affects the design of positional products in these languages. In
particular, it must be possible for the compiler to determine the type of every
value projected from a product value.

For instance, ML and Haskell support so-called heterogeneous tuples
in which each tuple component may have a different type. In order to determine
the type of a projection, both tuple indices and sizes must be statically deter-
minable. ML’s vectors, Haskell’s arrays, and CLU’s sequences are examples
of updatable immutable products in typed languages. Since in general compilers
cannot determine either the size of or the index of a projection from such prod-
ucts, these products are homogeneous sequences in which all components are

2Row-major order means the elements of each row are stored in consecutive locations in
the sequence. This makes accessing elements along a row very inexpensive. Likewise, Column-
major order means elements of each column are stored in consecutive sequence locations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

424 CHAPTER 10. DATA

required to have the same type. Many languages treat homogeneous sequences
of characters, known as strings, as a special kind of positional product. Im-
mutable strings appear in languages such as Java, ML, Haskell and CLU,
while C and Scheme provide mutable strings.

Product indices are usually restricted to the integer type, but, as mentioned
above, some languages allow index types that are isomorphic to the integers or
some finite range of the integers. For example, the Haskell language allows
arrays to be indexed by any type that provides the operations of an “indexable”
type. In Pascal, arrays can be indexed by any range type that is isomorphic
to a finite integer range. Oddly, the index range (not merely the index type) is
part of the array type in Pascal, which means that the size of every Pascal
array is statically known, and it is not possible to write procedures that are
parameterized over arrays of different lengths.

In later chapters, we will have much more to say about product types when
we study types in more detail.

10.1.1.5 Specialized syntax

Many languages provide specialized syntax for product manipulation. For in-
stance, ML tuples are constructed by comma separated expressions delimited by
parentheses, and the ith tuple component is extracted via the syntax #i. Here
is an ML version of our earlier s-expression example:

let val p = (0 = 1, 2 * 3, 4 + 5)

in if #1(p) then #2(p) else #3(p)

end

For sequences (as well as for mutable arrays) a subscripting notation using
square brackets is a standard way to project components, and := might be used
for an update operation. Below is a way to swap the components at indices i
and j of an immutable vector u in a hypothetical version of ML extended with
this specialized syntax:

let val v = u[i]

val u2 = u[i] := u[j]

val u3 = u2[j] := v

in u3

end

¤ Exercise 10.1 In the first three parts below, assume 1-based indexing.

a. Give an operational semantics for sequences in call-by-value FL.

b. Give a denotational semantics for sequences in call-by-value FL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 425

c. Explicitly enumerating the elements of a sequence in a sequence expression can
be inconvenient. For example, a sequence of the squares of the integers from 1 to
5 would be written:

(sequence (* 1 1) (* 2 2) (* 3 3) (* 4 4) (* 5 5))

An alternative means of specifying such sequences is via a new construct

(tabulate Esize Eproc)

where Esize denotes the size of the sequence and Eproc denotes a unary procedure
f that maps the index i to the value (f i). For instance, using tabulate, the
above 5-element sequence could be written

(tabulate 5 (lambda (i) (* i i)))

Given an operational and denotational semantics of tabulate in call-by-value
FL.

d. What changes would need to be made to the above three parts to specify 0-based
indexing rather than one-based indexing?

e. What changes would need to be made to the syntax for sequences and the first
three parts to specify an indexing scheme that starts at an arbitrary dynamically
determinable value lo rather than 0 or 1? ¢

¤ Exercise 10.2 Even with immutable products, it is still useful to provide a facility for
updating elements in, inserting elements into, and removing elements from a product.
Since the product is immutable, none of these operations actually change a given product
value, but they return a new product value that shares most of its components with
the given product value. We shall call sequences that support one or more of these
operations updatable sequences, though this is by no means a standard term.

Consider the following constructs for one form of updatable sequence:

E ::= ...

| (usequence E*) [Updatable Sequence Creation]
| (useq-proj Eindex Euseq) [Updatable Sequence Projection]
| (useq-size Euseq) [Updatable Sequence Size]
| (useq-update Eindex Eval Euseq) [Updatable Sequence Update]
| (useq-insert Eindex Eval Euseq) [Updatable Sequence Insertion]
| (useq-delete Eindex Euseq) [Updatable Sequence Deletion]

The usequence, useq-proj, and useq-size are the updatable sequence versions of the
corresponding (non-updatable) sequence constructs. For useq-update, useq-insert,
and useq-delete, suppose that Eindex denotes an integer i, Eval denotes a value vnew ,
Euseq denotes a size-n updatable sequence vuseq , and u denotes the sequence with integer
values [7,5,8]. If v is an updateable sequence, let #v denote the size of v and v ↓ j
denote the jth component value of v, where 1 ≤ j ≤ #v. Then:

• if 1 ≤ i ≤ n, (useq-update Eindex Eval Euseq) returns a size-n updatable se-
quence vuseq2 such that

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

426 CHAPTER 10. DATA

vuseq2 ↓ i = vnew ; and

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j ≤ n where j 6= i.

For example, (useq-update 2 6 u) returns the updatable sequence [7,6,8].

• if 1 ≤ i ≤ n+1, (useq-insert Eindex Eval Euseq) returns a size-n+1 updatable
sequence vuseq2 such that

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j < i;

vuseq2 ↓ i = vnew ; and

vuseq2 ↓ k = vuseq ↓ k − 1 for all i < k ≤ n+ 1;

For example, (useq-insert 2 6 u) returns the updatable sequence [7,6,5,8].

• if 1 ≤ i ≤ n, (useq-delete Eindex Euseq) returns a size-n−1 updatable sequence
vuseq2 such that

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j < i; and

vuseq2 ↓ k = vuseq ↓ k + 1 for all i ≤ k ≤ n− 1;

For example, (useq-delete 2 u) returns the updatable sequence [7,8]

a. Give an operational semantics for updatable sequences in call-by-value FL.

b. Give a denotational semantics for updatable sequences in call-by-value FL.

c. Show that useq-update is not strictly necessary in a language with updatable
sequences because it can be desugared into other constructs.

d. Consider a language with updatable sequences that also has a (useq-empty)

construct that returns an empty updatable sequence. Show that usequence is
not strictly necessary in such a language because it can be desugared into other
constructs. What are the benefits and drawbacks of such a desguaring? ¢

10.1.2 Named Products

In a named product, components are indexed by names rather than by po-
sitions. In Section 7.2, we introduced the record, a classic form of named
product, and studied its semantics. We saw that records were effectively reified
environments. Here we discuss some of the dimensions of named products.

The simplest form of named product is a named version of positional prod-
ucts with a product creator (record) and a product projector (select):

E ::= ...

| (record (I E)*) [Record Creation]
| (select I E) [Record Projection]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 427

As above, we assume that such constructs are embedded in a call-by-value lan-
guage and denote immutable products.

As a simple example of records, consider the following expression, which
evaluates to 9 :

(let ((r (record (test (= 0 1)) (yes (* 2 3)) (no (+ 4 5)))))

(if (select test r) (select yes r) (select no r)))

In named products, the order of bindings in the record constructor is irrele-
vant, so the value of the above expression would not be changed if the record

subexpression were changed to be

(record ((no (+ 4 5)) (test (= 0 1)) (yes (* 2 3))))

Many languages with named products have special syntax for record creation
and projection. For instance, here is our running example expressed in ML
record syntax:

let val r = {test = (0=1), yes=2*3, no=4+5}
in if #test(r) then #yes(r) else #no(r)

end

A more common syntax for record selection is the “dot notation” used with
Pascal records, C structures, and Java objects, as in:

if r.test then r.yes else r.no

In a language like ML that permits numeric record labels, positional prod-
ucts can be viewed as syntactic sugar for named products. E.g., the ML tuple
(true, 17) is syntactic sugar for {1=true, 2=17}.

Simple records can be augmented with operations that parallel many of the
extensions for positional products:

• (record-size Ercd): Returns the number of components in a record.

• (record-insert I Eval Ercd): Let vrcd be the record denoted by Ercd .
Then the record-insert expression returns a new record that has a bind-
ing of I to the value of Eval in addition to all the bindings of vrcd . If vrcd
already has a binding for I, the new binding overrides it. With named prod-
ucts, record-insert corresponds to both seq-insert and seq-update for
positional products.

• (record-delete I Ercd): Let vrcd be the record denoted by Ercd . Then
the record-delete expression returns a new record that has all the bind-
ings of vrcd except for any with the name I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

428 CHAPTER 10. DATA

The override construct from Section 7.2 is a generalization of record-insert
that combines two environments, while the conceal construct presented there
is a generalization of record-delete. Other forms of record combination and
name manipulation are also possible. For instance, it is possible to take the
“intersection” or “difference” of two environments, or to specify the names that
should be kept in a record rather than those that should be concealed.

It is even possible, but rare, to have a named index that can be calculated.
In FL, such a construct might have the form (select-sym Esym Ercd), where
Esym is an expression denoting a symbol value vsym and select-sym selects
from the record denoted by Ercd the value associated with the label that is the
underlying identifier of Isym . It would be hard to imagine such a construct in
a statically typed language. However, this idiom is often used in dynamically
typed languages (such as Lisp dialects) in the form of association lists, which
are list of bindings between explicit symbols and values.

10.1.3 Non-strict Products

Our discussion so far has focused on strict products, in which the expres-
sions specifying the product components are fully evaluated into values that are
stored within the resulting product value. Another option is to have non-strict
products, in which the component computations themselves are stored within
the product value and are only run when their values are “demanded.” Such
products are the default in non-strict languages like Haskell, but we will see
that there are considerable benefits to integrating non-strict products into a
call-by-value language, which is the focus of this section.

A simple approach to non-strict products is to adapt the call-by-name param-
eter passing mechanism to product formation. We will call the resulting data
call-by-name (CBN) products in contrast to the call-by-value (CBV)
products we have studied so far. An operational and denotational seman-
tics for immutable positional CBN products in a call-by-value version of FL!
is presented in Figure 10.3. We use the names nproduct/ nproj instead of
product/proj to syntactically distinguish CBN products from CBV products.
In the operational semantics, the delayed computation of product components
is modeled by not having any progress rules for evaluating the component ex-
pressions of an nproduct expression. In the denotational semantics, a product
value is represented as a sequence of computations rather than as a sequence
of values. Intuitively, these computations are only “forced” into values upon
projection from the CBN product by the occurrences of with-value that are
sprinkled throughout the rest of the denotational semantics for CBV FL!.

As a simple example of how CBN products differ from CBV products, con-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 429

Operational semantics for CBN products

V ∈ ValueExp = . . . ∪ {(nproduct E1 ... En)}

〈(nproj N (nproduct E1 ... En)),S〉⇒ 〈EN ,S〉,
where 1 ≤ N ≤ n [nproduct projection]

Denotational semantics for CBN products

NProd = Computation*
v ∈ Value = . . . +NProd

E [[(nproduct E*)]] =λe . (NProd 7→ Value (E*[[E*]] e))

E [[(nproj N Eprod)]] =
λe . with-value (E [[Eprod]] e)

(λv . matching v
. (NProd 7→ Value c*) [] if 1 ≤ (N N) and (N N) ≤ (length c*)

then (nth (N N) c*)
else error-comp
fi

. else error-comp
endmatching)

Figure 10.3: Operational and denotational semantics for CBN positional prod-
ucts in call-by-name FL!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

430 CHAPTER 10. DATA

sider the following expression:

(let ((c (cell 5)))

(let ((p (nproduct (begin (:= c (+ (^ c) 1)) (^ c))

(begin (:= c (* (^ c) 2)) (^ c)))))

(list (nproj 2 p) (nproj 1 p) (nproj 1 p) (nproj 2 p))))

The value of this expression is [10 , 11 , 12 , 24], indicating that the increments
and doublings of the argument expressions are performed at every projection
rather than when the CBN product is formed. If we had instead used CBV
products, the above expression would yield [6 , 12 , 12 , 6], indicating that the
side effects of the argument expressions are performed exactly once when the
product is created.

In CBN products, the component computation is re-evaluated at every pro-
jection. Another option, inspired by the call-by-need parameter passing mech-
anism, is to evaluate the component computation at the very first projection
and memoize the resulting value for later projections. We shall call this form of
non-strict product a lazy (CBL) product. Using a lazy product in the above
example would yield the list [10 , 11 , 11 , 10], which indicates that the side effects
are performed on the first projections but not on subsequent projections.

The operational semantics of lazy products is presented in Figure 10.4. We
use the names lproduct and lproj to distinguish lazy products from CBV and
CBN products. A lazy product value is a sequence of locations in the store that
may contain non-value expressions. At the first projection of a lazy product
component, the [lproj progress] rule forces the evaluation of an unevaluated
component expression to a value that is returned by the [lproduct projection]
rule. Because the resulting value is “remembered” in the component location,
subsequent projections of the component will return the value directly.

