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Chapter 9

Control

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.

— The Road Not Taken, st. 4, Robert Frost

“Did he ever return, no he never returned
And his fate is still unlearned”

— MTA, performed by the Kingston Trio,
written by Bess Hawes & Jacqueline Steiner

9.1 Motivation: Control Contexts and Continuations

So far, we have studied two different kinds of contexts important in the evalua-
tion of programming language expressions:

• A naming context that determines the meaning of free variable names
within an expression.

• A state context that specifies the time-dependent behavior of mutable
entities.

365



D
ra

ft 
N

ov
em

be
r 2

3,
 2

00
4

366 CHAPTER 9. CONTROL

By objectifying both of these contexts as mathematical entities — environments
and stores — the denotational approach provides significant leverage for us to
investigate the space of language features that depend on these contexts. In the
case of naming, environments help us to understand issues like parameter pass-
ing, scoping, and inheritance. In the case of state, stores help us to understand
issues involving mutable variables and data structures.

There is a third major context that is still missing from our toolbox: a
control context. Informally, control describes the path taken by a programmer’s
eyes and fingertips when hand-simulating the code in a listing. For example,
when simulating a while or for loop in an imperative language, it is often
necessary to refocus attention on the beginning of the loop after the end of
the loop code is reached. Conditional expressions and procedure calls are other
simple examples of control constructs that we have seen.

What does it mean for expressions to have a control context? As an example,
consider the following FL! expression:

(let ((square (lambda (x) (* x x))))

(+ (square 5) (* (+ 1 2) (square 5))))

There are two different occurrences of the (square 5) expression. What is the
difference between them? Both are evaluated in the same environment and the
same store, so they are guaranteed to yield the same value. What distinguishes
them is how their value is used by the rest of the program. Reading from left
to right, the first (square 5) returns 25 to a process that is collecting the first
of two arguments to the procedural value of +. The second (square 5) yields
its result to a process that is collecting the second of two arguments to the
procedural value of *; this, in turn, is a subtask of the process that is collecting
the second of two arguments to +, which itself is a subtask of the process that
is waiting for the answer to the entire let expression. What distinguishes the
occurrences of (square 5) is their control context: the part of the computation
that remains to be done after the expression is evaluated.

The denotational descriptions we have employed so far have not explicitly
represented the notion of “the rest of the computation.” A denotational seman-
tics without an explicit control model is said to be a direct semantics. A direct
semantics for a programming language cannot deal elegantly with interruptions
of the normal flow of control of a program. As long as valuation clauses are
recursive in the obvious way, the flow of control in the clauses has no choice but
to follow the structure of the program’s parse tree.

A simple example of the limitation of direct semantics can be seen in its
clumsy handling of error conditions in the languages that we have already en-
countered. An error is detected in one part of the semantics, and every other
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part of the semantics must be able to cope with the possibility that some subex-
pression has produced an error instead of a normal result. This approach to error
checking does not capture the intuition that a computation encountering an er-
ror immediately aborts without further processing. Abstractions like with-value
help to hide this error checking, but they do not remove it. Indeed, interpreters
based on the direct semantics of FL and its variants expend considerable effort
performing such checks.

More generally, a direct semantics cannot easily explain constructs that in-
terrupt the “normal” flow of control:

• non-local exits as provided by C’s break and continue or Common Lisp’s
throw and catch.

• unrestricted jumps permitted in numerous languages via goto.

• sophisticated exception handling as seen in CLU, ML, Common Lisp,
Dylan, and Java.

• coroutines such as iterators in CLU and communicating sequential pro-
cesses in many languages, notably occam and even Java (JCSP).

• backtracking, which is used to model nondeterminism, e.g., to search a tree
of possibilities, as in Prolog and other logic programming languages.

In each of these cases, a program phrase does not simply return some value
and/or an updated store, but instead bypasses the control context that invoked
it and transfers control to some other place in the program.

The notion of continuation addresses this problem and provides a math-
ematical model of such transfers of control. A continuation is an entity that
explicitly represents the “rest” of some computation. In implementation terms,
it corresponds to the part of the machine state that comprises the current config-
uration of the runtime stack, together with a return address that specifies what
code to run when the current computation returns a value. The continuation
corresponding to the textually subsequent code in a program is usually referred
to as the normal continuation. Many control constructs achieve their effect
by substituting some other continuation for the normal one.

This chapter shows how continuations simplify the descriptions of the lan-
guages we have studied so far and allow the modeling of advanced control fea-
tures in these languages. Be forewarned that control constructs are notoriously
hard to think about. Even though many of the formal descriptions of control
constructs are surprisingly concise, this does not imply that they are propor-
tionately easier to understand. The often convoluted nature of control can lead
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the reader into mental gymnastics that are likely to leave the brain a little bit
sore at first. Luckily, with sufficient practice, the concepts can begin to seem
natural.

To help build up some intuitions about continuations, we will first discuss
how to achieve some sophisticated control behavior using only first class proce-
dures. Then we will be better prepared to understand the use of continuations
in denotational definitions.

9.2 Using Procedures to Model Control

We said before that continuations represent the rest of a computation. In a func-
tional language, the continuation for an expression E is “waiting for” the value
of E. It is therefore natural to think of continuations in a functional language
as being procedures of one argument. For example, in the FL expression

(let ((square (lambda (x) (* x x))))

(+ (square 5) (* (+ 1 2) (square 5))))

the continuation of the first (square 5) might be thought of as

(lambda (v1) (+ v1 (* (+ 1 2) (square 5))))

and the continuation for the second (square 5) might be thought of as

(lambda (v2) (+ 25 (* 3 v2)))

The above approximations indicate that operands to an FL application are
evaluated in left-to-right order. When the first call to square is being evaluated,
the second argument to + is the unevaluated (* (+ 1 2) (square 5)). But by
the time the second call to square is evaluated, the first (square 5) has been
evaluated to 25 and the (+ 1 2) argument has been evaluated to 3.

Even in languages that do not support mutation, continuations require a
computation to be viewed in a purely sequential way; some expressions are
evaluated “before” other expressions. In fact, it is really control, not state, that
must be linearly threaded through a sequential computation. State is just a piece
of information carried along by the control in its linear walk. This separation of
control and state makes it easier to think about sophisticated control constructs
like backtracking, where a computation may revert to a previous state even
though it is progressing in time.

First-class procedures are powerful enough to implement some fancy control
behavior. In this section, we show how first-class procedures can be used to
implement procedures returning multiple values, non-local exits, and coroutines.
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9.2.1 Multiple-value Returns

It is often useful for a procedure to return more than one result. A classic
example of the utility of multiple-value returns concerns integer division and
remainder. Languages often provide two primitives for these operations even
though the same algorithm computes both. It would make more sense to have
a single operation that returns two values.

As another example, suppose that we want to write an FL program that,
given a binary tree with integers as leaves, computes both the depth and the
sum of the leaves in the tree and returns their product. One approach is to apply
two different procedures to the tree and combine the results as in Figure 9.1.
Notice that depth*sum1 requires two walks over the given tree.

(define depth*sum1
(lambda (tr)

(letrec ((depth (lambda (tree)

(if (leaf? tree)

0

(+ 1 (max (depth (tree-left tree))

(depth (tree-right tree)))))))

(sum (lambda (tree)

(if (leaf? tree)

tree

(+ (sum (tree-left tree))

(sum (tree-right tree)))))))

(* (depth tr) (sum tr)))))

Figure 9.1: The first version of depth*sum performs two tree traversals.

A procedure that returns multiple values allows one to perform the compu-
tation in a single tree walk. A simple method of doing this is to return a pair at
each node of the tree as in Figure 9.2. However, the bundling and unbundling
of values makes this approach to multiple values messy and hard to read.

An alternate approach to returning multiple values is to use first-class pro-
cedures. If procedure M is supposed to return multiple values, we can modify it
to take an extra argument R1, called the receiver. The receiver is a procedure
that expects the multiple values as its arguments and will combine them into
some result. M returns its results by calling R on them. We have already seen
numerous examples of this strategy in metalanguage functions and interpreter
procedures (e.g., with- functions have this form). Figure 9.3 shows how to apply
this idea to our example.

1By convention, the extra argument usually comes last.
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(define depth*sum2
(lambda (tr)

(letrec ((inner

(lambda (tree)

(if (leaf? tree)

(cons 0 tree)

(let ((depth&sum1 (inner (tree-left tree)))

(depth&sum2 (inner (tree-right tree))))

(cons (+ 1 (max (car depth&sum1)

(car depth&sum2)))

(+ (cdr depth&sum1) (cdr depth&sum2))))))))

(let ((depth&sum (inner tr)))

(* (car depth&sum) (cdr depth&sum))))))

Figure 9.2: The second version of depth*sum uses pairs to return multiple values.

(define depth*sum3
(lambda (tr)

(letrec ((inner

(lambda (tree receiver)

(if (leaf? tree)

(receiver 0 tree)

(inner

(tree-left tree)

(lambda (depth1 sum1)

(inner (tree-right tree)

(lambda (depth2 sum2)

(receiver (+ 1 (max depth1 depth2))

(+ sum1 sum2))))))))))

(inner tr *))))

Figure 9.3: The third version of depth*sum passes multiple values to procedural
continuations.
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This style of code can be difficult to read. The receiver argument to the
inner procedure acts as a continuation encoding what computation needs to
be performed on the two values that inner “returns.” For example, the call
(inner tr *) starts off the process by applying inner to the tree tr with a
receiver * that will take the two results and return their product.

Even though the receiver is an argument, it is typical to ignore its argu-
ment status and view it as a different entity when reading a call like inner. So
(inner E1 (lambda (I1 I2) E2)) can be read as “Call inner on E1 and ap-
ply the procedure (lambda (I1 I2) E2) to the results” or “Evaluate E2 in an
environment where I1 and I2 are bound to the two results of applying inner to
E1 .” Note that these readings treat inner as a procedure of one argument that
returns two results, not a procedure of two arguments. Viewing continuation
argument(s) as different entities from other arguments is important for getting
a better working understanding of them.

Unlike the other two approaches, using a receiver forces us to choose a par-
ticular order for examining the branches of the binary tree. The main advantage
of a receiver is that it allows the multiple returned values to be named using the
standard naming construct, lambda. It is not necessary to invent a new syntax
for naming intermediate values: lambda suffices.

As a concrete example, consider the following application of depth*sum3 :

(depth*sum3 ’((5 7) (11 (13 17))))

An operational trace of the evaluation of this expression appears in Figures 9.4
and 9.5. Here, a tree node is represented by a list of the left and right subtrees,
while a leaf is represented by an integer. Note how the continuation argument
to inner acts like a stack that keeps track of the pending operations.

