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Chapter 11

Concurrency

When you come to a fork in the road, take it.

— Yogi Berra

11.1 Motivation

Thus far, all of the languages we have discussed have been characterized by a
single locus of control that flows through a program in a deterministic fashion.
Assuming all inputs are known in advance, there is only one path that control
can take through the program. This single thread of control can be viewed as a
time line along which all operations performed by the computation are arranged
in a total order. For example, a computation that sequentially performs the
operations A, B, C, and D can be depicted as the following total order:

. . .→ A→ B → C → D → . . .

X → Y means that X is performed before Y .
Control can be visualized as a token that resides on the edges of such a

diagram and moves according to a set of rules. In a simple diagram like the one
above, the only rule is that a token on the input edge to an operation can pass
through the operation and end up on its output edge. This step corresponds
to performing the operation. The path taken by control can be notated by the
sequence of observable actions it performs. If we assume that all operations are
observable, the path taken in this case is ABCD. In the languages we have
considered so far (even those with conditional branching, non-local exits, and
exception handling), every program, given a particular input, has exactly one
sequential control path.
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490 CHAPTER 11. CONCURRENCY

Purely sequential orderings are too rigid for describing all of the computa-
tions we might like to specify. Sometimes it is desirable to specify a relative
order between some operations but leave the ordering of other operations un-
specified. Here is a sample partial order that declares that A precedes B and C
precedes D, but does not otherwise constrain the operation order:

→ fork join→¡¡

@@

A→ B

C → D

@@

¡¡

The diagram introduces two new nodes labeled fork and join. The purpose of
these nodes is to split and merge control paths in such a way that a computation
has a distinguished starting edge and a distinguished ending edge.

The rules governing how control moves through fork and join nodes are
different from the rules associated with the labeled operations. In one step, a
control token on the input edge of a fork node splits into two subtokens on the
output edges of the node. Each subtoken independently moves forward on its
own branch. When tokens are on both input edges of a join node, they merge
into a single token on the output node. If only one input edge to a join has a
token, it cannot move forward until the other edge contains a token. Any node
like join that forces one control token to wait for another is said to synchronize
them.

Together, a control token and the sequential subpath along which it moves
are called a thread. Although fork splits a single thread into two, it is common
to view the original thread as continuing through one branch of the fork and a
new thread as originating on the other branch of the fork.

Programs that may exhibit more than one thread of control are said to
be multi-threaded or concurrent. The interesting feature of concurrency is
that multiple threads represent a partially ordered notion of time. Concurrent
programs are non-deterministic in the sense that control can flow through
them in more than one way. Non-determinism at the level of control is often
exhibited as non-determinism at the level of program behavior: it is possible
for a single program to yield different answers on different executions. While
it is possible to add non-determinism to a purely sequential language1, non-
determinism is most commonly associated with concurrent languages.

1As an example, consider a (choose E1 E2) form that randomly chooses to return the
value of E1 or E2 .
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Suppose that on any step of a multi-threaded computation, only one control
token is allowed to move.2 Then a particular execution of a concurrent program
is associated with the sequence of its observable actions, known as its inter-
leaving. The behavior of the concurrent program is the set of all possible
interleavings that can be exhibited by the program. For example, assuming that
all operations (except for fork and join) are observable, then the behavior of the
branching diagram above is:

{ABCD, ACBD, ACDB, CABD, CADB, CDAB}

The behavior of a concurrent program may be the empty set (no interleavings
are possible), a singleton set (exactly one interleaving is possible), or a set with
more than one element (many interleavings are possible).

We will distinguish concurrency from parallelism.3 In our terminology,
concurrency refers to any model of computation supporting partially ordered
time. In contrast, we use parallelism to refer to hardware configurations that
are capable of simultaneously executing multiple threads on multiple physical
processors. Thus, concurrency is a semantic notion and parallelism is a prag-
matic one. A concurrent program may be executed by time-slicing its threads on
a single processor, or by executing each thread on a separate physical processor.

Concurrent programming languages are important for several reasons:

• Modularity: Multiple threads can be simulated in a sequential language
by interleaving code fragments or by explicitly managing the transfer of
control between program parts. Concurrent languages reap modularity
benefits by abstracting over these idioms. They enhance modularity by
permitting threads to be specified as separate entities that interact with
each other via communication and synchronization. They also separate the
specification of the threads from policy issues (such as scheduling threads
or allocating threads to processors).

