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Chapter 17

Compilation

Bless thee, Bottom! bless thee! thou art translated.

— A Midsummer-Night’s Dream, II, i, 124, William Shakespeare

17.1 Why do we study compilation?

Compilation is the process of translating a high-level program into low-level
machine instructions that can be directly executed by a computer. Our goal
in this chapter is to use compilation to further our understanding of advanced
programming language features, including the practical implications of language
design choices. To be a good designer or user of programming languages, one
must know not only how a computer carries out the instructions of a program
(including how data are represented) but also the techniques by which a high-
level program is converted into something that runs on an actual computer. In
this chapter, we will show the relationship between the semantic tools developed
earlier in the book and the practice of translating high-level language features
to executable code.

Our approach to compilation is rather different than the approach taken in
most compiler texts. We assume that the input program is syntactically cor-
rect and already parsed, thus ignoring issues of lexical analysis and parsing that
are central to real compilers. We also assume that type and effect checking
are performed by the reconstruction techniques we have already studied. Our
focus will be a series of source-to-source program transformations that imple-
ment complex high-level naming, state, and control features by making them
explicit in an FL-like intermediate compilation language. In this approach, tra-
ditional compilation notions like symbol tables, activation records, stacks, and
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674 CHAPTER 17. COMPILATION

code linearization can be understood from the perspective of a simple uniform
framework that does not require special-purpose compilation machinery. The
result of compilation will be a program in a restricted subset of the interme-
diate language that is similar in structure to low-level machine code. We thus
avoid details of code generation that are critical in a real compiler. Throughout
the compilation process, efficiency, though important, will take a back seat to
clarity, modularity, expressiveness, and demonstrable correctness.

Although not popular in compiler texbooks, the notion of compilation by
source-to-source transformation has a rich history. Beginning with Steele’s Rab-
bit compiler (1978), there has been a long line of research compilers based on
this approach. (See the reading section at the end of this chapter for more
details.) In homage to Rabbit, we will call our compiler Tortoise.

We study compilation for the following reasons:

• We can review many of the language features presented earlier in this
book in a new light. By showing how they can be transformed into low-
level machine code, we arrive at a more concrete understanding of these
features.

• We will see how type systems, effect systems, and formal semantics can be
applied to the job of compiling a high-level programming language down
to a low-level machine architecture.

• We present some simple ways to implement language features by transla-
tion. These techniques can be useful in everyday programming, especially
if your programming language doesn’t support the features that you need.

• We will see how complex translations can be composed out of many sim-
pler passes. Although in practice these passes might be merged, we will
discuss them separately for conceptual clarity. Some of these passes have
already been mentioned in previous chapters and exercises (e.g., desugar-
ing, assignment conversion, closure conversion, CPS conversion). Here, we
study these passes in more depth, introduce some new ones, and show how
they fit together to make a compiler.

• We will see that dialects of FL can be powerful intermediate languages
for compilation. Many low-level machine details find a surprisingly conve-
nient expression in FL-like languages. Some advantages of structuring our
treatment of compilation as a series of source-to-source transformations on
one such language are as follows:
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– There is no need to describe a host of disparate intermediate lan-
guages.

– A single intermediate language encourages modularity of translation
phases and experimentation with the ordering of phases.

– The result of every transform phase is executable source code. This
makes it easy to read and test the transformation results using a
single existing interpreter or compiler for the intermediate language.

• We will see that the inefficiencies that crop up in the compiler are a good
motivation for studying static semantics. These inefficiencies are solved
by a combination of two methods:

– Developing smarter translation techniques that take advantage of in-
formation known at compile time.

– Restricting source languages to make them more amenable to static
analysis techniques.

For example, we’ll see that dynamically typed languages imply a run-
time overhead that can be reduced by clever techniques or eliminated by
restricting the language to be statically typable.

These overall goals will be explored in the rest of this chapter. We begin
with an overview of the transformation-based architecture of Tortoise and the
languages used in this architecture (Section 17.2). We then discuss the details
of each transformation in turn (Sections 17.3–17.12). We conclude by describing
the run-time environment for garbage collection (Section 17.13).

17.2 Tortoise Architecture and Languages

17.2.1 Overview of Tortoise

The Tortoise compiler is organized into ten transformations that incremen-
tally massage a source language program into code resembling register machine
code (Figure 17.1). The input and output of each transformation are programs
written either in a dialect of FL/R named FL/RTortoise or an FL-like interme-
diate language named Silk. In Figure 17.1, one of the Silk dialects have been
given a special name: Silktgt is a subset of Silk that corresponds to low-level
machine code. We present FL/RTortoise and Silk later in this section. The
Silktgt dialect is described in Section 17.12.
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FL/RTortoisew
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Figure 17.1: Organization of the Tortoise compiler. After desugaring, type
reconstruction, and globalization, a FL/RTortoise source program is translated
into the Silk intermediate language, and the Silk program is gradually trans-
formed into a form that resembles register machine code.
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Each compiler transformation expects its input program to satisfy certain
pre-conditions and produces output code that satisfies certain post-conditions.
These conditions will be stated explicitly in the formal specification of each trans-
formation. They will help us understand the purpose of each transformation,
and why the compiler is sound. A compiler is sound when it produces low-level
code that faithfully implements the formal semantics of the compiler’s source
language. We will not formally prove the soundness of any of the transforma-
tions because such such proofs can be very complex. Indeed, soundness proofs
for some of these transformations have been the basis for Ph.D. dissertations!
However, we will informally argue that the transformations are sound.

Tortoise implements each transform as a separate pass for clarity of pre-
sentation and to allow for experimentation. Although we will apply the trans-
formations in a particular order in this chapter, other orders are possible. Our
descriptions of the transformations will explore some alternative implementa-
tions and point out how different design choices affect the efficiency and seman-
tics of the resulting code. We generally opt for simplicity over efficiency in our
presentation.

17.2.2 The Compiler Source Language: FL/RTortoise

The source language of the Tortoise compiler is a slight variant of the FL/R
language presented in Chapter 14. Recall that FL/R is a stateful, call-by-value,
statically scoped, function-oriented, and statically typed language with type
reconstruction that supports mutable cells, pairs, and homogeneous immutable
lists. The syntax of Tortoise language is presented in Figure 17.2. It differs
from FL/R in three ways:

• It replaces FL/R’s general letrec construct with a more specialized funrec

construct, in which recursively named entities must be manifest abstrac-
tions rather than arbitrary expressions. As noted earlier (see Section 7.1),
this is a restriction adopted in real languages (such as SML) to avoid thorny
issues involving call-by-value recursion. In the context of compilation, we
shall see that this restriction simplifies certain transformations.

• Like the FLAVAR! language studied in Section 8.3, it includes mutable
variables (changed via set!) in addition to mutable cells. These will allow
us to show how mutable variables can be automatically converted into
mutable cells in the assignment conversion transformation.

• It treats begin as a sugar form rather than a kernel form, and uses two
new sugar forms: a let* construct that facilitates the expression of nested
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lets, and a recur form for declaring recursive functions that are immedi-
ately called. The other syntactic sugar forms (scand, scor, and list) are
inherted from FL.

Figure 17.3 presents a contrived but compact FL/RTortoise program that
illustrates many features of the language, such as numbers, booleans, lists, locally
defined recursive functions, higher-order functions, tail and non-tail procedure
calls, and side effects. We will use it as a running example throughout the
rest of this chapter. The revmap procedure takes a procedure f and a list lst
and returns a new list that is the reversal of the list obtained by applying f

to each element of lst. The accumulation of the new list ans is performed
by a local tail recursive loop procedure that is defined using the recur sugar,
which abbreviates the declaration and invocation of a recursive procedure. The
loop procedure performs an iteration in a single state variable xs denoting the
unprocessed sublist of lst. Although ans could easily be made to be a second
argument to loop, here it is defined externally to loop and updated via set! to
illustrate side effects. The example program takes two integer arguments, a and
b, and returns a list of the two booleans ((7 · a) > b) and (a > b). For example,
on the inputs 6 and 17, the program returns the list [true , false ].

Note that all primitive names (such as *, >, and cons) may be used as free
identifiers in a FL/RTortoise program, where they denote global procedures
performing the associated primitive. Thus (primop * E1 E2) may be written
as (* E1 E2) in almost any context. The “almost any” qualifier is required
because these names can be assigned and locally rebound like any other names.
For example, the program

(flr (x y)

(let ((- +))

(begin (set! / *) (- (/ x x) (/ y y)))))

calculates the sum of the squares of x and y.

17.2.3 The Compiler Intermediate Language: Silk

For the intermediate language of our transformation-based compiler, we use
language that we call Silk = Simple Intermediate Language Kernel. Like
FL/RTortoise, Silk is a stateful, call-by-value, statically scoped, function-oriented
language, and it is also a statically typed language with implicit types. How-
ever, Silk has a more expressive type system than FL/RTortoise and, unlike
FL/RTortoise, does not support type reconstruction.
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Kernel Grammar

P ∈ ProgramFL/R

E ∈ ExpFL/R
AB ∈ AbstractionFL/R
L ∈ LitFL/R

I ∈ IdentifierFL/R = usual identifiers
B ∈ BoollitFL/R = {#t, #f}
N ∈ IntlitFL/R = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ PrimopFL/R

P ::= (flr (Ifml*) Ebody)
E ::= L | I | AB | (Erator Erand*) | (primop Oop Earg*)

| (if Etest Ethen Eelse) | (set! Ivar Erhs) | (error I)
| (let ((Iname Edefn)*) Ebody) | (funrec ((Iname ABdefn)*) Ebody)

AB ::= (lambda (Ifml*) Ebody)
L ::= #u | B | N

OFL/R ::= + | - | * | / | % [Arithmetic ops]
| <= | < | = | != | > | >= [Relational ops]
| not | band | bor [Logical ops]
| cell | ^ | := [Mutable cell ops]
| pair | fst | snd [Pair ops]
| cons | car | cdr | null | null? [List ops]

Syntactic Sugar

(begin) −desugar−−−−→ #u

(begin E) −desugar−−−−→ E

(begin E1 Erest*) −desugar−−−−→ (let ((I E1)) (begin Erest*)), where I is fresh

(let* () Ebody) −desugar−−−−→ Ebody

(let* ((I1 E1) IE *) Ebody) −desugar−−−−→ (let ((I1 E1)) (let* (IE *) Ebody))
where IE ranges over bindings of the form (I E).

(recur Ifcn ((I1 E1) . . . (In En)) Ebody)

−desugar−−−−→ (funrec ((Ifcn (lambda (I1 . . .In) Ebody)))
(Ifcn E1 . . . En))

(scand) −desugar−−−−→ #t

(scand E1 Erest*) −desugar−−−−→ (if E1 (scand Erest*) #f)

(scor) −desugar−−−−→ #f

(scor E1 Erest*) −desugar−−−−→ (if E1 #t (scor Erest*))

(list) −desugar−−−−→ (primop null)

(list E1 Erest*) −desugar−−−−→ (primop cons E1 (list Erest*))

Standard Identifiers

Istd ::= O

Figure 17.2: Syntax for FL/RTortoise, the source language of the Tortoise
compiler.
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(flr (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (null)))

(recur loop ((xs lst))

(if (null? xs)

ans

(begin

(set! ans (cons (f (car xs)) ans))

(loop (cdr xs)))))))))

(revmap (lambda (x) (> x b))

(list a (* a 7)))))

Figure 17.3: Running example.

17.2.3.1 The Syntax of Silk

The syntax of Silk is specified in Figure 17.4. Silk is similar to many of
the stateful variants of FL that we have studied, especially FLAVAR!. Some
notable features of Silk are:

• Multi-argument abstractions and applications are hardwired into the ker-
nel rather than being treated as syntactic sugar. As in FL/RTortoise, the
abstraction keyword is lambda. Unlike in FL/RTortoise, Silk applications
have an explicit call keyword.

• Multi-binding let expressions are considered kernel expressions rather
than sugar for applications of manifest abstractions.

• It has mutable variables (changed via set!) and mutable tuples (which
are created via mprod and whose component slots are accessed via mget

and changed via mset!). We treat mget and mset! as “indexed primi-
tives” (mget Sindex) and (mset! Sindex) in which the primitive operator
includes the index Sindex of the manipulated component slot. If we wrote
(primop mget Eindex Emp), this would imply that the index could be cal-
culated by an arbitrary expression Eindex when in fact it must be a positive
integer literal Sindex . So we instead write (primop (mget Sindex) Emp).
Treating mget and mset! as primitives rather than as special constructs
simplifies the definition of several transformations.

• Other data include integers, booleans, and immutable lists. Unlike FL/RTortoise,
Silk does not include cells and pairs; these are modeled via mutable tuples.
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Kernel Grammar

P ∈ ProgramSilk

E ∈ ExpSilk
BV ∈ BindingValueSilk
DV ∈ DataValueSilk
AB ∈ AbstractionSilk
L ∈ LitSilk

I ∈ Identifier = usual identifiers
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
S ∈ Poslit = {1, 2, 3, . . .}
O ∈ PrimopSilk

P ::= (silk (Ifml*) Ebody)
E ::= L | I | AB | (if Etest Ethen Eelse) | (set! Ivar Erhs)

| (call Erator Erand*) | (primop Oop Earg*)
| (let ((Iname Edefn)*) Ebody) | (cycrec ((Iname BVdefn)*) Ebody)
| | (error I)

AB ::= (lambda (Ifml*) Ebody)
BV ::= L | AB | (primop mprod DV*)
DV ::= L |I
L ::= #u | B | N

O ::= + | - | * | / | % [Arithmetic ops]
| <= | < | = | != | > | >= [Relational ops]
| not | band | bor [Logical ops]
| mprod | (mget S) | (mset! S) [Mutable tuples]
| cons | car | cdr | null | null? [List ops]
| ... add data conversion bit ops here ...

Syntactic Sugar

(@mget S Emp) −desugar−−−−→ (primop (mget S) Emp)

(@mset! S Emp Enew) −desugar−−−−→ (primop (mset! S) Emp Enew)

(@O E1 . . . En) −desugar−−−−→ (primop O E1 . . . En), where O 6∈{mget, mset!}
(let* () Ebody) −desugar−−−−→ Ebody

(let* ((I1 E1) IE *) Ebody) −desugar−−−−→ (let ((I1 E1)) (let* (IE *) Ebody))
where IE ranges over bindings of the form (I E).

Figure 17.4: Syntax for Silk, the Tortoise compiler intermediate language.
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• Unlike FL/RTortoise, Silk does not have any globally bound standard
identifiers for procedures like +, <, and cons. This means that all well-
typed Silk programs are closed (i.e., have no free variables).

• Recursion is handled via a cycrec form. Syntactically, cycrec is similar to
FL’s letrec form, except that the definitions appearing in a binding are
restricted to be simple syntactic values in the BindingValue domain: liter-
als, abstractions, and mutable tuple creations. The components in a mu-
table tuple creations are required to be syntactic values in the DataValue
domain: either literals or identifiers. Both BindingValue and DataValue
are restricted subsets of Exp. As we shall see in Section 17.2.3.2, these
syntactic restrictions allow cycrec to specify cyclic data structures and
avoid some thorny semantic issues in the more general letrec construct.
In contrast, FL/RTortoise’s funrec can only specify mutually recursive
procedures, not cyclic data structures.

To improve the readability of Silk programs, we will use the syntactic sugar
specified in Figure 17.4. The @ notation is a more concise way of writing primitive
applications. E.g., (@+ 1 2) abbreviates (primop + 1 2) and (@mget 1 t)

abbreviates (primop (mget 1) t). As in FL/RTortoise, let* abbreviates a
sequence of nested single-binding let expressions. Throughout the rest of this
chapter, we will “resugar” expressions using these abbreviations in all code ex-
amples to make them more readable.

The readability of Silk programs is further enhanced if we assume that
the syntactic simplifications in Figure 17.5 are performed when Silk ASTs are
constructed. These simplifications automatically remove some of the “silly” in-
efficiencies that can be introduced by transformations. In transformation-based
compilers, such simplifications are typically performed via a separate simplifying
transformation, which may be called several times in the compilation process.
However, building the simplifications into the AST constructors is an easy way to
guarantee that the inefficient forms are never constructed in the first place. The
conciseness and readability of the Silk examples in this chapter is due in large
part to these simplifications. Putting all the simplifications in one place means
that individual transformations do not need to implement any simplifications,
so this also simplifies the specification of transformations.

The [empty-let] and [empty-cycrec] rules remove trival instances of let and
cycrec. The [implicit-let] rule treats an application of a manifest lambda as
a let expression. The [eta-lambda] rule performs eta reduction on an ab-
straction. The requirement that Erator be a variable or abstraction is a simple
syntactic constraint guaranteeing that Erator is pure. If Erator is impure, the
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(let () Ebody)−simp−−−→Ebody [empty-let]

(cycrec () Ebody)−simp−−−→Ebody [empty-cycrec]

(call (lambda (I1 . . . In) Ebody) E1 . . . En)

−simp−−−→(let ((I1 E1) . . . (In En)) Ebody)
[implicit-let]

(lambda (I1 . . . In) (call Erator I1 . . . In))−simp−−−→Erator ,
where • Erator is a variable or abstraction;

• FreeIds[[Erator ]] ∩{I1 , . . . , In} = {}.
[eta-lambda]

(let ((I I ′)) Ebody)−simp−−−→ [I ′/I]Ebody ,
where there are no assignments to I or I ′ in the program.

[copy-prop]

(cycrec ((I1 BV1) . . . (Im BVm))

(cycrec ((I1
′ BV1

′) . . . (In
′ BVn

′))

Ebody))

−simp−−−→(cycrec ((I1 BV1) . . . (Im BVm)
(I1

′ BV1
′) . . . (In

′ BVn
′))

Ebody)

,

where ({I1 , . . . , Im} ∪mi=1FreeIds[[BVi ]]) ∩{I1 ′, . . . , In ′} = {}

[combine-cycrecs]

Figure 17.5: Simplifications performed when constructing Silk ASTs.
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simplification is unsound because it could change the order of side effects in
(and thus the meaning of) the program. For example, it is safe to simplify
(lambda (a b) (call f a b)) to f, but is it is not safe to simplify

(lambda (a b) (call (begin (set! c (@+ c 1)) f) a b))

to

(begin (set! c (@+ c 1)) f)

Of course, an lambda cannot be eliminated by [eta-lambda] if Erator mentions
one of its formal parameters, as in

(lambda (a) (call (lambda (b) (@+ a b)) a)).

The [copy-prop] rule performs a copy propagation simplification that is an
important optimization in traditional compilers. This simplification removes a
let that simply introduces one variable to rename the value of another. Recall
that [I ′/I]E denotes the capture-free substitution of I ′ for I in E, renaming
bound variables as necessary to prevent variable capture. In the presence of
assignments involving I or I ′, the simplification can be unsound (see Exercise
17.1), so these are outlawed. The [combine-cycrec] rule combines nested cycrec

expressions into a single cycrec in cases where no variable capture would occur.

The [empty-let], [empty-cycrec], and [implicit-let] simplifications are easy to
perform in any context. The [eta-lambda] and [combine-cycrec] rules require
information about the free identifiers of subexpressions. These can be efficiently
performed in practice if each AST node is annotated with its free identifiers. The
[copy-prop] rule requires global information about assignments. For simplicity,
we assume the Tortoise compiler does not perform [copy-prop] simplifications
until after the assignment conversion stage, when it is guaranteed that there are
no assignments in the entire program.

¤ Exercise 17.1 Consider the following Silk program skeleton:

(silk (a)

(let ((f Efun))
(let ((b a)) Ebody)))

For each of the following scenarios, develop an example in which applying the [copy-
prop] simplification rule to (let ((a b)) Ebody) is unsound:

a. Ebody contains an assignment to a (but not b).

b. Ebody contains an assignment to b (but not a).

c. Ebody contains no assignments to a or b, but Efun contains an assignment to a. ¢
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17.2.3.2 The Dynamic Semantics of Silk

Silk is a statically scoped, call-by-value language. Since Silk is a stateful
language, the order of expression evaluation matters: the subexpressions of a
call, arguments of a primop, and definition expressions of a let are evaluated
in left-to-right.

We have studied the semantics for all Silk constructs previously except for
cycrec. Intuitively, the cycrec form is used to specify recursive functions and
cyclic data structures. For example, Figure 17.6 depicts the cyclic structure
denoted by a sample cycrec expression. As we shall see, the cyclic data aspect
of cycrec comes into play during the closure conversion transformation, where
abstractions are transformed into tuples.

(cycrec ((a 17)

(b (lambda (x) (@mprod x d)))

(c (@mprod d))

(d (@mprod a b c d)))

d)

d: 17 • • •

b: (lambda (x) (@mprod x •)) c: •

Figure 17.6: A sample cycrec expression and the cyclic structure it denotes.

Informally, (cycrec ((I1 BV1) . . . (In BVn)) Ebody) is evaluated in three
stages:

1. First, all the binding value expressions BV1 , . . ., BVn are evaluated. Lit-
erals and abstractions are evaluated normally; as in a letrec, the cycrec-
bound variables are in scope within any abstractions. However, mutable
tuple creations must be handled specially since their components may ref-
erence binding values that have not been determined yet. So only a “skele-
ton” for each mutable tuple is created. Such a skeleton has the number of
slots specified by the creation form, but each slot is initially empty (i.e., is
an unassigned location). For example, in Figure 17.6, the first stage binds
c to a mutable tuple skeleton with one slot and d to a skeleton with four
slots.
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2. Next, the slots of each mutable tuple skeleton are filled in. Recall that mu-
table tuple binding values have the form (@mprod DV1 . . . DVk). Each
data value DVi is evaluated and is stored in the ith slot of the mutable
tuple. Some data values may include references to variables declared by
the cycrec being processed, but that’s OK since these denote values al-
ready determined during the first stage. For the cycrec in Figure 17.6,
the second stage fills in the single slot of the skeleton in c with a reference
to the d skeleton, and fills in the four slots of d with (1) the number 17,
(2) the procedure named by b, (3) the skeleton named by c, and (4) the
skeleton named by d. At the end of the second stage, all binding values
have been completely fleshed out.