9.2.2 Non-local Exits

A continuation represents all the pending operations that are waiting to be done
after the current operation. When continuations are implicit, the computation
can only terminate successfully when all of the pending operations have been
done. Yet we sometimes want a computation buried deep in pending opera-
tions to terminate immediately with a result or at least circumvent a number of
pending operations. We can achieve these so-called non-local exits by using
explicit procedure objects representing continuations.

For example, consider the task of multiplying a list of numbers. Figure 9.6
shows the natural recursive solution to this problem. E.g.,

(product-of-list1 (list 2 4 8)) −−−eval→ 64
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(depth*sum3 ((5 7) (11 (13 17))))

⇒ (inner ((5 7) (11 (13 17))) *)

⇒ (inner (5 7) (lambda (d1 s1)

(inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max d1 d2))

(+ s1 s2))))))

⇒ (inner 5 (lambda (d3 s3)

(inner 7 (lambda (d4 s4)

((lambda (d1 s1)

(inner (11 (13 17))

(lambda (d2 s2)

(* (+ 1 (max d1 d2)) (+ s1 s2)))))

(+ 1 (max d3 d4))

(+ s3 s4))))))

⇒ (inner 7 (lambda (d4 s4)

((lambda (d1 s1)

(inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max d1 d2))

(+ s1 s2)))))

(+ 1 (max 0 d4))

(+ 5 s4))))

⇒ ((lambda (d1 s1)

(inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max d1 d2)) (+ s1 s2)))))

(+ 1 (max 0 0))

(+ 5 7))

⇒ (inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2))))

⇒ (inner 11 (lambda (d5 s5)

(inner (13 17) (lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max d5 d6))

(+ s5 s6))))))

Figure 9.4: Stylized operational trace of a procedural implementation of
multiple-value return, part 1.
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⇒ (inner (13 17) (lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6))))

⇒ (inner 13 (lambda (d7 s7)

(inner 17 (lambda (d8 s8)

((lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6)))

(+ 1 (max d7 d8))

(+ s7 s8))))))

⇒ (inner 17 (lambda (d8 s8)

((lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6)))

(+ 1 (max 0 d8))

(+ 13 s8))))))

⇒ ((lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6)))

(+ 1 (max 0 0))

(+ 13 17))))))

⇒ ((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 1))

(+ 11 30))

⇒ (* (+ 1 (max 1 2))

(+ 12 41))

⇒ 159

Figure 9.5: Stylized operational trace of a procedural implementation of
multiple-value return, part 2.
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(define product-of-list1
(lambda (nums)

(if (null? nums)

1

(* (car nums) (product-of-list1 (cdr nums))))))

Figure 9.6: A first cut at the product of a list.

Figure 9.7 shows a continuized version of product-of-list1 . The behavior
is exactly the same; we have just made the continuations explicit. For an empty
list, product-of-list1 continues with the value 1. For a non-empty list, we
compute the product of the tail of the list passing along a new continuation
that passes the product of the list tail and the current element to the current
continuation.

(define product-of-list2
(lambda (nums cont)

(if (null? nums)

(cont 1)

(product-of-list2 (cdr nums)

(lambda (v)

(cont (* v (car nums))))))))

Figure 9.7: A continuized procedure for computing the product of a list.

Notice that product-of-list1 and product-of-list2 dutifully multiply
all the elements of the list even if it contains a zero element. This is a waste
since the answer is known to be 0 the moment a 0 is encountered. There is no
need to look at any other list elements or to perform any more multiplications.
product-of-list3 in Figure 9.8 performs this optimization.

To accomplish a non-local exit, product-of-list3 distinguishes the con-
tinuation passed to the initial call from continuations generated by recursive
calls. The escape continuation is kept in final-cont. The local recursive pro-
cedure prod behaves like product-of-list2 except that it jumps immediately
to final-cont upon encountering a 0, thus avoiding unnecessary recursive calls
by-passing all pending multiplications.

As a more complicated example, consider the pattern matching program for
FL presented in Section 6.2.4.3. The core of the program is the match-with-dict
procedure in Figure 9.9, where we have unraveled the failure abstractions to
make the present discussion more concrete.

As written, match-with-dict performs a left-to-right depth-first walk simul-
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(define product-of-list3
(lambda (nums final-cont)

(letrec ((prod

(lambda (nums normal-cont)

(if (null? nums)

(normal-cont 1)

(let ((thisnum (car nums)))

(if (= thisnum 0)

(final-cont 0)

(prod (cdr nums)

(lambda (val)

(normal-cont

(* val thisnum))))))))))

(prod nums final-cont))))

Figure 9.8: Computing the product of list, exiting as soon as the answer is
apparent.

(define match-sexp

(lambda (pat sexp)

(match-with-dict pat sexp (dict-empty))))

(define match-with-dict

(lambda (pat sexp dict)

(cond ((eq? dict ’*failed*) ; Propagate failures

’*failed*)

((null? pat)

(if (null? sexp)

dict ; Pat and sexp both ended

’*failed*)) ; Pat ended but sexp didn’t

((null? sexp) ’*failed*) ; Sexp ended but pat didn’t

((pattern-constant? pat)

(if (sym=? pat sexp) dict ’*failed*))

((pattern-variable? pat)

(dict-bind (pattern-variable-name pat) sexp dict))

(else (match-with-dict (cdr pat)

(cdr sexp)

(match-with-dict (car pat)

(car sexp)

dict))))))

Figure 9.9: Core of the pattern matching program.
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taneously over the pat and sexp trees. It carries along a dictionary representing
bindings for variables that have already been matched. Failure is represented in
a rather ad hoc manner by replacing the dictionary with the symbol *failed*.
Since failure may occur deep in the tree where many pending matches are waiting
to be performed, each call of match-with-dict must check for and propagate
failure tokens that appear as the dictionary argument.

It would be more desirable to handle failures by by-passing all the pending ac-
tivations and simply returning the symbol *failed* as the value of match-sexp.
This effect can be achieved by passing two extra arguments to match-with-dict:
a success continuation and a failure continuation. A success continuation is a
procedure of one argument, a dictionary, that continues a thus-far successful
match with the given dictionary. A failure continuation is a procedure of no argu-
ments that effectively returns *failed* for the initial call to match-with-dict.
It is necessary to package up both continuations so that the program has the
option of ignoring one. This strategy is implemented in Figure 9.10. Note
in the final clause of the cond, match-inner works from the outside in while
match-with-dict works from the inside out. This explains why the calls to car

and cdr appear differently in the two programs, even though both walk the tree
in a left-to-right depth-first manner.

In the modified version of the pattern matcher, the interface to match-sexp

would be cleaner if it took success and failure continuations as well. Then we
could more easily specify the behavior we want in these cases.

(define match-sexp

(lambda (pat sexp succeed fail)

(match-inner pat sexp (dict-empty) succeed fail)))

(match-sexp ’((? a) (? a)) ’(x x)

(lambda (dict) #t)

(lambda () #f))

−−−FL!→ true

(match-sexp ’((? a) (? a)) ’(x y)

(lambda (dict) #t)

(lambda () #f))

−−−FL!→ false

¤ Exercise 9.1

a. Modify the code in product-of-list3 to return an error symbol if there is a
non-integer element in the list.

b. Suppose the final continuation of product-of-list3 must receive an integer
value. How would you handle errors? Rewrite product-of-list3 to incorpo-
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(define match-sexp

(lambda (pat sexp)

(match-inner pat

sexp

(dict-empty)

(lambda (dict) dict)

(lambda () ’*failed*))))

(define match-inner

(lambda (pat sexp dict succeed fail)

(cond ((null? pat)

(if (null? sexp)

(succeed dict) ; Pat and sexp both ended

(fail))) ; Pat ended but sexp didn’t

((null? sexp) (fail)) ; Sexp ended but pat didn’t

((pattern-constant? pat)

(if (sym=? pat sexp)

(succeed dict)

(fail)))

((pattern-variable? pat)

(succeed

(dict-bind (pattern-variable-name pat) sexp dict)))

(else (match-inner (car pat)

(car sexp)

dict

(lambda (car-dict)

(match-inner (cdr pat)

(cdr sexp)

car-dict

succeed

fail))

fail)))))

Figure 9.10: A version of the pattern matcher that uses success and failure
continuations.
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rate your changes and show a sample call. ¢

9.2.3 Coroutines

Coroutining is a situation in which control jumps back and forth between con-
ceptually independent processes. The most common version is producer/consum-
er coroutines, where a consumer process transfers control to a producer process
when it wants the next value generated by the producer, and the producer re-
turns control to the consumer along with the value. The standard example of
this kind of coroutine is a compiler front end in which a parser requests tokens
from the lexical scanner.

Here, we will show how simple producer/consumer coroutines can be imple-
mented by using first-class procedures to represent control. The stream notion
we will see in Chapter 10 (beginning on page 431) is an alternate technique for
implementing such coroutines.

We represent a producer as a procedure that takes a consumer as its argu-
ment and hands that consumer the requested value along with the next producer.
We represent a consumer as a procedure that takes a value and producer, and
either returns or calls the producer on the next consumer.

For example, suppose (count-from n) makes a producer which generates
the (conceptually infinite) increasing sequence of integers beginning with n, and
(add-first m) makes a consumer that adds up the firstm elements of the pro-
ducer it’s attached to. Then ((count-from 3) (add-first 5)) should return
the sum of the integers from 3 to 7, inclusive. This example,coded in FL, is in
Figure 9.11.

9.3 A Standard Semantics of FL!

To handle state in our semantics, we took the idiom of single-threading a store
through a computation and made it part of the computational model. Similarly,
we will handle control in our semantics by embedding in our computational
model the idiom of passing continuations through a computation. The strategy
of capturing common programming idioms in a semantic framework — or any
language — is a powerful idea that lies at the foundation of programming lan-
guage design. Indeed, languages can be considered expressive to the extent that
they relieve the programmer of managing the details of common programming
idioms.