For example, consider the interaction between the processor(s) of a com-
puter and its numerous input/output devices (keyboards, mice, disks, tape
drives, networks, video displays, printers, plotters, etc.). Writing a mono-
lithic program to control all these devices would be a recipe for disaster.
Such a program would be hard to understand and modify. In contrast,
representing the controller for each device as a separate thread improves
readability and facilitates the modification of existing controllers as well
as the addition of new ones.

2There are concurrent models in which multiple control tokens can move in a single step,
but we shall not consider these.

3While there is much disagreement about the definition of these terms in the programming
languages community, we will strive to use them consistently here.
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• Specifying Parallelism: Concurrent languages allow programmers to de-
clare which parts of programs can safely be run in parallel on multiple
processors or time-sliced on a single processor. Language implementations
can use this information to take advantage of the available hardware.

• Modelling: The real world can be viewed as a collection of interacting
agents. Concurrent languages are natural for simulating the world, because
they allow each agent to be represented as a thread.

• New programming paradigms: Concurrent languages support programming
paradigms that are cumbersome to express in sequential languages. Con-
sider event-based systems, in which entities generate and respond to events.
Such systems are more straightforward to express in concurrent languages
than sequential languages.

11.2 Threads

We will explore concurrency by providing a precise semantics for a multi-threaded
variant of FL!. It is fairly simple to provide an operational semantics for concur-
rency, and we will use the SOS framework to do so. The reason that operational
semantics approaches to concurrency are the easiest is that they simply incor-
porate the inherent ambiguity about process interleaving into rules, and an SOS
semantics can derive alternative meanings for a program based upon your choice
of transition ordering. An operational semantics does not necessarily give you
any help to find transition orderings that will yield all of the unique meanings
for a given program.

An alternative, more complex approach to modeling concurrency is to treat
the meaning of a program as the set of all possible answers the program can
compute. A denotational semantics of concurrency takes this approach. A de-
notational semantics represents the meaning of a concurrent program as a pow-
erdomain. A powerdomain of D is the set of all subsets of D. Thus, if D is the
set of integers, the powerdomain of D contains all possible sets of integers. A de-
notational approach considers all possible interleavings of program operations to
produce the meaning of a program. We will not pursue denotational approaches
to concurrency further because concurrency is readily described within the SOS
framework. Denotational approaches are complex because the functional nature
of denotational semantics is hard to adapt to a world where functions are one
to many, and interfering concurrent commands produce complex valuation func-
tion constructions. The interested reader can explore denotational approaches
to concurrency to see how they can be adapted to our discussion [Sch86a]).
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11.2.1 MUFL!, a Multi-threaded Language

Our main vehicle for studying concurrency will be MUFL!, a Multithreaded
version of FL!. MUFL! is FL! extended with the following thread constructs:

E ::= ...| (fork E) | (join E) | (thread? E)

• (fork E): Creates a new thread to evaluate E and returns a unique
thread handle identifying the thread.

• (join E): E must evaluate to a thread handle t; otherwise, the expression
is an error. join waits for the thread t to compute a value and then returns
it. While join is waiting for t, the thread t ′ in which the join is executing
is said to be blocked.

join may be called more than once on the same thread. After the first
call to join returns with a value, that value is effectively memoized at the
thread handle for subsequent joins.

• (thread? E): tests whether the value of E is a thread, returning true if
it is and false otherwise.

join and thread? can actually be treated as new primitive operators, and we
will do so below in describing the semantics of these constructs. However, be-
cause fork returns before evaluating its operand, it must be a new special form.

We consider a few simple examples of the new constructs. (join (fork E))
is equivalent to E:

(join (fork (+ 1 2))) −−−−−MUFL!→ 3

A thread handle can be joined more than once:

(let ((c (cell 0)))

(let ((t (fork (begin (cell-set! c (+ 1 (cell-ref c)))

(cell-ref c)))))

(+ (join t) (join t)))) −−−−−MUFL!→ 2

Here is a procedure for summing the leaves of a binary tree that explores
subtrees concurrently:

(define tree-sum

(lambda (tree)

(if (leaf? tree)

(leaf-value tree)

(let ((thread1 (fork (tree-sum (left-branch tree))))

(thread2 (fork (tree-sum (right-branch tree)))))

(+ (join thread1) (join thread2))))))
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Without the forks and joins, the left-to-right operand evaluation order inher-
ited from FL! would specify that the sum of a left subtree be computed before
the right subtree is visited. The order would be overconstrained even if the let
expression were replaced by the result of substituting the fork expressions for
thread1 and thread2:

(+ (join (fork (tree-sum (left-branch tree))))

(join (fork (tree-sum (right-branch tree)))))

The reason is that the result of the first join would have to be computed before
control passed to the second join.