In the denotational semantics for lazy products (Figure 10.5), this memoizing
behavior is modeled by extending Storable to beMemo,3 which includes both val-
ues and computations. For a CBV language, we modify the allocating function
to inject the initial value for a location in Memo, and introduce allocatingComp
and allocatingComps for storing computations in freshly allocated locations. We
modify fetching so that whenever the contents of a location is fetched, any com-
putation stored at that location is evaluated to a value that is memoized at that
location. A lazy product itself is modeled as a sequence of locations holding
elements of Memo.

3This domain implies that computations could be stored at any location (such as cell loca-
tions), but in fact they can only be stored in lazy product locations. A practical implementation
of lazy products would localize the overhead of memoization to lazy product component loca-
tions so that the efficiency of manipulating cell locations was not affected.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 431

S ∈ Store = Assignment*
Z ∈ Assignment = Location× Exp
V ∈ ValueExp = . . . ∪ {(lproduct L1 ... Ln)}
get : Location→ Store⇀ Exp

〈(lproduct E1 ... En),S〉
⇒〈(lproduct L1 ... Ln), [〈L1 ,E1 〉, . . . , 〈Ln ,En 〉] @ S〉,
where L1 . . . Ln are fresh locations not appearing in S.

[lproduct creation]

〈E,S〉⇒ 〈E ′,S ′〉
〈(lproj N (lproduct L1 ... Ln)),S〉

⇒〈(lproj N (lproduct L1 ... Ln)), (〈LN ,E ′〉 . S ′)〉 ,
where 1 ≤ N ≤ n and (get LN S)=E

[lproj progress]

〈(lproj N (lproduct L1 ... Ln)),S〉⇒ 〈V,S〉,
where 1 ≤ N ≤ n and (get LN S)=V

[lproduct projection]

Figure 10.4: Operational semantics for CBL products.

Non-strict products may be added to stateless languages like FL. We have
chosen to focus on the stateful language FL! for two reasons:

1. It is easier to demonstrate the differences between the three forms of prod-
ucts in a language with state. In FL, only termination and errors could
be used to distinguish strict and non-strict products, and CBN and CBL
products are observationally indistinguishable.

2. Explaining the memoization of CBL products requires some form of state,
so for presentational purposes it is easier to add these to a language like
FL! that already has state.

The main benefit of non-strict products is that they enable the creation
of conceptually infinite data structures that improve program modularity. For
instance, we can introduce infinite lists, sometimes called streams, into a CBV
language with the following sugar for scons (stream cons):

Dexp[[(scons E1 E2)]] = (lproduct E1 E2)

along with the following procedures:

(define (scar x) (lproj 1 x))

(define (scdr x) (lproj 2 x))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

432 CHAPTER 10. DATA

mm ∈ Memo = Computation +Value
σ ∈ Storable = Memo

LProd = Location*
v ∈ Value = . . . + LProd

allocating : Value → (Location → Computation)→ Computation
=λvf . λs . (f (fresh-loc s) (assign (fresh-loc s) (Value 7→ Memo v) s))

allocatingComp : Computation → (Location → Computation)→ Computation
=λcf . λs . (f (fresh-loc s) (assign (fresh-loc s) (Computation 7→ Memo c) s))

allocatingComps : Computation*→ (Location*→ Computation)→ Computation
=λc*f . (matching c*

. []Computation [] (f []Location)

. (c . c*) [] allocatingComp c (λl . allocatingComps c* (λl* . f (l . l*)))
endmatching)

fetching : Location → (Value → Computation)→ Computation
=λlf . λs . matching (fetch l s)

. (Storable 7→ Assignment mm) []
matchingmm
. (Value 7→ Memo v) [] f v s
. (Computation 7→ Memo c) []
with-value c (λvs ′ . f v (assign l (Value 7→ Memo v) s ′))

endmatching
. else (error-comp s)
endmatching

E [[(lproduct E*)]] =λe . (allocatingComps (E*[[E*]] e) (λl* . (LProd 7→ Value l*)))

E [[(lproj N Eprod)]] =
λe . (with-value (E [[Eprod]] e)

(λv . (matching v
. (LProd 7→ Value l*) [] if 1 ≤ (N N) and (N N) ≤ (length l*)

then (fetching (nth (N N) l*) val-to-comp)
else error-comp
fi

. else error-comp
endmatching)))

Figure 10.5: Denotational semantics for CBL products in FL!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 433

The stream of all natural numbers can be created via (ints-from 0), where
the ints-from procedure is defined as

(define (ints-from n) (scons n (ints-from (+ n 1))))

The fact that the evaluation of the component expression (ints-from (+ n 1))

is delayed until it is accessed prevents what would otherwise be an infinite re-
cursion if cons were used instead of scons.

To view a prefix of a stream as a regular list, we will use the following
procedure:

(define (prefix n str)

(if (= n 0)

(list)

(cons (scar str) (prefix (- n 1) (scdr str)))))

For example:

(prefix 5 (ints-from 3)) −−−FL→ [3 , 4 , 5 , 6 , 7]

The stream mapping and filtering procedures in Figure 10.6 are handy for
creating streams, such as the examples in Figure 10.7. Note how laziness en-
ables the streams nats, twos, and fibs to all be defined directly in terms of
themselves, without the need for an explicit recursive generating function like
ints-from. The stream of prime numbers, primes, is calculated using the sieve
of Eratosthenes method, which begins at 2 and keeps as primes only those follow-
ing integers that are not multiples of previous primes. It is worth emphasizing
that all of these examples could be implemented using regular lists (manipulated
via cons, car, and cdr) in a call-by-name language or a call-by-need language;
special lazy products are only necessary in a call-by-value language.

As an example of the modularity benefits of the conceptually infinite data
structures enabled by non-strict products, consider the first-bigger-than pro-
cedure, which returns the first value in a numeric stream that is strictly bigger
than a given threshhold n.

(define (first-bigger-than n str)

(if (> (scar str) n)

(scar str)

(first-bigger-than n (scdr str))))

(first-bigger-than 1000 nats) −−−FL!→ 1001
(first-bigger-than 1000 evens) −−−FL!→ 1002
(first-bigger-than 1000 twos) −−−FL!→ 1024
(first-bigger-than 1000 fibs) −−−FL!→ 1597

(first-bigger-than 1000 primes) −−−FL!→ 1009

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

434 CHAPTER 10. DATA

; Applies a unary function F elementwise to stream STR.

(define (smap f str)

(scons (f (scar str))

(smap f (scdr str))))

; Applies a binary function G elementwise to corresponding

; elements of STR1 and STR2.

(define (smap2 g str1 str2)

(scons (g (scar str) (scar str2))

(smap2 g (scdr str1) (scdr str2))))

; Returns a stream with only those elements of STR

; satisfying the predicate PRED.

(define (sfilter pred str)

(if (pred (scar str))

(scons (scar str) (sfilter pred (scdr str)))

(sfilter pred (scdr str))

Figure 10.6: Mapping and filtering procedures for streams.

Infinite lists allow a list processing termination condition to be specified in the
consumer of a list rather than in the producer of a list. With strict lists, all
lists must be finite, so the termination condition must be specified when the
list is produced. To get the behavior of first-bigger-than with strict lists,
it would be necessary to intertwine the details of generating the next element
with checking it against the threshhold – a strategy that would compromise the
modularity of having a separate first-bigger-than procedure.

¤ Exercise 10.3 The Hamming numbers are all positive integers whose non-trivial

factors are 2, 3, and 5 exclusively. Define a stream of the Hamming numbers. What is

the first Hamming number strictly larger than 1000? ¢

¤ Exercise 10.4 Many Scheme implementations support a form of stream created
out of pairs where the second component is lazy but the first is not:

Dexp[[(cons-stream E1 E2)]] = (cons E1 (delay E2))
(define (head str) (car str))

(define (tail str) (force (cdr str)))

Here, delay and force implement a memoized delayed value, like lazy and touch did
in Exercise 7.1.

a. Show that it is possible to define all lazy lists illustrated in this section as Scheme
streams.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 435

; All natural numbers

(define nats (scons 0 (smap (+ 1) nats))

(prefix 5 nats) −−−FL→ [0 , 1 , 2 , 3 , 4]

; All even natural numbers

(define evens (sfilter (lambda (x) (= (rem x 2) 0)) nats))

(prefix 5 evens) −−−FL→ [0 , 2 , 4 , 6 , 8]

; All powers of two

(define twos (scons 1 (smap (* 2) twos)))

(prefix 5 twos) −−−FL→ [1 , 2 , 4 , 8 , 16]

; All Fibonacci numbers

(define fibs (scons 0 (scons 1 (smap2 + fibs (scdr fibs)))))

(prefix 10 fibs) −−−FL→ [0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34]

; All prime numbers

(define primes

(letrec

((sieve

(lambda (str)

(scons (scar str)

(sieve (sfilter (lambda (x)

(not (= (rem x (scar str)) 0)))

(scdr str)))))))

(sieve (ints-from 2))))

(prefix 10 primes) −−−FL→ [2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23]

Figure 10.7: Some sample streams of numbers.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

436 CHAPTER 10. DATA

b. Design a stream in which laziness in the first component is essential – that is,
which can be defined via scons/scar/scdr but not via cons-stream/head/tail.

¢

¤ Exercise 10.5

a. Use lproduct/lproj to define constructors and selectors for infinite binary trees
in which each node holds a value in addition to its left and right subtrees.

b. Use your constructs to define an infinite binary tree whose left-to-right inorder
traversal yields the positive integers in order of magnitude.

c. Define an inorder-stream procedure that returns a stream of the elements of
an infinite binary tree as they would be encountered in a left-to-right inorder
traversal. ¢

10.1.4 Mutable Products

Thus far we have discussed only immutable products — those whose components
do not change over time. But in popular imperative languages, the vast majority
of built-in data structures are mutable products. Here we explore some design
dimensions of mutable products and some examples of mutable products in real
languages.

All of the dimensions we explored above for immutable products are relevant
to mutable products. For example, mutable product components are either
named or positional. Examples of mutable products with named components
include C’s structures and Pascal’s records. A canonical example of a fixed-
size mutable product with positional components is Scheme’s pairs, whose two
components may be altered via set-car! and set-cdr!. Mutable sequences
are typically called arrays (as in C/C++, Java, Pascal, Fortran, and CLU)
or vectors (as in Scheme and Java). All of these support the ability to update
the component at any index, often via a special subscripting notation, such
as a[i] = 2*a[i]; in C/C++/Java. Only some of these — CLU’s arrays
and Java’s vectors (but not Java’s arrays) — support the ability to expand
or contract the size of the mutable sequence by inserting or removing elements.
All of these examples of mutable products have 0-based indexing except for
Fortran (which has 1-based arrays), CLU (whose arrays can have any lower
bound but are 1-based by default), and Pascal (whose arrays support arbitrary
enumerations as indices). In all of these examples, all components are required
to be of the same type, except for Scheme’s vectors (where any slot may contain
any value) and Java’s vectors (where any slot may contain any object).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 437

Although the mutable products mentioned above seem similar on the sur-
face, their semantics differ in fundamental ways. Below we explore some of the
dimensions along which mutable products can differ. For simplicity, we consider
only mutable fixed-length positional products of heterogeneous values, which
we shall call mutable tuples. It is easy to generalize these to other kinds of
mutable products. We will study the addition of mutable tuples to FL!. We
assume a CBV parameter passing mechanism unless otherwise stated. Here are
the constructs we will consider:

E ::= ...

| (mprod E*) [Mutable Tuple Creation]
| (mget Nindex Emt) [Mutable Tuple Projection]
| (mset! Nindex Emt Enew) [Mutable Tuple Assignment]

Informally, these constructs have the following semantics:

• (mprod E1 ... En) creates a new mutable tuple with n mutable slots
indexed from 1 to n where slot i is initially filled with the value of Ei .

• In (mget Nindex Emt), assume that Emt evaluates to a mutable tuple mt
with n slots, where 1 ≤ Nindex ≤ n. Then mget returns the value in the
ith slot of mt . Otherwise, mget signals an error.

• In (mset! Nindex Emt Enew), assume that Emt evaluates to a mutable
tuple mt with n slots, where 1 ≤ N ≤ n, and Enew evaluates to v. Then
mset! changes the value in the ith slot of mt to be v. Otherwise, mset!
signals an error.

For example, here is an expression involving a mutable tuple:

(let ((m (mprod 3 4)))

(begin

(mset! 1 m (+ (mget 1 m) (mget 2 m))) ; 1st slot is now 7.

(mset! 2 m (+ (mget 1 m) (mget 2 m))) ; 2nd slot is now 11.

