
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Chapter 15

Abstract Types

The human heart has hidden treasures,
In secret kept, in silence sealed.

— Evening Solace, Charlotte Bronte

15.1 Data Abstraction

A cornerstone of modern programming methodology is the principle of data
abstraction, which states that programmers should be able to use data struc-
tures without understanding the details of how they are implemented. Data
abstraction is based on establishing a contract, also known as an application
programming interface (API), or just interface, that specifies the abstract
behavior of all operations that manipulate a data structure without describing
the representation of the data structure or the algorithms used in the operations.

The contract serves as an abstraction barrier that separates the concerns
of the two parties that participate in a data abstraction. On one side of the
barrier is the implementer, who is responsible for implementing the operations
so that they satisfy the contract. On the other side of the barrier is the client,
who is blissfully unaware of the hidden implementation details and uses the
operations based purely on their advertised specifications in the contract. This
arrangement gives the implementer the flexibility to change the implementation
at any time as long as the contract is still satisfied. Such changes should not
require the client to modify any code.1 This separation of concerns is especially

1However, the client may need to recompile existing code in order to use a modified imple-
mentation.

599

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

600 CHAPTER 15. ABSTRACT TYPES

useful when large programs are being developed by multiple programmers, many
of whom may never communicate except via contracts. But it is even helpful
in programs written by a single person who plays the roles of implementer and
client at different times in the programming process.

15.1.1 A Point Abstraction

As an extremely simple example of data abstraction, consider an abstraction
for points on a two-dimensional grid. The point abstraction is defined by the
following contract, which specifies an operation for creating a point from its two
coordinates and operations for extracting each coordinate:

• (make-pt x y): Create a point whose x coordinate is the integer x and
whose y coordinate is the integer y.

• (pt-x p): Return the x coordinate of the given point p.

• (pt-y p): Return the y coordinate of the given point p.

An implementation of the point abstraction should satisfy the following axioms:

1. For any integers n1 and n2, (pt-x (make-pt n1 n2)) evaluates to n1.

2. For any integers n1 and n2, (pt-y (make-pt n1 n2)) evaluates to n2.

Even for this simple abstraction, there are a surprising number of possible
implementations. For concreteness, below we give two point implementations in
the dynamically typed FL language. Our convention will be to package up the
operations of a data abstraction into a record, but that is not essential.

(define pair-point-impl

(record

(make-pt (lambda (x y) (pair x y)))

(pt-x (lambda (p) (left p)))

(pt-y (lambda (p) (right p)))))

(define proc-point-impl

(record

(make-pt (lambda (x y) (lambda (b) (if b x y))))

(pt-x (lambda (p) (p #t)))

(pt-y (lambda (p) (p #f)))))

In pair-point-impl, the two coordinates are stored in a pair. Alternatively,
we could have stored them in the opposite order or glued them together in a
different kind of product (e.g., array, record, or list). In proc-point-impl, a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.1. DATA ABSTRACTION 601

point is represented as a first-class procedure that “remembers” the coordinates
in its environment and uses a boolean argument to determine which coordinate
to return when called. Alternatively, some other key (such as a symbol or string
message) could be used to select the coordinate.

As a sample client of the point abstraction, consider the following proce-
dure, which, for a given point implementation, defines a coordinate-swapping
transpose procedure and a point->pair procedure that converts a point to a
concrete pair (regardless of its underlying representation) and uses these on the
point (1,2).

(define test-point-impl

(lambda (point-impl)

(with-fields (make-pt pt-x pt-y) point-impl

(let ((transpose (lambda (p) (make-pt (pt-y p) (pt-x p))))

(point->pair (lambda (p) (pair (pt-x p) (pt-y p)))))

(point->pair (transpose (make-pt 1 2)))))))

The result of invoking test-point-impl on a valid point implementation should
be the pair value 〈2 , 1 〉.

In this example, there is little reason to prefer one of the implementations
over the other. The pair implementation might be viewed as being more straight-
forward, requiring less memory space, or being more efficient because it requires
fewer procedure calls. However, judgments about efficiency are often tricky and
require a deep understanding of low-level implementation details. In more re-
alistic examples, such as abstractions for data structures like stacks, queues,
priority queues, sets, tables, databases, etc., one implementation might be pre-
ferred over another because of asymptotically better running times or memory
usage for certain operations.

15.1.2 Procedural Abstraction is not Enough

Any language with procedural abstraction can be used to implement data ab-
straction in the way illustrated in the point example. However, in order for the
full benefits of data abstraction to be realized, this approach requires that the
client never commit abstraction violations. An abstraction violation is the
inappropriate use of abstract values or their operations.