MUFL! programs can exhibit non-determinism. For example, suppose that
display prints (uninterruptably) a symbol, map maps a procedure over a list
to create a new one, and for-each performs a procedure on each element of a
list. Then the following jumble procedure may print any permutation of the
elements of its argument list before returning #u.

(define (jumble lst)

(for-each join

(map (lambda (obj) (fork (display obj)))

lst)))

For instance, (jumble ‘(a b c)) may print any of the six sequences abc, acb,
bac, bca, cab, cba.

The following choose procedure, which may return either one of its two
arguments, underscores the non-deterministic behavior of MUFL!:

(define (choose a b)

(let ((c (cell ’ignore)))

(let ((t (fork (cell-set! c a))))

(begin (cell-set! c b)

(join t)

(cell-ref c)))))

The final value returned by choose depends on the order in which the two cell
assignments are performed. This example exploits what is known as a race
condition. A race condition exists when two operations vie for the use of some
shared resource. In this case, there is contention for the use of the shared cell c,
and the thread that gets the cell last is the one that determines its value.

Threads introduce a new failure mode for programs: deadlock. Deadlock
describes a situation in which program execution cannot proceed because threads
are waiting for each other (or themselves) to complete. Consider the following
expression:
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(let ((thread-cell (cell ’later)))

(begin

(cell-set! thread-cell

(fork (begin (join (cell-ref thread-cell))

1)))

(join (cell-ref thread-cell))))

The forked begin can only return 1 after the thread stored in thread-cell runs
to completion. But the thread stored in thread-cell is the one executing the
begin expression! Since the begin expression can never return, the final join
waits forever in a deadlocked state.

There is also a race condition in this example that shows why debugging
multi-threaded code can be very difficult. In this case, the fork begins the
execution of its begin expression while execution also procedes in the cell-set!.
If the cell-ref in the begin executes before the cell-set! completes, then the
join in the begin expression is an error. If the cell-set! expression wins the
race, then the example deadlocks. In fact, executions that contain the error may
also deadlock, depending on the precise semantics of errors and exceptions in
MUFL!.

11.2.2 An Operational Semantics for MUFL!

Given the subtleties introduced by concurrency, it is more important than ever
to precisely specify the semantics of programs. Here we introduce a complete
SOS for MUFL!. The SOS for MUFL! introduces two domains:

T ∈ Thread-Handle = Intlit
A ∈ Agenda = Thread-Handle → MixedExp

A thread handle is just an integer literal that serves as a unique identifier for
threads. An agenda is a partial function that maps a thread handle to an element
of MixedExp, the domain of intermediate expressions. We assume that the
grammar defining ValueExp for FLK! is extended to include a new intermediate
form, (*thread* T), that represents a first class thread handle value.

V ∈ ValueExp
V ::= . . . [Value Expressions]

| (*thread* T) [Thread Values]

Because an agenda is a partial function, it may be defined only on a subset
of thread handles. dom(A) is the notation for the set of inputs on which A is
defined. We will use the notation A∅ to stand for an agenda that is nowhere
defined and the notation A[T=M] to stand for an agenda that maps T to M
and maps every other T ′ in dom(A) to (A T ′). These notations are useful for
any partial function; in fact, we shall use them for stores as well as agendas.
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Suppose that Ttop is a distinguished thread handle for top-level MUFL!
expressions. Then an SOS for the MUFLK!, the MUFL! kernel, is

〈CF ,⇒ ,FC , IF ,OF 〉

where

CF = Agenda× Store
FC = 〈A[Ttop =V],S〉
IF = λE . 〈A∅[Ttop =E],S∅〉
OF = λ〈A[Ttop =V],S〉 . (output V)

(output (*thread* T)) = thread

(output V) = (outputFLK ! V) where V 6= (*thread* T)

In a configuration, the agenda keeps track of the evaluation of the expression
associated with each thread handle, while the store manages cell states. The
input function maps a top-level expression Etop to a configuration with an empty
store and an agenda whose only thread Ttop evaluates Etop . The transition rules
rewrite the configuration until the top-level expression is evaluated or no more
rules are applicable. If the top-level expression has been rewritten to a value
expression by this point, then a representation of this value is returned. If
the top-level expression is not a value and no more progress is possible, the
computation is deadlocked.