(* (mget 1 m) (mget 2 m)))) −−−FL!→ 77

A very simple way to include mutable products in a language is to have a
single kind of mutable entity — such as a mutable cell — and allow this entity
to be a component of otherwise immutable structures. This is the approach
taken in ML, where immutable tuples, vectors, and user-defined datatypes may
have mutable cells as components. We can model this approach in FL! via the
following desugarings for mprod, mget, and mset!:

D[[(mprod El ...En)]] = (product (cell D[[El]]) ... (cell D[[En]]))
D[[(mget N Emp)]] = (cell-ref (proj N D[[Emp]]))
D[[(mset! N Emp Enew)]] = (cell-set! (proj N D[[Emp]]) D[[Enew]])

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

438 CHAPTER 10. DATA

In typical imperative languages, a more common design is to directly sup-
port various kinds of mutable products, perhaps along with some immutable
ones. The CLU language, for example, supports a variety of different built-in
datatypes, each of which comes in both mutable and immutable flavors.

In most imperative languages, mutable products would be modeled as a
sequence of locations, as shown in the denotational semantics presented in Fig-
ure 10.8, which is a straightforward generalization to the semantics of mutable
cells. Mutable tuple values are represented as sequences of locations. This is
similar to the representation of lazy products, except that in mprod, the com-
puted values of the subexpressions (rather than the computatations for these
subexpressions) are stored in the locations.

A key issue in the semantics of mutable products is how they are passed as
parameters. When mutable products are added as values to the CBV version of
FL! we have studied, we shall say that the they are passed via a call-by-value-
sharing (CBVS)mechanism because both the caller and the callee share access
to the same locations in the mutable product. For example, in the following
expression, references to t and m in the body of the procedure f refer to the
same mutable product, so that changes to the components of one are visible in
the other:

(let ((t (mprod 5 6)))

(let ((f (lambda (m)

(begin

(mset! 1 t (* 10 (mget 1 t)))

(mset! 2 m (* 100 (mget 2 m)))

(mget 1 m)))))

(+ (f t) (mget 2 t)))) −−−−−−−−CBV S FL!→ 650

This is the behavior expected for mutable products in languages such as Java,
Scheme and CLU. Conceptually, when a mutable product is assigned to a vari-
able, passed as a parameter, returned as a result, or stored in a data structure,
no new product locations are created; the existing product locations are simply
shared in all parts of the program to which the given product value has “flowed.”

An alternative strategy for passing mutable products in a CBV language is
to create a new product with new locations whenever a product is passed from
one part of a program to another. This approach, which we shall term call-by-
value-copy (CBVC) is explained by the denotational semantics for a variant
of FL! with mutable products (Figure 10.9). Whenever a value is passed, a copy
of the value is made. Primitive values, procedures, and locations (i.e., cells)
are not copied, but a mutable tuple with n slots is copied by allocating n new
locations and filling these with copies of the contents of the existing locations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 439

v ∈ Value = . . .+ MProd
mt ∈ MProd = Location*

allocatingVals : Value*→ (Location*→ Computation)→ Computation
=λv*f . matching v*

. []Value [] (f []Location)

. (v . v*) [] (allocating v (λl . allocatingVals v* (λl* . f (l . l*))))
endmatching

E [[(mprod E*)]]
=λe . (with-values (E*[[El]] e)

(λv* . (allocatingVals v* (λl* . (MProd 7→ Value l*))))

E [[(mget N Emp)]]
=λe . (with-value (E [[Emp]] e)

(λvmp . matching vmp
. (MProd 7→ Value l*) []
if 1 ≤ (N N) and (N N) ≤ (length l*)
then (fetching (nth (N N) l*) (λv . (val-to-comp v)))
else error-comp
fi

. else error-comp
endmatching))

E [[(mset! N Emp Enew)]]
=λe . (with-value (E [[Emp]] e)

(λvmp . (with-value (E [[Enew]] e)
(λvnew . matching vmp

. (MProd 7→ Value l*) []
if 1 ≤ (N N) and (N N) ≤ (length l*)
then (update (nth (N N) l*) vnew)
else error-comp
fi

. else error-comp
endmatching))))

Figure 10.8: Denotational semantics of mutable tuples with CBVS parameter
passing.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

440 CHAPTER 10. DATA

In a CBVC interpretation of the example expression considered for CBVS, the
names t and m refer to two distinct mutable tuples, so that changes to one pair
are not visible in the other:

(let ((t (mprod 5 6)))

(let ((f (lambda (m)

(begin

(mset! 1 t (* 10 (mget 1 t)))

(mset! 2 m (* 100 (mget 2 m)))

(mget 1 m)))))

(+ (f t) (mget 2 t)))) −−−−−−−−CBV C FL!→ 11

v ∈ Value = Unit + Bool + Int + Sym + Procedure+ Location+ MProd

allocatingCopies :Location*→ (Value → (Value → Computation)→ Computation)
→ (Location*→ Computation)→ Computation

=λl*gf . matching l*
. []Location [] f []Location
. (lold . lold*) [] fetching lold

(λv . g v (λv ′ . allocating v ′

(λlnew . allocatingCopies lold*
(λlnew* . f (lnew . lnew*)))))

deepCopying : Value → (Value → Computation)→ Computation
=λvf . matching v

. (MProd 7→ Value lold*)
[] (allocatingCopies lold* deepCopying (λlnew* . f (MProd 7→ Value lnew*)))

. else f v
endmatching

E [[(call E1 E2)]] =λe . with-procedure-comp (E [[E1]] e)
(λp . with-value (E [[E2]] e)

(λv . (deepCopying v val-to-comp)))

Figure 10.9: Call-by-value-copy (CBVC) semantics for passing mutable tuples.

The CBVC strategy for passing mutable products is used for passing arrays
and records by value in Pascal and for passing structures by value in C. On the
other hand, arrays in C are passed via CBVS. Passing arrays in C via CBVC can
be achieved by wrapping an array in a one-component struct! The inconsistency
between the mechanisms for passing named vs. positional products in C is
perplexing from the viewpoint of semantics but was apparently motivated by
pragmatic issues.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 441

The kind of data copying performed in Figure 10.9 is known as a deep copy
because the copying process is recursively applied at all levels of the data. An
alternative strategy, known as a shallow copy, is to copy only the first level of
a data structure and share the contents of the other levels. Although it would
be possible to use shallow copying in the call-by-copy strategy, we do not know
of a real programming language that uses this strategy.

In languages supporting the call-by-reference (CBR) mechanism presented in
Section 8.3.3.4, mutable products introduce new ways to alias locations between
the caller and callee. When an mget construct is used in a parameter position, its
L-value (the location of the product slot, as determined by LV in Figure 10.10)
is passed rather than its R-value (the contents of the L-value). In the following
CBR example, the L-values of (mget 2 u) and r denote the same location:

(let ((u (mprod 7 8)))

(let ((g (lambda (p r)

(begin

(set! r (+ 20 r))

(mset! 2 p (+ 100 (mget 2 p)))))))

(begin (g u (mget 2 u))

(mget 2 u)))) −−−−−−−−−−−CBR FLAVAR!→ 128

In contrast, under a CBV interpretation, changes to r would not affect u and p.
The above expression would evaluate to 108 under CBVS and 8 under CBVC.

LV [[(mget N Emp)]]
=λe . (with-value (E [[Emp]] e)

(λvmp . matching vmp
. (MProd 7→ Value l*) []
if 1 ≤ (N N) and (N N) ≤ (length l*)
then (val-to-comp (Location 7→ Value (N N))l*)
else error-comp
fi

. else error-comp
endmatching))

Figure 10.10: Extension to the CBR FLAVAR! semantics to handle mutable
tuples.

¤ Exercise 10.6 Write a single expression that returns the symbol sharing under

CBVS, deep under CBVC with deep copying, and shallow under CBVC with shallow

copying. Your expression should only use symbols, mutable tuples, and procedures. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

442 CHAPTER 10. DATA

¤ Exercise 10.7

a. Modify the CBVC denotational semantics in Figure 10.9 to use shallow rather
than deep copying.

b. Write three different versions of an operational semantics for FL! with mutable
tuples that differ in their parameter passing mechanism: (1) CBVS (2) CBVC
with deep copying (3) CBVC with shallow copying. ¢

10.2 Sums

Sums are entities that can be one of several different kinds of values. They are
data structures that correspond to the sum domains that we have been using in
our mathematical metalanguage (see Section A.3.3) to represent mathematical
values that can come from several different component domains. Intuitively, a
sum value augments an underlying component value with a tag that indicates
which kind of value it is. Whenever a sum value is processed, this tag is dy-
namically examined to determine how to handle the underlying value. Sums
are used in situations where programmers use the terms “either” or “one of” to
informally describe a data structure. For example:

• A linked list is either a list node (with head and tail components) or the
empty list.

• A graphics system might support shapes that are either circles, rectangles,
or triangles.

• In a banking system, transactions might be one of deposit, withdrawal,
transfer, or balance query.

Sums are known by such names as tagged sums, unions, tagged unions, discrim-
inated unions, oneofs, and variants.

Just as sum domains are duals of product domains, sum data structures
are dual to product data structures: for any given product structure, there is
a dual sum data structure. Sums therefore vary along the same dimensions as
products: positional vs. named, immutable vs. mutable, and dynamically typed
vs. statically typed. Our discussion will focus on the first of these dimensions:
positional sums, in which the different cases are distinguished only by their
position in the sum specification (i.e., their tags are natural numbers) vs. named
sums, in which the different cases are distinguished by specified names.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.2. SUMS 443

10.2.1 Positional Sums

Positional product data structures use integer indices to distinguish product
components. Similarly, positional sums use integer tags to distinguish sum-
mands. To add positional sums to FL, we extend the syntax of expressions as
follows:

E ::= ...

| (inj N E) [Sum Introduction]
| (sumcase Edisc Ival Ebody*) [Sum Elimination]

(inj N E) creates a sum value whose tag is the integer N, where N is a man-
ifest constant and not a computed value. Sum values are taken apart with
(sumcase Edisc Ival Ebody*), which evaluates the discriminant Edisc to what
should be a sum value, examines the numeric tag N of this sum value, and eval-
uates the Nth body expression with Ival bound to the untagged sum component.

Figure 10.11 shows a simple bank transaction system implemented with po-
sitional sums. An account is a pair of a savings balance and a checking balance.
There are four kinds of transactions distinguished by an integer tag:

1. Deposit of an integer amount to savings.

2. Withdrawal of an integer amount from checking.

3. Transfer of an integer amount from savings to checking.

4. Transfer of an integer amount from checking to savings.

Given a transaction and account, the process procedure returns an updated
account that reflects the actions of the translation.

The operational semantics for call-by-value sums is presented in Figure 10.12.
Stuck states arise when any of the subexpressions get stuck, when the discrimi-
nant does not evaluate to a sum value, or when the integer tag does not corre-
spond to an appropriate body (e.g., the integer is negative, zero, or larger than
the number of bodies supplied). Call-by-name sums are similar (Figure 10.12),
except that no attempt is made to evaluate the expression being injected.

The denotational semantics for call-by-value sums is presented in Figure 10.14.
It might seem odd that the domain Sum of sum values is modeled via a product
that pairs an integer tag and the injected value. But such a product is isomor-
phic to an infinite sum of injected values, so it does indeed represent a sum.
The clause for sumcase calculates the denotations of all body expressions and
chooses one based on the integer tag of the sum value. However, as with the
denotational semantics of if expressions, only the chosen body is “evaluated.”
The denotational semantics of call-by-name sums is left as an exercise.

Positional sums are awkward to use in practice for several reasons:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

444 CHAPTER 10. DATA

(define (make-account checking savings) (pair checking savings))

(define (checking account) (left account))

(define (savings account) (right account))

(define (process transaction account)

(sumcase transaction amount

; Deposit to savings

(make-account (checking account)

(+ (savings account) amount))

; Withdrawal from checking

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(savings account))

(error ’insufficient-checking))

; Transfer from savings to checking

(if (<= amount (savings account))

(make-account (+ (checking account) amount)

(- (savings account) amount))

(error ’insufficient-savings))

; Transfer from checking to savings

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(+ (savings account) amount))

(error ’insufficient-checking))

))

(process (inj 1 10) (make-account 25 40)) −−−FL→ 〈25 , 50 〉
(process (inj 2 10) (make-account 25 40)) −−−FL→ 〈15 , 40 〉
(process (inj 3 10) (make-account 25 40)) −−−FL→ 〈35 , 30 〉
(process (inj 4 10) (make-account 25 40)) −−−FL→ 〈15 , 50 〉

Figure 10.11: Bank transactions with positional sums.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.2. SUMS 445

V ∈ ValueExp = . . . ∪ {(inj N V)}

E⇒E ′

(inj N E)⇒ (inj N E ′)
[inj-progress]

E⇒E ′

(sumcase E I E1 ...)⇒ (sumcase E ′ I E1 ...)
[sumcase-progress]

(sumcase (inj N V) I E1 ... Em)⇒ [V/I]EN ,
where 1 ≤ N ≤ m

[sumcase]

Figure 10.12: CBV operational semantics for positional sums

V ∈ ValueExp = . . . ∪ {(inj N E)}

E⇒E ′

(sumcase E I E1 ...)⇒ (sumcase E ′ I E1 ...)
[sumcase-progress]

(sumcase (inj N Eval) I E1 ... Em)⇒ [Eval/I]EN ,
where 1 ≤ N ≤ m

[sumcase]

Figure 10.13: CBN operational semantics for positional sums

su ∈ Sum = Int ×Value
v ∈ Value = . . . + Sum

E [[(inj N E)]] =λe . with-value (E [[E]] e)
(λv . (val-to-comp (Sum 7→ Value 〈(N N), v〉)))

E [[(sumcase Edisc Ival E*)]] =
λe . with-value (E [[Edisc]] e)

(λvdisc . matching vdisc
. (Sum 7→ Value 〈i, v〉) [] (nthComputation i (E*[[E*]] [Ival : v]e))
. else error-comp
endmatching)

Figure 10.14: CBV denotational semantics for sums

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

446 CHAPTER 10. DATA

1. The programmer must remember the arbitrary association between each
integer tag and its intended meaning;

2. In a sumcase expression, the body expressions must be carefully ordered
to have the correct (implicit) index;

3. Since all sum values use integer tags, a sum value intended for one purpose
may accidentally be used for another without any error being reported.