3. Finally, the body expression Ebody is evaluated in a scope where the cycrec-
bound variables denote the values determined in the second stage.

These three stages are formalized in the denotational semantics for cycrec
presented in Figure 17.7. In the E clause for cycrec, the first stage is modeled
by the creation of the triple 〈efix , sfix , 〈in1fix , . . . , innfix 〉〉, where:

• efix is the initial environment e extended with bindings of the cycrec-
bound variables I1 , . . ., In to locations holding the binding values for
BV1 , . . ., BVn . In the BV clause for mprod, the returned binding value
is a mutable tuple skeleton, since the locations returned by fresh-locs are
initially not filled in.

• sfix is an extension to the initial store s in which locations for the skeletons
and environment bindings have been allocated.

• 〈in1fix , . . . ,innfix 〉 is a tuple of initializer functions associated with each
binding value. For mutable tuple creations, these describe how a skeleton
should be filled in during the second stage. For literals and abstractions,
the associated initializer does nothing.

It is necessary to calculate this triple in the context of a fixed point computation
so that abstractions appearing in a binding value are evaluated relative to the
fixed point environment efix containing bindings for each of the cycrec-bound
variables.

The second stage of evaluation is modeled by the expression
(
init [in1fix , . . . , innfix ] efix sfix

)
,

which fills in each of the mutable tuple skeletons by invoking the binding value
initializers on the extended environment and current store. The third stage of
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c ∈ Computation = Store → (Expressible × Store)
δ ∈ Denotable = Location
σ ∈ Storable = Value

mt ∈ MProd = Location*
p ∈ Procedure = Denotable* → Computation
v ∈ Value = Procedure + MProd + . . .
in ∈ Initializer = Environment → Store → Store
vi ∈ VI = Value × Initializer

extend* : Identifier*→ Denotable*→ Environment → Environment
extend* [ ]Identifier [ ]Denotable e = e
extend* (I1 . Irest*) (δ1 . δrest*) e = extend* Irest* δrest* ([δ : e]I)

assign* : Location*→ Storable*→ Store → Store
assign* [ ]Location [ ]Storable s = s
assign* (l1 . lrest*) (σ1 . σrest*) s = assign* lrest* σrest* (assign l σ s)

init : Initializer*→ Environment → Store → Store
init [ ]Initializer e s = s
init (in1 . inrest*) e s = init inrest* e (in e s)

BV : BindingValue→ Environment → Store → (Value × Store × Initializer )
BV[[L]] e s = 〈L[[L]], s, λe ′s ′ . s ′〉
BV[[(lambda (I*) Ebody)]] e s =
〈(Procedure 7→ Value (λδ* . E [[Ebody ]](extend* I* δ* e))), s, λe ′s ′ . s ′〉

BV[[(primop mprod DV1 . . . DVn)]] e s =
let 〈l*, s ′〉 be (fresh-locs n s)
in 〈(MProd 7→ Value l*), s ′,

λe ′ . with-values (E*[[[DV1 , . . . ,DVn ]]] e ′) (assign* l*) 〉

BV* : BindingValue*→ Environment → Store → ((Value × Initializer ) *× Store)
BV* [ ]BindingValue e s = s
BV* (BV1 . BVrest*) e s =
let 〈v1 , s1 , in1 〉 be BV BV1 e s
in let 〈vi rest , sn 〉 be BV* BVrest e s1 in 〈〈v1 , in1 〉 . vi rest , sn〉

E [[(cycrec ((I1 BV1) . . .(In BVn)) Ebody)]] =
λes . let 〈efix , sfix , 〈in1fix , . . . , innfix 〉〉 be

fixEnvironment×Store×(Initializer n )
(λ〈efix , sfix , 〈in1fix , . . . , innfix 〉〉 .
let 〈[〈v1 , in1 〉, . . . , 〈vn , inn 〉], s ′〉 be (BV* [BV1 , . . . ,BVn ] efix s)
in let 〈[l1 , . . . , ln ], s ′ ′〉 be (fresh-locs n s ′)

in 〈[I1 : l1 ]. . .[In : ln ]e,
assign* [l1 , . . . , ln ] [v1 , . . . , vn ] s

′ ′,
〈in1 ,. . .,inn〉〉

in E [[Ebody ]] efix
(
init [in1fix , . . . , innfix ] efix sfix

)

Figure 17.7: Denotational semantics of cycrec.
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evaluation is modeled by evaluating Ebody relative to the extended environment
and the store resulting from the second stage.

Syntactically, cycrec is just a restricted form of letrec, but semantically
it is subtly different. In cases where the binding values are restricted to literals
and abstractions, the two forms have the same behavior. But their behavior
can differ when binding values include mutable tuples. The cycrec form allows
the creation of mutually recursive mutable tuples that cannot be expressed via
letrec. For instance, if we replace the cycrec by letrec in Figure 17.6, the ex-
ample would denote an error (or bottom, depending on which letrec semantics
is used). There is an unresolvable cyclic dependency between the letrec-bound
name c (whose definition expression requires the value of d) and the letrec-
bound name d (whose definition expression requires the value of c), as well as
a cyclic dependency of d on itself. Note that b is not problematic because the
abstraction can be evaluated without immediately requiring the value of the d

referenced in its body.

The syntactic restrictions of cycrec circumvent some of the thorny seman-
tic issues in letrec. By construction, BindingValue expressions do not have
any side effects (other than allocating mutable tuple skeletons), so issues in-
volving the side effects in letrec bindings (see Section ??) are avoided. Fur-
thermore, the restrictions guarantee that every cycrec-bound variable denotes a
non-bottom value node in a collection of potentially cyclic abstraction and muta-
ble tuple nodes. They prohibit nonsensical examples like (cycrec ((a a)) a),
in which there is no non-trivial value denote by a.

¤ Exercise 17.2 Consider a new form (mskel N) that creates a mutable tuple

skeleton with N unassigned slots. Show that in Silk+{mskel}, cycrec can be defined
as syntactic sugar involving mskel and mset!. It may be helpful to define some auxiliary

functions on BindingValue forms that you use in your desugaring. ¢

17.2.3.3 The Static Semantics of Silk

Silk is an implicitly typed language using the types in Figure 17.8 and type
rules in Figure 17.9. Silk types differ from the FL/RTortoise types as follows:

• they include mutable product types (mprodof) in place of cell types (cellof)
and pair types (pairof). The mprodof syntax allows an optional ... at
the end, which stands for an unknown number of additional slots of un-
known type. The [mprod-v] subtyping rule allows any number of mprod
component types to be “forgotten”. It turns out that this will be important
for the closure conversion stage.
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Types

T ∈ Type
ν ∈ Nonce-Type
T ::= unit | int | bool | char | I | ν

| (listof T) | (mprodof T* [...])
| (-> (Targ*) Tbody) | (tletrec ((Iname Tdefn)*) Tbody)
| (forall (I*) T) | (exists (I*) T)

Subtyping

(mprodof T1 . . . Tn) v (mprodof T1 . . . Tk ...), where n ≥ k [mprod-v]

Other subtyping rules are as usual.

Figure 17.8: Silk types.

• they include universal types (forall, Section 13.2) and existential types
(exists, Section 15.2).

• they include nonce types (Section 15.3), which are used here to handle
elimination of existential types.

• they include recursives types (tletrec). These are useful for giving types
to the cyclic data structures provided by cycrec. For instance, the cycrec
expression in Figure 17.6 can be given the type

(tletrec ((p (mprodof int

(forall (t) (-> (t) (mprodof t p)))

(mprodof p)

p)))

p)

Figure 17.9 presents type rules for implicitly typed constructs that are analogs
to many of the rules for the corresponding explicitly typed constructs we have
studied earlier. The most interesting rules are for introduction and elimination
of universal and existential types, which are much simpler without type annota-
tion syntax like plambda and pcall (for universals) and pack and unpack (for
existentials). In the implicitly typed setting, the duality between universal and
existential types is much clearer. In particular, note the similarity between the
[∀-elim] rule and the [∃-intro] rule.

A a value with universal type can be introduced anywhere and then later be
implicitly projected at various types. For example, in
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` #u : unit [unit] ` N : int [int] ` B : bool [bool] ` H : char [char]

` (error I) : T [error] A ` I : A(I), where I∈dom(A) [var]

A ` Erhs : A(I)
A ` (set! I Erhs) : unit

, where I∈dom(A) [assign]

A ` Etest : bool ; A ` Econ : T ; A ` Ealt : T
A ` (if Etest Econ Ealt) : T

[if ]

A[I1 :T1, . . ., In :Tn ] ` Ebody : Tbody
A ` (lambda (I1 . . . In) Ebody) : (-> (T1 . . . Tn) Tbody)

[->-intro]

A ` Erator : (-> (T1 . . . Tn) Tresult) ; ∀ni=1 . A ` Ei : Ti
A ` (call Erator E1 . . . En) : Tresult

[->-elim]

∀ni=1 . A ` Ei : Ti ; A[I1 :T1, . . ., In :Tn ] ` Ebody : Tbody
A ` (let ((I1 E1) . . . (In En)) Ebody) : Tbody

[let]

∀ni=1 . A ′ ` BVi : Ti ; A ′ ` Ebody : Tbody
A ` (cycrec ((I1 BV1) . . . (In BVn)) Ebody) : Tbody

[cycrec]

where A ′=A[I1 :T1, . . ., In :Tn ]

Astd ` Oname : (-> (T1 . . . Tn) Tresult) ; ∀ni=1 . A ` Ei : Ti
A ` (primop Oname E1 . . . En) : Tresult

[primop]

A ` E : T
A ` E : (forall (I1 . . . In) T)

[∀-intro]

where E is pure [purity restriction]
{I1 , . . . , Ik} ∩ {(FTV A(I)) | I ∈ FreeIds[[E]]} = {} [import restriction]

A ` E : (forall (I1 . . . In) T)
A ` E : ([Ti/Ii ]ni=1) T

[∀-elim]

A ` E : ([Ti/Ii ]ni=1) T
A ` E : (exists (I1 . . . In) T)

[∃-intro]

where {I1 , . . . , Ik} ∩ {(FTV A(I)) | I ∈ FreeIds[[E]]} = {} [import restriction]

A ` E : (exists (I1 . . . In) T)
A ` E : ([νi/Ii ]ni=1) T

, where ν1 , . . ., νn are fresh nonce types. [∃-elim]

A ` E : T
A ` E : T ′ , where T v T ′ [subtype]

{I1 : int,. . .,In : int} ` Ebody : T
` (silk (I1 . . . In) Ebody) : T

[prog ]

Figure 17.9: Silk type rules.
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(let ((id (lambda (x) x)))

(call (call id id) 3)),

(lambda (x) x) can be given the type (forall (t) (-> (t) t)), and this
type can be implicitly projected on (-> (int) int) for the first occurrence of
id and projected on int for the second occurrence of id.

In Silk, existential types are particularly useful for describing structures
that combine procedures with explicit environment components. As we shall
see in Section 17.10, such structures are called closures. Consider the following
expression Eclo1 :

(lambda (b)

(let ((c1 (@mprod (lambda (env1)

(+ (@mget 1 env1) (@mget 2 env1))))

(@mprod 4 5))

(c2 (@mprod (lambda (env2)

(if env2 1 0))

b)))

(let ((c (if b c1 c2)))

(call (@mget 1 c) (@mget 2 c))))).

The variables c1 and c2 name tuples whose first component is a procedure that
expects the second component of the tuple (its “environment”) as an argument.
The expression Eclo1 applies the first component of one of these tuples to the
second component of the same tuple. Even though the two environments have
very different types (the first is a pair of integers; the second is a boolean), Eclo1

is intuitively a well-typed expression that denotes an integer. This can be shown
formally by giving both c1 and c2 the following existential type:

Tclo1 = (exists (envty) (mprodof (-> (envty) int) envty))

This type captures the essential similarity between the tuples (both are tuples
in which invoking the first component on the second yields an integer) while
hiding the inessential details (the types of the two environments are different).

The nonce types that are introduced in the [∃-elim] rule serve the role of
the user-specified abstract type name Ity in the explicitly typed expression form
(unpackexist Epkg Ity Iimpl Ebody). No export restriction is necessary here be-
cause the freshness condition in [∃-elim] guarantees that the nonces introduced
at different elimination nodes in a type derivation tree will be distinct. This
makes it impossible for a nonce introduced by one existential elimination to
masquerade as a nonce from another elimination. The subexpression

(let ((c (if b c1 c2)))

(call (@mget 1 c) (@mget 2 c)))



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

692 CHAPTER 17. COMPILATION

of Eclo1 is well-typed if c has type Tclo1 and the existential is eliminated to
yield (mprodof (-> (ν1) int) ν1) before the call is type-checked. Note that
rewriting the subexpression to

(call (@mget 1 (if b c1 c2)) (@mget 2 (if b c1 c2)))

yields an expression that is not well-typed, since the existential type Tclo1 would
have to be eliminated independently at each if expression, and the nonce types
introduced for these two eliminations would necessarily be incompatible.

The exists type is not powerful enough to describe certain types of closure
representations that will be introduced in the Tortoise compiler. Consider the
following expression Eclo2 , which is a slight variation on Eclo1 :

(lambda (b)

(let ((c3 (@mprod (lambda (clo3)

(+ (@mget 2 clo3) (@mget 3 clo3))))

4

5)

(c4 (@mprod (lambda (clo4)

(if (@mget 2 clo4) 1 0))

b)))

(let ((c (if b c3 c4)))

(call (@mget 1 c) c)))).

In this expression, the procedure in the first component of each tuple takes the
whole tuple as its argument. Again, we expect Eclo2 to be well-typed with type
int, but it is challenging to develop a single existential type that abstracts over
the differences between c3 and c4. Such a type should presumably look like

(tletrec ((cloty (mprodof (-> (cloty) int) <???>))) cloty),

but how can can we flesh out the <???>?. In c3, <???> stands for two integer
slots in a mprodof type, while in in c4 it stands for a single boolean slot.

To handle this situation, Silk includes mutable product types of the form
(mprodof T1 . . . Tn ...). The first set of ellipses, written “. . .”, is a met-
alanguage abbreviation for all the types between T1 and Tn . But the set of
second ellipses, written “...”, is an explicit notation in the Silk type syntax
that stands for a type variable that is existentially quantified over an unknown
number of unknown types. The subtyping rule [mprod-v] allows any number of
component types at the end of an mprodof to be replaced by the ellipses. Types
of this form can be introduced into a type derivation via the [subtype] rule. For
example, since c3 has the type

(tletrec ((cloty (mprodof (-> (cloty) int) int int))) cloty),



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 693

it also has the following type via [subtype] rule:

(tletrec ((cloty (mprodof (-> (cloty) int) ...))) cloty).

Since c4 can also be given this type, c can also be given this type, and Eclo2 can
be shown to be well-typed with type int.

The fact that existential types may be introduced anywhere means that a
given Silk expression may have many possible types. For example, (@mprod 1 #t)

can be given all the following types:

(mprodof int bool)

(exists (t) (mprodof t bool))

(exists (t) (mprodof int t))

(exists (t1 t2) (mprodof t1 t2))

(exists (t) t)

Similar comments hold for universal types. For example, all of the following
types can be assigned to (@mprod (lambda (x) x) (lambda (y) 3))):

(mprodof (-> (bool) bool) (-> (int) int))

(mprodof (-> (int) int) (-> (bool) int))

(mprodof (forall (t) (-> (t) t)) (-> (char) int))

(mprodof (-> (char) char) (forall (t) (-> (t) int)))

(mprodof (forall (s) (-> (s) s)) (forall (t) (-> (t) int)))

(forall (t) (mprodof (-> (t) t) (-> (t) int)))

(forall (s t) (mprodof (-> (s) s) (-> (t) int)))

Indeed, for implicit type systems with full universal and/or existential types,
there is not even a notion of “most general” type, so that type reconstruction
in such systems is impossible in general [Wel99]. So Silk, unlike FL/RTortoise,
is not a type reconstructable language.

What’s the point of considering Silk to be an implicitly typed language if
the types cannot be automatically reconstructed?

• The types of the restricted set of Silk programs manipulated by the com-
piler can be automatically determined. Although reconstruction on ar-
bitrary Silk programs is not possible, when a FL/RTortoise program P
(which is reconstructable) is initially translated to a Silk program P ′,
it is possible to automatically transform the type derivation for P into a
type derivation for P ′. So the initial Silk program P ′ is guaranteed to
be well-typed. Furthermore, for each of the Silk transformations, it is
possible to transform a type derivation of the the input program into a
type derivation for the output program. So each transform preserves well-
typedness as well as runtime behavior. Note that this approach requires
explicitly passing program type derivations through each transform along
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with the program.

• The fact that programs are well-typed in each Tortoise transformation
implies important invariants that can be used by the compiler. For exam-
ple, all well-typed Silk programs are closed, so a transform never needs
to handle the case of a global free variable. When the compiler processes
the Silk expression (if E1 0 (@+ E2 E3)), there is no question that
E1 denotes a boolean value and E2 and E3 denote integers. There is no
need to handle cases where these expressions might have other types. The
compiler uses the fact that each Silk program is implicitly well-typed to
avoid generating code for certain run time error checks (see Section 17.12).

Many modern research compilers use so-called typed intermediate lan-
guages (TILs) that carry explicit type information (possibly including effect,
flow, and other analyses information) through all stages of the compiler. In these
systems, program transformations transform the types as well as the terms in
the programs. In addition to the benefits sketched above, the explicit type infor-
mation carried by a TIL can be inspected to guide compilation (e.g., determining
clever representations for certain types) and can be used to implement run-time
operations (such as tag-free garbage collection and checking safety properties of
dynamically linked code). It also serves as an important tool for debugging a
compiler implementation: if the output of a transformation doesn’t type check,
the transformation has a bug!

Unfortunately, TILs tend to be very complex. Transforming types in sync
with terms can be challenging, and the types in the transformed programs can
quickly become so large that they are nearly impossible to read. In the interests
of pedagogical simplicity, our Silk intermediate language does not have explicit
types, and we only describe how to transform terms and not types. Nevertheless,
we maintain the TIL “spirit” by (1) having Silk be an implicitly typed language
and (2) imagining that program type derivations are magically transformed by
each compiler stage. For more information on TILs, see the reading section.

17.2.4 Purely Structural Transformations

Most of the FL/RTortoise and Silk program transformations that we shall
study can be described by functions that traverse the abstract syntax tree of
the program and transform some of the tree nodes but leave most of the tree
nodes unchanged. We will say that a transformation is purely structural for
a given kind of tree node if the result of applying it to that node results in the
same kind of node whose children are transformed versions of the chidren of the
original node.
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We formalize this notion for Silk transformations via the mapsubSilk func-
tion defined in Figure 17.10. This function returns a copy of the given Silk
expression whose immediate subexpressions have been transformed by a given
transformation tf . A Silk transformation is purely structural for a given kind
of node if its action on that node can be written as an application of mapsubSilk .

tf ∈ TransformSilk = ExpSilk → ExpSilk

mapsubSilk : ExpSilk → TransformSilk → ExpSilk

mapsubSilk [[L]] tf = L

mapsubSilk [[I]] tf = I

mapsubSilk [[(error Imsg)]] tf = (error Imsg)

mapsubSilk [[(set! Ivar Erhs)]] tf = (set! Ivar (tf Erhs ))

mapsubSilk [[(if Etest Ethen Eelse)]] tf = (if (tf Etest ) (tf Ethen ) (tf Eelse))

mapsubSilk [[(lambda (I1 . . . In) Ebody)]] tf = (lambda (I1 . . . In) (tf Ebody))

mapsubSilk [[(call Erator E1 . . . En)]] tf = (call (tf Erator ) (tf E1 ) . . . (tf En ))

mapsubSilk [[(let ((I1 E1) . . . (In En)) Ebody)]] tf
= (let ((I1 (tf E1 )) . . . (In (tf En ))) (tf Ebody))

mapsubSilk [[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] tf
= (cycrec ((I1 (tf BV1 )) . . . (In (tf BVn ))) (tf Ebody))

mapsubSilk [[(primop O E1 . . . En)]] tf = (primop O (tf E1 ) . . . (tf En ))

Figure 17.10: The mapsubSilk function simplifies the specification of purely
structural transformations.

In the cycrec clause for mapsubSilk , we take the liberty of applying the
transformation tf directly to the binding values BV1 . . . BVn . Since binding
values are a restricted subset of expressions, it is sensible for the input of tf to
be a binding value, though technically there should be some sort of inclusion
function that converts the binding value to an expression. We will omit such in-
clusion functions for elements of the Abstraction, BindingValue, and DataValue
domains throughout our study of transformations in the Tortoise compiler.
More worrisome in the cycrec case is the output of (tf BVi). If the result is
not in the BindingValue domain, then the cycrec form is not syntactically well-
formed. So whenever mapsubSilk is applied to cycrec forms, we must argue that
tf maps elements of BindingValue to elements of BindingValue.

As an example of mapsubSilk , consider a transformation IT that rewrites
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every occurrence of (if (primop not E1) E2 E3) to (if E1 E3 E2). Since
Silk expressions are implicitly well-typed, this is a safe transformation. The
fact that IT is purely structural on almost every kind of node is expressed via
a single invocation of mapsubSilk in the following definition:

IT : ExpSilk → ExpSilk

IT [[(if (primop not E1) E2 E3)]] = (if (IT [[E1 ]]) (IT [[E3 ]]) (IT [[E2 ]]))
IT [[E]] = mapsubSilk [[E]] IT , for all other expressions E.

It is not hard to show that IT transforms every binding value to a binding value,
so mapsubSilk is sensible for cycrec.

The mapsubSilk function only works for transforming one Silk expression
to another. It is straightforward to define a similar mapsubFL/R function that
transforms one FL/RTortoise expression to another; we will use this in the
globalization transform.