Together, environments, stores, and continuations are sufficiently powerful
to model most programming languages. As noted earlier, a semantics that uses
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(define (count-from num)

(letrec ((new-producer

(lambda (n)

(lambda (consumer)

(consumer n (new-producer (+ n 1)))))))

(new-producer num)))

(define (add-first count)

(letrec ((new-consumer

(lambda (c)

(lambda (value next-producer)

(if (= c 0)

0

(+ value (next-producer

(new-consumer (- c 1)))))))))

(new-consumer count)))

;; Add up the 5 consecutive integers starting at 3

((count-from 3) (add-first 5)) −−−FL→ 25

Figure 9.11: An example producer/consumer example.

only environments and stores is called a direct semantics. A semantics that
adds continuations to a direct semantics is called a standard semantics, since
most denotational definitions are written in this style. A standard semantics
also implies particular conventions about the signatures of valuation functions.
One advantage of standard semantics is that following a set of conventions sim-
plifies the comparison of different programming languages defined by standard
semantics. We already saw this kind of advantage when we studied parameter
passing and scoping. Comparing different approaches was facilitated by the fact
that the styles of the denotational definitions we were comparing were similar.

Now that we’ve built up some intuitions about continuations, it’s time to
model continuations explicitly in our denotational definitions. Figures 9.12–9.14
present the standard semantics for FLK!. The definition given in the figures
is just an alternate way to write the same semantics that we gave before. In
fact, there are mechanical transformations that could transform the denotational
definition from the previous chapter into the definition in Figures 9.12–9.14.2

We introduce a standard semantics for FLK! because it is a much more
powerful tool for studying control features than the direct semantics. In fact,

2Section 17.9 presents a mechanical transformation of FLAVAR! programs into continua-
tion passing style.
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γ ∈ Cmdcont = Store → Answer
k ∈ Expcont = Value → Cmdcont
j ∈ Explistcont = Value* → Cmdcont

Answer = language dependent ; Typically Expressible
p ∈ Procedure = Denotable → Expcont → Cmdcont
x ∈ Expressible = (Value + Error )⊥ ; As before
v ∈ Value = language dependent
y ∈ Error = Sym ; Modified

New auxiliaries:
top-level-cont : Expcont
=λv . λs . (Value 7→ Expressible v) ; Assume Answer =Expressible

error-cont : Error → Cmdcont
= λI . λs . (Error 7→ Expressible I) ; Assume Answer =Expressible

test-boolean : (Bool → Cmdcont)→ Expcont
= λf . (λv . matching v

. (Bool 7→ Value b) [] (f b)

. else (error-cont non-boolean)
endmatching )

Similarly for:
test-procedure : (Procedure → Cmdcont)→ Expcont
test-location : (Location → Cmdcont)→ Expcont
etc.

ensure-bound : Binding → Expcont → Cmdcont
= λβk . matching β

. (Denotable 7→ Binding v) [] (k v) ; Assume CBV

. (Unbound 7→ Binding unbound) [] (error-cont unbound-variable)
endmatching

Similarly for:
ensure-assigned : Assignment → Expcont → Cmdcont
ensure-value : Expressible → Expcont → Cmdcont

Figure 9.12: Semantic algebras for standard semantics of FLK!.
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T L : Exp→ Answer ; Assume Answer = Expressible
E : Exp→ Environment → Expcont → Cmdcont
E* : Exp*→ Environment → Explistcont → Cmdcont
L : Lit→ Value ; Defined as usual
Y : Symlit→ Sym ; Y ∈Symlit are symbolic literals

T L[[E]] = (E [[E]] empty-env top-level-cont empty-store)

E [[L]] =λek . (k L[[L]])

E [[I]] =λek . (ensure-bound (lookup e I) k)

E [[(proc I E)]] =λek1 . (k1 (Procedure 7→ Value (λδk2 . (E [[E]] [I : δ ]e k2 ))))

E [[(call E1 E2)]]
=λek . (E [[E1 ]] e (test-procedure (λp . (E [[E2 ]] e (λv . (p v k))))))

E [[(if E1 E2 E3)]] =
λek . (E [[E1 ]] e (test-boolean (λb . if b then (E [[E2 ]] e k) else (E [[E3 ]] e k) fi)))

E [[(pair E1 E2)]]
=λek . (E [[E1 ]] e (λv1 . (E [[E2 ]] e (λv2 . (k (Pair 7→ Value 〈v1 , v2 〉))))))

E [[(cell E)]] =λek . (E [[E]] e (λvs . (k (Location 7→ Value (fresh-loc s))
(assign (fresh-loc s) v s))))

E [[(begin E1 E2)]] =λek . (E [[E1 ]] e (λvignore . (E [[E2 ]] e k)))

E [[(primop O E*)]] =λek . (E*[[E*]] e (λv* . (PFLK ![[O]] v* k)))

E [[(error I)]] =λek . (error-cont I)

E*[[[ ]]] =λej . (j [ ]Value)

E*[[Efirst . Erest*]] =λej . (E [[Efirst ]] e (λv . (E*[[Erest ]] e (λv* . (j v . v*)))))

Figure 9.13: Valuation clauses for standard semantics of FLK!, Part I.
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PFLK ! : Primop→ Value*→ Expcont → Cmdcont
PFLK : Primop→ Value*→ Expressible ; Defined as usual

PFLK ![[cell-ref]]
=λ[v]ks . ((test-location (λls ′ . ((ensure-assigned (fetch l s ′) k) s ′)))

v s)

PFLK ![[cell-set!]]
=λ[v1 , v2 ]ks . ((test-location (λls

′ . (k (Unit 7→ Value unit) (assign l v2 s ′))))
v1 s)

PFLK ![[OFLK ]] =λv*k . (ensure-value (PFLK [[OFLK ]] v*) k)
where OFLK ∈Primop − {cell-ref, cell-set!}

Figure 9.14: Valuation clauses for standard semantics of FLK!, Part II.

the area of control is the big payoff for our investment in denotational semantics;
many control constructs that have succinct denotational descriptions are difficult
to describe in an operational framework.

The standard semantics for FLK! differs from the direct semantics for FLK!
in the following ways:

• The Expressible domain has been replaced by the Answer domain. In a
standard semantics, the Answer domain is used to represent the “final”
value of a program. Not all standard semantics actually return a value
for an expression. For example, the initial continuation might be an in-
terpreter’s read-eval-print loop, which never returns. In this case, the
behavior of the program could be modeled as a mapping from a sequence
of input s-expressions to a sequence of output s-expressions. Nevertheless,
in the particular case of FLK!, Answer is the same as Expressible.

• The standard semantics introduces two continuation domains, Expcont and
Cmdcont:

k ∈ Expcont = Expressible → Cmdcont
γ ∈ Cmdcont = Store → Answer

Expcont is the domain of expression continuations; Cmdcont is the domain
of command continuations. These types of continuations reflect a common
distinction in programming languages between commands and expres-
sions. An expression yields a value in addition to any modifications it



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

9.3. A STANDARD SEMANTICS OF FL! 383

might make to the store. The example languages in this book are expres-
sion languages because all program constructs are expressions that return
a value. Many languages, e.g., Pascal, have syntactically distinct expres-
sions and commands as well as contexts that require one or the other.3

A command, on the other hand, is executed for its effect(s) and does not
produce a meaningful value. Program output is the classic example of a
command: writeln in Pascal, for example, prints its arguments as a
line of output on the standard output device. Variable assignment is also
naturally thought of as a command. In FLAVAR!, set! expressions re-
turn the uninteresting value #u simply because they are required to return
something, but the reason to execute an assignment is to modify the store.
Sequencing using begin is a natural command context: it exists to enforce
an order of state transformations.

Since expressions return a value and modify the store, the continuation for
an expression expects both the value and store produced by that expres-
sion. A command continuation expects only a store. Note that because
Cmdcont = Store → Answer, we can also view Expcont as:

k ∈ Expcont = Expressible → Store → Answer

That is, we can think of an expression continuation as taking an expressible
value and returning a command continuation; or we may think of it as
taking an expressible value and a store and returning an answer. Which
perspective is more fruitful depends on the situation.

• The signature of E has been modified:

E : Exp→ Environment → Expcont → Cmdcont

Recall that since Cmdcont=Store → Answer we can also view E as:

E : Exp→ Environment → Expcont → Store → Answer

That is, E takes a syntactic expression and representations of the naming
(Environment), control (Expcont), and state (Store) contexts, and finds
the meaning of the expression (an answer) with respect to these contexts.

3It is possible to coerce an expression to a command by ignoring its return value. This is
what FL does with all but the final subexpression in a begin.
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An expression of the form

(E [[E]] e (λv . 2))

can be read as “Find the value of E in e and name the result v in 2.”

Since evaluating an expression requires a store in FLK!, why doesn’t a
store appear in the above expression? The reason is that the order of
arguments to E has been chosen to take the store as its final argument,
rather than the continuation. This argument order is one of the conven-
tions of a standard semantics; it is used because it hides the store when it
is threaded through an expression untouched. In essence, Cmdcont fulfills
the role that the Computation domain did when we introduced state into
FL. To specify that an expression takes in one store, say s0 , and returns
another, s1 , we write:

(E [[E]] e (λvs1 . 2) s0 )
(Observe the explicit store parameters in the denotations for constructs
involving cells.)

• The definition of the Procedure domain is changed to take an expression
continuation:

p ∈ Procedure = Denotable → Expcont → Cmdcont

Again, we can also view this definition as:

p ∈ Procedure = Denotable → Expcont → Store → Answer

The Procedure domain in the standard semantics differs from the Procedure
domain in the direct semantics in that procedures take an additional argu-
ment from the Expcont domain. Intuitively, this argument is the “return
address” that a procedure returns to when it returns a value.

• The new test-xxx auxiliary functions are used to convert continuations
expecting arguments of type xxx into expression continuations. Like the
with-xxx functions from previous semantics, the test-xxx functions hide
details of error generation. However, unlike the with-xxx functions, the
test-xxx functions do not propagate errors.

Even though FL! does not have any advanced control features (we’ll add
quite a few in the remainder of this chapter), the standard semantics still has an
advantage over a direct semantics: the modelling of errors. A valuation clause
in a standard semantics generates an error by ignoring the current continuation
and directly returning an error. See, for example, the valuation clause for error.
This captures the intuition that an error immediately aborts the computation.
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The standard semantics valuation clauses in Figures 9.13 and 9.14 do not
employ the computation abstraction that we have been using in our denotational
definitions. We presented them in a concrete manner to help build intuitions
about continuations. However, it is not difficult to recast standard semantics
into the computation framework. Figures 9.15 and 9.16 show an implementation
of the computation abstraction that defines Computation as Expcont → Store
→ Expressible. (We assume that Answer is Expressible, but we could readily
redefine Answer to be another domain.) With this implementation of the com-
putation abstraction, the FLK! valuation clauses from the previous chapter still
hold, except for a minor tweak in the handling of CBV rec:

E [[(rec I E)]]
=λe . fixComputation (λc . λks0 . (E [[E]] [I :: (extract-value c s0 )]e k s0 ))

extract-value : Computation → Store → Binding
=λcs0 . matching (c (λvs . (Value 7→ Expressible v)) s0 )

. (Value 7→ Expressible v) [] (Denotable 7→ Binding v)

. (Error 7→ Expressible y) [] ⊥Binding

endmatching

There are two important changes in the valuation clause for rec:

• extract-value must account for the fact that the Answer domain is Ex-
pressible rather than Expressible × Store.