¤ Exercise 10.8 In call-by-name positional sums, the expression (inj N E) does not

tag the value denoted by E but rather tags the computation denoted by E. Modify the

denotational semantics for positional sums in Figure 10.14 to be call-by-name rather

than call-by-value. ¢

¤ Exercise 10.9 The simplest kind of positional product is a pair, which glues together
two component values. Dually, the simplest kind of positional sum chooses between two
component values. Such a sum value is called an an either. It has two two possible
tags: left or right.

Here we consider an extension to FL that supports eithers rather than general
positional sums. Suppose we extend the syntax of FL as follows:

E ::= ...

| (inleft E) [Either Left Injection]
| (inright E) [Either Right Injection]
| (ecase Edisc Ival Eleft Eright) [Either Case Analysis]

(inleft E) creates an either whose tag is left and whose value is the value of E.

(inright E) creates an either with whose tag is right and whose value is the
value of E.

(ecase Edisc Ival Eleft Eright) examines the discriminant value represented by
Edisc , binds the untagged value to the identifier Ival , and then evaluates Eleft , if
the tag is left, or Eright , if the tag is right. It is an error if Edisc is not an either.

For example, we can use eithers in an extended version of FL to encode whether
a geometric shape is a square (in which case the value of the either is the length of a
side) or a circle (in which case the value of the either is the radius). We can then write
a procedure for computing the area of a shape:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.2. SUMS 447

(define (square side) (inleft side))

(define (circle radius) (inright radius))

(define pi 3.14159)

(define (area shape)

(ecase shape v

(f* v v) ; square case (f* multiplies floating point numbers)

(f* pi (f* v v)) ; circle case

))

(area (square 10.0)) −−−FL→ 100 .0

(area (circle 10.0)) −−−FL→ 314 .159

a. Write an operational semantics for CBV eithers. What causes stuck states in
your semantics?

b. Write a denotational semantics for CBV eithers. You may find it convenient to
have a new domain for eithers as well as new Left and Right domains.

c. Write an operational semantics for CBN eithers. What causes stuck states in
your semantics?

d. Write a denotational semantics for CBN eithers. You may find it convenient to
have a new domain for eithers as well as new Left and Right domains. ¢

10.2.2 Named Sums

Named sums address the problems of positional sums by using programmer-
supplied names to distinguish the various cases in a sum value. Named sums
involve two new constructs:

E ::= ...

| (one Itag E) [Oneof Intro]
| (tagcase Edisc Ival (Itag Ebody)* [(else Eelse)]) [Oneof Elim]

A named sum value, which we shall call a oneof, is created by the evalua-
tion of the expression (one Itag E), which conceptually pairs the tag Itag with
the component value given by E. Oneofs are decomposed via the expression
(tagcase Edisc Ival (Itag Ebody)*), which dispatches to a clause based on the
tag of the oneof value of the discriminant expression Edisc . The value of the
tagcase is the result of evaluating the body of the clause with the matching tag
in a scope where Ival is bound to the untagged oneof component. A tagcase

expression may have an optional else clause whose body Eelse is evaluated and
returned when no clause tag matches the discriminant tag. It is an error if Edisc

does not evaluate to a oneof or if there is no clause in an else-less tagcase

whose tag matches the discriminant tag.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

448 CHAPTER 10. DATA

Figure 10.15 shows how the bank transaction example can be expressed with
named sums. Using symbolic tags instead of integers makes such programs easier
to read and write; the tags serve as comments and allow the tagcase clauses to
be written in any order. Although it is still possible for the same symbolic tag to
be used for conceptually different oneofs, the likelihood that a oneof will be used
in a incorrect context without generating a dynamic error is greatly reduced.

(define (process transaction account)

(tagcase transaction amount

(savings-deposit

(make-account (checking account)

(+ (savings account) amount)))

(checking-withdrawal

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(savings account))

(error ’insufficient-checking)))

(savings->checking

(if (<= amount (savings account))

(make-account (+ (checking account) amount)

(- (savings account) amount))

(error ’insufficient-savings)))

(checking->savings

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(+ (savings account) amount))

(error ’insufficient-checking)))

))

(process (one savings-deposit 10) (make-account 25 40)) −−−FL→ 〈25 , 50 〉
(process (one checking-withdrawal 10) (make-account 25 40)) −−−FL→ 〈15 , 40 〉
(process (one savings->checking 10) (make-account 25 40)) −−−FL→ 〈35 , 30 〉
(process (one checking->savings 10) (make-account 25 40)) −−−FL→ 〈15 , 50 〉

Figure 10.15: Bank transactions with named sums.

Oneofs have semantics similar to that for positional sums, except that iden-
tifiers are used as tags rather than integers. Figure 10.16 gives the call-by-value
operational semantics for oneofs. As before, stuck states arise when a value that
is not a oneof appears as the discriminant of a tagcase or when a tagcase does
not specify a clause appropriate for the dynamic tag of the oneof value.

The denotational semantics for call-by-value oneofs (Figures 10.17–10.18)
shows their duality with records quite clearly. Records use an environment to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 449

V ∈ ValueExp = . . . ∪ {(one I V)}

E⇒E ′

(one I E)⇒ (one I E ′)
[one-progress]

E⇒E ′

(tagcase E I ...)⇒ (tagcase E ′ I ...)
[tagcase-progress]

(tagcase (one Ii V) I (I1 E1) ... (In En))⇒ [V/I]Ei [tagcase]

(tagcase (one Itag V) I
(I1 E1) ... (In En) (else Eelse)) ⇒ [V/I]Eelse ,

where Itag 6∈ {I1 , . . . In}
[tagcase-else]

Figure 10.16: CBV operational semantics for named sums

glue together named values, one of which is later chosen at each select site.
Dually, one creates a sum that is later processed in the context of a tagcase that
uses an environment to glue together named clause bodies. In a continuation-
based semantics, the environment associated with the tagcasewould map names
to continuations, suggesting a duality between values and continuations.

¤ Exercise 10.10

a. Modify the operational semantics for named sums in Figure 10.16 to be call-by-
name rather than call-by-value.

b. Modify the denotational semantics for named sums in Figure 10.18 to be call-by-
name rather than call-by-value.

c. Write a denotational semantics for call-by-name and call-by-value named sums in
a continuation-based semantics. ¢

10.3 Sum-of-Products

In practice, sum and product data are often used together in idiomatic ways.
Many common data structures can be viewed as a tree constructed from different
kinds of nodes, each of which has multiple components. Here are some examples:

• A shape in a simple geometry system is either:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

450 CHAPTER 10. DATA

t ∈ Tag-environment = Identifier→ Denotable → Computation

empty-tenv : Tag − environment =λIδ . error-comp

extend-tenv : Environment → Identifier→ Identifier→ Exp→ Tag − environment
→ Tag − environment

= λe Ival I E t . λI ′ δ . if (same-identifier? I ′ I) then (E [[E]] [Ival : δ]e) else (t I ′)

extend-tenv* : Environment → Identifier→ Identifier*→ Exp*→ Tag − environment
→ Tag − environment

=λe Ival I* E* t . matching 〈I*,E*〉
. 〈[]Identifier, []Exp〉 [] t
. 〈I . Irest*,E . Erest*〉
[] (extend-tenv* e Ival Irest Erest*

(extend-tenv e Ival Irest Erest t))
. else empty-tenv
endmatching

Figure 10.17: Auxiliary domains and functions for denotational semantics of
named sums (oneofs)

– a circle with a radius;

– a rectangle with a width and a height;

– a triangle with three side lengths.

• A list of integers is either:

– an empty list;

– a list node with an integer head and an integer list tail.

• An ELM expression is either:

– an integer literal;

– an argument expression with an index;

– an arithmetic operation with an operator symbol, a left operand ex-
pression, and a right operand expression.

In each of the above examples, the variety of possible nodes for a data structure
can be modeled as a sum, and each individual kind of node can be modeled as a
product. For this reason, such data structures are known as sum-of-product
structures.

As a simple example, consider the following list of geometric shapes:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 451

su ∈ Sum = Identifier×Value
v ∈ Value = . . . + Sum

E [[(one I E)]] =λe . with-value (E [[E]] e)
(λv . (val-to-comp (Sum 7→ Value 〈I, v〉)))

E [[(tagcase Edisc Ival (I1 E1) ... (In En))]] =
λe . with-value (E [[Edisc]] e)

(λvdisc . matching vdisc
. (Sum 7→ Value 〈Itag , v〉)
[] ((extend-tenv* e Ival [I1 . . . In] [E1 . . .En] empty-tenv) Itag v)

. else error-comp
endmatching)

E [[(tagcase Edisc Ival (I1 E1) ... (In En) (else Eelse))]] =
λe . with-value (E [[Edisc]] e)

let elsetenv be (λIδ . (E [[Eelse]] [Ival : δ]e)) in
(λvdisc . matching vdisc

. (Sum 7→ Value 〈Itag , v〉)
[] ((extend-tenv* e Ival [I1 . . . In] [E1 . . .En] elsetenv) Itag v)

. else error-comp
endmatching)

letend

Figure 10.18: CBV denotational semantics for oneofs

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

452 CHAPTER 10. DATA

(list (one rectangle (record (width 3) (height 4)))

(one triangle (record (side1 5) (side2 6) (side3 7)))

(one square (record (side 2))))

In this encoding, oneof tags are used to distinguish squares, rectangles, and
triangles. The two sides of a rectangle (width and height) and three sides of
a triangle (side1, side2, and side3) are named as fields in a record. Even
though a square has only a single side length (side), it too is encapsulated in
a record for uniformity. Of course, we could have used positional rather than
named products, in which case the meaning of each position would need to be
specified.

Manipulating a sum-of-product datum typically involves performing a case
analysis on its tag and extracting the components of the associated record. For
example, here is a procedure that calculates the perimeter of a shape:

(define (perim shape)

(tagcase shape r

(square (* 4 (select side r)))

(rectangle (* 2 (+ (select width r) (select height r))))

(triangle (+ (select side1 r)

(+ (select side2 r) (select side3 r))))))

As another example, consider the sum-of-product encoding of the ELM tem-
perature conversion expression (/ (* 5 (- (arg 1) 32)) 9) shown in Fig-
ure 10.19. In this encoding, oneof tags distinguish arithmetic operations (arithop),
integer literals (lit), and argument references (arg). The three components of
an arithmetic operation — the operation (op) (a symbol) and two operands
(rand1 and rand2) are represented as a record. As with square shapes, the
single number component of a literal expression and index component of an
argument expression are boxed up into records for uniformity.

To handle this representation for ELM expressions, the elm-eval procedure
from Chapter 6 would be rewritten:

(define (elm-eval exp args)

(tagcase exp r

(lit rcd (select num r))

(arg rcd (arg-get (select index r) args))

(arithop rcd ((primop->proc (select op r))

(elm-eval (select rand1 r) args)

(elm-eval (select rand2 r) args)))))

The rigidity of the above sum-of-product encodings is sometimes relaxed in
practice. For instance, the case where a product has a single component can
be optimized by replacing the product by the component value. If a product

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 453

(one arithop

(record

(op ’/)

(rand1 (one arithop

(record

(op ’*)

(rand1 (one lit (record (num 5))))

(rand2 (one arithop

(record

(op ’-)

(rand1 (one arg (record (index 1))))

(rand2 (one lit (record (num 32))))))))))

(rand2 (one lit (record (num 9))))))

Figure 10.19: An ELM expression for converting temperatures from degrees
Fahrenheit to degrees Celsius.

has zero components, it can be replaced by the unit value. In several popular
data structures (including linked lists and binary trees), there are only two
summands, one of which has no components. This situation is often handled
by representing the non-trivial summand (e.g., list or tree node) directly as a
product and representing the nullary summand (e.g., empty list or tree leaf) as
a distinguished null pointer value. Conceptually, there is still a sum in this
case: a value is either a null pointer or a node. But in terms of pragmatics,
it is not necessary to associate a tag with a node because it is assumed that
there is a cheap test that determines whether or not a node is the null pointer.
For example, some runtime systems represent a null pointer with a value that
contains all zeros to take advantage of efficient machine instructions for testing
for zero.