When manipulating expressions, it is sometimes helpful to extract from
an expression a collection of its immediate subexpressions. Figure 17.11 de-
fines a subexpsFL/R function that returns a sequence of all children expressions
of a given FL/RTortoise expression. It is straightforward to define a similar
subexpsSilk function for Silk expressions.

subexpsFL/R : ExpFL/R →
(

ExpFL/R*
)

subexpsFL/R[[L]] = [ ]

subexpsFL/R[[I]] = [ ]

subexpsFL/R[[(error Imsg)]] = [ ]

subexpsFL/R[[(set! Ivar Erhs)]] = [Erhs ]

subexpsFL/R[[(if Etest Ethen Eelse)]] = [Etest ,Ethen ,Eelse ]

subexpsFL/R[[(lambda (I1 . . . In) Ebody)]] = [Ebody ]

subexpsFL/R[[(Erator E1 . . . En)]] = [Erator ,E1 , . . . ,En ]

subexpsFL/R[[(primop O E1 . . . En)]] = [E1 , . . . ,En ]

subexpsFL/R[[(let ((I1 E1) . . . (In En)) Ebody)]]
= [E1 , . . . ,En ,Ebody ]

subexpsFL/R[[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]]
= [BV1 , . . . ,BVn ,Ebody ]

Figure 17.11: The subexpsFL/R function returns a sequence of all immediate
subexpressions of a given FL/RTortoise expression.
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17.3 Transform 1: Desugaring

The first pass of the Tortoise compiler performs desugaring, converting the
convenient syntax of FL/RTortoise into a simpler kernel subset of the lan-
guage. The advantage of having the first transformation desugar the program is
that subsequent analyses and transforms are simpler to write and prove correct
because there are fewer syntactic forms to consider. Additionally, subsequent
transforms also do not require modification if the language is extended or altered
through the introduction of new syntactic shorthands.

We will provide preconditions and postconditions for each of the Tortoise
transformations. In the case of desugaring, these are:

Preconditions: The input to the desugaring transform must be a syntac-
tically correct FL/RTortoise program in which sugar forms may occur.

Postconditions: The output of the desugaring transform is a syntacti-
cally correct FL/RTortoise program in which there are no sugar forms.

Of course, another postcondition we expect is that the output program should
have the same behavior as the input program! This is a fundamental property
of each pass that we will not explicitly state in every postcondition.

The desugaring process for FL/RTortoise is similar to one described for FL
in Figures 6.3 and 6.4, so we will not repeat the details of the transformation
process here. However, since the actual syntactic abbreviations supported by
FL and FL/RTortoise are rather different, we highlight the differences:

• In FL, multi-argument procedures and procedure calls are implicitly cur-
ried and desugar into abstractions and applications of single-argument pro-
cedures. But in FL/RTortoise, multi-argument procedures and procedure
calls are supported by the kernel language and are not curried.

• In FL, let is sugar for application of a manifest lambda, but it is consid-
ered a kernel form in FL/RTortoise.

• In FL, the multi-recursion letrec construct desugars into the single-
recursion rec. In FL/RTortoise, the multi-recursion funrec is a kernel
form.

• In FL, the desugaring of programs translates define forms into letrec

bindings and wraps user expressions in global bindings that declare mean-
ings for standard identifiers like + and cons. In FL/RTortoise, the define
syntax is not supported, and standard identifiers are handled by the glob-
alization transform discussed in Section 17.5.
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• The scand, scor, and list forms are handled in FL/RTortoise just as in
FL. The begin, let*, and recur forms were not supported by FL proper,
but were considered for various extensions to FL. Other sugared forms
supported by FL (such as cond) are not included in FL/RTortoise but
could easily be added.

Figure 17.12 shows the result of desugaring the reverse mapping example
introduced in Figure 17.3. The the (recur loop . . .) desugars into a funrec,
the begin desugars into a let that binds the fresh variable ignore.0, an the
list desugars into a null-terminated nested sequences of conses.

(flr (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (call null)))

(funrec

((loop

(lambda (xs)

(if (call null? xs)

ans

(let ((ignore.0

(set! ans

(call cons

(call f (call car xs))

ans))))

(call loop (call cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (call > x b))

(primop cons a

(primop cons (call * a 7)

(primop null))))))

Figure 17.12: Running example after desugaring.

17.4 Transform 2: Type Reconstruction

The second stage of the Tortoise compiler is type reconstruction. Only well-
typed FL/RTortoise (and Silk) programs are allowed to proceed through the
rest of the compiler. Because type reconstruction for FL/RTortoise is so similar
to that for FL/R (Chapter 14), we do not repeat the details here.
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Preconditions: The input to type reconstruction is a syntactically correct
kernel FL/RTortoise program.

Postconditions: The output of type reconstruction is a valid kernel pro-
gram. We will use the term valid to describe a program fragment that
is both syntactically correct and well-typed.

As discusssed in Section 17.2.3.3, although neither FL/RTortoise nor Silk
has explicit types, this does not mean that the type information generated by
the type reconstruction phase is thrown away. We can imagine that this type
information is passed through the compiler stages via a separate channel, where
it is appropriately transformed by each pass. In an actual implementation,
this type information might be stored in abstract syntax tree nodes for Silk
expressions, in tables symbol tables mapping variable names to their types, or
in explicit type derivation trees.

It is worth noting that other analysis information, such as effect information
(Chapter ??) and flow information [NNH98, DWM+01], could be computed at
this stage and passed along to other compiler stages.

17.5 Transform 3: Globalization

In general, a program unit being compiled may contain free identifiers that
reference externally defined values in standard libraries or other program units.
Such free identifiers must somehow be resolved via a name resolution process
before they are referenced during program execution. Depending on the nature
of the free identifiers, name resolution can take place during compilation, during
a linking phase that typically takes places after compilation but before execution
(see Section 15.5.1), or during the execution of the program unit. In cases where
name resolution takes place after compilation, the compiler may still require
some information about the free identifiers, such as their types, even though
their values may be unknown.

In the Tortoise compiler, we consider a very simple form of compile-time
linking that resolves references to standard identifiers like +, <, and cons. We will
call this linking stage globalization because it resolves the meanings of global
variables defined in the language. Globalization has the following specification:

Preconditions: The input to globalization is a valid kernel FL/RTortoise

program.

Postconditions: The output of globalization is a valid kernel FL/RTortoise

program that is closed — i.e., it contains no free identifiers.
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Removing free identifiers from a program at an early stage simplifies later trans-
formations.

A simple approach to globalization in FL/RTortoise is to wrap the body of
the program in a let that associates each standard identifier used in the program
with an appropriate abstraction (Figure 17.13). This wrapping strategy was
the approach taken in the desugaring of FL programs in Section 6.2.2.2. In the
wrapping strategy, the program

(flr (x y) (+ (* x x) (* y y)))

would be transformed by globalization into

(silk (x y)

(let ((+ (lambda (v.0 v.1) (primop + v.0 v.1)))

(* (lambda (v.2 v.3) (primop * v.2 v.3))))

(+ (* x x) (* y y))))

GW : ProgramFL/R → ProgramFL/R

GW [[(flr (I1 . . . In) Ebody)]] = (flr (I1 . . . In) (wrap[[Ebody ]] (FreeIds [[Ebody ]])))

wrap : ExpFL/R → P(Identifier)→ ExpFL/R

wrap[[E]] {O1 , . . . ,On} = (let ((O1 ABS[[O1 ]]) . . . (O1 ABS[[On ]])) E)

ABS : PrimopFL/R → Abstraction

ABS[[O]] = (lambda (I1 . . . In) (primop O I1 . . . In))
where I1 , . . ., In are fresh and (typeof [[O]] AstdF L/R

) = (-> (T1 . . . Tn) Tres).

Figure 17.13: The wrapping approach to globalization.

Constructing an abstraction for a primitive operator (via ABS) requires
knowing the number of arguments it takes. In FL/RTortoise, this can be de-
termined from the type of the standard identifier naming the global procedure
associated with the operator. Note that the program P given to GW is required
to be well-typed, so all the elements of FreeIds[[P]] must be standard identifiers
— i.e., names of FL/RTortoise primitives. This illustrates how type-checking a
program early in compilation can simplify later stages by eliminating trouble-
some special cases (in this case, handling unbound identifiers).

A drawback of the wrapping strategy is that global procedures are invoked
via the generic procedure calling mechanism rather than the mechanism for in-
voking primitive operators (primop). We will see in later stages of the compiler
that the latter is handled far more efficiently than the former. This suggests



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

17.5. TRANSFORM 3: GLOBALIZATION 701

an alternative approach in which calls to global procedures are transformed into
primitive applications. Replacing a procedure call by a suitably instantiated ver-
sion of its body is known as inlining, so we shall call this the inlining strategy
for globalization. Using the inlining strategy, the sum-of-squares program would
be transformed into:

(flr (x y) (primop + (primop * x x) (primop * y y)))

There are three situations that need to be carefully handled in the inlining
strategy for globalization:

1. A reference to a global procedure can only be converted to an instance of
primop if it occurs in the rator position of a procedure application. Refer-
ences in other positions must either be handled by wrapping or by convert-
ing them to abstractions. Consider the expression (cons + (cons * (null))),
which makes a list of two functions. The occurrences of cons and null

can be transformed into primops, but the + and * cannot be. They can,
however, be turned into abstractions containing primops:

(primop cons (lambda (v.0 v.1) (primop + v.0 v.1))

(primop cons (lambda (v.2 v.3) (primop * v.2 v.3))

(primop null)))

Alternatively, we can “lift” the abstractions for + and * to the top of the
enclosing program and name them, as in the wrapping approach.

2. In languages like FL/RTortoise, where local identifiers may have the same
name as global standard identifiers for primitive operators, care must be
taken to distinguish references to global and local identifiers.1 For ex-
ample, in the program (flr (x) (let ((+ *)) (- (+ 2 x) 3))), the
invocation of + in (+ 2 x) cannot be inlined, but the invocation of - can
be:

(flr (x)

(let ((+ (lambda (v.0 v.1) (primop * v.0 v.1))))

(primop - (+ 2 x) 3)))

3. In FL/RTortoise, the values associated with global primitive identifier
names can be modified by set!. For example, consider

1Many programming languages avoid this and related problems by treating primitive oper-
ator names as reserved keywords that may not be used as identifiers in declarations or assign-
ments. This allows compiler writers to inline all primitives.
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(flr (x y)

(* (+ x (let ((ignore (set! + -))) y))

(+ x y))),

in which the first occurrence of + denotes addition and the second occur-
rence denotes subtraction. It would clearly be incorrect to replace the
second occurrence by an inlined addition primitive. Correctly inlining ad-
dition for the first occurrence and subtraction for the second occurrence is
possible in this case, but can only be justified by a sophisticated side effect
analysis. A simple conservative way to address this problem in the inlining
strategy is to use wrapping rather than inlining for any global name that
is mutated somewhere in the program. For the above example, this yields:

(flr (x y)

(let ((+ (lambda (v.2 v.3) (primop + v.2 v.3))))

(primop * (+ x (let ((ignore

(set! + (lambda (v.0 v.1)

(primop - v.0 v.1)))))

y))

(+ x y)))).

All of the above issues are handled by the definition of the inlining approach
to globalization in Figure 17.14. The GIprog function uses MutIdsprog (Fig-
ure 17.15) to determine the primitive names that are targets of assignment in
the program, and wraps the program body in abstractions for these. All other
free names are primitives that may be inlined in call positions or expanded to
abstractions (via ABS) in other positions. The identifier set argument to GI exp
keeps track of the free global names that have not been locally redeclared.

Figure 17.16 shows the running example after the globalization stage (using
the inlining strategy) . In this case, all references to free identifiers have been
converted to primitive applications.

¤ Exercise 17.3 What is the result of globalizing the following program using (1)
the wrapping strategy and (2) the inlining strategy?

(flr (* /)

(+ (let ((+ *)) (- + 1))

(let ((* -)) (* / 2)))) ¢

¤ Exercise 17.4 In FL/RTortoise, all standard identifiers name primitive procedures.

This fact simplifies the globalization transform. Describe how to extend globalization

(both the wrapping and inlining strategies) to handle standard identifiers that are (1)

literal values (e.g., zero standing for 0 and true standing for #t) and (2) procedures
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GIprog : ProgramFL/R → ProgramFL/R

GIprog [[P]] = (flr (I1 . . . In) (wrap[[GIexp[[Ebody ]] IS immuts ]] ISmuts))
where P = (flr (I1 . . . In) Ebody), ISmuts = MutIdsprog [[P]],
IS immuts = (FreeIds[[P]]) − ISmuts , wrap is defined in Figure 17.14,
and MutIdsprog is defined in Figure 17.15.

GIexp : ExpFL/R → IdSet→ ExpFL/R

GIexp [[(Irator E1 . . . En)]] IS
= if Irator ∈ IS then (primop Irator (GIexp [[E1 ]] IS ) . . . (GIexp [[En ]] IS ))

else (Irator (GIexp [[E1 ]] IS ) . . . (GIexp [[En ]] IS )) fi

GIexp [[I]] IS = if I ∈ IS then ABS[[I]] else I fi

GIexp [[(lambda (I1 . . . In) Ebody)]] IS
= (lambda (I1 . . . In) (GIexp [[Ebody ]] (IS − {I1 , . . . , In})))

GIexp [[(let ((I1 E1) . . . (In En)) Ebody)]] IS
= (let ((I1 (GIexp [[E1 ]] IS )) . . . (In (GIexp [[En ]] IS )))

(GIexp [[Ebody ]] (IS − {I1 , . . . , In})))
GIexp [[(funrec ((I1 AB1) . . . (In ABn)) Ebody)]] IS
= (funrec ((I1 (GIexp [[AB1 ]] IS

′)) . . . (In (GIexp [[ABn ]] IS
′)))

(GIexp [[Ebody ]] IS ′))
where IS ′ = IS − {I1 , . . . , In}

GIexp [[E]] IS = mapsubFL/R[[E]] (λEsub . GIexp [[Esub ]] IS )

Figure 17.14: The inlining approach to globalization.
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IS ∈ IdSet = P(Identifier)
MutIdsprog : ProgramFL/R → IdSet

MutIdsprog [[(flr (I1 . . . In) Ebody)]] = (MutIds[[Ebody ]]) − {I1 , . . . , In}

MutIds : ExpFL/R → IdSet

MutIds[[(set! I E)]] = {I} ∪ MutIds[[E]]

MutIds[[(lambda (I1 . . . In) Ebody)]] = (MutIds[[Ebody ]]) − {I1 , . . . , In}
MutIds[[(let ((I1 E1) . . . (In En)) Ebody)]]
= (∪ni=1MutIds[[Ei ]]) ∪ MutIds[[Ebody ]] − {I1 , . . . , In}

MutIds[[(funrec ((I1 AB1) . . . (In ABn)) Ebody)]]
= (∪ni=1MutIds[[AB i ]] ∪MutIds[[Ebody ]]) − {I1 , . . . , In}

MutIds[[E]] = let [E1 , . . . ,En ] be subexpsFL/R[[E]] in ∪ni=1MutIds[[Ei ]], otherwise.

Figure 17.15: Calculating the mutated free identifiers of a program.

(flr (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (primop null)))

(funrec

((loop

(lambda (xs)

(if (primop null? xs)

ans

(let ((ignore.0

(set! ans (primop cons

(call f (primop car xs))

ans))))

(call loop (primop cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (primop > x b))

(primop cons a

(primop cons (primop * a 7)

(primop null))))))

Figure 17.16: Running example after globalization.
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more complex than primitive applications (e.g., sqr standing for a squaring procedure

and fact standing for a factorial procedure). ¢

17.6 Transform 4: Translation

In this transformation, a kernel FL/RTortoise program is translated into the
Silk intermediate language. All subsequent transformations are performed on
Silk programs.

The translation is performed by the T prog and T exp functions presented in
Figure 17.17. Because the source and target languages are so similar, the trans-
lation has the flavor of a transformation that is purely structural except that
(1) T prog changes the program keyword from flr to silk; (2) T exp converts
every funrec to a cycrec; and (3) T exp translates FL/RTortoise cell and im-
mutable pair operations to Silk mutable product operations. We do not give
the details of the other cases because they are straightforward. Note that we
cannot use the mapsubFL/R or mapsubSilk functions from Section ?? to formally
specify these cases because each of these transforms an expression in a language
(FL/RTortoise or Silk) to another expression in the same language. But T exp

translates a FL/RTortoise expression to a Silk expression.

The precondition for T prog requires a closed FL/RTortoise program. This
simplifies the transformation by making it unnecessary to translate global free
identifiers like + and cons. We assume that such free identifiers have already
been eliminated by performing globalization. The postcondition does not explic-
itly mention a closed program because all valid Silk programs are necessarily
closed.

Figure 17.18 shows our running example after the translation stage. In this
and subsequent code presentations, we shall “resugar” a nested sequence of let
expressions into a let* expression and use the @ abbreviation for primops to
improve the legibility of the code.

It is intuitively clear that T prog preserves typability. That is, the output of
this translation is well-typed in Silk if the input is well-typed in FL/RTortoise.
This can be formally proved by showing how a FL/RTortoise type derivation
for the original program can be transformed into a Silk type derivation for the
translated program. Although types can be reconstructed for the FL/RTortoise

input program to T prog, we make no claims about the type reconstructability of
the output Silk program. The programs resulting from T prog and some of the
subsequent transformations may be restricted enough to support some form of
type reconstruction. But in general, the type system of Silk is too expressive
to support type reconstruction.
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T prog : ProgramFL/RTortoise
→ ProgramSilk

Preconditions: The input to T prog is a valid closed kernel FL/RTortoise pro-
gram.

Postconditions: The output of T prog is a valid kernel Silk program.

T prog[[(flr (I1 . . . In) Ebody)]] = (silk (I1 . . . In) (T exp[[Ebody ]]))

T exp : ExpFL/RTortoise
→ ExpSilk

T exp[[(funrec ((I1 AB1) . . . (In ABn)) Ebody)]]
= (cycrec ((I1 T exp[[AB1 ]]) . . . (In T exp[[ABn ]])) (T exp[[Ebody ]]))

T exp[[(primop cell E1)]] = (primop mprod E1)

T exp[[(primop ^ Ecell)]] = (primop (mget 1) Ecell)

T exp[[(primop := Ecell Enew)]] = (primop (mset! 1) Ecell Enew)

T exp[[(primop pair E1 E2)]] = (primop mprod E1 E2)

T exp[[(primop fst Epair)]] = (primop (mget 1) Epair)

T exp[[(primop snd Epair)]] = (primop (mget 2) Epair)

All other cases of T exp are purely structural.

Figure 17.17: Transformation translating FL/RTortoise into Silk.

(silk (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (@null)))

(cycrec

((loop

(lambda (xs)

(if (@null? xs)

ans

(let ((ignore.0

(set! ans (@cons (call f (@car xs)) ans))))

(call loop (@cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (@> x b))

(@cons a (@cons (@* a 7) (@null))))))

Figure 17.18: Running example after translation.
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What about meaning preservation? As argued in Section 17.2.3.2, funrec
and cycrec have the same meaning in the case where bindings are abstrac-
tions, so the funrec to cycrec conversion preserves meaning. The cell and pair
translations provide alternative implementations of the cell and pair abstract
datatypes, so intuitively these preserve meaning as well. But not every aspect
of FL/RTortoise meaning is preserved. For example, the program in Figure 17.18
returns a mutable product, whereas the original program returned a pair value.
Any formal notion of meaning preservation for this translation would have to
account for the type translation as well as the expression translation.

¤ Exercise 17.5 In the Tortoise compiler, it would be possible to perform trans-
lation before globalization rather than after. In this case, assume that (1) globaliza-
tion is suitably modified to work on Silk programs rather than FL/RTortoise pro-
grams and (2) Silk programs are extended to support the same standard identifiers as
FL/RTortoise (but in some cases — which ones? — these must have different types
than in FL/RTortoise.) Describe the advantages and disadvantages of switching the
order of these transforms. As a concrete example, consider the following program:

(flr (x)

(let ((c (cell x)))

(pair (^ c) (+ x 1)))). ¢

¤ Exercise 17.6 Consider the language Silksum that is just like Silk except:

• it does not have the boolean literals #t and #f;

• it has no if expressions;
• it does not have the list operators cons, car, cdr, null, or null?;
• it supports oneofs (see Section 10.2 and Section ??) via the following syntax:

E ::= ...

| (one Itag E) [Oneof Intro]
| (tagcase Edisc Ival (Itag Ebody)* [(else Eelse)]) [Oneof Elim]

Show how to translate FL/RTortoise boolean literals, if expressions, and list operations

into Silksum . ¢

¤ Exercise 17.7
Suppose that FL/RTortoise’s funrec construct were replaced by a letrec construct

with arbitrary expressions for bindings.

a. Show how to translate letrec into Silk. Your translation should be similar to
the letrec desugaring presented in Section 8.3, except that it needs to preserve
typability as well as meaning. Hint: Use empty and non-empty lists to distinguish
unassigned and assigned variables.
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b. letrec can also be translated into a target language supporting oneofs, such as
Silksum (see the previous exercise). Give a translation of letrec into Silksum .

c. Since funrec is a restricted form of letrec, the above parts show that it is
possible to translate FL/RTortoise into a dialect of Silk that does not contain
cycrec. What are the advantages and disadvantages of using cycrec in the
translation of funrec? (You may wish to study the remaining stages of the
compiler before answering this question.) ¢

17.7 Transform 5: Assignment Conversion

Assignment conversion removes all mutable variables from a program by
converting mutable variables to mutable cells. We will say that the resulting
program is assignment-free.

Assignment conversion makes all mutable storage explicit and simplifies later
passes by making all variable bindings immutable. After assignment conversion,
all variables effectively denote values rather than implicit cells containing values.
A variable may be bound to an explicit cell value whose contents varies with
time, but the explicit cell value bound to the variable cannot change. As we will
see later in the closure conversion stage (Section 17.10), assignment conversion
is important because it allows environments to be treated as immutable data
structures that can be freely shared and copied without concerns about side
effects.