• The new E function requires a continuation argument, which we use to
hijack the value used in the binding for I. Notice that this continuation is
rather like the top level continuation in Figure 9.12.

Figure 9.17 introduces two continuation-specific auxiliary functions along
with their associated reasoning laws. Since no FLK! construct does anything
interesting with a continuation, these auxiliaries would not appear in valuation
clauses for FLK!. However, they will be useful when we extend FLK! with
advanced control features.

¤ Exercise 9.2 Imperative Languages Inc. was impressed with the simplicity and
power of FL!. Noticing that it lacks a looping construct and not willing to support a
product not in consonance with the company’s programming language philosophy, the
company calls Ben Bitdiddle to extend the language. Instead of a myriad of different
constructs (e.g. for, while, do-while, etc.) Ben designs a single loop expression that
embodies all forms of looping. The syntax of FLK! was extended as follows:

E ::= . . . [As before]
| (loop E) [Evaluate E repeatedly]
| (break E) [End lexically enclosing loop with value of E]
| (continue) [Restart evaluation of enclosing loop expression]
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c ∈ Computation = Expcont → Store → Expressible
k ∈ Expcont = Value → Store → Expressible
x ∈ Expressible = (Value + Error)⊥ ; As before
v ∈ Value = language dependent
y ∈ Error = Sym ; Modified

expr-to-comp : Expressible → Computation
=λx . matching x

. (Value 7→ Expressible v) [] (val-to-comp v)

. (Error 7→ Expressible y) [] (err-to-comp y)
endmatching

val-to-comp : Value → Computation =λv . λk . (k v)

err-to-comp : Error → Computation =λI . λks . (Error 7→ Expressible I)

with-value : Computation → (Value → Computation)→ Computation
=λcf . λk . (c (λv . (f v k)))
with-values, with-boolean, with-procedure, etc. can be written in terms of with-value.

check-location : Value → (Location → Computation)→ Computation
=λvf . matching v

. (Location 7→ Value l) [] (f l)

. else (err-to-comp non-location)
endmatching

check-boolean, check-procedure, etc. are similar.

Figure 9.15: Continuation-based computation abstraction, Part I.
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State-based auxiliaries:

allocating : Storable → (Location → Computation)→ Computation
=λσ f . λks . (f (fresh-loc s) k (assign (fresh-loc s) σ s))

fetching : Location → (Storable → Computation)→ Computation
=λlf . λks . matching (fetch l s)

. (Storable 7→ Assignment σ) [] (f σ k s)

. else ((err-to-comp unassigned-location) k s)
endmatching

update : Location → Storable → Computation
=λlσ . λks . (k (Value 7→ Expressible (Unit 7→ Value unit)) (assign l σ s))

sequence : Computation → Computation → Computation
=λc1 c2 . (with-value c1 (λv . c2 )) ; Unchanged from before

Figure 9.16: Continuation-based computation abstraction, Part II.

New auxiliary functions for control:

capturing-cont : (Expcont → Computation)→ Computation
=λf . λk . ((f k) k)

install-cont : Expcont → Computation → Computation
=λknewc . λkold . (c knew )

New Reasoning Laws:

(with-value (install-cont k c) f ) = (install-cont k c)

(with-value (capturing-cont f ) g) = (capturing-cont (λk . (with-value (f k) g)))
where k is not free in f or g.

(capturing-cont (λk . (install-cont k c))) = c
where k is not free in c.

Figure 9.17: Continuation-specific auxiliary functions on computations.
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Here’s the informal semantics of the new constructs:

a. (loop E): Evaluates E (the “looping expression”) repeatedly forever.

b. (break E): Ends the nearest lexically enclosing loop, which then returns the
value of E.

c. (continue): Restarts the evaluation of the looping expression for the nearest
lexically enclosing loop.

It is an error to evaluate either a break or a continue expression outside a lexically
enclosing loop expression.

Here’s an example of Ben’s looping constructs in action:

; Ben’s iterative factorial procedure

(lambda (n)

(let ((fact 1))

(loop

(if (= n 0)

(break fact)

(begin

(set! fact (* fact n))

(set! n (- n 1)))))))

In addition to extending the language, Ben has been asked to extend its standard
denotational semantics. It is here that Ben has subcontracted you.

a. Give the new signature of the meaning function E .
b. Give the meaning function clauses for (loop E), (break E), and (continue).

¢

¤ Exercise 9.3 Ben Bitdiddle is very excited about the power of the standard se-
mantics to describe complicated flows of control. Wanting to practice more with this
wonderful tool, he started churning out a lot of FL! extensions (not all of them useful).
Most recently, Ben added a construct (self E) in order to allow a procedure to call
itself, without using rec or letrec. Ben modified the FLK! grammar as follows:

E ::= . . . existing FLK! constructs . . .
| (self E)

Informally, (self E) recursively calls the current procedure with an actual argu-
ment that is the result of evaluating E. Here is a small example:

(let ((fact (lambda (n) (if (= n 0) 1 (* n (self (- n 1)))))))

(fact 4)) −−−eval→ 24

When (self E) is used outside a procedure, it causes the program to terminate
immediately with a value that is the result of evaluating E.

Ben started describing the formal semantics of (self E) by modifying the signature
of the meaning function E as follows:
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E : Exp→ Environment → SelfProc → Expcont → Cmdcont
where SelfProc = Procedure

In spite of his enthusiasm, Ben is still inexperienced with standard semantics. It is
your task to help him specify the formal semantics of the self construct.

a. Give the revised definition of the top level meaning function T L[[E]].
b. Give the meaning function clause for (call E1 E2), (self E) and (proc I E).

c. Prove that (self (self 1)) evaluates to (Value 7→ Expressible (Int 7→ Value 1)).

d. Prove that (proc x (self 1)) evaluates to a procedure that, no matter what
input it is called with, loops forever. ¢

¤ Exercise 9.4 Ben Bitdiddle is now working in a major research university where he’s
investigating a new approach to programming based on coroutines. Of course, he bases
his research on FLK! and its standard semantics. He adds the following expressions to
the FLK! grammar:

E ::= ...| (coroutine (I E1) E2)| (yield E)

The meaning of the expression (coroutine (I E1) E2) is simply E2 , unless E2
performs a (yield E3). If E2 performs a (yield E3), then the value of the corou-
tine expression is simply E1 , except that I is bound to E3 . However, if E1 per-
forms a (yield E4), then control transfers back to E2 , with the value of the origi-
nal (yield E3) — the point where control was originally transferred to E1 — being
replaced by E4 . Thus, yield transfers control back and forth between the two expres-
sions, passing a value between them. A (yield E) in one expression transfers control
to the other expression; that expression resumes at the point of its last yield, whose
value is set to E.

The following example coroutine expressions may help to make things clear. The
underline mark shows the active expression; the series of dots · · · · · · shows a yield

expression that has already yielded control to the other expression.

(coroutine (x 1) 2)

⇒ 2

(coroutine (x 1) (yield 2))

⇒ (coroutine (x 1) · · · · · ·)
⇒ 1

(coroutine (x x) (yield 2))

⇒ (coroutine (x x) · · · · · ·)
⇒ (coroutine (x 2) · · · · · ·)
⇒ 2
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(coroutine (x (yield (+ 1 x))) (yield 2))

⇒ (coroutine (x (yield (+ 1 x))) · · · · · · )
⇒ (coroutine (x (yield (+ 1 2))) · · · · · · )
⇒ (coroutine (x (yield 3)) · · · · · · )
⇒ (coroutine (x · · · · · · ) 3)

⇒ 3

(coroutine (x (yield (+ 1 x))) (+ 2 (yield 3)))

⇒ (coroutine (x (yield (+ 1 x))) (+ 2 · · · · · ·))
⇒ (coroutine (x (yield (+ 1 3))) (+ 2 · · · · · ·))
⇒ (coroutine (x (yield 4)) (+ 2 · · · · · · ))
⇒ (coroutine (x · · · · · · ) (+ 2 4))

⇒ 6

As one of Ben’s students, your job is to write the denotational semantics for FLK!
+ coroutines. Ben has already revised the domain equations to include both normal
and yield continuations, as follows:

k ∈ Normal-Cont = Expcont
y ∈ Yield-Cont = Expcont

Expcont = Value → Cmdcont
Cmdcont = Yield-Cont → Store → Expressible

p ∈ Procedure = Denotable → Normal-Cont → Cmdcont

He’s also changed the signature of the E meaning function so that every expression
is evaluated with both a normal and a yield continuation:

E : Exp → Environment → Normal-Cont → Cmdcont
= Exp → Environment → Normal-Cont → Yield-Cont → Store → Expressible

He didn’t get that far when defining E , but he did give you the meaning function
clause for (if E1 E2 E3) for reference.

E [[(if E1 E2 E3)]] =
λeky . (E [[E1 ]] e

(test-boolean (λb . if b then (E [[E2 ]] e k)
else (E [[E3 ]] e k)))

y)

a. Give the meaning function clause for L, given the new domains.

b. Give the meaning function clause for (yield E).

c. Give the meaning function clause for (coroutine (I E1) E2).

d. Compute the meaning of (yield (yield 3)) according to your semantics. ¢

¤ Exercise 9.5 Alyssa P. Hacker thinks coroutines (see Section 9.2.3) make programs
too hard to reason about. She suggests a simplified version of coroutines: the pro-
ducer/consumer paradigm. Informally, a producer generates values one at a time, and
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the values are used by a consumer in the order they are produced. Alyssa modifies the
FLK! grammar as follows:

E ::= . . . normal FLK! constructs . . .
| (producer Iyield Ebody)
| (consume Eproducer Icurrent Ebody)

The informal semantics of these two newly added constructs are:

• (producer Iyield Ebody) creates a new kind of first-class object called a producer.
When a producer is invoked (by consume) the identifier Iyield is bound to a yield-
ing procedure. Calling Iyield in Ebody with a value passes control and the yielded
value to the consumer. When the consumer is done processing the value, the Iyield
procedure returns #u to the producer. The value of Ebody is the value returned
by the producer when there are no more values to yield.