Programming languages differ widely in terms of their support for sum-of-
product data. For example:

• The ML and Haskell programming languages have powerful facilities
for declaring and manipulating sum-of-product data. We shall see similar
facilities in the following sections.

• In object-oriented languages, such as Java, SmallTalk, and C++, the
dynamic dispatch performed when invoking a method on an object effec-
tively performs a case analysis on the class (think tag) of the object, whose
instance variables can be viewed as a record.

• In Lisp dialects, it is common to represent a sum-of-product datum as a list

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

454 CHAPTER 10. DATA

s-expression whose first element is a symbolic tag indicating the summand
and whose remaining elements are the components of the product. For
instance, the Fahrenheit-to-Centigrade conversion expression given above
can be represented as the following Lisp s-expression:

(arithop /

(arithop *

(lit 5)

(arithop - (arg 1) (lit 32)))

(lit 9))

This, in turn, can be optimized without ambiguity into an s-expression
identical to the ELM concrete s-expression syntax:

(/ (* 5

(- (arg 1)

32))

9)

Indeed, syntax trees are without a doubt the most important sum-of-
product data structure used in the study of programming languages. The
ease with which they can be represented as s-expressions is the reason we
have adopted s-expression grammars for the toy languages in this book.

• In document description languages like HTML and XML, summand tags
appear in begin/end markups and product components are encoded both in
the association lists of markups as well as in components nested within the
begin/end markups. For instance, Figure 10.20 shows how the Fahrenheit-
to-Centigrade expression might be encoded in XML. The reader is left to
ponder why XML, which at one level is a verbose encoding of s-expressions,
is a far more popular standard for expressing structured data than s-
expressions. In fact, the Water language [Plu02] goes the distance, using
XML as a representation for s-expressions in a language with Scheme-like
semantics.

• In the C programming language, programmers must “roll their own” sum-
of-product data structures using union and struct. For instance, Fig-
ure 10.21 shows how the geometric shape example from above can be
expressed in C. In C, union is used to declare storage that can con-
tain one of several different kinds of values. However, there is no built-in
support for tagging such values. Instead, an explicit struct is typically
used to associate a tag (shapetag in the example) with the value (sum in
the example). Values with multiple components (e.g., rect and tri) are

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 455

<arithop>

<op name="/"/>

<rand1>

<arithop>

<op name="*"/>

<rand1>

<lit num=5/>

</rand1>

<rand2>

<arithop>

<op name="-"/>

<rand1>

<arg index=1/>

</rand1>

<rand2>

<lit num=32/>

</rand2>

</arithop>

</rand2>

</arithop>

</rand1>

<rand2>

<lit num=9/>

</rand2>

</arithop>

Figure 10.20: The ELM Fahrenheit-to-Centigrade expression in XML notation.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

456 CHAPTER 10. DATA

themselves encoded via additional struct declarations.

As is apparent from the example in Figure 10.21, encoding sum-of-product
data in C is awkward. Nesting struct declarations to provide explicit tags is
cumbersome and leads to unwieldy name paths like s.sum.rect.width. But
much worse is the fact that the language enforces no connection between the tag
and the sum. For instance, consider the following sequence of C statements:

shape s4;

s4.tag = square;

s4.sum.rect.width = 8;

s4.sum.rect.height = 9;

printf("The perimeter of s4 is \%d\n", perim(s4));

Although conceptually it makes no sense to manipulate a rectangle’s components
in a square, in many C implementations, the above code compiles and runs
without error, yielding 32 as the perimeter of s4. Why? Because the storage
set aside for a union type is that required for the largest summand (in this
case, the three integers of a triangle) and s4.sum.side, s4.sum.rect.width,
and s4.sum.tri.side1 are all just synonyms that reference the first slot of this
storage.

This is a classic example of a type loophole in C. Pascal’s variant records,
which encode sum-of-product datatypes in a way reminiscent of C, exhibit a sim-
ilar type loophole. The same sort of undesirable behavior can be exhibited with
the Lisp s-expression (square 8 9), for which a perimeter procedure would re-
turn 32 if the means of extracting the side of a square was returning the second
element of an s-expression list. But the difference between Lisp and C/Pascal
on this score is that C and Pascal, unlike Lisp, sport a static type system that
might be expected to catch such type-related bugs at compile time. We will
have much more to say about static typing in Chapter ??.

10.4 Data Declarations

Programming with “raw” sums and products is cumbersome and error-prone.
Here we study a high-level data declaration facility that simplifies the creation
and manipulation of sum-of-product data. We extend our FL family of languages
with a define-data declaration that specifies a new kind of sum-of-product
data. We introduce this construct via a declaration for geometric shapes:

(define-data shape

(square side)

(rectangle width height)

(triangle side1 side2 side3))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 457

typedef enum {square, rectangle, triangle} shapetag;

typedef struct {

shapetag tag;

union {

int side;

struct {int width; int height;} rect;

struct {int side1; int side2; int side3;} tri;

} sum;

} shape;

int perim (shape s) {

switch (s.tag) {

case square:

return 4*(s.sum.side);

case rectangle:

return 2*(s.sum.rect.width + s.sum.rect.height);

case triangle:

return (s.sum.tri.side1 + s.sum.tri.side2 + s.sum.tri.side3);

}

}

int main () {

shape s1, s2, s3;

s1.tag = square;

s1.sum.side = 2;

s2.tag = rectangle;

s2.sum.rect.width = 3;

s2.sum.rect.height = 4;

s3.tag = triangle;

s3.sum.tri.side1 = 5;

s3.sum.tri.side2 = 6;

s3.sum.tri.side3 = 7;

printf("The perimeter of s1 is \bs\%d\bs{}n", perim(s1));

printf("The perimeter of s2 is \bs\%d\bs{}n", perim(s2));

printf("The perimeter of s3 is \bs\%d\bs{}n", perim(s3));

}

Figure 10.21: The shape example encoded using struct and union in C.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

458 CHAPTER 10. DATA

This declaration specifies that a shape is either a square with one component, a
rectangle with two components, or a triangle with three components. Each of the
names square, rectangle, and triangle is a value constructor procedure
(or just constructor for short) that takes the specified number of components
and returns a sum-of-product datum with those components. For example, the
list of shapes

(list (square 2) (rectangle 3 4) (triangle 7 8 9))

is equivalent to the list

(list (one square (product 2)))

(one rectangle (product 3 4))

(one triangle (product 5 6 7))

In contrast with the previous section, the sum-of-product data created by define-data
constructors uses positional rather than named products.

In the example, the data name shape and the component names side, width,
height, etc. are just comments. Only the number of components specified for
a constructor is relevant. For instance, we could emphasize that all components
are integers by writing

(define-data shape

(square int)

(rectangle int int)

(triangle int int int)),

or we could use nonsense words to specify an equivalent declaration, as in

(define-data frob

(square foo)

(rectangle bar baz)

(triangle quux quuux quuuux)).

The reason for requiring such comments is that the comment positions will
assume a non-trivial meaning when we study a typed version of define-data
in Chapter 15.

For every constructor procedure C that takes n arguments, define-data also
declares an associated deconstructor procedure that takes three arguments:

1. the value v to be deconstructed;

2. a success continuation, an n-argument procedure that is applied to the
n components of v in the case where v is constructed by C;

3. a failure continuation, a nullary procedure that is invoked in the case
where v is not constructed by C.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 459

We assume a convention in which the deconstructor has a name that is the
name of the constructor followed by the tilde character, ~, which is pronounced
“twiddle.” For instance, the square~, rectangle~, and triangle~ deconstruc-
tors introduced by the shape declaration can be used to calculate the perimeter
of a shape:

(define (perim s)

(square~ s (lambda (s) (* 4 s))

(lambda ()

(rectangle~ s (lambda (w h) (* 2 (+ w h)))

(lambda ()

(triangle~ s (lambda (s1 s2 s3) (+ s1 s2 s3))

(lambda ()

(error not-a-shape))))))))

Deconstructors are somewhat awkward to use directly. In the next section we
will study a pattern-matching facility based on deconstructors that significantly
simplifies the deconstruction of sum-of-product data.

As another example of constructors and deconstructors, consider the elm-exp
declaration in Figure 10.22. The lit, arg, and arithop constructors intro-
duced by this declaration are illustrated in the Fahrenheit-to-Centigrade ex-
pression f2c, and the deconstructors lit~, arg~, and arithop~ are used to
define elm-eval.

We can even use define-data to define list constructors and deconstructors
(Figure 10.23), replacing the desugaring given in Chapter 6.

A formal definition of define-data is presented in Figure 10.24. The syntax
of FL programs is extended to include define-data clauses along with the
usual definitions. The meaning of a define-data declaration can be explained
by desugaring the declaration into a sequence of procedure definitions via Ddef ,
which has signature D → D*. The resulting sequence of definitions is spliced
into the program construct, and all program definitions are further desugared
as shown in Chapter 6. Each summand clause (Itag I1 . . . In) desugars into 2
definitions:

• An n-argument constructor procedure named Itag that constructs a oneof
with tag Itag of a product whose components are I1 . . .In .

• A three-argument deconstructor procedure that applies the second argu-
ment (an n-argument success continuation) to the n components of the
product if the oneof has the right tag and otherwise invokes the third ar-
gument (a nullary failure continuation). The name of this deconstructor
is created from the name Itag by adding ~ as a suffix. We shall use the no-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

460 CHAPTER 10. DATA

(define-data elm-exp

(lit num)

(arg index)

(arithop op rand1 rand2))

(define f2c (arithop ’/

(arithop ’*

(lit 5)

(arithop ’-

(arg 1)

(lit 32)))

(lit 9)))

(define (elm-eval exp args)

(lit~ exp (lambda (n) n)

(lambda ()

(arg~ exp (lambda (i) (get-arg i args))

(lambda ()

(arithop~ exp

(lambda (op r1 r2)

((primop->proc op) (elm-eval r1 args) (elm-eval r2 args)))

(lambda () (error not-an-elm-exp))))))))

Figure 10.22: ELM examples.

(define-data list

(null)

(cons head tail))

(define (null? xs)

(null~ xs (lambda () true) (lambda () false)))

(define (car xs)

(cons~ xs (lambda (hd tl) hd)

(lambda () (error car-of-nonlist-or-empty-list))))

(define (cdr xs)

(cons~ xs (lambda (hd tl) tl)

(lambda () (error cdr-of-nonlist-or-empty-list))))

Figure 10.23: Defining lists via define-data.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 461

tation I1 ./I2 to concatenate identifiers. For example, square./~ denotes
the identifier square~.

For example, Figure 10.25 shows the constructors and deconstructors introduced
by the shape declaration.

Syntax

P ::= (program Ddefinitions* Ebody) [Program]

D ::= (define Iname Evalue) [Definition]
| (define-data Idata (Itag I*)*)

Sugar

If D = (define-data Idata (Itag1 I1 ,1 . . . I1 ,k1) ... (Itagn In,1 . . . In,kn)),

Ddef [[D]] =Dcl[[(Itag1 I1 ,1 . . . I1 ,k1)]] @ · · · @ Dcl[[(Itagn In,1 . . . I1 ,kn)]]

and Dcl[[(Itagi Ii,1 ... Ii,ki)]] =

Constructor

[(define (Itagi x1...x./ki)
(one Itagi
(product x1...x./ki)))] ,

Deconstructor

(define (Itagi./~ val succ fail)

(tagcase val x

(Itagi (succ (proj 1 x)
...

(proj ki x)))

(else (fail))))]

Figure 10.24: Syntax and desugaring of define-data.

¤ Exercise 10.11 Extend the declaration of elm-exp and the definition of elm-eval

to handle the full EL language. ¢

¤ Exercise 10.12 It is possible to tweak the desugaring of define-data to use more
efficient representations than those given in Figure 10.24.

a. Modify the define-data desugaring to avoid creating products for constructors
that take zero or one argument.

b. Modify the define-data desugaring to represent a sum-of-products datum with
tag Itag and components v1 . . . vn as the heterogeneous sequence

(sequence (symbol Itag) v1 . . . vn)

(This desugaring makes sense for a dynamically typed language but not a stati-
cally typed one.) ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

462 CHAPTER 10. DATA

(define square

(lambda (x1)

(one square (product x1))))

(define square~

(lambda (val succ fail)

(tagcase val x

(square (succ (proj 1 x)))

(else (fail)))))

(define rectangle

(lambda (x1 x2)

(one rectangle (product x1 x2))))

(define rectangle~

(lambda (val succ fail)

(tagcase val x

(rectangle (succ (proj 1 x) (proj 2 x)))

(else (fail)))))

(define triangle

(lambda (x1 x2 x3)

(one triangle (product x1 x2 x3))))

(define triangle~

(lambda (val succ fail)

(tagcase val x

(triangle (succ (proj 1 x) (proj 2 x) (proj 3 x)))

(else (fail)))))

Figure 10.25: Value constructors and deconstructors introduced by the shape

declaration.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 463

¤ Exercise 10.13 SML and Haskell support user-defined datatype declarations.
Below are the geometric shape declarations expressed in SML and Haskell:

SML Haskell
datatype Shape =

Square of int

| Rectangle of int * int

| Triangle of int * int * int

data Shape =

Square Int

| Rectangle Int Int

| Triangle Int Int Int

In SML, passing multiple arguments to a data constructor is modeled by collecting
the arguments into a tuple, as in Triangle(5,6,7), where the tuple (5,6,7) has type
int * int * int. It is a type error to supply the constructor with the wrong number
of arguments, as in Triangle(5,6).