In our implementation of points that uses pairs, the client can inspect the
representation of an abstract value and use this knowledge to manipulate ab-
stract values concretely. For instance, if points are represented as pairs, then the
the client might write (left p) rather than (pt-x p) to extract the x coordi-
nate of a point p, or might create a point “forgery” using (pair 1 2) in place of
(make-pt 1 2). Although these concrete manipulations will not cause errors,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

602 CHAPTER 15. ABSTRACT TYPES

such abuses of the exposed representation are dangerous because they are not
guaranteed to work if the implementation is changed. For example, (left p)

would lead to a runtime type error if the implementation were changed to use
a procedural representation for points, and would give the incorrect value if the
implementation was changed to put the y coordinate before the x coordinate in
a pair.

Furthermore, many representations involve representation invariants that
are maintained by the abstract operations but which concrete manipulations may
violate. A representation invariant is a set of conceptual or actual predicates
that a representation must satisfy to be legal. For instance, a string collection
implementation might store the strings in a sorted array. Thus a sorted predicate
would be true for this representation. If the client creates a forgery with an
unsorted array, all bets are off concerning the behavior of the abstract operations
on this forgery.

Without an enforcement of the relationship between abstract values and their
operations, it is even possible to interchange values of different abstractions that
happen to have the same concrete representation. For instance, if an implemen-
tation of a rational number abstraction represents a rational number as a pair
of two integers, then a rational number could be dissected with pt-x and pt-y,
assuming that points are also represented as pairs of integers.

Although our examples have been for a dynamically typed language, the
same problems occur in a statically typed language with structural type equality.
Clearly, attempting to achieve data abstraction using procedural abstraction
alone is fraught with peril. There must additionally be some sort of mechanism
to guarantee that abstract data is secure. We will call a language secure when
barriers associated with a data abstraction cannot be violated. Such a security
mechanism must effectively hide the representation of abstract data by making
it illegal to create or operate on abstract values with anything other than the
appropriate abstract operations.

In the remainder of this chapter, we first consider how secure data abstrac-
tions can be achieved dynamically using a lock and key mechanism. Then we
study various ways to achieve such security statically using types.

¤ Exercise 15.1 In languages with first-class procedures, one approach to hiding the
representations of data structures is to encapsulate them in message-passing objects. For
example, the following two point-making procedures encapsulate the pair representation
and procedural representation, respectively:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 603

(define make-pair-point

(lambda (x y)

(let ((point (pair x y)))

;; Return a message dispatcher

(lambda (msg)

(cond

((sym=? msg ’pt-x) (left point))

((sym=? msg ’pt-y) (right point))

(else (error unrecognized-message))

)))))

(define make-proc-point

(lambda (x y)

(let ((point (lambda (b) (if b x y))))

;; Return a message dispatcher

(lambda (msg)

(cond

((sym=? msg ’pt-x) (point true))

((sym=? msg ’pt-y) (point false))

(else (error unrecognized-message))

)))))

How secure is this approach to hiding data abstraction representations? What kinds

of abstraction violations are prevented by this technique? What kinds of abstraction

violations can still occur? ¢

15.2 Dynamic Locks and Keys

One approach for securely encapsulating a data abstraction representation is to
make it inaccessible by “locking” abstract values with a “key” in such a way that
only the very same key can unlock a locked value to access the representation.
We explore a dynamic lock and key mechanism by extending FL! with the
following primitives:

• (new-key) generates a unique unforgeable key value.

• (lock key value) creates a new kind of “locked value” that pairs key with
value in such a way that key cannot be extracted and value can only be
extracted by supplying key.

• (unlock key locked) returns the value stored in locked if key matches the
key used to create locked. Otherwise, signals an error.

We extend FL! rather than FL because the presence of cells and a single-
threaded store simplify specifying the semantics of these constructs. Indeed,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

604 CHAPTER 15. ABSTRACT TYPES

new-key, lock, and unlock can all be implemented as user-defined procedures
in FL! (Figure 15.1). The new-key procedure creates a new cell whose location
is a unique and unforgeable key; the value in the cell is arbitrary and can be
ignored. The lock procedure represents a locked value as a procedure that
“remembers” the given key and value and only returns the value if it is invoked
on the original key (as done in unlock). The procedural representation of locked
values prevents direct access to the key, and the value can only be extracted by
supplying the key, as desired.

(define new-key (lambda () (cell 0)))

(define lock

(lambda (key val)

(lambda (key1)

(if (cell=? key key1)

val

(error wrong-key)))))

(define unlock

(lambda (key locked)

(locked key)))

Figure 15.1: Implementation of a dynamic lock and key mechanism in FL!.