A straightforward approach to assignment conversion is to make an explicit
cell for every variable in a given program. For example, the factorial program

(silk (x)

(let ((ans 1))

(cycrec ((loop (lambda (n)

(if (@= n 0)

ans

(let ((ignore.0 (set! ans (@* n ans))))

(call loop (@- n 1)))))))

(call loop x))))

can be assignment converted to
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(silk (x)

(let ((x (@mprod x)))

(let ((ans (@mprod 1)))

(cycrec ((loop

(@mprod

(lambda (n)

(let ((n (@mprod n)))

(if (@= (@mget 1 n) 0)

(@mget 1 ans)

(let ((ignore.0

(@mprod

(@mset! 1 ans

(@* (@mget 1 n)

(@mget 1 ans))))))

(call (@mget 1 loop)

(@- (@mget 1 n) 1)))))))))

(call (@mget 1 loop) (@mget 1 x)))))).

In the converted program, each of the variables in the original program (x, ans,
loop, n, and ignore.0) is bound to an explicit cell (i.e., a one-slot mutable
product). Each variable reference I in the original program is converted to a cell
reference (@mget 1 I), and each variable assignment (set! I E) in the original
program is converted to an cell assignment of the form (@mset! 1 I E ′) (where
E ′ is the converted E).

The code generated by the näıve approach to assignment conversion can con-
tain many unnecessary cell allocations, references, and assignments. A cleverer
strategy is to make explicit cells only for those variables that are mutated in the
program. Determining exactly which variables are mutated when a program ex-
ecutes is generally undecidable. We employ a simple conservative syntax-based
approximation that defines a variable to be mutable if it is set! within its scope.
In the factorial example, the alternative strategy yields the following program,
in which only the ans variable is converted to a cell:

(silk (x)

(let ((ans (@mprod 1)))

(cycrec ((loop (lambda (n)

(if (@= n 0)

(@mget 1 ans)

(let ((ignore.0

(@mset! 1 ans (@* n (@mget 1 ans)))))

(call loop (@- n 1)))))))

(call loop x))))

The improved approach to assignment conversion is formalized in Figure 17.19.
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The ACprog function wraps the tranformed body of a Silk program in a let that
binds each mutable program parameter to a cell. The free identifiers syntacti-
cally assigned within an expression is determined by the MutIds function, which
is a Silk version of the FL/RTortoise function defined in Figure 17.15.

Expressions are transformed by the ACexp function, whose second argument
is the set of in-scope identifiers naming variables that have been transformed
to cells. Such identifiers are transformed to cell references and assignments,
respectively, when processing variable references and variable assignments.

The only other non-trivial cases for ACexp are the binding forms lambda,
let, and cycrec. All of these cases use partition to partition the identifiers
declared by the forms into two identifier sets: the mutable identifiers IS m that
are assigned somewhere in the given expressions, and the immutable identifiers
IS i that are nowhere assigned. In each of these cases, any subexpression in the
scope of the declared identifiers is processed by ACexp with an identifier set that
includes ISm but excludes IS i . The exclusion is necessary to prevent converting
local immutable variables having the same name as external mutable variables.
For example,

(silk (x) (@mprod (set! x (@* x 2)) (lambda (x) x)))

is converted to

(silk (x)

(let ((x (@mprod x)))

(@mprod (@mset! 1 x (@* (@mget 1 x) 2))

(lambda (x) x))))

Even though the program parameter x is converted to a cell, the x in the ab-
straction body is not.

Abstractions are processed like programs in that the transformed abstrac-
tion body is wrapped in a let binding each mutable identifier to a cell. This
preserves the call-by-value-sharing semantics of Silk since an assignment to the
formal parameter of an abstraction modifies the contents of a local cell initially
containing a copy of the parameter value.

In processing let and cycrec, maybe-cell is used to wrap the binding expres-
sions for mutable identifiers in a cell. These two forms are processed similarly
except for scoping differences in their declared names.

In the precondition for ACprog in Figure 17.19, there is a subtle restriction
involving cycrec that is a consequence of its syntax. Recall that cycrec ex-
pressions have the form (cycrec ((I BV)*) Ebody), where a binding value BV
is either a literal, abstraction, or mutable product of the form (@mprod DV*),
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ACprog : ProgramSilk → ProgramSilk

Preconditions: The input to ACprog is a valid, closed, kernel Silk program in
which no unguarded variable appearing in a cycrec binding is assigned to.

Postconditions: The output of ACprog is a valid, closed, assignment-free, ker-
nel Silk program.

ACprog [[(silk (I1 . . . In) Ebody)]]
= (silk (I1 . . . In) (wrap-cells ISmuts (ACexp [[Ebody ]] ISmuts)))
where ISmuts = MutIds[[Ebody ]] and MutIds is a version of the function
defined in Figure 17.15 adapted to Silk.

ACexp : ExpSilk → IdSet→ ExpSilk

ACexp [[I]] IS = if I ∈ IS then (@mget 1 I) else I fi

ACexp [[(set! I E)]] IS = (@mset! 1 I (ACexp [[E]] IS ))
ACexp [[(lambda (I1 . . . In) Ebody)]] IS
= let 〈ISm , IS i 〉 be (partition {I1 , . . . , In} [Ebody ])

in (lambda (I1 . . . In)
(wrap-cells ISm (ACexp [[Ebody ]] ((IS ∪ ISm)− IS i ))))

ACexp [[(let ((I1 E1) . . . (In En)) Ebody)]] IS
= let 〈ISm , IS i 〉 be (partition {I1 , . . . , In} [Ebody ])

in (let ((I1 (maybe-cell I1 ISm (ACexp [[E1 ]] IS )))
. . . (In (maybe-cell In ISm (ACexp[[En ]] IS ))))

(ACexp [[Ebody ]] ((IS ∪ ISm)− IS i )))

ACexp [[(cycrec ((I1 E1) . . . (In En)) Ebody)]] IS
= let 〈ISm , IS i 〉 be (partition {I1 , . . . , In} [E1 , . . . ,En ,Ebody ])

in (cycrec ((I1 (maybe-cell I1 ISm (ACexp [[E1 ]] IS ′)))
. . . (In (maybe-cell In ISm (ACexp [[En ]] IS ′))))

(ACexp [[Ebody ]] IS ′))
where IS ′= ((IS ∪ ISm)− IS i ).

ACexp [[E]] IS = mapsubSilk [[E]] (λEsub .ACexp [[Esub ]] IS ), otherwise.

wrap-cells : IdSet→ ExpSilk → ExpSilk
wrap-cells {I1 . . . In} E = (let ((I1 (@mprod I1)) . . . (In (@mprod In))) E)

partition : IdSet→ ExpSilk*→ (IdSet× IdSet)
partition IS [E1 . . .En ] = let ISM be ∪ki=1(MutIds[[Ei ]]) in 〈IS ∪ ISM , IS − ISM 〉

maybe-cell : Identifier→ IdSet→ Exp

maybe-cell I IS E = if I ∈ IS then (@mprod E) else E fi

Figure 17.19: An assignment conversion transformation that converts only those
variables that are syntactically assigned in the program.
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and a data value DV is either a binding value or an identifier. We will say that
any variable reference I appearing in a DV position is unguarded. All other
variable references occurring in a cycrec binding E are necessarily contained
within an abstraction in E; we say that these other references are guarded (by
the abstraction). For example, in

(cycrec ((a (@mprod x (lambda (f) (f b))))

(b (@mprod a (lambda (g) (g x)))))

(@mprod a b))

the first binding expression contains an unguarded x and a guarded b, while the
second binding expression contains an unguarded a and a guarded x.

Assignment conversion cannot handle a program in which an unguarded vari-
able reference I in a cycrec binding needs to be converted to a cell reference
(@mget 1 I) because the grammar for DV does not allow an mget form. For
example, in the above cycrec, it would be possible to convert b to a cell, but
not a or x. So the precondition for assignment conversion prohibits any pro-
gram containing an assignment to a variable that appears unguarded in a cycrec
binding. In the Tortoise compiler, it turns out that any program reaching
the assignment conversion stage will necessarily satisfy this precondition (see
Exercise 17.10).

Figure 17.20 shows our running example after the assignment conversion
stage. The only variable assigned in the input program is ans, and this is con-
verted to a cell. There are several spots where the wrap-cells function introduces
empty let wrappers of the form (let () . . .), but these are removed by the
[empty-let] simplification in Figure 17.5.

Intuitively, consistently converting a mutable variable along with its refer-
ences and assignments into explicit cell operations should not change the observ-
able behavior of a program. So we expect that assignment conversion should
preserve both the type safety and the meaning of a program. However, for-
mally proving such intuitions can be rather challenging. See [WS97] for a proof
that a version of assignment conversion for Scheme is a meaning-preserving
transformation.

¤ Exercise 17.8 Show the result of assignment converting the following programs
using ACprog :
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(silk (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (@mprod (@null)))) ; converted to a cell

(cycrec

((loop

(lambda (xs)

(if (@null? xs)

(@mget 1 ans)

(let ((ignore.0

(@mset! 1 ans

(@cons (call f (@car xs))

(@mget 1 ans)))))

(call loop (@cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (@> x b))

(@cons a (@cons (@* a 7) (@null))))))

Figure 17.20: Running example after assignment conversion.

(silk (a b c)

(@mprod (set! a (@+ a 1))

(lambda (a d)

(let ((ignore.0 (set! c (@* a b))))

(set! d (@+ c d))))))

(silk (x)

(cycrec ((f (lambda (y) (@mprod y (call g (@- y 1)))))

(g (lambda (z)

(let ((ignore.0 (set! g (lambda (w) w))))

(call f z)))))

(call f x))) ¢

¤ Exercise 17.9 Can assignment conversion be performed before globalization? Ex-

plain. (Assume that ACprog and ACexp are suitably modified to work on FL/RTortoise

programs rather than Silk programs.) ¢

¤ Exercise 17.10 Argue that any Silk program that is the result of applying the

first four stages of the Tortoise compiler (desugaring, type-checking, globalization,

and translation) automatically satisfies all the preconditions for ACprog . ¢

¤ Exercise 17.11 A straightforward implementation of the ACprog and ACexp func-
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tions in Figure 17.19 is inefficient because (1) it traverses the AST of every declaration

node at least twice: once to determine the free mutable identifiers, and once to transform

the node; and (2) it may recalculate the free mutable identifiers for the same expression

many times. Describe how to modify the assignment conversion algorithm so that it

works in a single traversal over the program AST and calculates the free mutable iden-

tifiers only once at every node. Note: you may need to modify the information stored

in the nodes of a Silk AST. ¢

17.8 Transform 6: Renaming

A program fragment is uniquely named if no two logically distinct variables
appearing in the fragment have the same name. For example, the following two
expressions have the same structure and meaning, but the second is uniquely
named while the first is not:

((lambda (x) (x w)) (lambda (x) (let ((x (* x 2))) (+ x 1))))

((lambda (x) (x w)) (lambda (y) (let ((z (* y 2))) (+ z 1))))

Several of the subsequent program transformations we will study require that
programs are uniquely named to avoid problems with variable capture or other-
wise simplify the transformation. Here we describe a renaming transformation
whose output program is a uniquely named version of the input program. We
will argue that subsequent transformations preserve the unique naming prop-
erty. This means that the property will hold for all those transformations that
require it of input programs.

The renaming transformation is presented in Figure 17.21. In this transfor-
mation, every bound identifier in the program is replaced by a fresh identifier.
Fresh names are introduced in all declaration forms: the silk program form and
the lambda, let, and cycrec expression forms. Renaming environments in the
domain RenEnv are used to associate these fresh names with the original names
and communicate the renamings to the variable reference and assignment forms.
Renaming is a purely structural transformation for all other nodes.

As in many other transformations, we gloss over the mechanism for generat-
ing fresh identifiers. This mechanism can be formally specified and implemented
by threading some sort of name generation state through the transformation.
For example, this state could be a natural number that is initially 0 and is
incremented every time a fresh name is generated. The fresh name can com-
bine the original name and the number in some fashion. In our examples, we
assume that renamed identifiers have the form prefix.number, where prefix is



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

17.8. TRANSFORM 6: RENAMING 715

Renaming Environments

re ∈ RenEnv = Identifier → Identifier

rbind : Identifier→ Identifier→ RenEnv → RenEnv
= λIold Inew re . λIkey . if (same-identifier? Ikey Iold) then Inew else (re Ikey)

rbind Iold Inew re will be abbreviated [Iold :Inew ]re ; this notation associates
to the right. I.e., [I1 :I1

′][I2 :I2
′]re = [I1 :I1

′]([I2 : I2
′]re )

Renaming Transformation

Rprog : ProgramSilk → ProgramSilk

Preconditions: The input to Rprog is a valid kernel Silk program.

Postconditions: The output of Rprog is a valid and uniquely named kernel
Silk program.

Other properties: If the input program is assignment-free, so is the output
program.

Rprog[[(silk (I1 . . . In) Ebody)]]
= (silk (I1

′ . . . In
′) (Rexp[[Ebody ]] ([I1 : I1

′] . . . [In : In
′] (λI . I)))),

where I1
′ . . . In

′ are fresh.

Rexp : ExpSilk → RenEnv → ExpSilk

Rexp[[I]] re = (re I)

Rexp[[(set! I E)]] re = (set! (re I) (Rexp[[E]] re ))

Rexp[[(lambda (I1 . . . In) Ebody)]] re
= (lambda (I1

′ . . . In
′) (Rexp[[Ebody ]] ([I1 : I1

′] . . . [In : In
′]re ))),

where I1
′ . . . In

′ are fresh.

Rexp[[(let ((I1 E1) . . . (In En)) Ebody)]] re
= (let ((I1

′ (Rexp[[E1 ]] re )) . . . (In
′ (Rexp[[En ]] re )))

(Rexp[[Ebody ]] ([I1 : I1
′] . . . [In : In

′]re ))),
where I1

′ . . . In
′ are fresh.

Rexp[[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] re
= (cycrec ((I1

′ (Rexp[[E1 ]] re
′)) . . . (In

′ (Rexp[[En ]] re
′))) (Rexp[[Ebody ]] re

′)),
where I1

′ . . . In
′ are fresh and re ′ = ([I1 : I1

′] . . . [In : In
′]re )

Rexp[[E]] re = mapsubSilk [[E]] (λEsub .Rexp[[Esub ]] re ), otherwise.

Figure 17.21: Renaming transformation.
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the original identifier, number is the current name generator state value, and
. is a special character that may appear in compiler-generated names but not
user-specified names.2Later compiler stages may rename generated names from
previous stages; in this case we assume that only the prefix of the old generated
name is used as the prefix for the new generated name. For example, x can be
renamed to x.17, and x.17 can be renamed to x.42 (not x.17.42). Figure 17.22
shows our running example after the renaming stage.

(silk (a.1 b.2)

(let ((revmap.3

(lambda (f.5 lst.6)

(let ((ans.7 (@mprod (@null))))

(cycrec

((loop.8

(lambda (xs.9)

(if (@null? xs.9)

(@mget 1 ans.7)

(let ((ignore.10

(@mset! 1 ans.7

(@cons (call f.5 (@car xs.9))

(@mget 1 ans.7)))))

(call loop.8 (@cdr xs.9)))))))

(call loop.8 lst.6))))))

(call revmap.3

(lambda (x.4) (@> x.4 b.2))

(@cons a.1 (@cons (@* a.1 7) (@null))))))

Figure 17.22: Running example after renaming.

¤ Exercise 17.12 What changes need to be made to Rexp to handle the Silksum
language (see Exercise 17.6)? ¢

¤ Exercise 17.13
The multiple bindings (I1 E1 ) . . . (In En ) of the let form are so-called parallel

bindings in which the expressions E1 . . . En cannot refer to any of the internal variables
I1 . . . In – i.e., the ones declared in the bindings. Any occurrences of I1 . . . In in E1
. . . En must refer to externally declared variables that happen to have the same names
as the internal ones. In contrast, the bindings of the let* form (which desugars into
nested single-binding let forms) are sequential bindings in which references to I1 . . .
Ii−1 within Ei refer to the internal variables, but references to Ii . . . In refer to external
variables. For example:

2prefix is not really necessary, since number itself is unique. But maintaining the original
names helps human readers track variables through the compiler transformations.
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;; Illustrates parallel bindings

(let ((a 1) (b 2))

(let ((a (+ b 1)) ; Reference to external b

(b (* a 2))) ; Reference to external a

(+ a b)))

;; Illustrates sequential bindings

(let ((a 1) (b 2))

(let* ((a (+ b 1)) ; Reference to external b

(b (* a 2))) ; Reference to internal a

(+ a b)))

After the renaming stage, only single-binding let forms are necessary, since there
can never be any confusion between internal and external names. For instance, after
renaming, the above examples can be expressed as:

;; Illustrates parallel bindings

(let* ((a.0 1) (b.1 2))

(let* ((a.2 (+ b.1 1)) ; Reference to external b

(b.3 (* a.0 2))) ; Reference to external a

(+ a.2 b.3)))

;; Illustrates sequential bindings

(let* ((a.0 1) (b.1 2))

(let* ((a.2 (+ b.1 1)) ; Reference to external b

(b.3 (* a.2 2))) ; Reference to internal a

(+ a.2 b.3)))

We will say that an expression E is in single binding form if all let expressions
occurring within E have single bindings.

a. Modify Rexp so that the resulting expression is in single binding form.

b. Rather than modifying Rexp, an alternative way to guarantee single binding form
after renaming is to add an extra simplification rule [singlify ] to those presented
in Figure 17.5. Define [singlify ].

c. A disadvantage of the [singlify ] rule is it makes simplification ambiguous. Show
this by giving a simple Silk expression that has two different simplifications
depending on whether the [eta-let] or [singlify ] rule is applied first. ¢

¤ Exercise 17.14 This exercise explores ways to formalize the generation of fresh
names in the renaming transformation. Assume that rename is a function that renames
variables according to the conventions described above. E.g., (rename x 17) = x.17

and (rename x.17 42) = x.42.

a. Suppose that the signature of Rexp is changed to accept and return a natural
number that represents the state of the fresh name generator:
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Rexp : ExpSilk → RenEnv → Nat → (ExpSilk ×Nat)

Give modified definitions of Rprog and Rexp in which rename is used to generate
all fresh names uniquely. Define any auxiliary functions you find helpful

b. An alternative way to thread the name generation state through the renaming
transformation is to use continuations. Suppose that the signature of Rexp is
changed as follows:

Rexp : ExpSilk → RenEnv → RenameCont → Nat → Exp

RenameCont is a renaming continuation defined as follows:

rc ∈ RenameCont = Exp → Nat → Exp

Give modified definitions of Rprog and Rexp in which rename is used to generate
all fresh names uniquely. Define any auxiliary functions you find helpful.

c. The mapsub function cannot be used in the above two parts because it does
not thread the name generation state through the processing of subexpressions.
Develop modified versions of mapsub that would handle the purely structural
cases in the above parts. ¢

17.9 Transform 7: CPS Conversion

In Chapter 9, we saw that continuations are a powerful mathematical tool for
modeling sophisticated control features like non-local exits, unrestricted jumps,
exceptions, backtracking, coroutines, and threads. Section 9.2 showed how such
features can be simulated in any language supporting first-class procedures. The
key idea in these simulations is to represent a possible future of the current
computation as an explicit procedure, called a continuation. The continua-
tion takes as its single parameter the value of the current computation. When
invoked, the continuation proceeds with the rest of the computation. In these
simulations, procedures no longer return to their caller when invoked. Rather,
they are transformed so that they take one or more explicit continuations as ar-
guments and invoke one of these continuations on their result instead of returning
the result. A program in which every procedure invokes an explicit continuation
parameter in place of returning is said to be written in continuation-passing
style (CPS).

As an example of CPS, consider the Silk expression Esos in Figure 17.23.
It defines a squaring procedure sqr and a sum-of-squares procedure sos and
applies the latter to 3 and 4. Ecps

sos is the result of transforming Esos into CPS
form. In Ecps

sos , each of the two procedures sqr and sos has been extended
with a continuation parameter, which by our convention will come last in the
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Esos = (let* ((sqr (lambda (x) (@* x x)))

(sos (lambda (a b) (@+ (call sqr a) (call sqr b)))))

(call sos 3 4))

Ecpssos = (let* ((sqrcps (lambda (x ksqr) (call ksqr (@* x x))))

(soscps (lambda (a b ksos)

(call sqrcps a

(lambda (asqr)

(call sqrcps b

(lambda (bsqr)

(call ksos (@+ asqr bsqr)))))))))

(call soscps 3 4 klet*))

Figure 17.23: Ecps
sos is a CPS version of Esos .

parameter list and begin with the letter k. The sqrcps procedure invokes its
continuation ksqr on the square of its input. The soscps procedure first calls
sqrcps on a with a continuation that names the result asqr. This continuation
then calls sqrcps on b with a second continuation that names the second result
bsqr. Finally, sqrcps invokes its continuation ksos on the sum of these two
results. The initial call (sos 3 4) must also be converted. We assume that
klet* names a continuation that proceeds with the rest of the computation
given the value of the let* expresssion.

The process of transforming a program into CPS form is called CPS con-
version. Here we shall study CPS conversion as a stage in the Tortoise com-
piler. Whereas globalization makes explicit the meaning of standard identifiers
and assignment conversion makes explicit the implicit cells of mutable variables,
CPS conversion makes explicit all control flow in a program. Performing CPS
conversion as a compiler stage has several benefits:

• Procedure-calling mechanism: Continuations are an explicit representation
of the procedure call stacks used in traditional compilers to implement
the call/return mechanism of procedures. In CPS-converted code, a con-
tinuation (such as (lambda (asqr) . . .) above) corresponds to a pair of
(1) a call stack frame that saves variables needed after the call (i.e., the
free variables of the continuation, which are b and ksos in the case of
(lambda (asqr) . . .)) and (2) a return address (i.e., a specification of the
code to be executed after the call). Since no CPS procedure returns, every
procedure call in a CPS-converted program can be viewed as an assembly
code jump that passes arguments. In particular, invoking a continuation
corresponds in assembly code to jumping to a return address with a return
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value in a distinguished return register.