In contrast, Haskell data declarations allow curried constructors that can take
multiple arguments one at a time. For instance, the invocation Triangle 5 6 denotes
a unary function that “expects” the third side of the triangle.

Is FL extended with define-data more like ML or Haskell in this respect? For

example, does (triangle 5 6) denote an error or a unary function? How would you

change the desugaring of define-data to model the other language? ¢

¤ Exercise 10.14 The desugaring for define-data in Figure 10.24 introduces two
procedures (a constructor Itag and a deconstructor Itag./~) for each summand clause
(Itag I1 . . . In). An alternative approach is to introduce n+ 2 procedures:

• An n-argument constructor procedure named Itag .
• A unary predicate named Itag./~ that returns true for a oneof value with tag Itag
and false for any other oneof value. It is an error to apply this predicate to a
value that is not a oneof value.

• n unary selector procedures named I1 . . .In , where Ii extracts the ith component
of a product tagged with Itag . It is an error to apply a selector procedure to a
value that is not a oneof value or a oneof value with a tag that is not Itag .

In this approach, the component names matter, since they are names of selectors, not
just comments. For example, here is the perim procedure in this approach:

(define (perim s)

(cond

((square? s) (* 4 (side s)))

((rectangle? s) (* 2 (+ (width s) (height s))))

((triangle? s) (+ (side1 s) (+ (side2 s) (side3 s))))

))

a. Give a desugaring for define-data that implements the new approach.

b. In your new desugaring, compare the evaluation of the conditional clause

((triangle? s) (+ (side1 s) (+ (side2 s) (side3 s))))

with the following deconstructor application in the original desugaring

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

464 CHAPTER 10. DATA

(triangle~ s (lambda (s1 s2 s3) (+ s1 s2 s3))

(lambda ()

(error not-a-shape)))

Which evaluation is more efficient?

c. One drawback of having define-data desugar into so many procedures is that
it increases the possibility of name conflicts. For instance, the shape declaration
introduces procedures with names like square, rectangle?, and width that very
well might be useful in other contexts. One way to address this problem is for
programmers use more specific names within data declarations, as in:

(define-data shape

(shape-square shape-side)

(shape-rectangle shape-width shape-height)

(shape-triangle shape-side1 shape-side2 shape-side3))

Another approach is to modify the desugaring for define-data to automatically
concatenate the data type name with the name of every constructor, predicate,
and selector procedure. For instance, something like this is done in Common
Lisp’s defstruct facility. Discuss the benefits and drawbacks of these two ways
to address potential name conflicts in a program with data declarations.

d. Yet another way to address name conflicts is to treat constructor, predicate, and
selector applications as special forms that refer to a different namespace than the
usual value namespace. Design an extension to FL that handles datat declarations
based on this idea. Do you think it is a good way to handle name conflicts? ¢

10.5 Pattern Matching

10.5.1 Introduction to Pattern Matching

Deconstructors are a sufficient mechanism for dispatching on and extracting the
components of sum-of-product data, but they are awkward to use in practice. It
is more convenient to manipulate sum-of-product data using a pattern match-
ing facility that simultaneously tests for a summand and names the components
of the associated product when the test succeeds. We have made extensive use of
a form of pattern matching (via the matching construct) in the mathematical
metalanguage of this book. Pattern matching is also an important feature of
some real-world programming languages, such as Prolog, ML and Haskell.

We will study pattern matching in the context of an extension to FL that
includes define-data from the previous section along with a new match con-
struct. First, we will give an informal introduction to match via a series of
examples. Then we will describe the semantics of match in detail by desugaring
it into deconstructor applications.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 465

The match construct has the form (match Edisc (Ppat Ebody)*), where Edisc

is the discriminant and each match clause of the form (Ppat Ebody) has a
pattern Ppat and a body Ebody . A pattern P consists of either an FL literal
value, an identifier, a wild card (“_”), or a tagged list of patterns:

P ::= L [Literal]
| I [Pattern Variable]
| _ [Wild Card]
| (I P*) [Tagged List]

Informally, a match expression is evaluated by first evaluating Edisc into a
value vdisc , then finding the first clause whose pattern Pi matches vdisc , and
finally evaluating the associated body Ei of this clause relative to any bindings
introduced by the successful match of vdisc to Pi . If no clause has a pattern
matching vdisc, the match expression signals an error.

We begin with a few examples of match involving patterns that are just
literals, identifiers, or wild cards. Here is a procedure that converts a boolean
to an integer (and signals an error for a non-boolean input).

(define (bool->int b)

(match b

(#f 0)

(#t 1)))

The negate procedure below returns a symbol that negates the sense of a yes

or no input but returns unknown for any other input. The underscore pattern is
a wildcard pattern that matches any discriminant.

(define (negate s)

(match s

(’yes ’no)

(’no ’yes)

(_ ’unknown)))

The following procedure returns one more than the square of a given number,
except at the inputs −1 and 1, where it returns 0:

(define (squarish n)

(match (* n n)

(1 0)

(x (+ 1 x))))

A pattern variable like x always successfully matches any discriminant value, and
the name may be used to denote this value in the associated body expression.

To introduce tagged list patterns, we consider pattern matching involving
lists of integers. Consider the following two procedures:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

466 CHAPTER 10. DATA

(define (match-ints-1 ints)

(match ints

((cons x (null)) (* x x))

(_ 17)

))

(define (match-ints-2 ints)

(match ints

((cons x (null)) (* x x))

((cons 3 (cons y ns)) (+ y (length ns)))

(_ 17)

))

• The pattern (cons x (null)) matches a list that contains exactly one
element, and names that element x in the scope of the body. So both
procedures return the square of the first (only) element of the list when
given a singleton list.

• The pattern (cons 3 (cons y ns)) matches a list that has at least two
elements, the first of which is the integer 3. In the case of a match, the
body is evaluated in a scope where the second element is named y and the
list of all but the first two elements is named ns. So when this pattern
matches, the second procedure returns the sum of the second element and
the length of the rest of the list.

• The final wild card pattern in both procedures matches any value not
matched by the first two patterns, in which case a 17 is returned.

The following table shows the results returned by these two procedures when
supplied with various integer lists as an argument:

(list) (list 3) (list 3 4) (list 6 8) (list 3 6 8)

match-ints-1 17 9 17 17 17
match-ints-2 17 9 4 17 7

The most important use of match is to perform pattern matching on user-
defined sum-of-product data. For instance, here is a succinct version of the
perimeter procedure based on pattern matching:

(define (perim shape)

(match shape

((square s) (* 4 s))

((rectangle w h) (* 2 (+ w h)))

((triangle s1 s2 s3) (+ s1 (+ s2 s3)))))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 467

(define (elm-eval exp args)

(match exp

((lit n) n)

((arg i) (get-arg i args))

((arithop op r1 r2)

((primop->proc op) (elm-eval r1 args) (elm-eval r2 args)))))

(define (get-arg index nums)

(match (list index nums)

((list 1 (cons n _)) n)

((list i (cons _ ns)) (get-arg i ns))))

(define (primop->proc sym)

(match sym (’+ +) (’- -) (’* *) (’/ /)))

Figure 10.26: A complete ELM evaluator based on pattern matching.

The pattern (square s) matches a sum-of-product value constructed by the
constructor application (square vside), in which case s names vside in the body
of the match clause. Similarly, the pattern (rectangle w h) matches a value
constructed by (rectangle vwidth vheight), where w names vwidth and h names
vheight . The triangle pattern is handled similarly.

Some other nice illustrations of the conciseness of pattern matching involve
the ELM language. Figure 10.26 presents a complete ELM evaluator based on
pattern matching. The twelve lines of code are easy to understand and analyze.
A compelling use of nested patterns is in the crude algebraic simplifier for ELM
expressions in Figure 10.27. The second match clause in the simp procedure
expresses that literals and argument references are self-evaluating (i.e., they
simplify to themselves). The first clause simplifies an arithop by simplifying
the arguments and then attempting to further simplify the resulting arithop.
simp-arithop handles six special cases. The first four clauses express that zero
is an identity for addition and one is an identity for multiplication. The next two
clauses capture that multiplication by zero yields zero.4 In order to appreciate
the succinctness of pattern matching, the reader is encouraged to re-express the
simp procedure in a version of FL that does not support pattern matching.

All the examples seen so far are “well-typed” in the sense that the discrimi-
nant of the match is “expected” to be a particular type (e.g., a list of integers,
a shape, an ELM expression) and the results of all the clause bodies in a given
match have the same type. But in a dynamically typed language, match is not

4This is not a safe transformation when the other subexpression contains a dynamic error!

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

468 CHAPTER 10. DATA

(define (simp exp)

(match exp

((arithop p r1 r2) (simp-arithop (arithop p (simp r1) (simp r2))))

(x x)))

(define (simp-arithop exp)

(match exp

((arithop ’+ (lit 0) x) x)

((arithop ’+ x (lit 0)) x)

((arithop ’* (lit 1) x) x)

((arithop ’* x (lit 1)) x)

((arithop ’* (lit 0) _) (lit 0))

((arithop ’* _ (lit 0)) (lit 0))

(_ exp)))

Figure 10.27: An algebraic simplifier for ELM expressions.

required to have this behavior, as indicated by the following example:

(define (dynamic x)

(match x

((0 #f)

(#t ’zero)

(’one 17))))

In Chapter ??, we will study a statically typed version of FL in which dynamic

will not be a legal procedure. However, all the other match examples above will
still be legal.

10.5.2 A Desugaring-based Semantics of match

In order to motivate the structure of the desugaring of match, which is rather
complex, we will incrementally develop the desugaring in the context of some
concrete match examples rather than simply presenting the final desugaring. We
begin with the bool->int procedure from the previous subsection:

(define (bool->int b)

(match b

(#f 0)

(#t 1)))

It would be natural to desugar the match in bool->int into a series of if

expressions:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 469

(define (bool->int b)

(if (equal? b #f)

0

(if (equal? b #t)

1

(error no-match))))

The case where b is not a boolean is handled by an explicit error expression
indicating that the value of the discriminant did not match the pattern of any
match clause.

In general, the discriminant of a match will be an arbitrary expression whose
value should be calculated only once. To avoid recalculation of the discriminant,
our match desugaring first names the discriminant (using let) and then performs
a case analysis on the name. As shown in Exercise 10.19, this name can be
eliminated when it is not necessary. For example, in bool->int, the discriminant
is already bound to the variable b. Here is a revised desugaring for bool->int
that names the discriminant:5

(define (bool->int b)

(let ((disc b))

(if (equal? disc #f)

0

(if (equal? disc #t)

1

(error no-match)))))

Whenever a mismatch between a pattern and a value is discovered, the
matching process should stop processing the pattern in the current match clause
and begin processing the pattern in the next match clause. When we study the
desugaring of tagged patterns later, we will see that such a mismatch may be
discovered at many different points in the processing of a given pattern. To avoid
replicating the code that begins processing the pattern in the next match clause,
our desugaring will wrap this code into a failure thunk that may potentially
be invoked from several different points in the desugared code. Here is a version
of the desugaring for bool->int that includes failure thunks named fail1 and
fail2:

5In the examples, all new identifiers introduced by the desugaring are assumed to be fresh
so they do not clash with any program variables.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

470 CHAPTER 10. DATA

(define (bool->int b)

(let ((disc b))

(let ((fail1 (lambda ()

(let ((fail2 (lambda () (error no-match))))

(if (equal? disc #t)

1

(fail2))))))

(if (equal? disc #f)

0

(fail1)))))

In the simple match within bool->int, each failure thunk is invoked exactly
once. But soon we will see examples in which the failure thunk is invoked
multiple times. In the case where the failure thunk is invoked zero or one times,
it is possible for the desugarer to avoid introducing a named failure thunk. We
leave this as an exercise.

The discussion so far leads to a first cut for the match desugaring shown in
Figure 10.28. The desugaring of match is performed by Dmatch. For simplicity,
we assume that all match constructs are first eliminated by Dmatch in a separate
pass over the program before other FL desugarings are performed. It is possible
to merge all desugarings into a single pass, but that would make the description
of the match desugaring more complex.