Figure 15.2 shows how the lock and key mechanism can be used to securely
encapsulate two pair representations of points that differ only in the order of
the coordinates. The procedures up and down use lock and unlock to mediate
between the concrete pair values and the abstract point values. Because all op-
erators for a single implementation use the same key, the operators for pt-impl1
work together, as do those for pt-impl2. For example:

((select pt-x pt-impl1) ((select make-pt pt-impl1) 1 2)) −−−FL!→ 1

((select pt-y pt-impl2) ((select make-pt pt-impl2) 1 2)) −−−FL!→ 2

However, because different implementations use different keys, point values cre-
ated by one of the implementations cannot be dissected by operations of the
other. Furthermore, because the operators create and use locked values, neither
point implementation can be used with concrete pair operations. For example,
all of the following four expressions generate dynamic errors when evaluated:

((select pt-x pt-impl1) ((select make-pt pt-impl2) 1 2))

((select pt-y pt-impl2) ((select make-pt pt-impl1) 1 2))

(left ((select make-pt pt-impl1) 1 2))

((select pt-y pt-impl2) (pair 1 2))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 605

(define pt-impl1

(let ((key (new-key)))

(let ((up (lambda (x) (lock key x)))

(down (lambda (x) (unlock key x))))

(record

(make-pt (lambda (x y) (up (pair x y))))

(pt-x (lambda (p) (left (down p))))

(pt-y (lambda (p) (right (down p))))))))

(define pt-impl2

(let ((key (new-key)))

(let ((up (lambda (x) (lock key x)))

(down (lambda (x) (unlock key x))))

(record

(make-pt (lambda (x y) (up (pair y x))))

(pt-x (lambda (p) (right (down p))))

(pt-y (lambda (p) (left (down p))))))))

Figure 15.2: Using the lock and key mechanism to hide point representations.

Some syntactic sugar can facilitate the definition of implementation records.
We introduce a cluster macro that abstracts over the pattern used in the point
implementations:

Dexp[[(cluster (I E)*)]] =
(let ((Ikey (new-key))) ; Ikey fresh

(let ((up (lambda (x) (lock Ikey x)))

(down (lambda (x) (unlock Ikey x))))

(recordrec (I E)*)))

The up and down procedures implicitly introduced by the desugaring may be used
in any of the cluster bindings. Using recordrec in place of record allows for
mutually recursive operations. Here is the definition of pt-impl1 re-expressed
using the cluster notation:

(define pt-impl1

(cluster

(make-pt (lambda (x y) (up (pair x y))))

(pt-x (lambda (p) (left (down p))))

(pt-y (lambda (p) (right (down p))))))

Note that cluster creates a new data abstraction every time it is evaluated.
For instance, consider:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

606 CHAPTER 15. ABSTRACT TYPES

(define make-wrapper

(lambda ()

(cluster

(wrap (lambda (x) (up x)))

(unwrap (lambda (x) (down x))))))

(define wrapper1 (make-wrapper))

(define wrapper2 (make-wrapper))

Evaluating ((select unwrap wrapper2) ((select wrap wrapper1) 17)) sig-
nals a dynamic error because the wrap procedure from wrapper1 and the unwrap
procedure from wrapper2 use different keys.

¤ Exercise 15.2 Consider an integer set abstraction that supports the following
operations:

• (empty) creates an empty set of integers.

• (insert int intset) returns the set that results from inserting int into the integer
set intset.

• (member? int intset) returns true if int is a member of the integer set intset
and false otherwise.

a. Define a cluster list-intset-impl that represents an integer set as a list of
integers without duplicates sorted from low to high.

b. Define a cluster pred-intset-impl that represents an integer set as a predicate
– a procedure that takes an integer and returns true if that integer is in the set
represented by the predicate and false otherwise.

c. Extend both list-intset-impl and pred-intset-impl to handle union, inter-
section, and difference operations on two integer sets.

d. Some representations have advantages over other for implementing particular op-
erations. Show that size (which returns the number of elements in an integer
set) is easy to implement for list-intset-impl but but impossible to imple-
ment for pred-intset-impl (without changing the representation). Similarly,
show that complement (which returns the set of all integers not in the given
set) is easy to implement for pred-intset-impl but impossible to implement for
list-intset-impl. ¢

¤ Exercise 15.3

a. Extend the SOS for FLK! to directly handle the primitives new-key, lock, and
unlock. Assume that the syntactic domains MixedExp and ValueExp are ex-
tended with expressions of the form (*key* L) to represent keys and (*locked* L V)
to represent locked values.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 607

b. It is helpful to have the following additional primitives as well:

• (key? thing) determines if key is a key value.