The transition rules for the MUFLK! SOS are summarized in Figure 11.1.
Each rule allows the one-step progress of the expression associated with a

single thread handle. In any configuration, at most one transition is possible at
a given thread handle. However, transitions may be possible at several thread
handles within one configuration, so the rules are non-deterministic.

The [fork] rule allocates a new thread handle for the body of the fork and
returns it to the thread containing the fork expression. fork is the only means
by which threads are created; there is no mechanism for destroying threads
(removing them from the agenda). The [join] rule indicates that the join of a
thread handle T ′ cannot proceed until the expression associated with T ′ has
progressed to a value. join is treated as a primop so that it is not necessary to
specify a progress rule for evaluating its operand. Similarly, thread? is handled
as a primop that determines whether its argument is a thread handle.

Figure 11.1 also presents two meta-rules for deriving MUFLK! rewrite
rules from the rewrite rules for FLK!. The [FLK!-axiom] meta-rule says that
any axiom for rewriting FLK! expressions can be applied to the expression of a
single MUFLK! thread. The [FLK!-progress] meta-rule similarly specifies how
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Rewrite Rules

〈A[T= (fork E)],S〉⇒ 〈A[T= (*thread* T ′)][T ′=E],S〉,
where T ′ 6∈ dom(A)

[fork]

〈A[T= (primop join (*thread* T ′))][T ′=V],S〉
⇒〈A[T=V][T ′=V],S〉 [join]

〈A[T= (primop thread? (*thread* T ′))],S〉
⇒〈A[T= #t],S〉 [thread?-true]

〈A[T= (primop thread? V)],S〉⇒ 〈A[T= #f],S〉,
where V is not of the form (*thread* T ′)

[thread?-false]

Meta-Rules

For each axiom
〈E,S〉⇒ 〈E ′,S ′〉

in the FLK! SOS, include the following axiom in the MUFLK! SOS:
〈A[T=E],S〉⇒ 〈A[T=E ′],S ′〉

[FLK!-axiom]

If X is an FLK expression context and X{E} is the result of filling
the hole of the context with E, then for each FLK! progress rule of
the form

〈E,S〉⇒ 〈E ′,S ′〉
〈X{E},S〉⇒ 〈X{E ′},S ′〉

include the following progress rule in the MUFLK! SOS:
〈A[T=E],S〉⇒ 〈A ′[T=E ′],S ′〉

〈A[T=X{E}],S〉⇒ 〈A ′[T=X{E ′}],S〉

[FLK!-progress]

Figure 11.1: Rewrite rules and meta-rules for MUFLK!.
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to derive MUFLK! progress rules from FLK! progress rules. Note that the
[FLK!-progress] meta-rule uses two agenda meta-variables, A and A ′. This is
necessary for handling antecedent transitions in which an inner fork extends
the agenda with a new thread. If instead A were used on both sides of the
antecedent transition, the effect of a fork nested within an expression could
never be propagated.

For deterministic languages like PostFix and FL!, behavior is defined as
the partial function that maps a program to the unique result determined by the
operational semantics. But in the presence of non-determinism, there may be
more than one result. So it is necessary to extend the notion of behavior to be a
relation between programs and results. Equivalently, we can define behavior as
a total function that maps programs to the powerset of results. In this approach,
behavior maps a program to the set of all the results that can be determined for
the program via the operational semantics.

As an example of the non-determinism of MUFL! programs, consider the
following expression:

(let ((c (cell 0)))

(let ((t (fork (cell-set! c 1))))

(begin (cell-set! c 2)

(join t)

(cell-ref c))))

The configuration representing the state of the computation after the allocation
of the cell and the thread handle is:

〈A∅[Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1=(cell-set! (*cell* L1) 1)],
S∅[L1 =0]〉

(For convenience, we are being somewhat loose in our notation, allowing threads
to name expressions from the full MUFL! language rather than just kernel
expressions.) Figures 11.2 and 11.3 show two possible transition paths that can
be taken from this configuration. The first computes a final value of 1, while
the second computes a final value of 2. Since these are the only two possible
results, the behavior of the expression is {1, 2}.