Dmatch[[(match Edisc (P1 E1) ... (Pn En))]] =
(let ((Idisc Edisc)) ; Idisc fresh

(Dclauses [P1 , . . . ,Pn] [E1 , . . . ,En] Idisc))

Dclauses [] [] Idisc =(error no-match)

Dclauses (P1 . Prest*) (E1 . Erest*) Idisc =
(let ((Ifail (lambda () ; Failure thunk: if P1 doesn’t match, try the other clauses

(Dclauses Prest* Erest* Idisc))))
(Dpat[[P1]] Idisc E1 Ifail))

Dpat[[L]] Idisc Esucc Ifail = (if (equalL Idisc L) Esucc (Ifail))
Dpat[[_]] Idisc Esucc Ifail = To be added
Dpat[[I]] Idisc Esucc Ifail = To be added
Dpat[[(I P1 ... Pn)]] Idisc Esucc Ifail = To be added

Figure 10.28: A first cut of the match desugaring.

Dmatch first introduces the fresh name Idisc for the value of the discrimi-
nant expression Edisc and then processes the match clauses via Dclauses. The

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 471

Dclauses function takes three arguments: (1) a list of clause patterns, (2) a list
of clause body expressions, and (3) the identifier naming the discriminant. The
third argument allows the desugarer to refer to the discriminant by its identifier
when processing the clauses. The Dclauses function uses Dpat to process the first
pattern and body expression in a context where the fresh identifier Ifail names
the failure thunk that processes the rest of the clauses. When no clauses re-
main, the desugarer yields an error expression that will be reached only when
the desugared code for processing the clauses finds no pattern that matches the
discriminant.

The core of the match desugaring is the Dpat function. This takes four ar-
guments: (1) the pattern being matched, (2) the identifier naming the discrim-
inant, (3) the success expression that is evaluated when the pattern matches
the discriminant, and (4) the name of the failure thunk that is invoked when
the pattern does not match the discriminant. A literal pattern is an easy case.
The desugared code first compares the literal and discriminant via the equality
operator equalL . In a dynamically typed language, equalL is just the generic
equality-testing procedure equal?, but when desugaring match in a statically
typed language (as in Section 15.5), the equality operator equalL depends on
the domain of the literal L. If the literal and discriminant are the same, the
success expression is evaluated; otherwise, the failure thunk is invoked, which
will either process the next match clause (if there is one) or signal a no-match

error (if there is no next clause).

The literal case is the only Dpat case that is needed to explain the bool->int
desugaring. The desugarings for the other three types of patterns (wildcards,
identifiers, and tagged lists) are not shown in Figure 10.28 but will be fleshed
out in the following discussion.

We first consider the wildcard pattern, as used in the negate procedure:

(define (negate s)

(match s

(’yes ’no)

(’no ’yes)

(_ ’unknown)))

The wildcard pattern always matches the discriminant, so the desugarer can
simply emit the success expression for this case:

Dpat[[_]] Idisc Esucc Ifail = Esucc

The result of desugaring the match expression within the negate procedure is:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

472 CHAPTER 10. DATA

(define (negate s)

(let ((disc s))

(let ((fail1

(lambda ()

(let ((fail2

(lambda ()

(let ((fail3 (lambda ()

(error no-match))))

’unknown))))

(if (equal? disc ’no) ’yes (fail2))))))

(if (equal? disc ’yes) ’no (fail1)))))

It turns out that fail3 can never be referenced, so the subexpression:

(let ((fail3 (lambda () (error no-match))))

’unknown)

could simply be replaced by ’unknown. This optimization could be performed
by the desugarer itself or by a post-desugaring optimization pass (see Exer-
cise 10.19.)

The case of patterns that are identifiers is similar to the wildcard case, except
that the success expression must be evaluated in an environment where the
identifier name is bound to the value of the discriminant:

Dpat[[I]] Idisc Esucc Ifail = (let ((I Idisc)) Esucc)

As an example, consider the squarish procedure introduced above:

(define (squarish n)

(match (* n n)

(1 0)

(x (+ 1 x))))

After desugaring the match expression within squarish, the procedure becomes:

(define (squarish n)

(let ((disc (* n n)))

(let ((fail1

(lambda ()

(let ((fail2 (lambda () (error no-match))))

(let ((x disc))

(+ x 1))))))

(if (equal? disc 1)

0

(fail1)))))

As in the negate example, the creation of the innermost failure thunk can be
eliminated by an optimization (see Exercise 10.19). Note that the binding of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 473

the discriminant to an identifier is significant here: (* n n) would otherwise be
evaluated twice. If the discriminant expression performed any side effects, this
would be a semantic issue as well as an efficiency concern.

The last case for Dpat is a tagged list pattern of the form (I P1 ... Pn).
Recall that I in this case is some sort of constructor procedure, such as cons or
triangle in the pattern matching examples. Handling this case is tricky because
it requires decomposing a constructed value into parts and recursively matching
the subpatterns P1 . . . Pn against these parts. It turns out that deconstructor
procedures are an excellent way to deal with tagged list patterns:

Dpat[[(I P1 ... Pn)]] Idisc Esucc Ifail =
(I./~ Idisc

(lambda (I1 ...In) ; Fresh identifiers for components.
; Match the component parts of the constructed value.
(Dpats [P1 , . . . ,Pn] [I1 , . . . , In] Esucc Ifail))

Ifail)

Dpats [] [] Esucc Ifail = Esucc
Dpats (P1 . Prest*) (I1 . Irest*) Esucc Ifail =
Dpat[[P1]] I1 (Dpats Prest* Irest* Esucc Ifail) Ifail

The Dpat function processes a tagged list pattern (I P1 ... Pn) by emitting
code that invokes the deconstructor associated with I on the discriminant value
denoted by Idisc, a success expression (call it Epats) constructed by Dpats, and
the current failure thunk, denoted by Ifail . The Epats expression is constructed
by recursively matching the patterns P1 . . .Pn against the components denoted
by I1 . . . In relative to the initial success expression Esucc and the failure thunk
Ifail . Observe that Ifail is the same for all invocations of Dpat and Dpats in
the processing of a single match clause, and that this Ifail denotes the failure
thunk that processes the rest of the match clauses. This means that should
there be any mismatch between the patterns and component values when Epats

is evaluated at run-time, Ifail will be invoked, terminating the attempt to match
the current match clause against the discriminant, and starting to match the
next match clause against the discriminant. On the other hand, if no mismatch
is found when Epats is evaluated, then the initial success expression Esucc will be
evaluated in a context where all pattern variables are bound to the appropriate
component values.

As concrete examples of desugaring tagged list patterns, we will study the
desugarings of match within the match-ints-1, and match-ints-2 procedures
presented earlier. Recall that match-ints-1 was defined as follows:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

474 CHAPTER 10. DATA

(define (match-ints-1 ints)

(match ints

((cons x (null)) (* x x))

(_ 17)

))

Here is a version of match-ints-1 in which the match expression has been
desugared:

(define (match-ints-1 ints)

(let ((disc ints))

(let ((fail1 (lambda ()

(let ((fail2 (lambda ()

(error no-match))))

17))))

(cons~ disc

(lambda (v1 v2)

(let ((x v1))

(null~ v2

(lambda () (* x x))

fail1)))

fail1))))

If the value denoted by ints and disc is a singleton list, then the cons~ and
null~ deconstructors will both succeed, and (* x x) will be evaluated in an
environment where x is bound to the single element (denoted by x and v1). If
the discriminant is not a singleton list, then one of cons~ or null~ will invoke the
failure continuation fail1, which returns the 17 specified in the second clause.

The code generated by the desugarer for match-ints-1 is inefficient in many
respects. By making the desugarer cleverer and/or transforming the result of
the desugarer by a simple optimizer, it is possible to generate the following more
compact and efficient code:

(define (match-ints-1 ints)

(let ((fail1 (lambda () 17)))

(cons~ ints

(lambda (v1 v2)

(null~ v2

(lambda () (* v1 v1))

fail1))

fail1)))

As a second example of desugaring tagged list patterns, reconsider match-ints-2:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 475

(define (match-ints-2 ints)

(match ints

((cons x (null)) (* x x))

((cons 3 (cons y ns)) (+ y (length ns)))

(_ 17)

))

The match desugaring functions yield the desugared definition in Figure 10.29.
Everything is the same as the desugaring for match-ints-1 except that the
failure thunk fail1 now corresponds to matching the second and third clauses
of the match within match-ints-2 and the failure thunk fail2 now corresponds
to matching the third clause. Note how the desugaring guarantees that the
expression (+ y (length ns)) is evaluated in an environment that contains
correct bindings for the two names y and ns. Also observe that the second
clause pattern (cons 3 (cons y ns)) can fail to match the discriminant for
three distinct reasons, all of which cause the invocation of the failure thunk
fail2:

1. the discriminant disc is not a pair;

2. the discriminant disc is a pair whose first element v3 is not 3;

3. the discriminant disc is a pair whose first element v3 is 3 but whose second
element v4 is not a pair.

In general, a failure thunk is only invoked in two situations: (1) a literal is
not equal to the value it is matched against or (2) a deconstructor invokes the
failure thunk as its failure continuation when the discriminant does not match
the associated constructor.

With the handling of tagged lists, we have completed the presentation of
the desugaring of match. Whew! The complete desugaring rules for match are
presented in Figure 10.30. Recall that we assume the usual FL desugaring is
performed on the expression resulting from the match desugaring.

We have presented an approach to pattern matching based on desugaring and
deconstructors. But this is by no means the only way to specify or implement
pattern matching. For instance, the dynamic semantics for the core language
of SML [MTHM97] treats pattern matching as a fundamental language feature
that is explained via operational semantics rules. Whereas the deconstructor-
based desugaring requires linearly testing the match clauses one-by-one in order,
the SML definition does not imply a particular implementation. Indeed, there
are clever implementations of ML pattern matching that can greatly reduce the
number of tests that need to be performed [JM88].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

476 CHAPTER 10. DATA

(define (match-ints-2 ints)

(let ((disc ints))

(let ((fail1

(lambda ()

(let ((fail2

(lambda ()

(let ((fail3 (lambda ()

(error no-match))))

17))))

(cons~ disc

(lambda (v3 v4)

(if (equal? v3 3)

(cons~ v4

(lambda (v5 v6)

(let ((y v5))

(let ((ns v6))

(+ y (length ns)))))

fail2)

(fail2))))

fail2))))

(cons~ disc

(lambda (v1 v2)

(let ((x v1))

(null~ v2

(lambda () (* x x))

fail1)))

fail1))))

Figure 10.29: The result of desugaring match in match-ints-2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 477

Dmatch[[(match Edisc (P1 E1) ... (Pn En))]] =
(let ((Idisc Edisc)) ; Idisc fresh

(Dclauses [P1 , . . . ,Pn] [E1 , . . . ,En] Idisc))

Dclauses [] [] Idisc =(error no-match)

Dclauses (P1 . Prest*) (E1 . Erest*) Idisc =
(let ((Ifail ; Ifail fresh

(lambda () ; Failure thunk: if P1 doesn’t match, try the other clauses
(Dclauses Prest* Erest* Idisc))))

(Dpat[[P1]] Idisc E1 Ifail))

Dpat[[L]] Idisc Esucc Ifail = (if (equal? Idisc L) Esucc (Ifail))
Dpat[[_]] Idisc Esucc Ifail = Esucc
Dpat[[I]] Idisc Esucc Ifail = (let ((I Idisc)) Esucc)
Dpat[[(I P1 ... Pn)]] Idisc Esucc Ifail =
(I./~ Idisc

(lambda (I1 ...In) ; Fresh identifiers for components.
; Match the component parts of the constructed value.
(Dpats [P1 , . . . ,Pn] [I1 , . . . , In] Esucc Ifail))

Ifail)

Dpats [] [] Esucc Ifail = Esucc
Dpats (P1 . Prest*) (I1 . Irest*) Esucc Ifail =
Dpat[[P1]] I1 (Dpats Prest* Irest* Esucc Ifail) Ifail

Figure 10.30: The final version of the match desugaring

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

478 CHAPTER 10. DATA

¤ Exercise 10.15 Define the free identifiers of a match expression directly (i.e.,

without desugaring it). ¢

¤ Exercise 10.16 Extend the match desugaring to directly handle record and oneof
patterns. As an example of such patterns, consider the following alternative definition
of the perimeter procedure.