• Code linearization: CPS conversion makes explicit the order in which
subexpressions are evaluated, yielding code that linearizes basic compu-
tation steps in a way similar to assembly code. For example, the body of
soscps clarifies that the square of a is calculated before the square of b.

• Sophisticated control features: Representing control explicitly in the form
of continuations facilitates the implementation of advanced control fea-
tures (such as non-local exits, exceptions, and backtracking) that can be
challenging to implement in traditional stack-based approaches.

• Uniformity : Representing control features via procedures keeps intermedi-
ate program representations simple and flexible. Moreover, any optimiza-
tions that improve procedures will work on continuations as well. But this
uniformity also has a drawback: because of its liberal use of procedures,
the efficiency of procedure calls in CPS code are of the utmost importance,
making certain optimizations almost mandatory.

The Tortoise CPS transform is presented in four stages. The structure of
CPS code is formalized in Section 17.9.1. A straightforward approach to CPS
conversion that is easy to understand but leads to intolerable ineffeciences in
the converted code is described in Section 17.9.2. Section 17.9.3 presents a more
complicated but considerably more efficient CPS transformation that is used
in Tortoise. Finally, we consider the CPS conversion of additional control
constructs in Section 17.9.4.

17.9.1 The Structure of CPS Code

All procedure applications can be classified according to their relationship to the
innermost enclosing procedure declaration (or program). A procedure applica-
tion is a tail call if its implicit continuation is the same as that of its enclosing
procedure. In other words, no computational work must be done between the
termination of the inner tail call and the termination of its enclosing proce-
dure; these two events can be viewed as happening simultaneously. All other
procedure applications are non-tail calls. These are characterized by pending
computations that must take place between the termination of the non-tail call
and the termination of a call to its enclosing procedure. The notion of a tail
call is important in CPS conversion because every procedure call in CPS code
must be a tail call. Otherwise, it would have to return to perform a pending
computation.
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AB1 = (lambda (f g x) (call g (call f x) (call f (@+ x 1))))

AB2 = (lambda (p q r s y)

(let ((a (call p (call q y))))

(call r a (call s a))))

AB3 = (lambda (filter pred base zs)

(if (@null? zs)

(call base zs)

(if (pred (@car zs))

(@cons (@car zs) (call filter pred base (@cdr zs)))

(call filter pred base (@cdr zs)))))

Figure 17.24: Sample abstractions for understanding tail vs. non-tail calls.

As concrete examples of tail vs. non-tail calls, consider the Silk abstractions
in Figure 17.24.

• In AB1 , the call to g is a tail call because a call to AB 1 returns a value v
when g returns v. But both calls to f are non-tail calls because the results
of these calls must be processed by g before AB 1 returns.

• In AB2 , only the call to r is a tail call. The results of the calls to p, q,
and s must be further processed before AB 2 returns.

• In AB3 , there are two tail calls: the call to base, and the second call to
filter. The result of the first call to filter must be processed by @cons

before AB3 returns, so this is a non-tail call. The result of pred must be
checked by the if, so this is a non-tail call as well. In this example, we see
that (1) a procedure body may have multiple tail calls and (2) the same
procedure can be invoked in both tail calls and non-tail calls within the
same expression.

Tail and non-tail calls can be characterized syntactically. The Silk contexts
in which tail calls can appear is defined by TC in the following grammar:

TC ∈ TailContext

TC ::= 2 [Hole]
| (if Etest TC E) [Left Branch]
| (if Etest E TC ) [Right Branch]
| (let ((I E)*) TC ) [Let Body]
| (cycrec ((I BV)*) TC ) [Cycrec Body]
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Pcps ∈ Programcps

Ecps ∈ Expcps
Vcps ∈ ValueExpcps

AB cps ∈ Abstractioncps
LE cps ∈ LetableExpcps
BVcps ∈ BindingValuecps
DVcps ∈ DataValuecps

L ∈ Lit
I ∈ Identifier = usual identifiers
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ Primop = as in full Silk.

Pcps ::= (silk (Ifml*) Ecps)
Ecps ::= (call Vcps Vcps*) | (if Vcps Ecps Ecps) | (error I)

| (let ((I LE cps)) Ecps) | (cycrec ((I BVcps)*) Ecps)
Vcps ::= L | I

AB cps ::= (lambda (I*) Ecps)

LE cps ::= Vcps | AB cps | (primop Oop Vcps*) | (set! I V)
BVcps ::= L | AB cps | (primop mprod Vcps*)
DVcps ::= V |AB

L ::= #u | B | N

Figure 17.25: Grammar for Silkcps , the subset of Silk in CPS form. The result
of CPS conversion is a Silkcps program. If the input to CPS is assignment-free,
so is the output.

In Silk, a call expression Ecall is a tail call if and only if the body expression
of the innermost abstraction or program enclosing Ecall is the result TC {Ecall}
of filling some context TC with Ecall . Any call that does not appear in one of
these contexts is a non-tail call.

With the notion of tail call in hand, we are ready to study the structure of
CPS code, which is defined by the grammar for Silkcps , a restricted dialect of
Silk presented in Figure 17.25. Observe the following properties of the Silkcps

grammar:

• The definition of Ecps in Silkcps only allows call expressions to appear
precisely in the tail contexts TC studied above. So every call in a Silkcps

program is guaranteed to be a tail call. In such a program, the implicit
continuation of a every call must be exactly the same, so there is never a
nontrivial computation (other than the initial continuation of the program
invocation) for any call to return to. This is the sense in which calls in a
CPS program never return. It also explains why calls in a CPS program
can be viewed as assembly-language jumps (that happen to additionally
pass arguments).

• Subexpressions of a call and primop must be literals or variables, so one
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application may not be nested within another. The test subexpression of
an if must also be a literal or variable. The definition subexpression of
a let can only be one of a restricted number of simple “letable expres-
sions” that does not include calls, ifs, cycrecs, or other lets. These
restrictions impose the straight-line nature of assembly code on the bod-
ies of Silk abstractions and programs, which must be derived from Ecps .
The only violation of the straight-line property is the if expression, which
has one Ecps subexpression for each branch. This branching code would
need to be linearized elsewhere in order to generate assembly language (see
Exercise 17.18).

• The order of evaluation for primitive applications is explicitly represented
via a sequence of nested single-binding let expressions that introduce
names for the intermediate results returned by these constructs. For ex-
ample, CPS converting the expression

(@+ (@- 0 (@* b b)) (@* 4 (@* a c)))

in the context of an initial continuation ktop.0 yields:3

(let* ((t.3 (@* b b))

(t.2 (@- 0 t.3))

(t.5 (@* a c))

(t.4 (@* 4 t.5))

(t.1 (@+ t.2 t.4)))

(call ktop.0 t.1))).

The let-bound names represent abstract registers in assembly code. Map-
ping these abstract registers to the actual registers of a real machine (a
process known as register allocation) must be performed by a later com-
pilation stage.

• Every execution path through an abstraction or program body must end in
either a call or an error. Since procedures never return, the last action
in a procedure body must be calling another procedure or signaling an
error. Moreover, calls and errors can only appear as the final expression
executed in such bodies. Modulo the branching allowed by if, program
and abstraction bodies in Silkcps are similar in structure to basic blocks
in traditional compiler technology. A basic block is a sequence of state-
ments such that the only control tranfers into the block are at the very
beginning and the only control transfers out of the block are at the very

3The particular let-bound names used is irrelevant. Here and below, we show the results of
CPS conversion using our implementation of the transformation in described in Section 17.9.3.
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end.

• Note that Silkcps includes set! expressions. In the Tortoise compiler,
both the input and output of CPS conversion will be assignment-free, but
in general CPS code may have assignments. Including assignments in
Silkcps allows us to experiment with moving assignment conversion after
CPS conversion (see Exercise 17.24).

• In classical CPS conversion, abstractions are usually included in the value
expressions ValueExpcps . However, we require that they be named in a
let or cycrec binding so that certain properties of the Silkcps structure
are preserved by later Tortoise transformations. In particular, the subse-
quent closure conversion stage will transform abstractions into applications
of the mprod primitive. Such applications cannot appear in the context of
CPS values Vcps , but can appear in “letable expressions” LE cps .

The fact that ValueExpcps does not include abstractions or primitive appli-
cations means that Ecps

sos in Figure 17.23 is not a legal Silkcps expression. A
Silkcps version of the Esos expression is presented in Figure 17.26. Note that
let-bound names must be introduced to name abstractions (the continuations
k1 and k2) and the results of primitive applications (t1 and t2). Note that some
calls (to sqrsilkcps and sossilkcps) are to transformed versions of procedures in
the original program. These correspond to the jump-to-subroutine idiom in as-
sembly code. The other calls (to ksqr and ksos) are to continuation procedures
introduced by CPS conversion. These model the return-from-subroutine idiom
in assembly code.

(let* ((sqrsilkcps (lambda (x ksqr)

(let ((t1 (@* x x)))

(call ksqr t1))))

(sossilkcps (lambda (a b ksos)

(let ((k1 (lambda (asqr)

(let ((k2 (lambda (bsqr)

(let ((t2 (@+ asqr bsqr)))

(call ksos t2)))))

(call sqrsilkcps b k2)))))

(call sqrsilkcps a k1)))))

(call sossilkcps 3 4 klet*))

Figure 17.26: A CPS version of Esos expressed in Silkcps .
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17.9.2 A Simple CPS Transform

CPS conversion is a meaning-preserving transformation that converts every pro-
cedure call in program into a tail call. In the Tortoise compiler, CPS conver-
sion has the following specification:

Preconditions: The input to CPS conversion is valid, uniquely named
Silk program.

Postconditions: The output of CPS conversion is a valid, uniquely named
Silkcps program.

Other properties: If the input program is assignment-free, so is the
output program.

In this section, we present the first of two CPS transformations that we
will study. The first transformation, which we call SCPS (for Simple CPS
conversion) is easier to explain, but generates code that is much less efficient
than that produced by the second transformation.

The SCPS transformation is defined in Figures 17.27 and 17.28. The heart
of the transformation is SCPS exp , which transforms expressions into CPS form.
SCPSexp transforms any given expression E to an abstraction (lambda (Ik) E ′)

that expects as its argument Ik an explicit continuation for E and eventually
calls this continuation on the value of E in E ′. This explicit continuation is im-
mediately invoked to “return” the values of literals, identifiers, and abstractions.
Each abstraction is transformed to take as a new additional final parameter a
continuation Ikcall that is passed as the explicit continuation to its transformed
body. Because the grammar of Silkcps does not allow abstractions to appear
directly as call arguments, it is also necessary to name the transformed ab-
straction in a let via a fresh identifier Iabs .

In the transformation of a call expression (call E0 E1 . . . En), explicit
continuations are used to specify that the rator E0 and rands E1 . . . En are
evaluated in left to right order before the invocation takes place. The fresh
variables I0 . . . In are introduced to name the values of each subexpression. Since
every procedure has been transformed to expect an explicit continuation as its
final argument, the transformed callmust supply its continuation Ik as the final
rand. The let transformation is similar, except that the let-bound names are
used in place of fresh names for naming the values of the definition expressions.
The unique naming requirement on input programs to SCPS guarantees that no
variable capture can take place in the let transformation (see Exercise 17.17).

The transformation of primop expressions is similar to that for call and let.
The syntactic constraints of Silkcps require that a fresh variable (here named
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SCPSprog : ProgramSilk → Programcps

SCPSprog [[(silk (I1 . . . In) Ebody)]] =
(silk (I1 . . . In Iktop) ; Iktop fresh

(let ((Ibody (SCPSexp [[Ebody ]]))) ; Ibody fresh

(call Ibody Iktop)))

SCPSexp : ExpSilk → Expcps

SCPSexp [[L]] = (lambda (Ik) (call Ik L)) ; Ik fresh

SCPSexp [[I]] = (lambda (Ik) (call Ik I)) ; Ik fresh

SCPSexp [[(lambda (I1 . . . In) Ebody)]] =
(lambda (Ik) ; Ik fresh

(let ((Iabs ; Iabs fresh

(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(call (SCPSexp [[Ebody ]]) Ikcall))))
(call Ik Iabs)))

SCPSexp [[(call E0 . . . En)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[E0 ]])
(lambda (I0) ; I0 fresh

...

(call (SCPSexp [[En ]])
(lambda (In) ; In fresh

(call I0 . . . In Ik))) . . .)))

SCPSexp [[(let ((I1 E1) . . . (In En)) Ebody)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[E1 ]])
(lambda (I1)

...

(call (SCPSexp [[En ]])
(lambda (In)
(call (SCPSexp [[Ebody ]]) Ik))))))

Figure 17.27: A simple CPS transform, part 1.
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SCPSexp [[(primop O E1 . . . En)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[E1 ]])
(lambda (I1) ; I1 fresh

...

(call (SCPSexp [[En ]])
(lambda (In) ; In fresh

(let ((Ians (primop O I1 . . . In))) ; Ians fresh

(call Ik Ians)))) . . .)))

SCPSexp [[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] =
(lambda (Ik) ; Ik fresh

(cycrec ((I1 (SCPSbv [[BV1 ]]))
...

(In (SCPSbv [[BVn ]])))
(call (SCPSexp [[Ebody ]]) Ik)))

SCPSexp [[(set! Ilhs Erhs)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[Erhs ]])
(lambda (Irhs) ; Irhs fresh

(let ((Ians (set! Ilhs Irhs))) ; Ians fresh

(call Ik Ians)))))

SCPSexp [[(if Etest Ethen Eelse)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[Etest ]])
(lambda (Itest) ; Itest fresh

(if Itest
(call (SCPSexp [[Ethen ]]) Ik)
(call (SCPSexp [[Eelse ]]) Ik)))))

SCPSexp [[(error Imsg)]] = (lambda (Ik) (error Imsg)) ; Ik fresh

SCPSbv : BindingValueSilk → BindingValuecps

SCPSbv [[L]] =L

SCPSbv [[(@mprod DV1 . . . DVn)]] = (@mprod SCPSdv [[DV1 ]] . . . SCPSdv [[DVn ]])

SCPSbv [[(lambda (I1 . . . In) Ebody)]]
(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(call (SCPSexp [[Ebody ]]) Ikcall))

SCPSdv : DataValueSilk → DataValuecps

SCPSdv [[V]] =V

SCPSdv [[AB ]] =SCPSbv [[AB ]]

Figure 17.28: A simple CPS transform, part 2.
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Ians) be introduced to name the results of these expressions before passing them
to the continuation. A similar let binding is needed in the set! transformation.
The transformation of cycrec uses SCPS bv to transform binding value expres-
sions. This function acts as the identity on literals and mutable tuple creation
forms, but transforms abstractions to take an extra continuation parameter.

In a transformed if expression, a fresh name Itest names the result of the
test expression and the same continuation Ik is supplied to both transformed
branches. This is the only place in SCPS where the explicit continuation Ik
is referenced more than once in the transformed expression. The transformed
error construct is the only place where the continuation is never referenced.
All other constructs use Ik in a linear fashion — i.e., they reference it exactly
once. This makes intuitive sense for regular control flow, which has only one
possible “path” out of every expression other than if and error. Even in the
if case, only one branch can be taken in a dynamic execution even though the
the continuation is mentioned twice. Later we will study how CPS conversion
exposes the non-linear nature of some sophisticated control features.

Silk programs are converted to CPS form by SCPSprog , which adds an addi-
tional parameter Iktop that is an explicit top-level continuation for the program.
It is assumed that the mechanism for program invocation will supply an appro-
priate procedure for this argument. For example, an operating system might
construct a top-level continuation that displays the result of the program on the
standard output stream or in a window within a graphical user interface.

The clauses for SCPSexp contain numerous instances of the pattern

(call (SCPSexp [[E1 ]]) E2),
where E2 is an abstraction or variable reference. But SCPS exp is guaranteed
to return a lambda expression, and the Silkcps grammar does not allow any
subexpression of a call to be a lambda. Doesn’t this yield an illegal Silkcps

expression? The result of SCPSexp would be illegal if were not for the [implicit-
let] simplification, which transforms every call of the form

(call (lambda (Ik) E1
′) E2)

into to the expression

(let ((Ik E2)) E1
′).

Since the grammar for letable expressions LE permits definition expressions
that are variables and abstractions, the result of SCPS exp is guaranteed to be
a legal Silkcps expression. Note that when E2 is a variable the [copy-prop]
simplification will also be performed. This simplification is always valid in the
CPS stage of the Tortoise compiler, because the input and output of CPS
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conversion are guaranteed to be assignment-free.

As a simple example of SCPS , consider the CPS conversion of the incre-
menting program Pinc = (silk (a) (@+ a 1)). Before any simplifications are
performed, SCPSprog [[Pinc ]] yields

(silk (a ktop.0)

(call (lambda (k.2)

(call (lambda (k.6)

(call k.6 a))

(lambda (v.3)

(call (lambda (k.5)

(call k.5 1))

(lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call k.2 ans.1)))))))

ktop.0)).

Four applications of [implicit-let] simplify this code to

(silk (a ktop.0)

(let ((k.2 ktop.0))

(let ((k.6 (lambda (v.3)

(let ((k.5 (lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call k.2 ans.1)))))

(call k.5 1)))))

(call k.6 a)))).

A single [copy-prop] simplification replaces k.2 by k.top to yield the final result
Pinc

′:

(silk (a ktop.0)

(let ((k.6 (lambda (v.3)

(let ((k.5 (lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1)))))

(call k.5 1)))))

(call k.6 a))).

You should verify that Pinc
′ is a legal Silkcps program. The convoluted

nature of Pinc
′ makes it a bit tricky to read. Here is one way to “pronounce”

this program:

The program is given an input a and top-level continuation ktop.0.
First evaluate a and pass its value to continuation k.6, which gives
it the name v.3. Then evaluate 1 and pass it to continuation k.5,
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which gives it the name v.4. Next, calculate the sum of v.3 and v.4

and name the result ans.1. Finally, return this answer as the result
of the program by invoking ktop.0 on ans.1.

This seems like an awful lot of work to increment a number! Even though the
[implicit-let] and [copy-prop] rules have simplified the program, it could still be
simpler. In particular, the continuations k.5 and k.6 merely rename the values
of a and 1 to v.3 and v.4, which is unnecessary.

In larger programs, the extent of these undesirable inefficiencies becomes
more apparent. For example, Figure 17.29 shows the result of using SCPS to
transform a numerical program Pquad with several nested subexpressions. Try
to “pronounce” the transformed program as illustrated above. Along the way
you will notice numerous unnecessary continuations and renamings. The result
of performing SCPS on our running revmap example is so large that it would
require several pages to display. The revmap program has an abstract syntax
tree with 46 nodes; transforming it with SCPSprog yields a result with 230 nodes.
And this is after simplification — the unsimplified transformed program has 317
nodes!

Can anything be done to automatically eliminate the inefficiences introduced
by SCPS? Yes. It is possible to define additional simplification rules that
will make the CPS converted code much more reasonable. For example, in
(let ((I Edefn)) Ebody), if Edefn is a literal or abstraction, it is possible to
replace the let by the substitution of Edefn for I in Ebody . This simplification
is traditionally called constant propagation and (when followed by [implicit-
let]) is called inlining for abstractions. For example, two applications of inlining
on Pinc

′ yield

(silk (a ktop.0)

(let ((v.3 a))

(let ((v.4 1))

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1))))),

and then copy propagation and constant propagation simplify the program to

(silk (a ktop.0)

(let ((ans.1 (@+ a 1)))

(call ktop.0 ans.1))).

Performing these additional simplifications on Pquad
′ gives the following much

improved CPS code:
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Pquad = (silk (a b c) (@+ (@- 0 (@* b b)) (@* 4 (@* a c))))

SCPSprog [[Pquad ]] = Pquad
′, where Pquad

′ =

(silk (a b c ktop.0)

(let* ((k.17

(lambda (v.3)

(let* ((k.6

(lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1))))

(k.15

(lambda (v.7)

(let* ((k.10 (lambda (v.8)

(let ((ans.5 (@* v.7 v.8)))

(call k.6 ans.5))))

(k.14

(lambda (v.11)

(let ((k.13

(lambda (v.12)

(let ((ans.9 (@* v.11 v.12)))

(call k.10 ans.9)))))

(call k.13 c)))))

(call k.14 a)))))

(call k.15 4))))

(k.26

(lambda (v.18)

(let* ((k.21 (lambda (v.19)

(let ((ans.16 (@- v.18 v.19)))

(call k.17 ans.16))))

(k.25 (lambda (v.22)

(let ((k.24 (lambda (v.23)

(let ((ans.20 (@* v.22 v.23)))

(call k.21 ans.20)))))

(call k.24 b)))))

(call k.25 b)))))

(call k.26 0)))

Figure 17.29: Simple CPS conversion of a numeric program.
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(silk (a b c ktop.0)

(let* ((ans.20 (@* b b))

(ans.16 (@- 0 ans.20))

(ans.9 (@* a c))

(ans.5 (@* 4 ans.9))

(ans.1 (@* ans.16 ans.5)))

(call ktop.0 ans.1))).

These examples underscore the inefficiency of the code generated by SCPS.
Why don’t we just modify Silk to include the constant propagation and

inlining simplifications? Constant propagation is not problematic, but inlining
is a delicate transformation. In Silkcps , it is only legal to copy an abstraction
to certain positions (such as the rator of a call, where it can be removed via
[implicit-let]). When a named abstraction is used more than once in the body
of a let, copying the abstraction multiple times makes the program bigger.
Unrestricted inlining can lead to code bloat, a dramatic increase in the size
of a program. In the presence of recursive procedures, special care must often
be taken to avoid infinitely unwinding a recursive definition via inlining. Since
we intend that Silk simplifications should be straightforward to implement,
we prefer not to include inlining as a simplification. Inlining issues are further
explored in Exercise 17.19.

Does that mean we are stuck with an inefficient CPS transformation? No.
In the next section, we study a cleverer approach to CPS conversion that avoids
generating unnecessary code in the first place.