11.2.3 Other Thread Interfaces

The fork/join mechanism introduced above is only one interface to threads.
Here we discuss some other approaches.
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Transition Path 1:

〈A∅ [Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1=(cell-set! (*cell* L1) 1)],
S∅[L1 =0]〉

∗⇒〈A∅ [Ttop= (begin (join (*thread* T1))

(cell-ref (*cell* L1)))]
[T1=(cell-set! (*cell* L1) 1)],

S∅[L1 =2]

∗⇒〈A∅ [Ttop= (begin (join (*thread* T1)) (cell-ref (*cell* L1)))]
[T1 = #u],

S∅[L1 =1]〉

∗⇒〈A∅[Ttop = (cell-ref (*cell* L1))][T1 = #u],S∅[L1 = 1]〉

∗⇒〈A∅[Ttop = 1][T1 = #u],S∅[L1 = 1]〉

(OF 〈A∅[Ttop = 1][T1 = #u],S∅[L1 = 1]〉) = 1

Figure 11.2: Sample transition paths demonstrating the non-determinism of
MUFL! programs, Part I.
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Transition Path 2:

〈A∅ [Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1=(cell-set! (*cell* L1) 1)],
S∅[L1 =0]〉

∗⇒〈A∅ [Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1 = #u],
S∅[L1 =1]〉

∗⇒〈A∅ [Ttop= (begin (join (*thread* T1)) (cell-ref (*cell* L1)))]
[T1 = #u],

S∅[L1 =2]〉

∗⇒〈A∅[Ttop = (cell-ref (*cell* L1))][T1 = #u],S∅[L1 = 2]〉

∗⇒〈A∅[Ttop = 2][T1 = #u],S∅[L1 = 2]〉

(OF 〈A∅[Ttop = 2][T1 = #u],S∅[L1 = 2]〉) = 2

Figure 11.3: Sample transition paths demonstrating the non-determinism of
MUFL! programs, Part II.
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11.2.3.1 Other thread operations

Many concurrent languages support variants of fork and join. In some lan-
guages, a thread can be joined only once. In such languages, join has the effect
of destroying the thread from the agenda as well as synchronizing, and joining
a thread more than once is an error.

Some languages support other thread operations, such as destroying the
thread, suspending it (temporarily removing it from the agenda), and resuming
it (adding it back to the agenda). Sometimes there is a parent/child relationship
between the thread that contains the fork and the resulting thread. In this
case, thread operations on a parent can affect the children and vice versa. For
example, destroying a parent thread might also destroy all its descendants.

11.2.3.2 Thread Abstractions

There are many useful thread abstractions that can be built on top of fork
and join. For example, it is common to use fork and join to evaluate a
set of expressions concurrently and then manipulate their results when all are
finished. This idiom is captured in the cobegin construct, which is defined by
the following desugaring:

(cobegin E1 ... En)
= (let ((I1 (fork E1))

...

(In (fork En)))

(list (join I1) ... (join In)))

This version of cobegin returns a list of results, but other options are to return
the first value, last value, or the unit value.

A variant on cobegin is a colet construct that binds names to the results
of expressions that are computed concurrently:

(colet ((I1 E1) ... (In En)) Ebody)
= (let ((I1 (fork E1))

...

(In (fork En)))
(let ((I1 (join I1))

...

(In (join In)))

Ebody))

Using colet, the concurrent tree-sum example can be expressed as:
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(define tree-sum

(lambda (tree)

(if (leaf? n)

(leaf-value n)

(colet ((left-sum (tree-sum (left-branch tree)))

(right-sum (tree-sum (right-branch tree))))

(+ left-sum right-sum)))))

11.2.3.3 Futures

A future is a thread that is implicitly joined in any context that needs to
examine its value. (In the context of futures, join is usually called touch.)
Examples of such contexts are operands of strict primitives, the test position of
a conditional, and the operator position of a call. Futures are supported in a
number of Lisp dialects [Hal85, Mil87, For91].