• (consume Eproducer Icurrent Ebody) invokes the producer that Eproducer evaluates
to (it is an error if Eproducer doesn’t evaluate to a producer). Whenever the
producer yields a value, Icurrent is bound to that value and Ebody is evaluated. The
result of evaluating Ebody is then discarded, and control returns to the producer.
The result returned by consume is the result returned by the producer.

For example, up-to is a procedure that takes an integer n as an argument, and
returns a producer that yields the integers from 1 up to and including n.

(define up-to

(lambda (n)

(producer emit

(letrec ((loop (lambda(i)

(if (> i n)

#f

(begin (emit i)

(loop (+ i 1)))))))

(loop 1)))))

The sum procedure adds all the numbers yielded by a given producer:

(define sum

(lambda (prod)

(let ((ans (cell 0)))

(begin

(consume prod n (cell-set! ans (+ n (cell-ref ans))))

(cell-ref ans)))))

For example, sum can be used to add up the values produced by the producer (up-to 5):

(sum (up-to 5)) −−−eval→ 33

Note that when a producer does not yield additional values and returns a normal
value v, execution of the invoking consume form is terminated and v is returned.

(consume (up-to 5) i 7) −−−eval→ false
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Assume in the following questions that FL! is desugared in the usual way to FLK!.

a. Alyssa wants to update the standard semantics of FLK! in order to specify the
formal semantics of the newly introduced constructs. Alyssa starts by creating a
new domain for producers, and adds it to the value domain:

v ∈ Value = Unit + Bool + . . . + Procedure + Producer
q ∈ Producer = Procedure → Expcont → Cmdcont

Alyssa’s valuation clause for the consume construct is as follows:

E [[(consume Eproducer Icurrent Ebody)]] =
λeknormal . (E [[Eproducer ]] e

(test-producer
(λq . (q (λvyieldedkafter−yield .

(E [[Ebody ]] [Icurrent : vyielded ]e
(λv . (kafter−yield (Unit 7→ Value unit)))))

knormal ))))

test-producer : (Producer → Cmdcont)→ Expcont =
λf . (λv .matching v

. (Producer 7→ Value q) [] (f q)

. else error-cont
endmatching )

Write the evaluation clause for the producer construct.

b. Alyssa also decides to specify the behavior of producer and consume in terms of
their operational semantics. She starts with the SOS semantics for FLK! from
Section 8.2.3.

State the modifications to the SOS semantics of FLK! that are necessary to
handle producer and consumer, including any relevant rules.

c. Ben Bitdiddle discovers how to desugar Alyssa’s constructs into normal FL! con-
structs. Ben’s desugaring for producer is

D(producer Iyield Ebody) = (lambda (Iyield) Ebody)

Write a corresponding desugaring for consume. ¢

¤ Exercise 9.6 Sam Antics is aggressively using the standard semantics to define the
meaning of some really non-standard FL! constructs. Most recently, he extended FL!
with some special constructs for POP (i.e., “Politically Oriented Programming”). He
extended the FLK! grammar as follows:

E ::= . . . existing FLK! constructs . . .
| (elect Epres Evp)
| (reelect)
| (impeach)
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Here’s the informal semantics of the newly introduced constructs:

• (elect Epres Evp) evaluates to the value of Epres unless (impeach) is evaluated
in Epres , in which case it evaluates to the value of Evp . It is possible to have
nested elect constructs.

• If (reelect) is evaluated inside the Epres part of a (elect Epres Evp) construct,
it goes back to the beginning of the elect construct. Otherwise, it signals an
error.

• If (impeach) is evaluated within the Epres part of a (elect Epres Evp) construct,
it causes the elect expression to evaluate to Evp . Otherwise, it signals an error.

Here’s a small example that Sam plans to use in his advertising campaign for the
FL! 2000 Presidential Edition (TM):

(let ((scandals (cell 0)))

(elect (if (< (cell-ref scandals) 5)

(begin (cell-set! scandals

(+ (cell-ref scandals) 1))

(reelect))

(impeach))

(* (cell-ref scandals) 2)))

−−−eval→ 10

You are hired by Sam Antix to modify the standard denotational semantics of FLK!
in order to define the formal semantics of the newly introduced constructs. Sam has
already added the following semantic domains:

r ∈ Prescont = Cmdcont
i ∈ Vpcont = Cmdcont

He also changed the signature of the meaning function:

E : Exp→ Environment → Prescont → Vpcont → Expcont → Cmdcont

a. Give the definition of the top level meaning function T L[[E]].
b. Give the meaning function clauses for E [[(elect Epres Evp)]], (reelect), and

(impeach).

c. Use the meaning functions you defined to compute T L[[(elect (reelect 1))]].
¢

¤ Exercise 9.7 This problem requires you to modify the standard denotational se-
mantics for FLK!.

Sam Antics is working on a new language with hot new features that will appeal to
government customers. He was going to base his language on Caffeine from Moon
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Microsystems, but negotiations broke down. He has therefore decided to extend FLK!
and has hired you, a top FLK! consultant, to assist with modifying the language to
support these new features. The new language is called FLK#, part of Sam Antics’ new
.GOV platform. The big feature of FLK# is user tracking and quotas in the store. An
important customer observed that government users tended to use the store carelessly,
resulting in expensive memory upgrades. To improve the situation, the FLK# store will
maintain a per-user quota. The Standard Semantics of FLK! are changed as follows:

w ∈ UserID = Int
q ∈ Quota = UserID → Int

gamma ∈ Cmdcont = UserID → Quota → Store → Answer

UserID is just an integer. 0 is reserved for the case when no one is logged in. Quota is a
function that when given a UserID returns the number of cells remaining in the user’s
quota. The quota starts at 100 cells. Cmdcont, the command continuation, takes the
currently logged in user ID, the current quota, and the current store to yield an answer.
Plus, FLK# adds the following commands:

E ::= ... [Classic FLK! expressions]
| (login! w) [Log in user w]
| (logout!) [Log out current user]

(login!w) — logs in the user associated with the identifier; returns the identifier (re-
turns an error if a user is already logged in or if the UserID is 0)
(logout!) — logs the current user out; returns the last user’s identifier (returns an
error if there is no user logged in)
(check-quota) — returns the amount of quota remaining

The definition of E [[(check-quota)]] is:
E [[(check-quota)]] =
λekwq . if w = 0

then (error-cont no-user-logged-in w q)
else (k (Int 7→ Value (q w)) w q) fi

a. Write the meaning function clause for E [[(login! E)]].

b. Write the meaning function clause for E [[(logout!)]].

c. Give the definition of E [[(cell E)]]. Remember you cannot create a cell unless
you are logged in.

d. Naturally, Sam Antics wants to embed some “trap doors” into the .GOV platform
to enable him to “learn more about his customers.” One of these trap doors is the
undocumented (raise-quota! n) command, which adds n cells to the quota of
the current user and returns 0. Give the definition of E [[(raise-quota! E)]]. ¢
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9.4 Non-local Exits

A denotational semantics equipped with continuations is especially useful for
modelling advanced control features of programming languages. One such fea-
ture is a non-local exit, a mechanism that aborts a pending computation by
forcing control to jump to a specified place in the program.

To study non-local exits, we extend FLK! with two new constructs:

E ::= . . . | (label Ictrl pt Ebody) | (jump Ectrl pt Ebody)

The informal semantics of these constructs is as follows:

• (label Ictrl pt Ebody) evaluates Ebody in an environment where the name
Ictrl pt is bound to the control point that receives the value of the label
expression.

• (jump Ectrl pt Ebody) returns the value of Ebody to the control point that
is the value of Ectrl pt . If Ectrl pt does not evaluate to a control point, jump
generates an error.

(+ 1 (label exit (* 2 (- 3 (/ 4 1))))) −−−FL!→ −1

(+ 1 (label exit (* 2 (- 3 (/ 4 (jump exit 5)))))) −−−FL!→ 6

(+ 1 (label exit

(* 2 (- 3 (/ 4 (jump exit (+ 5 (jump exit 6)))))))) −−−FL!→ 7

(+ 1 (label exit1

(* 2 (label exit2 (- 3 (/ 4 (+ (jump exit2 5)

(jump exit1 6)))))))) −−−FL!→ 11

Figure 9.18: Some examples using label and jump.

Figure 9.18 shows some simple examples using label and jump. The first
example illustrates that the value of (label I E) is the value of E if E per-
forms no jumps. In the second example, (jump exit 5) aborts the pending
(* 2 (- 3 (/ 4 2))) computation and returns 5 as the value of the label

expression. The third example demonstrates that a pending jump can itself be
aborted by a jump within one of its subexpressions. In the final example, the left-
to-right evaluation of call subexpressions causes 5 to be returned as the value
of (label exit2 . . .). If call subexpressions were evaluated in right-to-left
order, the result of the final example would be 7.
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In practice, non-local exits are a convenient means of communicating in-
formation between two points of a program separated by pending operations
without performing any of the pending operations. For instance, here is yet
another version of a recursive procedure for computing the product of a list of
numbers (see Section 9.2.2):

(define (prod-list a-list)

(label return

(letrec ((prod (lambda (lst)

(cond ((null? lst) 1)

((= 0 (car lst)) (jump return 0))

(else (* (car lst)

(prod (cdr lst))))))))

(prod a-list))))

Upon encountering a 0 in the list, the internal prod procedure uses jump

to immediately return 0 as the result of a call to prod-list. Any pending
multiplications generated by recursive calls to prod are flushed.

The semantics for label and jump appear in Figure 9.19. Control points are
modelled as expression continuations that are treated as first-class values. The
valuation clauses for label and jump are presented in two styles: the traditional
style of standard semantics, and a style based on the computation abstraction.
label redefines its continuation k as a control point value and evaluates Ebody

in the environment e extended with a binding between Ictrl pt and the control
point value. jump ignores its default continuation and instead evaluates Ebody

with the continuation determined by Ectrl pt .

Note that label refers to its continuation twice: it both names it and uses
it as the continuation of Ebody . (This is easier to see in the standard style
than in the computation style.) This means that a value can be returned from
a label expression in two ways: (1) by normal evaluation of Ebody (without
any jumps) and (2) by using jump with a control point that is extracted from
the environment. In contrast, jump does not refer to its continuation at all.
This means that a jump expression can never return! So it is meaningless to
ask what the value of a jump expression is. Similarly, expressions containing
jump expressions may also have no value. This is the first time we have seen
expressions without values in a dialect of FL.