¤ Exercise 17.15 Consider the Silk program

P = (silk (x y) (@* (@+ x y) (@- x y))).

a. Show the result P1 generated by SCPSprog [[P]] without performing any simplifi-
cations.

b. Show the result P2 of simplifying P1 using the standard Silk simplifications
(including [implicit-let] and [copy-prop]).

c. Show the result P3 of further simplifying P2 using inlining in addition to the
standard Silk simplifications. ¢

¤ Exercise 17.16

a. Suppose that (begin E*), (scand E*), and (scor E*) were not syntactic sugar
but a kernel Silk constructs. Give the SCPSexp clauses for begin, scand, and
scor.

b. Suppose that Silk were extended with FL’s cond construct (as a kernel form,
not sugar). Give the SCPSexp clause for cond. ¢



Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  Draft November 23, 2004  --  

17.9. TRANSFORM 7: CPS CONVERSION 733

¤ Exercise 17.17

a. Give a concrete example of how variable capture can take place in the let clause
of SCPSexp if the initial program is not uniquely named.

b. Modify the let clause of SCPSexp so that it works properly even if the initial
program is not uniquely named ¢

¤ Exercise 17.18 Control branches in linear assembly language code are usually
provided via branch instructions that perform a control jump if a certain condition
holds but “drop through” to the next instruction if the condition does not hold. We
can model branch instructions in Silkcps by restricting if expressions to have the form

(if Vcps (call Vcps Vcps*) Ecps).

Modify the SCPSexp clause for if so that all transformed ifs have this restricted

form. ¢

¤ Exercise 17.19 Consider the following [copy-abs] simplification rule:

(let ((I AB)) Ebody)−simp−−−→ [AB /I]Ebody [copy-abs]

Together, [copy-abs] and the standard Silk [implicit-let] and [copy-prop] rules imple-
ment a form of procedure inlining. For example

(let ((inc (lambda (x) (@+ x 1))))

(@* (call inc a) (call inc b)))

can be simplified via [copy-abs] to

(@* (call (lambda (x) (@+ x 1)) a)

(call (lambda (x) (@+ x 1)) b)).

Two applications of [implicit-let] give

(@* (let ((x a)) (@+ x 1))

(let ((x b)) (@+ x 1))),

and two applications of [copy-prop] yield the inlined code

(@* (@+ a 1) (@+ b 1)).

In this exercise, we explore some issues with inlining.

a. Use inlining to remove all calls to sqr in the following Silk expression. How
many multiplications does the resulting expression contain?

(let ((sqr (lambda (x) (@* x x))))

(call sqr (call sqr (call sqr a))))

b. Use inlining to remove all calls to sqr, quad, and oct in the following Silk
expression. How many multiplications does the resulting expression contain?
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(let* ((sqr (lambda (x) (@* x x)))

(quad (lambda (y) (@* (call sqr y) (call sqr y))))

(oct (lambda (z) (@* (call quad z) (call quad z)))))

(@* (call oct a) (call oct b)))

c. What happens if inlining is used to simplify the following Silk expression?

(let ((f (lambda (g) (call g g))))

(call f f))

(For the purposes of this part, ignore the Silk type system.)

d. Using only standard Silk simplifications, the result of SCPSprog is guaranteed to
be uniquely named if the input is uniquely named. This property does not hold
in the presence of inlining. Write an example program Pnun such that the result
of simplifying SCPSprog [[Pnun ]] via inlining is not uniquely named. Hint: Where
can duplication occur in a CPS converted program?

e. Inlining multiple copies of an abstraction can lead to code bloat. Develop an
example Silk Pbloat where performing inlining on the result of SCPSprog [[Pbloat ]]
yields a larger transformed program rather than a smaller one. Hint: Where can
duplication occur in a CPS converted program? ¢

17.9.3 A More Efficient CPS Transform

Reconsider the output of SCPS on the incrementing program (silk (a) (@+ a 1)):

(silk (a ktop.0)

(let ((k.6 (lambda (v.3)

(let ((k.5 (lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1)))))

(call k.5 1)))))

(call k.6 a)).

In the above code, we have used gray to highlight the inefficient portions of the
code that we wish to eliminate. These are exactly the portions we were able
to eliminate via extra simplifications like inlining and constant propagation in
the previous section. Our goal in developing a more efficient CPS transform
is to perform these simplifications as part of CPS conversion itself rather than
waiting to do them later. Instead of sweeping away unsightly gray code as an
afterthought, we want to simply avoid generating it in the first place!

The key insight is that we can avoid generating the gray code if we somehow
make it part of metalanguage that specifies the CPS conversion algorithm. Sup-
pose we change the gray Silk lets, lambdas, and calls to metalanguage lets,
procs and applications. Then our example would become:
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(silk (a ktop.0)

let k6 be (λV3 .
let k5 be (λV4 .

(let ((ans.1 (@+ V3 V4)))

(call ktop.0 ans.1)))
in (k5 1))

in (k6 a))

To enhance readability, we will keep the metalanguage notation in gray and
the Silk code in black teletype font. Note that k5 and k6 name metalanguage
functions whose parameters (V3 and V4 ) must be pieces of Silk syntax — in
particular, Silk value expressions. Indeed, k5 is applied to the Silk literal
1 and k6 is applied to the Silk literal a. The result of evaluating the gray
metalanguage expressions in our example yields

(silk (a ktop.0)

(let ((ans.1 (@+ a 1)))

(call ktop.0 ans.1))),

which is exactly the simplified result we want!

What we have done is taken computation that would have been performed
when executing the code generated by CPS conversion and moved it so that it is
performed when the code is generated. The output of CPS conversion can now
be viewed as code that is executed in two stages: the gray code is the code that
can be executed immediately, while the black code is the residual code that
can only be executed later. This notion of staged computation is a key idea
in an approach to optimization known as partial evaluation. By expressing
the gray code in the metalanguage, it gets executed “for free” as part of the
CPS translation itself.

Our improved approach to CPS conversion will make heavy use of gray ab-
stractions of the form (λV . . . .) that map Silkcps value expressions (i.e., literals
and variable references) to other Silkcps expressions. Because these abstrac-
tions play the role of continuations at the metalanguage level, we call them
meta-continuations. In the above example, k5 and k6 are examples of meta-
continuations.

A meta-continuation can be viewed as a metalanguage representation of a
special kind of context: a Silkcps expression with named holes that can be filled
only with Silkcps value expresssions. Such contexts may contain more than one
hole, but a hole with a given name can appear only once. For example, here
are meta-continuations that arise in the CPS conversion of the incrementing
example:
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Context Notation Metalanguage Notation
(call ktop.0 21) λV1 . (call ktop.0 V1)

(let ((ans.1 (@+ 23 24)))

(call ktop.0 ans.1))

λV4 . (let ((ans.1 (@+ V3 V4)))

(call ktop.0 ans.1))

(let ((ans.1 (@+ 23 1)))

(call ktop.0 ans.1))

λV3 . (let ((ans.1 (@+ V3 1)))

(call ktop.0 ans.1))

Figures 17.30 and 17.31 present an efficient version of CPS conversion that
is based on the notions of staged computation and meta-continuations. The
metavariable m ranges over meta-continuations in the domain MetaCont, which
consists of functions that map Silkcps value expressions to Silkcps expressions.
The mc→exp and exp→mc functions perform conversions between compile-time
meta-continuations and Silkcps expressions denoting run-time continuations.

The CPS conversion clauses in Figures 17.30 and 17.31 are similar to the
ones in Figures 17.27 and 17.28. Indeed, the former are obtained from the latter
by:

• transforming every continuation-accepting Silkcps abstraction of the form
(lambda (Ik) . . .) into a metalanguage abstraction of the form (λm . . . .);

• transforming every Silkcps continuation of the form (lambda (I) . . .)
into a meta-continuation of the form (λV . . . .);

• transforming every Silkcps application (call Ek V) in which Ek is a
continuation (either an abstraction or a variable) to a meta-application
of the form (m V), where m is the meta-continuation that corresponds to
Ek .

• using the mc→exp and exp→mc functions where necessry to ensure that
all the types work out.

The key benefit of the meta-continuation approach to CPS conversion is that
many reductions that would be left as residual run-time code in the simple ap-
proach are guaranteed to be performed at compile-time in the metalanguage.
We illustrate this in Figure 17.32 by showing the CPS conversion of the expres-
sion (call f (@* x (if (call g y) 2 3))) relative to an initial continuation
named k. In the figure, each meta-application of the form

((λm . E{(m Vactual)}) (λVformal . E))

(where E is a Silkcps expression context with one hole) is reduced to

E{[Vactual/Vformal ]E}
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Ecps ∈ Expcps
Vcps ∈ ValueExpcps

m ∈ MetaCont = ValueExpcps → Expcps

mc→exp : MetaCont → Expcps =(λm . (lambda (Itemp) (m Itemp)))
exp→mc : Expcps → MetaCont =(λEcps . (λVcps . (call Ecps Vcps)))

MCPSprog : ProgramSilk → Programcps

MCPSprog [[(silk (I1 . . . In) Ebody)]] =
(silk (I1 . . . In Iktop) ; Iktop fresh

(MCPSexp [[Ebody ]] (exp→mc Iktop)))

MCPSexp : ExpSilk → MetaCont → Expcps

MCPSexp [[L]] = (λm . (m I))

MCPSexp [[I]] = (λm . (m L))

MCPSexp [[(lambda (I1 . . . In) Ebody)]] =
(λm . (let ((Iabs ; Iabs fresh

(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(MCPSexp [[Ebody ]] (exp→mc Ikcall)))))
(m Iabs)))

MCPSexp [[(call E0 . . . En)]] =
(λm . (MCPSexp [[E0 ]]

(λV0 .
...

(MCPSexp [[En ]]
(λVn . (call V0 . . . Vn (mc→exp m)))) . . .)))

MCPSexp [[(let ((I1 E1) . . . (In En)) Ebody)]] =
(λm . (MCPSexp [[E1 ]]

(λV1 .
...

(MCPSexp [[En ]]
(λVn . (let ((I1 V1) . . . (In Vn))

(MCPSexp [[Ebody ]] m)))) . . . )))

Figure 17.30: An efficient CPS transform based on meta-continuations, part 1.
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MCPSexp[[(primop O E1 . . . En)]] =
(λm . (MCPSexp [[E1 ]]

(λV1 .
...

(MCPSexp [[En ]]
(λVn . (let ((Ians (primop O V1 . . . Vn))) ; Ians fresh

(m Ians))) . . . )))

MCPSexp[[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] =
(λm . (cycrec ((I1 (MCPSbv [[BV1 ]]))

...

(In (MCPSbv [[BVn ]])))
(MCPSexp [[Ebody ]] m))

MCPSexp[[(set! Ilhs Erhs)]] =
(λm . (MCPSexp[[Erhs ]]

(λVrhs . (let ((Ians (set! Ilhs Vrhs))) ; Ians fresh

(m Ians)))))

MCPSexp[[(if Etest Ethen Eelse)]] =
(λm . (MCPSexp[[Etest ]]

(λVtest . (let ((Ikif (mc→exp m)))
(if Vtest

(MCPSexp [[Ethen ]] (exp→mc Ikif ))
(MCPSexp [[Eelse ]] (exp→mc Ikif ))))))

MCPSexp[[(error Imsg)]] = (λm . (error Imsg))

SCPSbv : BindingValueSilk → BindingValuecps

MCPSbv [[L]] =L

MCPSbv [[(@mprod V1 . . . Vn)]] = (@mprod V1 . . . Vn) ; unchanged

MCPSbv [[(lambda (I1 . . . In) Ebody)]] =
(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(MCPSexp [[E]] (exp→mc Ikcall)))

MCPSdv : DataValueSilk → DataValuecps

MCPSdv [[V]] =V

MCPSdv [[AB ]] =SCPSbv [[AB ]]

Figure 17.31: An efficient CPS transform based on meta-continuations, part 2.
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and each meta-application of the form (MCPSexp [[Vactual ]] (λVformal . E)) is re-
duced to [Vactual/Vformal ]E. Each of these reductions removes a potential run-
time application that might remain after simple CPS conversion.

The example illustrates how MCPS effectively turns the input expression
“inside out”. In the input expression, the call to f is the outermost call, and
(call g y) is the innermost call. But in the CPS-converted result, the call to g

is the outermost call and the call to f is nested deep inside. This reorganization
is necessary to make explicit the order in which operations are performed:

1. g is applied to y;

2. the result of the g application (call it t.4) is tested by if;

3. the test determines which of 2 or 3 (call it t.3) is mulitplied by x;

4. f is invoked on the result of the multiplication (call it ans.1);

5. the result of the f application is supplied to the continuation k.

Variables such as ans.1, t.3, and t.4 can be viewed as denoting temporary
registers.

Note that (mc→exp (exp→mc k)) is simplified to k in our example. To see
why, observe that

(mc→exp (exp→mc k))
= ( ( λm . (lambda (Itemp) (m Itemp))) (λV . (call k V)))
= (lambda (Itemp) ((λV . (call k V)) Itemp))
= (lambda (Itemp) (call k Itemp)).

The final expression is simplified to k by the [eta-lambda] rule. This eta-
reduction eliminates a call in cases where the CPS transform would have gen-
erated a continuation that simply passed its argument along to another contin-
uation with no additional processing. This simplification is sometimes called
the tail call optimization because it guarantees that tail calls in the source
program require no additional control storage in the compiled program; they can
be viewed as assembly code jumps that pass arguments. Languages are said to
be properly tail recursive if implementations are required to compile source
tail calls into jumps. Our Silk mini-language is properly tail recursive, as is the
real language Scheme. Such languages can leave out iteration constructs (like
while and for loops) and still have programs with iterative behavior.

Observe that in each clause ofMCPS , the meta-continuation m is referenced
at most once. This guarantees that each meta-application makes the metalan-
guage expression smaller. Thus there is no specter of duplication-induced code
bloat that haunts more general inlining optimizations.
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(MCPSexp [[(call f (@* x (if (call g y) 2 3)))]] (exp→mc k))

= ((λm . (MCPSexp[[f]] (λV1 . (MCPSexp [[(@* x (if (call g y) 2 3))]]
(λV2 . (call V1 V2 (mc→exp m)))))))

(exp→mc k))

= (MCPSexp [[f]] (λV1 . (MCPSexp [[(@* x (if (call g y) 2 3))]]
(λV2 . (call V1 V2 (mc→exp (exp→mc k)))))))

= (MCPSexp [[(@* x (if (call g y) 2 3))]] (λV2 . (call f V2 k)))

= ((λm . (MCPSexp[[x]]
(λV3 . (MCPSexp [[(if (call g y) 2 3)]]

(λV4 . (let ((ans.1 (@* V3 V4))) (m ans.1)))))))
(λV2 . (call f V2 k)))

= (MCPSexp [[x]]
(λV3 . (MCPSexp [[(if (call g y) 2 3)]]

(λV4 . (let ((ans.1 (@* V3 V4))) (call f ans.1 k))))))

= (MCPSexp [[(if (call g y) 2 3)]]
(λV4 . (let ((ans.1 (@* x V4))) (call f ans.1 k))))

= ((λm . (MCPSexp[[(call g y)]]
(λV5 . (let ((kif.2 (mc→exp m)))

(if V5

(MCPSexp [[2]] (exp→mc kif.2))
(MCPSexp [[3]] (exp→mc kif.2)))))))

(λV4 . (let ((ans.1 (@* x V4))) (call f ans.1 k))))

= (MCPSexp [[(call g y)]]
(λV5 . (let ((kif.2 (lambda (t.3) (let ((ans.1 (@* x t.3)))

(call f ans.1 k)))))

(if V5

(MCPSexp [[2]] (λV6 . (call kif.2 V6)))
(MCPSexp [[3]] (λV7 . (call kif.2 V7)))))))

= ((λm . (MCPSexp [[g]] (λV8 . )(MCPSexp [[y]] (λV9 . (call V8 V9 (mc→exp m))))))
(λV5 . (let ((kif.2 (lambda (t.3) (let ((ans.1 (@* x t.3)))

(call f ans.1 k)))))

(if V5 (call kif.2 2) (call kif.2 3)))))

= (call g y (lambda (t.4)

(let ((kif.2 (lambda (t.3)

(let ((ans.1 (@* x t.3)))

(call f ans.1 k)))))

(if t.4 (call kif.2 2) (call kif.2 3)))))

Figure 17.32: An example of CPS conversion using meta-continuations.
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Converting the meta-continuation to a Silkcps abstraction named Ikif in the
if clause is essential for ensuring this guarantee. It is important to note that the
Ikif abstraction does not destroy proper tail recursion. Consider the expression

(if (f x) (g y) (h z)).

The call to f is not a tail call, but the calls to g and h are tail calls. Without
simplifications, the result of CPS converting this expression relative to an initial
continuation k is

(call f x (lambda (t.3)

(let ((kif.1 (lambda (t.2) (call k t.2))))

(if t.3 (call g y kif.1) (call h z kif.1))))).

Fortunately, the standard simplifications implement proper tail recursion in this
case. The [eta-lambda] simplification yields

(call f x (lambda (t.3)

(let ((kif.1 k))

(if t.3 (call g y kif.1) (call h z kif.1)))))

and the [copy-prop] simplification yields

(call f x (lambda (t.3) (if t.3 (call g y k) (call h z k)))).

Figure 17.33 shows the result of using MCPS to CPS convert our running
revmap example. Observe that the output of CPS conversion looks quite a bit
closer to assembly language code than the input. You should study the code
to convince yourself that this program has the same behavior as the original
program. CPS conversion has introduced only one non-trivial continuation ab-
straction: k.38 names the continuation of the call to f in the body of the loop.
Each input abstraction has been extended with a final argument naming its con-
tinuation: abs.12 (this is just a renamed version of revmap) takes continuation
argument k.22; the loop takes continuation argument k.27; and the greater-
than-b procedure takes continuation k.20. Note that the loop.8 procedure is
invoked tail recursively within its body, so it requires only constant control space
and is thus a true iteration construct like loops in traditional languages.

It is worth noting that the conciseness of the code in Figure 17.33 is a combi-
nation of the simplifications performed by reducing meta-applications at compile
time and the standard Silkcps simplifications. To underscore the importance of
the latter, Figure 17.34 shows the result of MCPS before any Silkcps simplifi-
cations are performed.

¤ Exercise 17.20 UseMCPSexp to CPS convert the following expressions relative to
an initial meta-continuation (exp→mc k).
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(silk (a.1 b.2 ktop.11)

(let* ((abs.12

(lambda (f.5 lst.6 k.22)

(let* ((t.24 (@null))

(t.23 (@mprod t.24)))

(cycrec

((loop.8

(lambda (xs.9 k.27)

(let ((t.29 (@null? xs.9)))

(if t.29

(let ((t.39 (@mget 1 t.23)))

(call k.27 t.39))

(let* ((t.32 (@car xs.9))

(k.38 (lambda (t.33)

(let* ((t.34 (@mget 1 t.23))

(t.31 (@cons t.33 t.34))

(t.30 (@mset! 1 t.23 t.31))

(t.35 (@cdr xs.9)))

(call loop.8 t.35 k.27)))))

(call f.5 t.32 k.38)))))))

(call loop.8 lst.6 k.22)))))

(abs.13

(lambda (x.4 k.20)

(let ((t.21 (@> x.4 b.2)))

(call k.20 t.21))))

(t.16 (@* a.1 7))

(t.17 (@null))

(t.15 (@cons t.16 t.17))

(t.14 (@cons a.1 t.15)))

(call abs.12 abs.13 t.14 ktop.11)))

Figure 17.33: Running example after CPS conversion (with simplifications).
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(silk (a.1 b.2 ktop.11)

(let* ((abs.12

(lambda (f.5 lst.6 k.22)

(let* ((t.24 (@null))

(t.23 (@mprod t.24))

(ans.7 t.23))

(cycrec

((loop.8

(lambda (xs.9 k.27)

(let* ((kif.29 (lambda (t.28) (call k.27 t.28)))

(t.30 (@null? xs.9)))

(if t.30

(let ((t.40 (@mget 1 ans.7)))

(call kif.29 t.40))

(let* ((t.33 (@car xs.9))

(k.39

(lambda (t.34)

(let* ((t.35 (@mget 1 ans.7))

(t.32 (@cons t.34 t.35))

(t.31 (@mset! 1 ans.7 t.32))

(ignore.10 t.31)

(t.36 (@cdr xs.9))

(k.38

(lambda (t.37)

(call kif.29 t.37))))

(call loop.8 t.36 k.38)))))

(call f.5 t.33 k.39)))))))

(let ((k.26 (lambda (t.25) (call k.22 t.25))))

(call loop.8 lst.6 k.26))))))

(revmap.3 abs.12)

(abs.13

(lambda (x.4 k.20)

(let ((t.21 (@> x.4 b.2)))

(call k.20 t.21))))

(t.16 (@* a.1 7))

(t.17 (@null))

(t.15 (@cons t.16 t.17))

(t.14 (@cons a.1 t.15))

(k.19 (lambda (t.18) (call ktop.11 t.18))))

(call revmap.3 abs.13 t.14 k.19)))

Figure 17.34: Running example after CPS conversion (without simplifications).
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a. (lambda (f) (+ 1 (call f 2)))

b. (lambda (g x) (+ 1 (g x)))

c. (lambda (f g h y) (call f (call g x) (call h y)))

d. (lambda (f) (@* (if (f 1) 2 3) (if (f 4) 5 6))) ¢

¤ Exercise 17.21 UseMCPSprog to CPS convert the following programs:
a. The program Pquad from Figure 17.29.

b. (silk (x)

(cycrec ((fact (lambda (n)

(if (@= n 0)

1

(@* n (call fact (@- n 1)))))))

(call fact x)))

c. (silk (x)

(cycrec ((fib (lambda (n)

(if (@<= n 1)

n

(@+ (call fib (@- n 1))

(call fib (@- n 2)))))))

(fib x))) ¢

¤ Exercise 17.22 Do Exercise 17.16, giving MCPSexp clauses instead of SCPSexp
clauses. ¢

¤ Exercise 17.23 The unique naming prerequisite on programs is essential for the cor-
rectness ofMCPSprog [[.]] To demonstrate this, show that the output ofMCPSprog [[Pmnun ]]
has a different behavior from Pmnun , where Pmnun is:

(silk (a b)

(@+ (let ((a (@* b b)))

a)

a))

¢

¤ Exercise 17.24

a. Show the result of usingMCPSexp [[]] to convert the following program Pset!:

(silk (a b)

(let ((ignore.0 (set! a (set! b (@+ a b)))))

(@mprod a b))).

b. In the Tortoise compiler, assignment conversion is performed before CPS con-
version. Show the result ofMCPSprog [[ACprog [[Pset!]]]].
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c. It is possible to perform assignment conversion after closure conversion. Show
the result of ACprog [[MCPSprog [[Pset!]]]]. Is the result in CPS form?

d. Describe how to modify assignment conversion to guarantee that if its input is in
CPS form then its output is in CPS form. ¢

¤ Exercise 17.25 Bud Lojack thinks he can improve MCPS by extending meta-
continuations to take letable expressions rather than just value expressions:

m ∈ MetaCont = LetableExpcps → Expcps

Recall (from Figure 17.25) that letable expressions include abstractions, primitive ap-
plications, and assignment expressions in addition to value expressions. Bud reasons
that if meta-continuations are changed in this way, then he can call them directly on
abstractions, primitive applications, and assignment expressions. Of course, it will also
be necessary to wrap all letable expressions in lets, but Bud figures that Silk’s syn-
tactic simplifications will remove most unnecessary let bindings. Bud changes several
MCPSexp clauses as shown in Figure 17.35.
a. Show the result of using Bud’s clauses to CPS convert the following expression
relative to an initial continuation k:

(call f (lambda (a b) (@+ (@* a a) (@* b b))))

b. Bud proudly shows his new clauses to Abby Stracksen. Abby says “Your approach
is interesting, but it has a major bug: it can change the meaning of programs
by reordering side effects!” Show that Abby is right by giving simple programs
involving mprod and set! in which Bud’s CPS converter changes the meaning of
the program. ¢

17.9.4 CPS Converting Control Constructs

[This section still needs text!]