Futures are created by the construct (future E). Using futures, the con-
current tree summation program can be expressed as:

(define tree-sum

(lambda (tree)

(if (leaf? n)

(leaf-value n)

(+ (future (tree-sum (left-branch tree)))

(future (tree-sum (right-branch tree)))))))

Futures are more modular than fork/join because it is possible to sprinkle
futures into a program without having to guarantee that joins are placed
wherever a future might be used. However, in a straightforward implementation,
every touching context must check whether or not a value is a future, and, if it
is, touch it. This overhead is similar to that incurred by memoization in lazy
evaluation.

11.2.3.4 Eager Evaluation

The similarity between futures and lazy evaluation suggests a parameter passing
mechanism in which every argument is implicitly wrapped in a future. This
mechanism is called eager evaluation. We will refer to it as call-by-eager
(CBE) by analogy with call-by-lazy. An example of a language supporting CBE
is Id, a mostly functional language designed to be run on parallel computers
[AN89].

Under CBE, an argument is evaluated concurrently with other arguments
and the body of the procedure. In contrast with CBL, which only evaluates an
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argument if it is used in the body, CBE evaluates the argument whether or not
it is needed.

In a version of MUFL! with CBE parameter passing, the concurrent tree
summation program would be expressed as:

(define tree-sum

(lambda (tree)

(if (leaf? n)

(leaf-value n)

(+ (tree-sum (left-branch tree))

(tree-sum (right-branch tree))))))

Note that this program is indistinguishable from a program in CBV FL. CBE
removes inessential constraints governing evaluation order of expressions and
emphasizes that the only fundamental constraints are induced by data depen-
dencies.

An interesting feature of CBE is that a procedure may return before its
arguments have been evaluated. For example, suppose the following expression
is evaluated under CBE:

(begin (call (lambda (x) (display ’b))

(display ’a))

(display ’c))

Assuming display does not return until the output operation is successful, the
possible displayed outputs of this expression are abc, bac, and bca. In each
case, the fact that the procedure body must be fully evaluated before the call

returns forces b to be displayed before c. However, because the argument x is
never used within the body of the lambda, the a can be displayed at any time,
even after the procedure has returned.

11.3 Communication and Synchronization

Concurrent programs are often patterned after interacting entities in the real
world. Completely independent threads are inadequate for modelling the inter-
actions between such entities. Here we explore various ways in which threads
may interact. We focus on two kinds of interaction:

• Communication: Information computed by one thread often needs to be
transmitted to another thread.

• Synchronization: When concurrently executing threads share state, their
accesses and updates must often be carefully choreographed in order to
achieve a desired effect.
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11.3.1 Shared Mutable Data

Shared mutable data structures (like mutable cells and mutable variables) are
the most obvious mechanisms for inter-thread communication, but they are also
the ones with the most pitfalls. For example, suppose we want to define a counter
that can be incremented by several threads. A straightforward approach is to
define a cell and an associated incrementing procedure:

(define counter (cell 0))

(define increment!

(lambda ()

(begin (cell-set! counter (+ 1 (cell-ref counter)))

(cell-ref counter)))

But then concurrent threads can interact in some nasty ways through the shared
cell. For instance, what are the possible values of a call to the following MUFL!
procedure?

(define test-increment!

(lambda ()

(begin

(cell-set! counter 0)

(colet ((a (increment!))

(b (increment!)))

(+ a b)))))

If one call to increment! executes to completion before the other begins,
the value of this expression is 3. But other results are possible because the
execution of the two calls to increment! may be interleaved. The expression
can return a 2 if the first cell-ref within each increment! executes before
either cell-set!, and can return a 4 if both cell-set!s complete before either
of the second cell-refs within increment! are performed.

The problem here is that concurrency allows the internal operations of two
different calls to increment! to be interleaved. We often want procedures like
increment! to be atomic in the sense that they appear to execute indivisi-
bly with respect to other computations that manipulate the same shared state.
Without some means of guaranteeing atomicity, mutable data is not generally
a reliable communication mechanism between threads. Even simple primitives
like cell-set! and cell-refmay not be atomic, further complicating reasoning
about threads that interact via shared mutable data.
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11.3.2 Locks

The goal of atomicity is to constrain concurrency to avoid undesirable inter-
leaving. Atomicity can be achieved by introducing a lock that guards access to
a logical collection of shared mutable data elements. Typically, a lock can be
“owned” by a single thread in such a way that another thread cannot acquire
the lock until the owning thread determines it is safe to release it. A lock is
like a lockable door to a room that can be used by only one person at a time.
When no one is inside, the door is open to allow the next person to enter. But
upon entering the room, an individual locks the door and only unlocks it upon
leaving.