Like all other values in FL!, control point values are first-class: they can be
named, passed as arguments, returned as results, and stored in data structures
(pairs, cells). An interesting consequence of this fact is that it is possible to
return to the same control point more than once. Consider the following FL!
expression:
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Abstract Syntax:

E ::= . . . [As before]
| (label Iname Ebody) [Label]
| (jump Econtrol−point Eval) [Jump]

Semantic Domains:

ControlPoint = Expcont
v ∈ Value = . . . + ControlPoint

test-control-point : (ControlPoint → Cmdcont)→ Expcont

Valuation functions (standard version):

E [[(label Ictrl pt Ebody)]]
=λek . (E [[Ebody ]] [Ictrl pt : (ControlPoint 7→ Value k)]e k)

E [[(jump Ectrl pt Eval)]]
=λekignore . (E [[Ectrl pt ]] e (test-control-point (λkctrl pt . (E [[Eval ]] e kctrl pt ))))

Valuation functions (computation version):
E [[(label Ictrl pt Ebody)]]
=λe . (capturing-cont (λk . (E [[Ebody ]] [Ictrl pt : (ControlPoint 7→ Value k)]e)))

E [[(jump Ectrl pt Eval)]]
=λe . (with-control-point

(E [[Ectrl pt ]] e) (λkctrl pt . (install-cont kctrl pt (E [[Eval ]] e))))

Figure 9.19: The semantics of label and jump in FLK!.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

398 CHAPTER 9. CONTROL

(let ((c (cell ’later)))

(let ((n (label bind-n

(begin (cell-set! c bind-n)

1))))

(if (> n 17)

n

(jump (cell-ref c) (* 2 n))))) −−−FL!→ 32

Here, bind-n names the control point that: (1) accepts a value, (2) binds the
value to n, and (3) evaluates the if expression. This control point is stashed
away in the cell c for later use, and then a 1 is returned to the normal flow
of control. Since this value for n is less than 17, the jump is performed, which
returns the value of 2 to the same bind-n control point. This causes n to be
rebound to 2 and the if expression to be evaluated a second time. Continuing
in this manner, the expression behaves like a loop that successively binds n to
the values 1, 2, 4, 8, 16, and 32. The final result is 32 because that is the first
power of two that is greater than 17.

A similar trick can be used to phrase an imperative version of an iterative
factorial procedure in terms of label and jump:

(define factorial

(lambda (n)

(let ((loop (cell ’later))

(num (cell n))

(ans (cell 1)))

(begin

(label top (cell-set! loop (lambda ()

(jump top ’ignore))))

(if (= (cell-ref num) 0)

(cell-ref ans)

(begin

(cell-set! ans (* (cell-ref num) (cell-ref ans)))

(cell-set! num (- (cell-ref num) 1))

((cell-ref loop))))))))

It turns out that mutation is not necessary for exhibiting this sort of looping
behavior via label and jump (see Exercise 9.9).

The above examples of first-class continuations (i.e., control points) are
rather contrived. However, in languages that support them (such as Scheme
and some dialects of ML), first-class continuations provide a powerful mech-
anism by which programmers can implement advanced control features. For
instance, coroutines, backtracking, and multi-threading can all be implemented
in terms of first-class continuations. But any control abstraction mechanism
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this powerful can easily lead to programs that are virtually impossible to under-
stand. After all, it turns the notion of goto-less programming on its head by
making goto labels first-class values! Thus, great restraint should be exercised
when using first-class continuations.

In Scheme, first-class continuations are made accessible by the standard pro-
cedure call-with-current-continuation, which we will abbreviate as cwcc

(another common abbreviation is call/cc.) This procedure can be written in
terms of label and jump as follows:

(define (cwcc proc)

(label here

(proc (lambda (val) (jump here val)))))

The proc argument is a unary procedure that is applied to an escape proce-
dure that, when called, will return a result from the call to cwcc. Here is a
version of prod-list written in terms of cwcc.

(define (prod-list a-list)

(cwcc

(lambda (return)

(letrec ((prod (lambda (lst)

(cond ((null? lst) 1)

((= 0 (car lst)) (return 0))

(else (* (car lst)

(prod (cdr lst))))))))

(prod a-list)))))

The advantage of cwcc as an interface to capturing continuations is that it does
not require extending a language with any new special forms. The binding per-
formed by label is instead handled by the usual binding mechanism (lambda),
and a jump is encoded as a procedure call.

Some languages put restrictions on capturable continuations that make them
easier to reason about and to implement. For example, the Dylan language
provides a (bind-exit (I) E) form that is similar to (cwcc (lambda (I) E))
except that the lifetime of the escape procedure is limited by the lifetime of the
bind-exit form. The catch and throw constructs of Common Lisp are similar
to label and jump except that throw jumps to a named control point declared
by a dynamically enclosing catch. Dynamically declared control points are a
good mechanism for exception handling, which is our next topic of study.

¤ Exercise 9.8 What are the values of the following expressions? (Assume prod-list
is defined as above.)

a. (prod-list ’(2 3 4))

b. (prod-list ’(2 0 yow!))
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c. (prod-list ’(yow! 0 2))

d. (let ((twice (lambda (f x) (f (f x)))))

(let ((f (label bind-f (lambda (new-f)

(jump bind-f new-f)))))

((f twice) (+ 1) 0)))

e. (jump (label a a) (label b b)) ¢

¤ Exercise 9.9 It is possible to implement loops with label and jump without using
mutation. As an example, here is a template for an iterative factorial procedure in FL
+ {label, jump} (recall that FL does not support mutation):

(define (factorial n)

(let ((triple Etriple))
(let ((loop (first triple))

(num (second triple))

(acc (third triple)))

(if (= num 0)

acc

(loop (list loop (- num 1) (* acc num)))))))

(Assume that first, second, and third are the appropriate list accessing procedures.)

Using label and jump, write an expression Etriple such that factorial behaves as

advertised. ¢

¤ Exercise 9.10 Chris Krenshall4 is dissatisfied with FLK!+{label,jump}. He’s never
sure where his thread of control will end up! Therefore, Chris would like you to give
him some control over his control points. Chris wants to have applets — syntactically
distinguished regions of code across which control points cannot be used. Here are the
proposed FLK! extensions:

E ::= . . . | (applet I E) | (label I E) | (jump E1 E2)

Informally, the label and jump constructs work as described above: label estab-
lishes first class control points and jump transfers control to them. However, there is
one important difference, related to the applet construct: it is only legal to jump to
control points created by the current applet, which is determined by the identifier of
the nearest lexically enclosing applet.

For example, the following program is legal and evaluates to 0.

4Recall the C. Krenshall Program for eliminating concurrency from government program-
ming contracts.



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

9.4. NON-LOCAL EXITS 401

(applet hot

(let ((p (applet cool

(proc x

(label cool-return

(+ (if (= x 1)

(jump cool-return 0)

x)

7))))))

(p 1))) −−−eval→ 0

On the other hand, the following program should signal an error:

(applet hot

(let ((p (proc x

(label hot-return

(applet cool

(+ (if (= x 1)

(jump hot-return 0)

x)

7))))))

(p 1))) −−−eval→ error

In this problem you will modify the standard semantics for FLK! to specify the seman-
tics of the applet, label, and jump constructs.

a. Suppose we define an ControlPoint domain and modify the Value domain accord-
ingly:

q ∈ ControlPoint = Applet × Expcont
a ∈ Applet = Identifier
v ∈ Value = ControlPoint+ . . .

Modify the signature of E as necessary to support applets.
b. Give a new definition for top-level. In your semantics, use the special applet
identifer global-applet ∈ Applet no applet has been defined for a label or jump.

c. Give the meaning function clause for (applet I E).

d. Give the meaning function clause for (label I E).

e. Give the meaning function clause for (jump E1 E2). ¢

¤ Exercise 9.11 This exercise explores the semantics of cwcc in more detail:

a. We have shown that cwcc can be written in terms of label and jump. Show how
label and jump can be desugared in a language that provides cwcc.

b. Write a standard style valuation clause for the cwcc primitive.

c. Write a computation style valuation clause for the cwcc primitive. ¢

.
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9.5 Exception Handling

A common reason to alter the usual flow of control in a program is to respond to
exceptional conditions. For example, upon encountering a divide-by-zero error,
the caller of the division procedure may want the computation to proceed with
a large number rather than terminate with an error. Dynamically responding
to exceptional conditions is known as exception handling.

One strategy for exception handling is for every procedure to return values
that are tagged with a return code that indicates whether the procedure is
returning normally or in some exceptional way. The caller can then test for the
return code and handle the situation accordingly. Although popular, the return
code technique is unsatisfactory in many ways. For one, it effectively requires
every call to a procedure to explicitly test for all return codes the procedure could
potentially generate. By treating normal and exceptional returns in the same
fashion, return codes fail to capture the notion that exceptions are generally
perceived as rare events compared to normal returns. In addition, return codes
provide a very limited way in which to respond to exceptional conditions. All
responsibility for dealing with the condition resides in the caller; in particular,
the point at which the condition was generated has been lost.

An alternate way to view exceptional conditions is that procedures can raise
(or signal) an exception as an alternative to returning a value. The immediate
caller may then handle the exception, or it might decline to handle the exception
and instead allow other callers in the current call chain to handle the exception.
There are two basic strategies for handling the exception:

1. In termination semantics, the handler receives control from the signaler
of the exception and keeps it. This is the approach taken by ML’s raise
and handle, Common Lisp’s throw and catch, and CLU’s signal and
except when.

2. In resumption semantics, the handler receives control from the signaler
of the exception but later passes control back to the computation that
raised the exception. Operating system traps usually follow this model.

Some languages (such as CLU) require the caller to explicitly resignal user
exceptions to propagate them up the call chain. In other languages, unhandled
exceptions propagate up the call chain until an appropriate handler is found.
In these languages, programs are implicitly wrapped in a default handler that
handles otherwise uncaught exceptions.

As a concrete example of exception handling, we extend FLK! to accommo-
date a rudimentary resumption-style exception facility:
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E ::= . . . | (raise Iexcept Eval) | (trap Iexcept Ehandler Ebody)

The informal semantics of these constructs is as follows:

• (raise Iexcept Eval) raises an exception named Iexcept with argument Eval .

• (trap Iexcept Ehandler Ebody) evaluates Ebody in such a way that if a raise
of Iexcept is encountered during the evaluation of Ebody , the value of the
raise form is the result of applying the handler procedure computed
by Ehandler to the argument supplied by the raise. If there is more than
one handler with the same name, the one associated with the nearest
dynamically enclosing trap is used. The value of the trap form is the
value returned by Ebody . If Ehandler does not designate a procedure, trap
generates an error.