¤ Exercise 17.26 The CPS transformation can be used to implement seemingly
complex control structures in a simple way. This problem examines the implementation
of a simplified form of dynamically scoped exceptions with termination semantics (as
presented in Section 9.5). Suppose we extend the kernel with two new constructs, catch
and throw, as follows:

E ::= . . . | (catch E1 E2) | (throw E)

In this simplified form, we have only one possible exception; therefore, we don’t need
exception identifiers. Here is the informal semantics of the new constructs:

• (catch E1 E2) evaluates E1 to a procedure and installs it as the dynamic ex-
ception handler active during the evaluation of E2 . It is an error if E1 does not
evaluate to a procedure.
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m ∈ MetaCont = LetableExpcps → Expcps

mc→exp : MetaCont → Expcps =(λm . (lambda (Itemp) (m Itemp)))
exp→mc : Expcps → MetaCont

=(λEcps . (λLE cps . (let ((Irand LE cps)) (call Ecps Irand))))

MCPSexp[[(lambda (I1 . . . In) Ebody)]] =
(λm . (m (lambda (I1 . . . In Ikcall) ; Ikcall fresh

(MCPSexp [[E]] (exp→mc Ikcall)))))

MCPSexp[[(call E0 . . . En)]] =
(λm . (MCPSexp [[E1 ]]

(λLE 1 .
...

(MCPSexp [[En ]]
(λLEn . (let* ((I1 LE1) . . . (In LEn)) ; I1 . . . In fresh

(call I1 . . . In (mc→exp m))))) . . .)))

MCPSexp[[(let ((I1 E1) . . . (In En)) Ebody)]] =
(λm . (MCPSexp [[E1 ]]

(λLE 1 .
...

(MCPSexp [[En ]]
(λLEn . (let ((I1 LE1) . . . (In LEn))

(MCPSexp [[Ebody ]] m)))) . . . )))
MCPSexp[[(primop O E1 . . . En)]] =
(λm . (MCPSexp [[E1 ]]

(λLE 1 .
...

(MCPSexp [[En ]]
(λLEn . (let* ((I1 LE1) . . . (In LEn)) ; I1 . . . In fresh

(m (primop O I1 . . . In)))) . . . )))

MCPSexp[[(set! Ilhs Erhs)]] =
(λm . (MCPSexp[[Erhs ]]

(λLE rhs . (let ((Irhs LE rhs)) ; Irhs fresh

(m (set! Ilhs Irhs))))))

MCPSexp[[(if Etest Ethen Eelse)]] =
(λm . (MCPSexp[[Etest ]]

(λLE test . (let ((Ikif (mc→exp m))
(Itest LE test)) ; Itest fresh

(if Itest
(MCPSexp [[Ethen ]] (exp→mc Ikif ))
(MCPSexp [[Eelse ]] (exp→mc Ikif ))))))

Figure 17.35: Bud’s alternative form of CPS conversion. Clauses not shown are
unchanged.
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• (throw E) evaluates E and passes the resulting value, along with control, to the
currently active exception handler.

Here is a short example:

(catch (lambda (x) #f)

(let ((f (lambda (x) (throw 5))))

(catch (lambda(x) (+ 1 x))

(f #f)))) −−−eval→ 6

The standard SCPS conversion rules can be modified to translate every expression into
a procedure taking two continuations: a normal continuation and an exception con-
tinuation. The SCPS conversion rules for top level expressions, identifiers and literals
are:

CPS[[E]] = (program (define *top* (lambda (v) v))

(define *except* (lambda (v)

"throw without catch"))

(SCPS [[E]] *top* *except*))
SCPS[[I]] = (lambda (kn ke) (kn I))
SCPS[[L]] = (lambda (kn ke) (kn L))

a. Give the conversion rules for (lambda (I1...In) E) and (call E1...En).

b. Give the SCPS conversion rules for (throw E) and (catch E1 E2).

¢

¤ Exercise 17.27 Louis Reasoner wants you to modify the CPS transformation to
add a little bit of profiling information. Specifically, the modified CPS transformation
should produce code that keeps a count of user procedure (not continuation) calls. Users
will be able to access this information with the new construct (call-count) which was
added to the grammar of kernel expressions:

E ::= . . . | (call-count)

Here are some examples:

(begin (call (lambda (x) x) #u)

(call-count)) −−−eval→ 1

(begin (call (lambda (x)

(call (lambda (y) y) x))

#u)

(call-count)) −−−eval→ 2

In the modified CPS transformation, all procedures (including continuations) should
take as an extra argument the number of user procedure calls so far. For example,
here’s the new SCPS rule for identifiers:
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SCPS[[I]] = (lambda (k n) (call k I n))

Give the revised SCPS conversion rules for (lambda (I) E), (call Ep Ea), and

(call-count). ¢

17.10 Transform 8: Closure Conversion

In languages with nested procedure/object declarations, code can refer to vari-
ables declared outside the innermost procedure/object declaration. As we have
seen in Chapters 6–7, the meaning of such non-local references is often explained
in terms environments. Traditional interpreters and compilers have a good deal
of special-purpose machinery to manage environments.

The Tortoise compiler avoids such machinery by a transformation that
makes all environments explicit in the intermediate language. Each procedure
is transformed into an abstract pair of code and environment, where the code
explicitly accesses the environment to retrieve values formerly referenced by free
variables. The resulting abstract pair is known as a closure because its code
component is closed — i.e., it contains no free variables. The process of trans-
forming all procedures into closures is traditionally called closure conversion.
Because it makes all environments explicit, environment conversion is an-
other good name for this transformation.

Closure conversion transforms a program that may contain higher-order pro-
cedures into one that contains only first-order procedures. It is useful not only
as a transformation pass in a compiler but also as a technique that program-
mers can apply manually to simulate higher-order procedures in a language that
supports only first-order procedures, such as C, Pascal, and Ada.

There are numerous approaches to closure conversion that differ in terms of
how environments and closures are represented. We shall first focus on one class
of representations — so-called flat closures — and then briefly discuss some of
the other options.

17.10.1 Flat Closures

We introduce closure conversion in the context of the following example:
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(let ((linear

(lambda (a b)

(lambda (x)

(@+ (@* a x) b)))))

(let ((f (call linear 4 5))

(g (call linear 6 7)))

(@+ (call f 8) (call g 9)))).

Given a and b, the linear procedure returns a procedural representation of a
line with slope a and y-intercept b. The f and g procedures two such lines, each
of which is associated with the abstraction (lambda (x) . . .), which has free
variables a and b. In the case of f, these variables have the bindings 4 and 5,
respectively, while for g they have the bindings 6 and 7.

We begin by considering how to closure convert this example by hand, and
then will develop a transformation that performs the conversion automatically.
One way to represent f and g as closed procedures is shown below:

(let ((fgcode
(lambda (env x)

(let* ((a (@mget 1 env))

(b (@mget 2 env)))

(@+ (@* a x) b))))

(fenv (@mprod 4 5))

(genv (@mprod 6 7)))

(let ((fclopair (@mprod fgcode fenv))

(gclopair (@mprod fgcode genv)))

(@+ (call (@mget 1 fclopair) (@mget 2 fclopair) 8)

(call (@mget 1 gclopair) (@mget 2 gclopair) 9))))

In this approach, the two procedures share the same code component, fgcode ,
which takes an explicit environment argument env in addition to the normal ar-
gument x. The argument is assumed to be a tuple whose two components are the
values of the former free variables a and b. These values are extracted from the
environment and given their former names in a wrapper around the body expres-
sion (@+ (@* a x) b). Note that fgcode has no free variables and so is a closed
procedure. The environments fenv and genv are tuples holding the free variable
values. The closures fclopair and gclopair are formed by making explicit code/env
pairs that pair the shared code component with the individual environment. To
handle the change in procedure representation, each call of the form (call f E)
must be transformed to (call (@mget 1 fclopair) (@mget 2 fclopair) E) (and
similarly for g) in order to pass the environment component as the first argument
to the code component.

It’s worth emphasizing at this point that closure conversion is basically an
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exercise in abstract data type implementation. The abstract data type being
considered is the procedure, which is manipulated by an interface with two oper-
ations: lambda, which creates procedures, and call, which applies procedures.
The goal of closure conversion is to find a different implementation of this in-
terface that has the same behavior but in which the procedure creation form
has no free variables. As in traditional data structure problems, we’re keen on
designing implementations that not only have the correct implementation, but
are as efficient as possible.

For example, a more efficient approach to using explicit code/env pairs is to
collect the code and free variable values into a single tuple, as shown below.

(let ((fgcode
′

(lambda (clo x)

(let* ((a (@mget 2 clo))

(b (@mget 3 clo)))

(@+ (@* a x) b)))))

(let ((fclo (@mprod fgcode
′ 4 5))

(gclo (@mprod fgcode
′ 6 7)))

(@+ (call (@mget 1 fclo) fclo 8)

(call (@mget 1 gclo) gclo 9))))

This approach, which is known as closure passing style, avoids creating a
separate environment tuple every time a closure is created, and avoids extracting
this tuple from the code/environment pair every time the closure is invoked.

If we systematically use closure passing style to transform every abstraction
and application site in the original linear example, we get the result show in
Figure 17.36. The inner lambda has been transformed into a tuple that combines
fgcode with the value of the free variables a and b from the outer lambda. For
consistency, the outer lambda, has also been transformed; its tuple has only a
code component since the original lambda has no free variables.

Before we study the formal closure conversion transformation, we consider
one more example (Figure 17.37), which involves nesting of open procedures and
unreferenced variables. In the unconverted clotest, the outermost abstraction,
(lambda (c d) . . .), is closed; the middle abstraction, (lambda (r s t) . . .),
has c as its only free variable (d is never used); and the innermost abstraction,
(lambda (y) . . .), has {c, r, t} as its free variables (d and s are never used).
In the converted clotest, each abstraction has been transformed into a tuple
that combines a closed code component with all the free variables of the original
abstraction. The resulting tuples are call flat closures because all the environ-
ment information has been condensed into a single tuple that does not reflect
any of the original nesting structure. Note that unreferenced variables from an
enclosing scope are ignored. For example, the innermost body does not reference
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(let ((linear

(@mprod ;; this product has only a code component

(lambda (clo1 a b) ;; clo1 unused

(@mprod ;; this product has code + vars a,b

(lambda (clo2 x)

(let* ((a (@mget 2 clo2))

(b (@mget 3 clo2)))

(@+ (@* a x) b)))

a b)) ;; free vars of clo2

))) ;; clo1 has no free vars

(let ((f (call (@mget 1 linear) linear 4 5))

(g (call (@mget 1 linear) linear 6 7)))

(@+ (call (@mget 1 f) f 8)

(call (@mget 1 g) g 9))))

Figure 17.36: Result of closure converting the linear example.

d and s, so these variables are not extracted from clo3 and are not included in
the innermost tuple.

A formal specification of the flat closure conversion transformation is pre-
sented in Figure 17.38. The transformation is specified via the CL function on
Silk expressions. The only non-trivial clauses for CL are lambda and call. CL
converts a lambda to a tuple containing a closed code component and all the
free variables of the abstraction. The code component is derived from the origi-
nal lambda by adding a closure argument and extracting the free variables from
this argument in a wrapper around the body. The order of the free variables is
irrelevant as long as it is consistent between the tuple creation and projection
forms.

A call is converted to another call that applies the code component of the
converted rator closure to the closure and the converted operands. A difference
from the examples studied above is that CL introduces a let* to name the
closure and its code component.4 This guarantees that any input in CPS form
will be translated to an output in CPS form. However, the unique naming
property is not preserved by CL. The names Ifvi declared in the body of the
closed abstraction stand for variables that are logically distinct from variables
with the same names in the closure tuple.

In order to work properly, CL requires that the input expression contain
no occurrences of set!. This is because the copying of free variable values by

4In the call clause, the binding of Iclo to Erator is only necessary if Erator is not already an
identifier. We will omit Iclo in examples unless it is necessary.
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Unconverted expression

(let ((clotest

(lambda (c d)

(lambda (r s t)

(lambda (y)

(@+ (@/ (* r y) t) (@- r c)))))))

(let ((p (call clotest 4 5)))

(let ((q1 (call p 6 7 8))

(q2 (call p 9 10 11)))

(+ (call q1 12) (call q2 13))))).

Converted expression

(let ((clotest

(@mprod ;; this product has only a code component

(lambda (clo1 c d) ;; clo1 is unused

(@mprod ;; this product has code + var c

(lambda (clo2 r s t)

(let* ((c (@mget 2 clo2)))

(@mprod ;; this product has code + vars c,r,t

(lambda (clo3 y)

(let* ((c (@mget 2 clo3))

(r (@mget 3 clo3))

(t (@mget 4 clo3)))

(@+ (@/ (* r y) t) (@- r c))))

c r t))) ;; free vars of clo3 = c,r,t

c)) ;; free vars of clo2 = c

))) ;; clo1 has no free vars

(let ((p (call (@mget 1 clotest) clotest 4 5)))

(let ((q1 (call (@mget 1 p) p 6 7 8))

(q2 (call (@mget 1 p) p 9 10 11)))

(+ (call (@mget 1 q1) q1 12) (call (@mget 1 q2) q2 13))))).

Figure 17.37: Flat closure conversion on an example with nested open proce-
dures.
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CL : Exp→ Exp

Preconditions: The input expression is assignment-free.

Postconditions:

• All lambdas in the output expression are closed.

• The output expression is assignment-free.

Other properties:

• If the input expression is in CPS form, so is the output expression.

CL[[(lambda (I1 ... In) Ebody)]]
= let {Ifv1 , . . . , Ifvk } be FreeIds[[(lambda (I1 ... In) Ebody)]]

in (@mprod (lambda (Iclo I1 ... In) ; Iclo fresh

(let* ((Ifv1 (mget 2 Iclo))
...

(Ifvk (mget k+1 Iclo)))
CL[[Ebody ]]))

Ifv1 . . . Ifvk)

CL[[(call Erator E1 . . . En)]]
= (let* ((Iclo CL[[Erator ]]) ; Iclo fresh

(Icode (mget 1 Iclo))) ; Icode fresh

(call Icode Iclo CL[[E1 ]] . . . CL[[En ]]))
All other clauses of CL are purely structural.

Figure 17.38: The flat closure conversion transformation CL of Tortoise.
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CL in the lambda clause does not preserve the semantics of mutable variables.
Consider the following example of a nullary function that increments a counter
every time it is called:

(let ((count 0))

(lambda ()

(let* ((new-count (+ count 1))

(ignore (set! count new-count)))

new-count)))

Closure converting this example yields:

(let ((count 0))

(@mprod

(lambda (clo)

(let* ((count (@mget clo 2)))

(let* ((new-count (+ count 1))

(ignore (set! count new-count)))

new-count)))

count))

The set! in the tranformed code changes the local variable count within the
lambda, which is always initially bound to the value 0. So the closure converted
procedure always returns 1, which is not the correct behavior. Performing as-
signment conversion before closure conversion fixes this problem, since count

will then name a sharable mutable cell rather than a number.

Figure 17.39 shows the running revmap example after closure conversion.
In addition to transforming procedures present in the original code (.clo565 is
revmap, .clo55 is loop, .clo45 is the greater-than-b procedure), closure conver-
sion also tranforms the continuation procedures introduced by CPS conversion
(.clo54 is the continuation for the f call). The free variables in converted con-
tinuations are those values that would typically be saved on the stack across
the subroutine call associated with the continuation. For example, continuation
closure .clo54 includes the values needed by the loop after a call to f: the loop
state variable xs.9, the looping procedure loop.8, the end-of-loop continuation
k.27, and the mutable cell t.23 resulting from the assignment conversion of
ans. Note that the closure named loop.8 contains loop.8 in its environment.
The recursive scope of cycrec guarantees that the the looping procedure has
been transformed into a looping (i.e., cyclic) data structure.

5By convention, we will refer to a closure tuple by the name of the first argument of its code
component.
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(silk (a.1 b.2 ktop.11)

(let* ((abs.12

(@mprod ; MPROD1

(lambda (clo.56 f.5 lst.6 k.22)

(let* ((t.24 (@null)) (t.23 (@mprod t.24))) ; MPROD2

(cycrec

((loop.8

(@mprod ; MPROD3

(lambda (clo.55 xs.9 k.27)

(let* ((t.23 (mget 2 clo.55)) (loop.8 (mget 3 clo.55))

(f.5 (mget 4 clo.55)) (t.29 (@null? xs.9)))

(if t.29

(let* ((t.39 (mget 1 t.23)) (rator.49 k.27)

(code.48 (mget 1 rator.49)))

(call code.48 rator.49 t.39))

(let* ((t.32 (@car xs.9))

(k.38 (@mprod ; MPROD4

(lambda (clo.54 t.33)

(let* ((t.23 (mget 2 clo.54))

(xs.9 (mget 3 clo.54))

(loop.8 (mget 4 clo.54))

(k.27 (mget 5 clo.54))

(t.34 (mget 1 t.23))

(t.31 (@cons t.33 t.34))

(t.30 (mset! 1 t.23 t.31))

(t.35 (@cdr xs.9))

(rator.53 loop.8)

(code.52 (mget 1 rator.53)))

(call code.52 rator.53 t.35 k.27)))

t.23 xs.9 loop.8 k.27)) ; end MPROD4

(rator.51 f.5)

(code.50 (mget 1 rator.51)))

(call code.50 rator.51 t.32 k.38)))))

t.23 loop.8 f.5))) ; end MPROD3

(let* ((rator.47 loop.8) (code.46 (mget 1 rator.47)))

(call code.46 rator.47 lst.6 k.22))))))) ; end MPROD1

(abs.13 (@mprod ; MPROD5

(lambda (clo.45 x.4 k.20)

(let* ((b.2 (mget 2 clo.45)) (t.21 (@> x.4 b.2))

(rator.44 k.20) (code.43 (mget 1 rator.44)))

(call code.43 rator.44 t.21)))

b.2)) ; end MPROD5

(t.16 (@* a.1 7)) (t.17 (@null))

(t.15 (@cons t.16 t.17)) (t.14 (@cons a.1 t.15))

(rator.42 abs.12) (code.41 (mget 1 rator.42)))

(call code.41 rator.42 abs.13 t.14 ktop.11)))

Figure 17.39: Running example after closure conversion.
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17.10.2 Variations on Flat Closure Conversion

Now we consider several variations on flat closure conversion. We begin with
an optimization to CL. Why does CL transform an already closed lambda into
a closure tuple? This strategy simplifies the transformation by enabling all
call sites to be transformed uniformly to “expect” such a tuple. But it is also
possible to use non-uniform transformations on abstractions and call sites as
long as the correct behavior is maintained. Given accurate flow information
that indicates which procedures flow to which call sites, we can do a better job
via so-called selective closure conversion. In this approach, originally closed
procedures that flow only to call sites where only originally closed procedures are
called are left unchanged by the closure conversion process, as are their call sites.
This avoids unnecessary tuple creations and projections. The result of selective
closure conversion for the linear example is presented in Figure 17.40. The
kind of flow analysis necessary to enable selective closure conversion is beyond
the scope of this text; see the reading section at the end of this chapter for more
information.

(let ((linear

(lambda (a b) ;; this closed lambda is not transformed

(@mprod ;; this product has three components

(lambda (clo2 x)

(let* ((a (@mget 2 clo2))

(b (@mget 3 clo2)))

(@+ (@* a x) b)))

a b)))) ;; free vars of clo2

(let ((f (call linear 4 5)) ;; this call site is not transformed

(g (call linear 6 7))) ;; this call site is not transformed

(@+ (call (@mget 1 f) f 8)

(call (@mget 1 g) g 9))))

Figure 17.40: Result of selective closure conversion in the linear example.