There are numerous locking schemes for concurrent languages. Here we
extend MUFL! with a simple locking mechanism that has the following interface:

(lock): Return a new lock that is not owned by any thread.

(acquire! E): If the lock l computed by E is not owned by a thread,
acquire possession of the lock. If l is already owned, wait until it is not
owned before acquiring it. It is an error if E does not evaluate to a lock.

(release! E): If the lock l computed by E is owned by the current
thread, then release possession of the lock. It is an error if the current
thread does not own the lock or if E does not evaluate to a lock.

(lock? E): Determine whether the value of E is a lock.

All of these constructs can be regarded as new primitives rather than special
forms.

Using a lock, we can implement an atomic version of increment!:

(define counter (cell 0))

(define counter-lock (lock))

(define increment!

(lambda ()

(begin (acquire! counter-lock)

(cell-set! counter (+ 1 (cell-ref counter)))

(let ((ans (cell-ref counter)))

(begin (release! counter-lock)

ans))))

Since only one thread can own counter-lock at any time, the operations of two
calls to increment! running in separate threads cannot be interleaved. Thus,
the new version of increment! guarantees that (test-increment!) will return
3.
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If a thread “forgets” to release a lock that it owns, or if it releases it at
the wrong time, it is easy to get unintentional deadlocks. For this reason, it
is wise to build some abstractions on top of locks. For example, the following
with-lock procedure takes a lock and a thunk, and executes the thunk while
holding the lock. A result is returned only when the lock is released:

(define with-lock

(lambda (lock thunk)

(begin (acquire! lock)

(let ((ans (thunk)))

(begin (release! lock)

ans)))))

Using with-lock, the atomic version of increment! can be implemented as:

(define increment!

(lambda ()

(with-lock counter-lock

(lambda ()

(begin

(cell-set! counter (+ 1 (cell-ref counter)))

(cell-ref counter))))))

If we want multiple incrementers, it is easy to bundle a lock together with
each cell:

(define make-incrementer

(lambda ()

(let ((c (cell 0))

(l (lock)))

(lambda (msg)

(cond ((eq? msg ’increment!)

(with-lock l

(lambda ()

(begin

(cell-set! c (+ 1 (cell-ref c)))

(cell-ref c)))))

((eq? msg ’reset!)

(with-lock l

(lambda ()

;; Don’t assume CELL-SET! is atomic

(cell-set! c 0))))

(else (error unknown-message))))))

Because each incrementer is equipped with its own lock, the incrementing op-
erations of two separate incrementers can be interleaved, but the incrementing
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operations of two increment!s to the same incrementer cannot be interleaved.
Figure 11.4 presents the rewrite rules for the lock constructs. We assume

that the domain MixedExp of intermediate expressions and the domain Value-
Exp of value expressions have been extended with the form (*lock* L), which
represents a first-class lock value. The location in this form contains either #f

〈A[T= (primop lock)],S〉⇒ 〈A[T= (*lock* L)],S[L= #f]〉,
where L 6∈dom(S)

[lock]

〈A[T= (primop acquire! (*lock* L))],S[L= #f]〉
⇒〈A[T= #u],S[L= (*thread* T)]〉 [acquire!]

〈A[T= (primop release! (*lock* L))],S[L= (*thread* T)]〉
⇒〈A[T= #u],S[L= #f]〉 [release!]

[lock?-true] and [lock?-false] as usual for predicates.

Figure 11.4: The semantics of locks.

(indicating that the lock is currently not owned by a thread) or a thread handle
(indicating which thread owns the lock). Since a lock can only be acquired when
the associated location contains #f and acquiring the lock mutates the location,
a lock can be owned by at most one thread.

11.3.3 Channels

It is tedious to use cells and locks for all instances of communication and syn-
chronization. Sometimes higher order abstractions are better suited for the task.
One very useful abstraction is the channel, a conduit through which values may
be communicated. A channel is a First-In/First-Out (FIFO) queue that can be
accessed by multiple threads. A thread can send! a value to a channel (enqueue
it) or receive! a value from a channel (dequeue the first value from the chan-
nel). Channels have the following synchronization feature built in: an attempt
to receive a value from an empty channel blocks a thread until a value is sent.