As an example of exception handling, consider an FL! add procedure that
normally returns the sum of its two arguments, but raises a non-integer ex-
ception if one of its arguments is not an integer:

(define add

(lambda (x y)

(let ((check-integer

(lambda (a)

(if (integer? a) a (raise non-integer a)))))

(+ (check-integer x) (check-integer y)))))

(Even better, we could change the semantics of the + primitive to raise exceptions
rather than generate errors.) Now suppose we use add within a procedure that
sums the elements of a list:

(define sum-list

(lambda (lst)

(if (null? lst)

0

(add (car lst) (sum-list (cdr lst))))))

(sum-list ’(1 2 3)) −−−FL!→ 6

If we call sum-list on a list containing non-integer elements, we can use trap

to specify how these elements should be handled. For example, here is a handler
that treats false as 0, true as 1, and all symbols as 10; elements that are not
booleans or symbols abort with an error:
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(define simple-handler

(lambda (x)

(cond ((boolean? x) (if x 1 0))

((symbol? x) 10)

(else (error not-boolean-or-symbol)))))

(trap non-integer simple-handler

(sum-list ’(5 yes #t))) −−−eval→ 16

(trap non-integer simple-handler

(sum-list ’(5 (yes no) #t))) −−−eval→ error : not − boolean − or − symbol

We will assume that exceptions not handled by any dynamically enclosing traps
are converted into errors by a default top-level exception handler; e.g.:

(sum-list ’(5 #t yes)) −−−eval→ error : non − integer

While the informal semantics for raise and trap given above may seem
like an adequate specification, it harbors some ambiguities. For example, what
should be the result of the following program?

(trap a (lambda (x) (+ 4000 x))

(trap b (lambda (x) (+ 300 (raise a (+ x 4))))

(trap a (lambda (x) (+ 20 x))

(+ 1 (raise b 2)))))

The raise of b invokes a handler that raises the exception a. But which of the
two a handlers should be used?

Once again, formal semantics comes to the rescue. In fact, because complex
control constructs can easily befuddle our intuitions, we look more than ever to
the guidance of formal semantics. Standard semantics is an excellent tool for
precisely wiring down the meaning of complex control constructs like raise and
trap.

Our approach is to treat trap as a binding construct that associates an
exception name with an exception handler in a dynamic environment. An ex-
ception handler is just a procedure. raise looks up the handler associated with
the given exception name in the current dynamic environment and applies the
resulting procedure to the argument of raise.

To express these extensions formally, we will modify the standard semantics
of FLK!. Figures 9.20 and 9.21 summarize the changes needed to accommo-
date raise and trap. Exception handlers are represented as procedure values
that are named in a special environment, Handler-Env. Augmenting compu-
tations with this handler environment treats them as dynamic (as opposed to
lexical) environments. That is, the domain Procedure, which is Denotable →
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c ∈ Computation = Handler-Env → Expcont → Cmdcont
w ∈ Handler-Env = Identifier → Procedure
p ∈ Procedure = Denotable → Computation ; As usual

New auxiliaries for handler environments:

extend-handlers : Handler − Env → Identifier→ Procedure → Handler − Env
=λwI1p . λI2 . if (same-identifier? I1 I2 ) then p else (w I2 ) fi

get-handler : Handler − Env → Identifier→ Procedure =λwI . (w I)

default-handlers : Handler − Env =λI . λp . (err-to-comp I)

New computation auxiliaries:

extending-handlers : Identifier→ Procedure → Computation → Computation
=λIpc . λw . (c (extend-handlers w I p))

getting-handler : Identifier→ (Procedure → Computation)→ Computation
=λIf . λw . (f (get-handler w I) w)

Modifications to other computation auxiliaries:

val-to-comp : Value → Computation =λv . λwk . (k v)

err-to-comp : Error → Computation =λI . λwks . (Error 7→ Expressible I)

with-value : Computation → (Value → Computation)→ Computation
=λcf . λwk . (c w (λv . (f v w k)))

Other computation auxiliaries similarly pass around handler environments.

Figure 9.20: Semantics of raise and trap, Part I.
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Valuation functions (standard version):

E [[(trap Iexcept Ehandler Ebody)]]
=λewk . (E [[Ehandler ]]

e w (test-procedure
(λp . (E [[Ebody ]] e (extend-handlers w Iexcept p) k))))

E [[(raise Iexcept Ebody)]]
=λewk . (E [[Ebody ]] e w (λv . ((get-handler w Iexcept) v w k)))

Valuation functions (computation version):

E [[(trap Iexcept Ehandler Ebody)]]
=λe . (with-procedure (E [[Ehandler ]] e)

(λp . (extending-handlers Iexcept p (E [[Ebody ]] e))))

E [[(raise Iexcept Ebody)]]
=λe . (with-value (E [[Ebody ]] e) (λv . (getting-handler Iexcept (λp . (p v)))))

Figure 9.21: Semantics of raise and trap, Part II.

Computation, is equivalent to the following:

Procedure = Value → Handler − Env → Expcont → Store → Expressible

The auxiliaries extend-handlers, get-handler, and default-handlers are versions
of extend, lookup, and empty-env for Handler-Env. The auxiliaries extending-
handlers and getting-handler capture manipulations of the Handler-Env com-
ponent of the computation in an abstract way. If the computation abstractions
are used, it is not necessary to modify any of the valuation clauses from the
semantics of FLK!. However, valuation clauses written in the standard style
would have to be modified to pass along an extra w argument.

The valuation clauses for trap and raise are presented in both the standard
style and the computation style. trap simply extends the dynamic handler
environment with a new binding and evaluates Ebody with respect to this new
environment. raise invokes the dynamically bound handler on the value of
Ebody . Note that default-handlers initially binds every exception name to a
handler that converts an exception into an error. A handler procedure is called
with the dynamic handler environment in effect at the point of the raise. This
gives rise to the following behavior:
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(trap a (lambda (x) (+ 4000 x))

(trap b (lambda (x) (+ 300 (raise a (+ x 4))))

(trap a (lambda (x) (+ 20 x))

(+ 1 (raise b 2))))) −−−FL!→ 327

(trap a (lambda (x) (* x 10))

(+ 1 (raise a (+ 2 (raise a 4))))) −−−FL!→ 421

Exception handling is an excellent example of the utility of dynamic scoping.
Suppose trap were to bind Iexcept in a lexical environment rather than a dynamic
one. Then raise could only be handled by lexically apparent handlers. It would
be impossible to specify handlers for a procedure on a per call basis.

Termination semantics for exception handlers can be simulated by using
label and jump in conjunction with raise and trap. For example, suppose we
want a call to sum-list to abort its computation and return 0 if the list contains
a non-integer. This can be expressed as follows:

(label exit

(trap non-integer (lambda (x) (jump exit 0))

(sum-list ’(5 yes #t)))) −−−FL!→ 0

Here the handler procedure forces the computation to abort to the exit point
when the symbol yes is encountered.

An alternative to using label and jump in situations like these is to develop
a new kind of handler clause:

(handle Iexcept Ehandler Ebody)

Like trap, handle dynamically binds Iexcept to the handler computed by Ehandler .
But unlike trap handlers, when a handle handler is invoked by raise, it uses
the dynamic environment and continuation of the handle expression rather than
the raise expression. For example:

(handle a (lambda (x) (+ 4000 x))

(handle b (lambda (x) (+ 300 (raise a (+ x 4))))

(handle a (lambda (x) (+ 20 x))

(+ 1 (raise b 2))))) −−−FL!→ 4006

(handle a (lambda (x) (* x 10))

(+ 1 (raise a (+ 2 (raise a 4))))) −−−FL!→ 40

We leave the semantics of handle as an exercise (raise need not be changed).

¤ Exercise 9.12 Sam Antix decides to add the new handle exception handling
primitive to FL! + {raise, trap}. He adds alters the grammar of FL! + {raise, trap}:

(handle Iexcept Ehandler Ebody)
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As we described above, Sam’s new expression is similar to

(trap Iexcept Ehandler Ebody).

Both expressions evaluate Ehandler to a handler procedure and dynamically install
the procedure as a handler for exception Iexcept . Then the body expression Ebody is
evaluated. If Ebody returns normally, then the installed handler is removed, and the
value returned is the value of Ebody .

However, if the evaluation of Ebody reaches an expression

(raise Iexcept E),

then E is evaluated and the handler procedure is applied to the resulting value. With
trap, this application is evaluated at the point of the raise expression. But with
handle, the application is evaluated at the point of the handle expression. In partic-
ular, both the dynamic environment and continuation are inherited from the handle
expression, not the raise expression.

Here is another example besides the one given above:

(handle a (lambda (x) (* x 10))

(+ 1 (raise a (+ 2 (raise a 4))))) −−−eval→ 40

a. Extend the denotational semantics of call-by-value FLK! + {raise, trap} with
a meaning function clause for handle (the meaning function clause for raise
doesn’t need to be changed).

b. Give a desugaring of handle into FL! + {raise, trap, label, jump}. ¢

¤ Exercise 9.13 Ben Bitdiddle, whose company is fighting for survival in the com-
petitive FL! market, has an idea for getting ahead of the competition: adding recursive
exception handlers! He wants to extend FLK! as follows:

E ::= . . . existing FLK! constructs . . .
| (handle Iexcept Ehandler Ebody)
| (rec-handle Iexcept Ehandler Ebody)
| (raise Iexcept Eval)

The handle and raise constructs are unchanged from Exercise 9.12. Informally,
the rec-handle construct has the following semantics: first, Ehandler is evaluated to a
procedure p (it is an error if it evaluates to something that is not a procedure). Next,
Ebody is evaluated; if it raises the exception Iexcept , the procedure p handles it. So far,
rec-handle is identical to handle. However, if the execution of p raises the exception
Iexcept , this exception is handled by p. The exceptions have termination semantics.

Here’s a short example that Ben has prepared for you:

(rec-handle I

(lambda (x)

(if (= x 0) 1 (raise I (- x 1))))

(raise I 5)) −−−eval→ 1
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Give the meaning function clause for (rec-handle Iexcept Ehandler Ebody) (the se-

mantic domains and the meaning function clauses for handle and raise remain un-

changed). ¢

¤ Exercise 9.14 Alyssa P. Hacker really likes the exception system of a certain
Internet applet language. She has decided to add that exception system to her favorite
language, FL!. In particular, she wants to modify the grammar of FLK! as follows:

E ::= . . . existing FLK! constructs (except proc) . . .
| (handle Iexcept Ehandler Ebody)
| (raise Iexcept Eval)
| (finally Ebody Efinally)
| (proc Iexcept I E)
| (try Ebody ((Iexcept I Ehandler)*) Efinally)

Note: To improve the readability of the examples, all the exception identifiers used in
this exercise start with the character %.