In selective closure conversion, a closed procedure pclosed cannot be optimized
when it is called at the same call site s as an open procedure popen in the original
program. The call site must be transformed to expect for its rator a closure
tuple for popen, and so pclosed must also be represented as a closure tuple since
it flows to rator position of s. This representation constraint can similarly force
other closed procedures that share call sites with pclosed to be converted, leading
to a contagious phenomenon called representation pollution. For example,
although f is closed in the following example, because it flows to the same call
site as open procedure g, selective closure conversion must still convert f to a
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closure tuple:

(lambda (b c)

(let ((f (lambda (x) (+ x 1)))

(g (let ((a (if b 4 5)))

(lambda (y) (+ (* a y) c)))))

(+ (call f 2)

(call (if b f g) 3))))

Representation pollution can sometimes be avoided by duplicating a closed pro-
cedure, and using different representations for the two copies. For instance, if
we split f in the above example into two copies, then the copy that flows to the
call site (call f 2) need not be converted to a tuple.

It is always possible to handle heterogeneous procedure representations by af-
fixing tags to procedures that indicate their representation and then dispatching
on these tags at every call site where different representations are known to flow
together. For example, using the oneof notation introduced in Section 10.2.2,
we can use code to tag a closed procedure and closure to tag a closure tuple,
as in the following conversion of the above example:

(lambda (b c)

(let ((f1 (lambda (x) (+ x 1)))

(f2 (one code (lambda (x) (+ x 1))))

(g (let ((a (if b 4 5)))

(one closure

(@mprod (lambda (clo y)

(let ((a (@mget 2 clo))

(c (@mget 3 clo)))

(+ (* a y) c)))

a c)))))

(+ (call f1 2)

(call-generic (if b f2 g) 3)))),

where (call-generic Erator E1 . . . En) desugars to

(let ((I1 E1) . . . (In En)) ; I1 . . . In are fresh

(tagcase Erator Irator
(code (call Irator I1 . . . In))

(closure (call (@mget 1 Irator) Irator I1 . . . In))).

Note that (call f1 2) is a regular call to an unconverted closed procedure.
This tagging strategy is not necessarily a good idea. Analyzing and converting
programs to handle tags is complex, and the overhead of tag manipulation can
offset the gains made by reducing representation pollution.

In an extreme version of the tagging strategy, all procedures that flow to
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a given call site are viewed as members of a sum-of-products datatype. Each
element in this datatype is a tagged environment tuple, where the tag indicates
which abstraction created the procedure and the environment tuple holds the
free variable values of the procedure. A procedure call can then be converted to
a dispatch on the environment tag that calls a associated closed procedure. For
example:

(lambda (b c)

(let ((fcode (lambda (x) (+ x 1)))

(fenv (one abs1 (@mprod)))

(gcode (lambda (y a c) (+ (* a y) c)))

(genv (let ((a (if b 4 5))) (one abs2 (@mprod a c)))))

(+ (call fcode 2)

(call-env1 (if Etest fenv genv) 3))),

where (call-env1 Eenv Erand) is an abbreviation for

(let ((Irand E1))
(tagcase Eenv Irator

(abs1 (call fenv Irand))

(abs2 (call genv Irand (@mget 1 env) (@mget 2 env))))).

The procedure call overhead in the dispatch can often be reduced by an inlining
process that replaces some calls by appropriately rewritten copies of their bodies.
E.g., call-env1 could be rewritten to:

(let ((Irand E1))
(tagcase Eenv Ienv

(abs1 (+ Irand 1))

(abs2 (+ (* (@mget 1 Ienv) Irand) (@mget 2 Ienv))))).

The environment tagging strategy is known as defunctionalization because
it removes all higher-order functions from a program. Defunctionalization is an
important closure conversion technique for languages (such as Ada and Pascal)
in which function pointers cannot be stored in data structures — a feature
required in all the previous techniques. Some drawbacks of defunctionalization
are that it requires the whole program (it cannot be performed on individual
modules) and application functions like call-env1might need to dispatch on all
abstractions in the entire program. In practice, type and flow information can
be used to significantly narrow the set of abstractions that need to be considered
at a given call site.

A closure need not carry with it the value of a free variable if that variable
is available in all contexts where the closure is invoked. This observation is
the key idea in so-called lightweight closure conversion, which can decrease
the number of free variables by adding extra arguments to procedures if those
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arguments are always dynamically available at all call sites for the procedures.
In our example, the lightweight optimization is realized by rewriting the original
example as follows before performing other closure conversion techniques:

(lambda (b c)

(let ((f (lambda (x c) (+ x 1))) ; 3. By 2, need param c here.

(g (let ((a (if b 4 5)))

(lambda (y c) (+ (* a y) c))))) ; 1. Add c as param.

(+ (call f 2 c) ; 4. By 3, must add c as an arg here, too.

(call (if b f g) 3 c)))) ; 2. By 1, need arg c here.

Since g’s free variable c is available at the one site where g is called, we should
be able to pass it as an argument at the site rather than storing it in the closure
for g. But representation constraints also force us to add c as an argument to f,
since f shares a call site with g. If f were called in some context outside the scope
of c, this fact would invalidate the proposed optimization. This example only
hints at the sophistication in analysis that is necessary to perform lightweight
closure conversion in practice.

17.10.3 Linked Approaches

Thus far we have assumed that all free variables values of a procedure are stored
in a single flat environment or closure. This strategy minimizes the information
carried in a particular closure. However, it is often the case that a free variable is
referenced by several closures. Setting aside a slot for (a pointer to) the value of
this variable in several closures/environments increases the space requirements
of the program. For example, in the flat clotest example of Figure 17.37,
closures p, q1, and q2 all contain a slot for the value of free variable c.

An alternative approach is to structure closures to enhance sharing and re-
duce copying. In a code/env model, a high degree of sharing is achieved when
every call site bundles the environment of the called procedure (a.k.a., the par-
ent environment) together with the argument values to create the environment
for the body of the called procedure. In this approach, each closed abstraction
takes a single argument, its environment, and all variables are accessed through
this environment. This is called the linked environment approach because
environments are linked together in chains.

Figure 17.41 shows this approach for the clotest example. Note that
the first slot of environments env1, env2, and env3 contains (a pointer to)
its parent environment. Variables declared by the closest enclosing lambda

are accessed directly from the environment, but variables declared in outer
lambdas require one or more indirections through parent environments. For
instance, in the body of the innermost lambda, variable r, which is the first
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argument one environment back, is accessed via (@mget 2 (@mget 1 env3)),
while variable y, which is the first argument two environments back, is accessed
via (@mget 2 (@mget 1 (@mget 1 env3))). In general, each variable has a
lexical address 〈back , over 〉, where back indicates how many environments
back the variable is located and over indicates its argument position in the the
resulting environment. A variable with lexical address 〈b, o〉 is translated to
(@mget o (@mgetb 1 env)), where env is the current lexical environment and
(@mgetb 1 e) stands for the b-fold composition of the first projection starting
with e. Traditional compilers often use such lexical addresses to locate variables
on a stack, where so-called static links are used to model chains of parent
environments.

(let ((env0 (@mprod)))

(let ((clotest

(@mprod

(lambda (env1) ; env1 = <env0,c,d>

(@mprod

(lambda (env2) ; env2 = <env1,r,s,t>

(@mprod

(lambda (env3) ; env3 = <env2,y>

(+ (/ (* (@mget 2 (@mget 1 env3)) ; r

(@mget 2 env3)) ; y

(@mget 4 (@mget 1 env3))) ; t

(- (@mget 2 (@mget 1 env3)) ; r

(@mget 2 (@mget 1 (@mget 1 env3))))))) ; c

env2))

env1))

env0)))

(let ((p (call (@mget 1 clotest) (@mprod (@mget 2 clotest) 4 5))))

(let ((q1 (call (@mget 1 p) (@mprod (@mget 2 p) 6 7 8)))

(q2 (call (@mget 1 pP (@mprod (@mget 2 p) 9 10 11)))))

(+ (call (@mget 1 q1) (@mprod (@mget 2 q1) 12))

(call (@mget 1 q2) (@mprod (@mget 2 q2) 13)))))))

Figure 17.41: A version of the clotest example with linked environments.

Figure 17.42 depicts the shared environment structure in the clotest exam-
ple with linked environments. Note how the environment of p is shared as the
parent environment of q1’s environment and q2’s environment. In contrast with
the flat environment case, p, q1, and q2 all share the same slot holding c, so
less slot space is needed for c. Another advantage of sharing is that the linked
environment approach to closure conversion can support set! directly without
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clotest: •

(lambda (env1)

. . .)

p:
4 5
x y

(lambda (env2)

. . .)
q1:

6 7 8
r s t

q2:
9 10 11
r s t

(lambda (env3)

. . .) 12
y

(lambda (env3)

. . .) 12
y

Figure 17.42: Figure depicting the links in the linked clotest example. (This
figure needs lots of reformatting work!
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the need for assignment conversion (see Exercise ??).
However, there are several downsides to linked environments. First, variable

access is slower than for flat closures due to the indirections through parent
environment links. Second, environment slots hold values (such as d and s) that
are never referenced, so space is wasted on these slots. A final subtle point is
that shared slots can hold onto values longer than they are actually needed by
a program, leading to space leaks. Some of these points and some alternative
linked strategies are explored in the exercises.

¤ Exercise 17.28

a. CL is not idempotent. Explain why. Can any closure conversion transformation
be idempotent?

b. In the lambda clause for CL, suppose FreeIds[[(lambda (I1 ... In) Ebody)]] is
replaced by the set of all variables in scope at that point. Is this a meaning-
preserving change? What are the advantages and disadvantages of of such a
change?

c. In a Silk-based compiler, CL must be necessarily be performed after an assign-
ment conversion pass. Could we perform it before a renaming pass? A globaliza-
tion pass? A CPS-conversion pass? Explain. ¢

¤ Exercise 17.29 In the lambda clause, the CL function uses a wrapping strategy
to wraps the body of the original lambda in a let* that extracts and names each free
variable value in the closure. An alternative substitution strategy is to replace each
free reference in the original lambda by a closure access. E.g, here is a modified version
of fgcode

′ that uses the substitution strategy:

(lambda (clo x) (@+ (@* (@mget 2 env) x) (@mget 3 env)))

Neither strategy is the best in all situations. Describe situations in which the wrapping

strategy is superior and in which the substitution strategy is superior. State all the

assumptions of your argument. ¢

¤ Exercise 17.30 Consider the following Silk abstraction Eabs :

(lambda (b)

(let ((f (lambda (x) (@+ x 1)))

(g (lambda (y) (@* y 2)))

(h (lambda (a) (lambda (z) (@/ z a))))

(p (lambda (r) (call r 3))))

(@+ (call (if b f g) 4)

(@* (call p (call h 5)) (call p (call h 6))))))

a. Show the result of applying flat closure conversion to Eabs .

b. The transformation can be improved if we use selective closure conversion instead.
Show the result of selective closure conversion on Eabs .
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c. Suppose we replace (call h 6) by g in Eabs to give Eabs
′. Then selective closure

conversion on Eabs
′ does not yield an improvement over regular closure conversion

on Eabs
′. Explain why.

d. Describe a simple meaning-preserving change to Eabs
′ after which selective closure

conversion will be an improvement over regular closure conversion. ¢

¤ Exercise 17.31 Consider the following Silk program

(silk (n)

(let* ((p (lambda (w)

(if (@= 0 x)

(lambda (x) x)

(if (@= 0 (@% n 2))

(let ((p1 (p (@/ w 2))))

(lambda (y) (@* 2 (call p1 y))))

(let ((p2 (p (@- w 1))))

(lambda (z) (@+ 1 (call p2 z)))))))))

(let ((q (call p n)))

(+ (call q 1) (call q n)))))

Using closure conversion techniques presented in this section, translate this program

into C, Pascal, and Java. The program has the property that equality and remainder

primops are performed only when p is called, not when q is called. Your translated

programs should also have this property. ¢

17.11 Transform 9: Lifting

Programmers nest procedures when an inner procedure needs to use variables
that are defined in an outer procedure. The free variables in such an inner
procedure are bound by the outer procedure. We have seen that closure con-
version eliminates free varaibles in every procedure. However, because it leaves
abstractions in place, it does not eliminate procedure nesting.

A procedure is said to be at top-level when it is defined at the outermost
scope of a program. Lifting (also called lambda lifting) is the process of
eliminating nested procedures by making all procedures top-level. Of course, all
procedures must be closed before lifting is performed. The process of bringing
all procedures to top level would necessarily remove the fundamental connection
between free variable references and their associated declarations.

Compiling a procedure with nested internal procedures requires placing branch
instructions around the code for the internal procedures. We eliminate such
branches by insisting that all procedures be lifted after they are closed. Once
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Plft ∈ Programlft

Elft ∈ Explft
BVlft ∈ BindingValuelft
LE lft ∈ LetableExplft
Vlft ∈ ValueExplft

L ∈ Lit
I ∈ Identifierlft = usual identifiers
B ∈ Boollitlft = {#t, #f}
N ∈ Intlitlft = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ Primoplft = as in full Silk.

Plft ::= (silk (Ifml*) (cycrec ((I (lambda (I*) E lft))*) Elft))
Elft ::= (call Vlft Vlft*) | (if Vlft Elft Elft) | (error I)

| (let ((I LE lft)) Elft) | (cycrec ((I BVlft)*) Elft)
Vlft ::= L | I

LE lft ::= Vlft | (primop Oop Vlft*)
BVlft ::= L | (primop mprod Vlft*)

L ::= #u | B | H | N

Figure 17.43: Grammar for Silklft , the target language of the Tortoise com-
piler.

all of the procedures in a program are at top-level, each can be compiled into
straight-line code. Avoiding unnecessary unconditional branches is especially
important for processors that have instruction caches, instruction prefetching, or
pipelined architectures. Lifting is also an important transform when compiling to
certain, less common, architectures, like combinator reduction machines[Hug82].

The result of the lifting phase is a program in Silklft , a restricted form
of Silkcps presented in Figure 17.43. The key difference between Silklft and
Silkcps is that Silklft abstractions may only occur in a top-level cycrec in
the program body. Each such abstraction may be viewed as an assembly code
subroutine.

We now specify the lifting conversion transformation LCprog :

Preconditions: The input to LCprog is a program in which every abstrac-
tion is closed.

Postconditions: The output of LCprog is a program in which every ab-
straction is in the top-level cycrec of a program, as specfied in the
Silklft grammar in Figure 17.43.

Here is the algorithm employed by LCprog :

1. Associate with each lambda abstraction a new name. This name must
be unique in the sense that it is distinct from every variable name in the
program and the name chosen for every other abstraction.

2. Replace each abstraction by a reference to its unique name.
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3. Replace the body Ebody of the program with a cycrec of the form

(cycrec ((Ilam1 AB1
′)

...

(Ilamn ABn
′))

Ebody
′),

where

• AB1
′ . . .ABn

′ are the transformed versions of all the abstractions in
the original program;

• Ilam1 . . .Ilamn are the unique names associated with the original ab-
stractions; and

• Ebody
′ is the transformed body of the program.

For example, Figure 17.44 shows our running example after lambda lifting.
Note that replacing each abstraction with its unique variable name can introduce
free variables into otherwise closed abstractions. For instance the body of the
abstraction named lam.58 contains a reference to lam.59 and the body of the
abstraction named lam.59 contains a reference to lam.60. So the abstractions
are no longer closed after lifting! All free variables thus introduced are declared
in the top-level cycrec and are effectively treated as global names. In the anal-
ogy with assembly code, these names correspond to assembly code labels that
name the first instruction in the subroutine corresponding to the abstraction.

17.12 Transform 10: Data Conversion

[This section is still under construction. Stay tuned!]

17.13 Garbage Collection

[This section is also still under construction. Stay tuned!]x

Reading

The literature on traditional compiler technology is vast. A classic text is the
“Dragon book” [ASU86]. More modern treatments are provide by Cooper and
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(silk (a.1 b.2 ktop.11)

(cycrec

((lam.57 (lambda (clo.45 x.4 k.20)

(let* ((b.2 (mget 2 clo.45))

(t.21 (@> x.4 b.2))

(code.43 (mget 1 k.20)))

(call code.43 k.20 t.21))))

(lam.58 (lambda (clo.56 f.5 lst.6 k.22)

(let* ((t.24 (@null))

(t.23 (@mprod t.24)))

(cycrec ((loop.8 (@mprod lam.59 t.23 loop.8 f.5)))

(let ((code.46 (mget 1 loop.8)))

(call code.46 loop.8 lst.6 k.22))))))

(lam.59 (lambda (clo.55 xs.9 k.27)

(let* ((t.23 (mget 2 clo.55))

(loop.8 (mget 3 clo.55))

(f.5 (mget 4 clo.55))

(t.29 (@null? xs.9)))

(if t.29

(let* ((t.39 (mget 1 t.23))

(code.48 (mget 1 k.27)))

(call code.48 k.27 t.39))

(let* ((t.32 (@car xs.9))

(k.38 (@mprod lam.60 t.23 xs.9 loop.8 k.27))

(code.50 (mget 1 f.5)))

(call code.50 f.5 t.32 k.38))))))

(lam.60 (lambda (clo.54 t.33)

(let* ((t.23 (mget 2 clo.54))

(xs.9 (mget 3 clo.54))

(loop.8 (mget 4 clo.54))

(k.27 (mget 5 clo.54))

(t.34 (mget 1 t.23))

(t.31 (@cons t.33 t.34))

(t.30 (mset! 1 t.23 t.31))

(t.35 (@cdr xs.9))

(code.52 (mget 1 loop.8)))

(call code.52 loop.8 t.35 k.27)))))

(let* ((abs.12 (@mprod lam.58))

(abs.13 (@mprod lam.57 b.2))

(t.16 (@* a.1 7))

(t.17 (@null))

(t.15 (@cons t.16 t.17))

(t.14 (@cons a.1 t.15))

(code.41 (mget 1 abs.12)))

(call code.41 abs.12 abs.13 t.14 ktop.11))))

Figure 17.44: Running example after lambda lifting.
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Torczon [CT03] and by Appel’s textbooks [App98b, App98a, AP02]. Compre-
hensive coverage of advanced compilation topics, especially optimizations, can
be found in Muchnick’s text [Muc97]. Inlining is a particularly important but
subtle optimization [?, ?, ?, ?]. Issues in functional language compilation are
considered by Peyton Jones in [Pey87].

The notion of compiling programs via transformations on a lambda-calculus
based intermediate language was pioneered in the Scheme community through
a series of Scheme compilers that started with Steele’s Rabbit [Ste78], and was
followed many others [Roz84, KKR+86, ?, ?, ?]. Kelsey [Kel89, KH89] demon-
strated that the transformational technique was viable for languages other than
Scheme.

The next major innovation along these lines was developing transformation-
oriented compilers based on explicitly typed intermediate languages (e.g.
[Mor95, TMC+96, Jon96, JM97, Sha97, BKR99, TO98, MWCG99, FKR+00,
CJW00, DWM+01]. The type information guides program analyses and trans-
formations, supports run-time operations such as garbage collection, and is an
important debugging aid in the compiler development process. In [TMC+96],
Tarditi and others explored how to express classical optimizations within a typed
intermediate langauge framework. In some compilers (e.g. [MWCG99]) type in-
formation is carried all the way through to a typed assembly language, where
types can be used to verify certain safety properties of the code. The notion that
untrusted low-level code should carry information that allows safety properties
to be verified is the main idea in proof-carrying code[NL98, AF00].

Early transformation-based compilers typically included a stage converting
the program to CPS form. The view that procedure calls can be viewed as
jumps that pass arguments was first championed by Steele in [Ste77]. He ob-
served that a stack discipline in compilation is not implied by the procedure call
mechanism but rather by the evaluation of nested subexpressions. The Tor-
toise MCPS transform is based on a study of CPS conversion by Danvy and
Filinski [DF92]. They distinguish so-called static continuations (what we call
“meta-continuations”) from dynamic continuations and used these notions
to derive an efficient form of CPS conversion from the simple-but-inefficient def-
inition. Appel studied the use of continuations for compiler optimizations in
[App92]. In [FSDF93], Flanagan et al. argued that explicit CPS form was not
necessary for such optimizations. They showed that transformations performed
on CPS code could be expressed directly in a non-CPS form they called A-
normal form. Although modern tranformation-based compilers tend to use
something like A-normal form, we adopted CPS form in the Tortoise compiler
because it is an important illustration of the theme of making implicit structures
explicit.
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Closure conversion is an important stage in a transformation-based com-
piler. Johnsson’s lambda lifting transformation [Joh85] lifts abstractions to top
level after they have been extended with initial parameters for free variables.
It uses curried functions that are partially applied to these initial parameters
to represent closures. The Tortoise lifting stage also lifts closed abstractions
to top level, but uses a different representation for closures: the closure-passing
style invented by Appel and Jim in [AJ88]. Defunctionalization (a notion due
to Reynolds [?]) was used by Cejtin et al. as the basis for closure conversion in
an efficient ML compiler [CJW00]. Selective and lightweight closure conversion
were studied by Steckler and Wand [SW97]. The notion of representation pol-
lution was studied by Dimock et al. [DWM+01] in the context of developing a
compiler that chooses the representation of a closure depending on how it is used
in a program. Sophisticated closure conversion systems rely on flow analysis
information to determine how procedures are in a program. Nielson, Nielson,
and Hankin in [NNH98] provide a good introduction to data flow analysis, con-
trol flow analysis, and other program analyses.

For more information on data layout and runtime systems, see Appel’s de-
scription of ML runtime data structures and support [App90]. For a survey of
garbage collection algorithms, see [Wil92]. For a replication-based strategy for
garbage collection, see [NOPH92, NO93, NOG93]. [Ape89] shows how static
typing can eliminate the need for almost all tag bits in a garbage collected lan-
guage.

[BCT94] contains a good summary of work on register allocation and spilling.
The classic approach to register allocation and spilling involves graph coloring
algorithms [CAC+81, Cha82]. See [BWD95] for one approach to managing reg-
isters across procedure calls.