Here is a procedural interface to channels (all of these can be primitives):

(channel): Create and return a new channel.

(send! Echan Eval): Send the value computed by Eval over the channel
computed by Echan and return #u. It is an error if the value of Echan is
not a channel.
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(receive! Echan): Receive and return the next value from the channel
computed by Echan . It is an error if the value of Echan is not a channel.

(channel? E): Determine whether the value of E is a channel.

Note that several threads may be sending to, and several threads may be
receiving from, the same channel. It is even possible for a single thread to send
and receive on the same channel.

Channels are an alternative to streams for programming in the “signal pro-
cessing style.” Figure 11.5 shows how to encode stream-like operations with
channels. For example, we can use such operations to find the sum of the squares
of the prime numbers between 0 and 100 as follows:

(let ((c1 (channel))

(c2 (channel))

(c3 (channel)))

(colet ((ignore1 (gen-channel 0

(lambda (x) (+ x 1))

(lambda (x) (> x 100))

c1))

(ignore2 (filter-channel prime? c1 c2))

(ignore3 (map-channel (lambda (x) (* x x)) c2 c3))

(ans (accum-channel 0 + c3)))

ans))

Figure 11.6 presents an operational semantics for channels. We assume that
the domain MixedExp of intermediate expressions and the domain ValueExp
of value expressions have been extended with the form (*channel* L), which
represents a first-class channel value. We also assume that storable values are
extended to include elements

Q ∈ Queue = ValueExp* ,

value sequences that implement the queue underlying a channel.
A few notes:

• The channels described above use unbounded queues. A bounded buffer
is a channel that has an upper size limit. A sending thread blocks if the
queue implementing the buffer is at its maximum size, and will unblock if
the size decreases (due to receive!s).

• In some concurrent languages, there is no buffer associated with a chan-
nel (i.e., the queue size is effectively zero). Instead, a channel defines a
rendezvous point between a sending thread and a receiving thread. The
first thread to reach the rendezvous point must wait for the complemen-
tary thread to arrive. When both threads are at the rendezvous point, a
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(define eoc ’*end-of-channel*)

(define (eoc? s) (sym=? s eoc))

(define (gen-channel first next done? out)

(if (done? first)

(send! out eoc)

(begin (send! out first)

(gen-channel (next first) next done? out))))

(define (map-channel proc in out)

(let ((val (receive! in)))

(if (eoc? val)

(send! out eoc)

(begin (send! out (proc val))

(map-channel proc in out)))))

(define (filter-channel pred in out)

(let ((val (receive! in)))

(if (eoc? val)

(send! out eoc)

(begin (if (pred val) (send! out val) #u)

(filter-channel pred in out)))))

(define (accum-channel null combine in)

(letrec ((loop (lambda (ans)

(let ((val (receive! in)))

(if (eoc? val)

ans

(loop (combine val ans))))))))

(loop null)))

Figure 11.5: Signal processing style procedures implemented with channels.
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〈A[T= (primop channel)],S〉
⇒〈agenda[T= (*channel* L)],S[L= [ ]]〉 [channel]

〈A[T= (primop send! (*channel* L) V)],S[L=Q]〉
⇒〈A[T= #u],S[L= [V] @ Q]〉 [send!]

〈A[T= (primop receive! (*channel* L))],S[L=Q @ [V]]〉
⇒〈A[T=V],S[L=Q]〉 [receive!]

[channel?-true] and [channel?-false] as usual for predicates.

Figure 11.6: The semantics of channels.

value is communicated from sender to receiver, after which both threads
proceed.

• In several concurrent process languages (e.g., Hoare’s CSP and Milner’s
CCS), channels are not first-class values, but are names that must match
up between sending and receiving threads. There are renaming operators
that permit code written in terms of one channel name to use another.

• Some languages support a kind of write-once channel called a single-
assignment cell. Single-assignment cells have the following properties:

– A cell has no initial value.

– A read of the cell blocks until the cell has a value.

– An attempt to write to a cell that has already been written is an
error.

Id’s I-structures are arrays of such cells. Variables in some logic program-
ming languages are similar to single-assignment cells.

Reading
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