The handle and raise constructs are old friends, but the others are new. Here are
their informal semantics:

• (handle Iexcept Ehandler Ebody) establishes an exception handler for exception
Iexcept . First Ehandler is evaluated to a handler procedure. Then Ebody is eval-
uated. If Ebody raises Iexcept , the exception handler is called with the value of
the exception, and the value returned by the handler is returned by the handle
expression. (That is, handle provides termination semantics.)

• (raise Iexcept Eval) passes the value of Eval to the exception handler for Iexcept .
A raise expression never returns a value, because the handle expression provides
termination semantics.

• (finally Ebody Efinally) ensures that Efinally is evaluated. Specifically, it eval-
uates Ebody and either (1) returns its value or (2) propagates the exception it
raises. Whether Ebody returns normally or via an exception, Efinally is evaluated
before finally returns. The value of Efinally is discarded.

For example, the following expression always closes the input file:
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(let ((port (open-input-file "foo.txt")))

(handle %invalid (lambda (value)

(begin

(display "invalid: ")

(display value)

(newline)

’invalid))

(finally (let ((value (read port)))

(if (valid? value)

value

(raise %invalid value)))

(close-input-file port))))

If the file’s contents are valid, the expression returns the file’s contents. Otherwise,
the exception %invalid is raised, the handler prints a message and then returns
the symbol invalid instead of the file’s contents. No matter what happens,
close-input-file is called to clean up.

• (proc Iexcept I E) returns a procedure of one argument. However, the procedure
is guaranteed to raise only exception Iexcept or %illegal-exception. If its body
raises any other exceptions, they are converted to %illegal-exception.

For example, the following procedure raises the %f exception if its argument is
#f. Otherwise it automatically raises the %illegal-exception exception:

(proc %f b (if b (raise %t b) (raise %f b)))

• (try Ebody ((Iexcept I E)*) Efinally) corresponds to the try-catch-finally

construction in a certain unmentionable language. It works like this:

– Ebody is evaluated and, if it doesn’t raise any exceptions, its value is returned
as the value of the try expression. However, if an exception is raised by
Ebody , the (Iexcept I E) clauses are consulted to handle the exception.

– If an exception Iexcept is raised by Ebody , the corresponding variable I is
bound to the value of the exception and the corresponding expression E is
evaluated. The value of the try expression becomes the value of E in this
case.

– Regardless of whether or not an exception is raised by Ebody , the expression
Efinally is evaluated immediately before control leaves the try expression.
Its value is discarded.

As usual, Alyssa has vanished, probably to another Internet startup. She’s left
you with a helper function, insert-procedure. Informally, insert-procedure takes a han-
dler environment, an identifier predicate, and a procedure. It returns a new han-
dler environment that conditionally inserts the procedure at the beginning of the
handler chain: the procedure is executed for any exception that satisfies the cor-
responding identifier predicate and was not caught yet by a handler. For example,
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(insert-procedure w (λIexcept . true) p)returns a handler environment that is like w ex-
cept that p will be called first on every exception. Here is the signature and the definition
of insert-procedure:

insert-procedure : Handler-Env → (Identifier → Bool)
→ Procedure
→ Handler-Env

=λwf p . (λIexcept . if (f Iexcept)
then λδw ′k . (p δ w ′ (λv . ((w Iexcept) δ w ′ k)))
else (w Iexcept)
fi

You may find insert-procedure useful in solving the following problems:

a. Give the meaning function clause for finally.

b. Give the meaning function clause for proc.

c. Give a desugaring for

(try Ebody ((Iexcept 1 I1 E1) . . . (Iexcept n In En)) Efinally)

into handle, raise, proc, and finally. Assume that the handler expression Ei
is permitted to raise only the exception it handles, Iexcept i . If it raises any other
exceptions, they are automatically converted to illegal-exception. ¢

¤ Exercise 9.15 Sam Antix thinks that exception handlers should be able to choose
dynamically between termination or resumption semantics. Sam likes the termination
semantics of handle (Exercise 9.12), but occasionally he would prefer resumption se-
mantics. He decides to extend FL!+{raise, handle} with a new construct (resume E).

E ::= . . . [As before]
| (resume E) [Resume at point of most recent raise]

Informally, (resume E) will cause a handler to resume at the point of the raise
rather than terminating at the point of the handle. resume first evaluates E using
the current dynamic handler environment and then returns control to the point of the
most recent raise with the value of E. Further, any program that does not use resume
should behave just as it would in FL!+{raise, handle}.

Sam came up with some short examples demonstrating his new (resume E) con-
struct:



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

412 CHAPTER 9. CONTROL

(handle exn

(lambda (x) (+ x 2))

(+ 20 (raise exn 1))) −−−eval→ 3

(handle exn

(lambda (x) (resume (+ x 2)))

(+ 20 (raise exn 1))) −−−eval→ 23

(resume 7) −−−eval→ error : no − raise

(let ((f (lambda (x) (resume (+ x 4)))))

(handle exn

(lambda (x) (f (+ x 2)))

(+ 20 (raise exn 1)))) −−−eval→ 27

When resume is invoked, any pending computation in the handler is discarded, including
any other resumes:

(handle exn

(lambda (x) (resume (+ 300 (resume (+ x 2)))))

(+ 20 (raise exn 1))) −−−eval→ 23

(handle exn1

(lambda (x) (+ 50000 (resume (+ x 4))))

(+ 4000 (handle exn2

(lambda (x) (+ 300 (raise exn1 (+ x 2))))

(+ 20 (raise exn2 1))))) −−−eval→ 4307

(handle exn1

(lambda (x) (+ 50000 (resume (+ x 4))))

(+ 4000 (handle exn2

(lambda (x)

(resume (+ 300 (raise exn1 (+ x 2)))))

(handle exn1

(lambda (x) (+ 600000 x))

(+ 20 (raise exn2 1)))))) −−−eval→ 4327

Now handlers can choose between termination and resumption semantics:
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(define example-fctn

(lambda (argument)

(handle exn

(lambda (x) (if (< x 3)

(+ x 300)

(+ 500000 (resume (+ x 4000)))))

(+ 20 (raise exn argument)))))

(example-fctn 2) −−−eval→ 302

(example-fctn 4) −−−eval→ 4024

a. Unfortunately, Sam has fallen ill. You must flesh out his design. You should
extend the standard semantics for FL!+{raise, handle} as follows.
i. Give the signature of E and the definition of the semantic domain Procedure.
ii. Give the meaning function clauses for raise, handle, and resume.

b. The trap construct presented above has resumption semantics. It is possible to
translate FL!+{trap, raise} into FL!+{handle, raise, resume}. We emphasize
that this is a translation between two different languages and not a desugaring
from a language to itself.

The translation of most expressions merely requires translating their subexpres-
sions. For example,

T [[(call E1 E2)]] =(call T [[E1 ]] T [[E2 ]])

Give the translation for trap and raise. ¢

¤ Exercise 9.16 Consider a lexically-scoped, call-by-value variant of FLK, with the
following twist: it has a switch construct that allows a program to both generate and
handle exceptions. Here is the complete grammar:

E ::= L | I | (if E1 E2 E3)
| (proc I EB) | (call E0 E1)
| (switch E)

The idea behind switch is that every expression is implicitly provided with two con-
tinuations called A and B. All expressions pass their return value to the A continuation.
The top level meaning function T L is modified to call E by passing the identity function
as the A continuation (in order to get back the normal result), and an error handler as
the B continuation. Thus, the A continuation usually corresponds to a normal return,
while the B continuation usually corresponds to an exceptional return. We will call
values that are passed to A continuations “A values” and values that are passed to B
continuations “B values.”
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The switch form is used to swap the A and B continuations during the evaluation of
its component expression. switch can be used to both generate and handle exceptions.
Here are two example uses of switch (assuming the usual desugarings):

(define (my-func i j)

(if (< 10 (+ i j)) ; make sure that i+j > 10

(g i j) ; compute the result

(switch "size"))) ; else "size" error

(switch

(let ((bval (switch (my-func 3 4))))

(switch

(if (string-equal? bval "size")

1 ; return 1 for size error

0)))) ; return 0 for other errors

In the last example, the switch around the application of my-func will cause B
values of my-func to be bound to the variable bval. If my-func has an A value (a
normal value) then the switch around my-func will cause execution to bounce out to
the outermost switch, where the A value returned by my-func will be the A value of
the entire expression. If a B value is returned by my-func, the entire expression will
have an A value of either 1 or 0, depending on the B value returned by my-func.

a. Construct the standard semantics for the language described above: Give the
signature of E and the definition of the Procedure domain. Also give the meaning
function clauses for switch and call. Either write out the other meaning function
clauses, or describe how the corresponding clauses from the semantics for FLK!
would be modified.

b. Using your semantics, prove that (switch (switch E)) has the same meaning
as E.

c. Suppose we have a (strict) pair construct to make a pair of two values, and
the operations left and right to select the first and second values of a pair
respectively. Then we might define an FLK!-like raise construct by the following
desugaring:

D(raiseIexceptEval ) = (switch (pair (symbol Iexcept) DEval))

Give a corresponding desugaring for (handle Iexcept Ehandler Ebody). Does your
solution implement termination or resumption semantics? Explain. ¢

Reading

The notion of continuation was developed in the early 1970’s by Christopher
Strachey, Christopher Wadsworth, F. Lockwood Morris, and others. See [SW74]
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which was more recently reprinted in [SW00] (that issue of Higher-Order and
Symbolic Computation was dedicated to Strachey’s work). Subsequently, con-
tinuations played an important role in actor languages [Hew77] and in Scheme
[SS76, Ste78].

For more information on control, continuations, and denotational semantics,
see John Reynolds’s history of continuations [Rey93], David Schmidt’s textbook
on denotational semantics [Sch86b], as well as Joseph Stoy’s coverage of con-
tinuations in denotational semantics [Sto77, esp. pp. 251ff]. Stoy makes the
argument that it is better for expressing the meaning of programs to embed
continuations in the semantics rather than syntactically transforming programs
into continuation passing style and using direct semantics.

For transforming programs into continuation-passing style (which we will
explore further in Chapter 17), see [SF93, FSDF93, SF92].

Continuations can be used to understand other control structures, such as
shift and reset [DF92] and the amb (for “ambiguous”) operator [McC67, Cli82].

For more information on coroutines, see Melvin Conway coroutines [Con63].
See also C. A. R. Hoare’s classic text on Communicating Sequential Processes,
[Hoa85], as well as the occam reference manual [occ95] and the description of
JCSP in [Lea99].
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