(define (perim shape)

(match perim

((one square (record (side s)))

(* 4 s))

((one rectangle (record (width w) (height h)))

(* 2 (+ w h)))

((one triangle (record (side1 s1) (side2 s2) (side3 s3)))

(+ s1 (+ s2 s3)))

)) ¢

¤ Exercise 10.17 Extend the match desugaring to handle list patterns like those
in the following procedure:

(define (match-list ints)

(match ints

((list x) (+ x 1))

((list _ y) (* 2 y)

((list x y 3) (* x y))

(_ 0)

))

For example:

(match-list (list)) −−−FL→ 0

(match-list (list 4)) −−−FL→ 5

(match-list (list 7 8)) −−−FL→ 16

(match-list (list 5 4 3)) −−−FL→ 20

(match-list (list 3 4 5)) −−−FL→ 0

(match-list (list 1 2 3 4)) −−−FL→ 0 ¢

¤ Exercise 10.18 Consider the following procedure for removing duplicates from a
sorted list of integers:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 479

(define (remove-dups sorted-list)

(match sorted-list

((cons x (cons y zs))

(if (= x y)

(remove-dups (cons y zs))

(cons x (remove-dups (cons y zs)))))

(_ sorted-list)

))

Matching with nested tagged list patterns helps to extract the first two elements (x and
y) of a list with at least two elements. But it is inelegant to name the remainder of such
a list (zs) and to rebuild the tail of sorted-list via (cons y zs).

One way to avoid these problems is to use nested match constructs:

(define (remove-dups-2 sorted-list)

(match sorted-list

((cons x ys)

(match ys

((cons y _)

(if (= x y)

(remove-dups ys)

(cons x (remove-dups ys))))

(_ sorted-list)))

(_ sorted-list)

))

But this is verbose and requires duplication of the last match clause.
A more elegant approach is to introduce named patterns of the form (<-> I P).

When such a pattern is matched against a value v:

• if P matches v, then (<-> I P) also matches v, and the environment is extended
with a binding between I and v as well as with any bindings implied by the match
of P against v;

• if P does not match v, then (<-> I P) does not match v.

For example, with named patterns, remove-dups can be elegantly expressed as:

(define (remove-dups-3 sorted-list)

(match sorted-list

((cons x (<-> ys (cons y _)))

(if (= x y)

(remove-dups ys)

(cons x (remove-dups ys))))

(_ sorted-list)

))

Extend the match desugaring to handle named patterns and show the result of your

extended match desugaring for remove-dups-3. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

480 CHAPTER 10. DATA

¤ Exercise 10.19 Modify the match desugaring functions and/or define a post-
desugaring optimizer to make the desugared code more compact and efficient. You
should handle at least the following optimizations:

• Optimize unnecessary renamings of the form (let ((I1 I2)) ...). E.g., the
expression (let ((x v1)) (* x x)) should be replaced by (* v1 v1).

• Eliminate the creation of failure thunks that are never used. E.g., the expression
(let ((fail (lambda () E1))) E2) should be replaced by E2 if fail is not
free within E2 .

• Eliminate the naming of failure thunks that are referenced only once. The single
reference should be replaced by the lambda expression itself. E.g., the expression

(let ((fail E1)) (cons~ E2 E3 fail))

should be replaced by (cons~ E2 E3 E1).

• Optimize the invocation of a manifest thunk. E.g., ((lambda () E)) should be
replaced by E. ¢

10.5.3 Views

While the deconstructor-based desugaring of pattern matching may be inher-
ently inefficient compared to other approaches, it provides an important advan-
tage in expressiveness for the programmer. In languages like ML and Haskell,
sum-of-product datatypes can only be deconstructed by referencing the construc-
tor in a pattern context. But using match, programmers can define arbitrary
deconstructors from scratch and use them in patterns.

As an example, consider the snoc6 procedure, which postpends an element
to the back of a list:

(define (snoc xs x)

(if (null? xs)

(list x)

(cons (car xs) (snoc (cdr xs) x))))

It is often handy to have a deconstructor corresponding to snoc that decomposes
a non-empty list L into two values: the list of all elements in L excluding the last,
and the last element L. This can be expressed with the following deconstructor7:

6So-called because it is a “backwards cons.”
7An alternative approach to defining snoc~ would be to express it in terms of two auxiliary

procedures, one of which returns all but the last element of a non-empty list and the other
of which returns the last element of a non-empty list. In such a definition, snoc~ would walk
over the given list twice. The definition given above effectively uses the success continuation
to return multiple values and only walks over the given list once.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 481

(define (snoc~ xs succ fail)

(if (null? xs)

(fail)

(if (null? (cdr xs))

(succ nil (car xs))

(snoc~ (cdr xs)

(lambda (but-last last)

(succ (cons (car xs) but-last) last))

(lambda () (error cant-fail))))))

For example:

(snoc~ (list 1 2 3)

(lambda (ns n) (cons n ns))

(lambda () nil)) −−−FL→ [3 , 1 , 2]

Because of the way the match desugaring is defined, it is possible to invoke
snoc~ by referencing snoc in a pattern context. For example, here is a compact
definition of a quadratic time list reversal procedure using snoc~ via pattern
matching:

(define (reverse xs)

(match xs

((null) xs)

((cons _ (null)) xs)

((snoc ys y) (cons y (reverse ys)))))

The ability to choose from multiple deconstructors when decomposing a data
structure characterizes what is known as a views facility, so-called because it
allows a compound data value to be viewed from different perspectives depending
on the context [Wad87]. For example, among the many possible views of a non-
empty length-n list are

• the cons view: the list is the first element prepended onto a list containing
elements 2 through n.

• the snoc view: the list is the nth element postpended onto the sublist
containing the elements 1 through (n− 1).

• the split view: a list is the result of appending a left sublist (elements 1
through dn/2e) and a right sublist (elements dn/2e+ 1 through n).

• the interleave view: a list is the result of interleaving a list containing
all the odd-indexed elements with a list containing all the even-indexed
elements.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

482 CHAPTER 10. DATA

• the join view: the list is the result of sandwiching element dn/2e between
a left sublist (elements 1 through dn/2e − 1) and a right sublist (elements
dn/2e+ 1 through n).

These views show up in many standard list algorithms. For instance, the
interleave (or split) view is at the heart of a mergesort algorithm for sorting
lists:

(define (mergesort nums)

(match nums

((null) nums)

((cons _ (null)) nums)

((interleave ms ns) ; Could decompose with split as well

(merge (mergesort ms) ; merge left as an exercise

(mergesort ns)))))

In addition to allowing compound data to be decomposed via pattern match-
ing in different ways in different contexts, the views facility provided by user-
defined deconstructor procedures helps to overcome a key drawback of ML and
Haskell style pattern matching: the lack of abstraction in patterns. While
such patterns are wonderful for concisely specifying algorithms that manipulate
sum-of-product data, the fact that they expose concrete implementation details
hinders program development by making it difficult to change the implementa-
tion of data abstractions.

As an example of the sort of flexibility lost with ML-style patterns, consider
a simple implementation of binary trees with integers stored in the nodes:

(define (node num left right) (product num left right))

(define (leaf) unit)

(define (leaf? t) (unit? t))

(define (val t) (proj 1 t))

(define (left t) (proj 2 t))

(define (right t) (proj 3 t))

Given these basic tree manipulation primitives, we can define many other tree
procedures. For example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 483

(define (sum t)

(if (leaf? t)

0

(+ (val t)

(+ (sum (left t))

(sum (right t))))))

(define (height t)

(if (leaf? t)

0

(+ 1 (max (height (left t))

(height (right t))))))

Suppose we wish to modify this implementation so that each node addi-
tionally keeps track of its height. This can be accomplished with only minor
changes:

(define (node num left right)

(product num left right

(+ 1 (max (height left)

(height right)))))

(define (height t) (proj 4 t))

No other changes need to be made. In particular, procedures like sum that do
not use the height remain unchanged.

Now instead suppose that we used sum-of-products data and pattern match-
ing to implement the initial version of trees, where nodes did not maintain their
height (Figure 10.31).

Let’s now modify the nodes so that they maintain a height component. If
we want node to remain a three-argument procedure, in an ML-style system, we
must give a different name (say, hnode) to the constructor that takes a fourth
argument, the height. In every pattern that uses node, we must change the
constructor name to hnode and add an extra pattern to account for the height
component (Figure 10.32).

It might seem easy to make these changes. But suppose we have hundreds
of tree procedures in our program that needed to be changed in this manner. It
would be tedious and error-prone to make the change everywhere — so much so
that we might avoid making such representation changes. The concrete nature
of ML-style patterns thus stands in the way of a software engineering principle
that dictates that programming languages should be designed in such a way to
facilitate changing representations.

A view mechanism like explicit deconstructors addresses this issue. When

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

484 CHAPTER 10. DATA

(define-data int-tree

(leaf)

(node val left right))

(define (sum t)

(match t

((leaf) 0)

((node v l r) (+ v (sum l) (sum r)))))

(define (height t)

(match t

((leaf) 0)

((node v l r)

(+ 1 (max (height l) (height r))))))

Figure 10.31: Integer binary trees expressed via define-data and match.

we introduce hnode, in addition to defining a new node procedure that has the
same meaning as the old node constructor, we can also define a new node~

deconstructor:

(define (node~ val succ fail)

(match val

((leaf) (fail))

((hnode v l r h) (succ v l r))))

With this deconstructor, the original definition of sum that used node in its
match clause need not be modified even though the representation of nodes has
changed. In this way, user-defined deconstructors (and view facilities in general)
facilitate representation changes to programs.

¤ Exercise 10.20 Define the list deconstructors split~, interleave~, and join~

described in the discussion on views. Give examples of algorithms where such views are

helpful. ¢

¤ Exercise 10.21 Define a partition~ deconstructor for a non-empty list of integers
L that decomposes it into three parts:

a. the first element of L (known as the pivot);

b. a list of all elements in the tail of L less than or equal to the pivot (with the same
relative order as in L);

c. a list of all elements in the tail of L that are strictly greater than the pivot (with
the same relative order as in L).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 485

(define-data int-tree

(leaf)

(hnode val left right height))

(define (node v l r)

(+ 1 (max (height l) (height r))))

(define (sum t)

(match t

((leaf) 0)

((hnode v l r _) (+ v (sum l) (sum r)))))

(define (height t)

(match t

((leaf) 0)

((hnode v l r h) h)))

Figure 10.32: Adding a height component requires changing all node patterns.

Using your partition~, it should be possible to define the quicksort algorithm for
sorting lists:

(define (quicksort nums)

(match nums

((null) nums)

((cons _ (null)) nums)

((partition pivot lesses greaters)

(append (quicksort lesses)

(cons pivot (quicksort greaters)))))) ¢

¤ Exercise 10.22 The convention of naming deconstructors by extending the con-
structor name with the suffix “~” is really just a crude but simple way of associating a
deconstructor with a constructor. Here we consider an alternative way to specify this
association.

Suppose that FL is extended with a declaration construct, define-constructor,
that associates a constructor name with two procedures: a constructor and its associated
deconstructor. Using this construct, new list constructors kons and knull could be
specified as follows:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

486 CHAPTER 10. DATA

(define-constructor kons

(lambda (elt lst) (pair elt lst)) ; Constructor

(lambda (val succ fail) ; Deconstructor

(if (pair? val)

(succ (left pair) (right pair))

(fail)))

)

(define-constructor knull

(lambda () #u) ; Constructor

(lambda (val succ fail) ; Deconstructor

(if (unit? val) (succ) (fail)))

)

The intention is that the name declared by define-constructor can be used within
expressions to denote the constructor procedure and within patterns to denote the
deconstructor procedure. Sometimes it is necessary to access to the deconstructor pro-
cedure within an expression; for this case, FL is also extended with a new expression
(decon I) that accesses the “deconstructor part” of I. For example:

(kons 1 (kons 2 (knull))) −−−FL→ [1 , 2]

(match (kons 1 (kons 2 (knull)))

((kons x (kons y (knull))) (+ x y))) −−−FL→ 3

((decon kons) (kons 1 (kons 2 (knull)))

(lambda (hd tl) (kons hd (kons hd tl)))

(lambda () (kons 5 (knull))) −−−FL→ [1 , 1 , 2]

((decon kons) (knull)

(lambda (hd tl) (kons hd (kons hd tl)))

(lambda () (kons 5 (knull))) −−−FL→ [5]

The match desugaring for this extended version of FL is the same as before except that
within Dpat, the occurrence of I./~ is replaced by (decon I).

a. One way to model the semantics of (define-constructor I E1 E2) is to say
that it binds the name I to the pair of values that result from evaluating E1 and
E2 . Extend the denotational semantics of FL to reflect this model, and explain
(1) the meaning of define-constructor, (2) the invocation of constructors, and
(3) the semantics of decon.

b. Another way to model the semantics of (define-constructor I E1 E2) is to
say that the extended version of FL has two namespaces: one for “normal”
values (including constructors) and one for deconstructors. Extend the deno-
tational semantics of FL to reflect this model, and explain (1) the meaning of
define-constructor, (2) the invocation of constructors, and (3) the semantics
of decon.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 487

c. What are the benefits and drawbacks of using define-constructor and decon

vs. the convention of naming deconstructors with a ~? ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

488 CHAPTER 10. DATA