• (key=? key1 key2) returns true if key1 is the same key value as key2 and
returns false otherwise. Signals an error if either key1 or key2 is not a key
value.

• (locked? thing) determines if thing is a locked value.

Extend your SOS to handle these primitives.

c. Can you extend the implementation in Figure 15.1 to handle the additional prim-
itives? Explain. ¢

¤ Exercise 15.4 It is not always desirable to export every binding of a cluster in
the resulting record. For example, in the following implementation of a rational number
cluster, the gcd function (which calculates the greatest common divisor of two numbers)
is intended to be an unexported local recursive function used by make-rat.

(define rat-impl

(cluster

(make-rat (lambda (x y)

(let ((g (gcd x y)))

(up (pair (div x g) (div y g))))))

(numer (lambda (r) (left (down r))))

(denom (lambda (r) (right (down r))))

(gcd (lambda (a b)

(if (= b 0)

a

(gcd b (rem a b)))))

))

In this case, we could make the definition of gcd local to make-rat, but this strategy
does not work if the local value is used in multiple bindings. Alternatively, we can
extend the cluster syntax to be:

(cluster (Iexp*) (I E)*)

where (Iexp*) is an explicit list of exports – those bindings we wish to be included in

the resulting record. For instance, if we use (make-rat numer denom) as the export list

in rat-impl, then gcd would not appear in the resulting record. Modify the desugaring

of cluster to support explicit export lists. ¢

¤ Exercise 15.5 A dynamic lock and key mechanism can be added to a statically
typed language like FL/X.

a. Extend the type syntax and typing rules of FL/X to handle new-key, lock, and
unlock.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

608 CHAPTER 15. ABSTRACT TYPES

b. We can add a cluster form to FL/X using the syntax

(cluster Trep (I1 T1 E1) . . . (In Tn En)),

where Trep is the concrete representation type of the data abstraction and Tn is
the type of En . Give a typing rule for this explicitly typed cluster form.

c. Why is it necessary to include Trep and the Ti in the explicitly typed cluster

form? Would these be necessary in a cluster form for FL/R? ¢

booksectionExistential Types
The dynamic lock and key mechanism enforces data abstraction by signaling

a run-time error whenever an abstraction violation is encountered. The main
drawback of this approach is its dynamic nature. It would be desirable to have a
static mechanism that reports abstraction violations when the program is type
checked. As usual, the constraints of computability prevent a static system
from detecting exactly those violations that would be caught by a dynamic lock
and key mechanism. Nevertheless, by relinquishing some expressive power, it is
possible to design type systems that prevent abstraction violations via a static
lock and key mechanism known as an abstract type. In the next three sections,
we shall study three designs for abstract types.

Our first abstract type system is based on extending the explicitly typed
language FL/XSP with existential types. To motivate existential types, con-
sider the types of the pair-point-impl and proc-point-impl implementations
introduced in Section 15.1:

(define-type pair-point-impl-type

(recordof

(make-pt (-> (int int) (pairof int int)))

(pt-x (-> ((pairof int int)) int))

(pt-y (-> ((pairof int int)) int)))

(define-type proc-point-impl-type

(recordof

(make-pt (-> (int int) (-> (bool) int)))

(pt-x (-> ((-> (bool) int)) int))

(pt-y (-> ((-> (bool) int)) int)))

These two types are the same except for the concrete type used to represent an
abstract point value: (pairof int int) in the first case and (-> (bool) int)

in the second. We would like to be able to say that both implementations have
the same abstract type. We call values that implement an abstract type a pack-
age. To represent the type of a package, we use a new type construct, packofexist ,
to introduce an abstract type name, point, that stands for the concrete type
used in a particular implementation:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 609

(define-type pt-eface

(packofexist point

(recordof

(make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))))

We informally read the above (packofexist ...) type as “there exists a concrete
point representation (call it point) such that there are make-pt, pt-x, and pt-y

procedures with the specified types that manipulate this representation.” Such a
type is called an existential type because it posits the existence of an abstract
type and indicates how it is used without saying anything about its concrete
representation.2 In the following discussion, we will often refer to this particular
existential type, so we have given it the name pt-eface, where eface is short
for existential interface.

A summary of existential types is presented in Figure 15.3. The form of an
existential type is (packofexist I T). The existential variable I is a binding
occurrence of a type variable whose scope is T. The particular name of this
variable is irrelevant; as is indicated by the [exists=] type equality rule, it can
be consistently renamed without changing the essence of the type. So the type

(packofexist q

(recordof

(make-pt (-> (int int) q))

(pt-x (-> (q) int))

(pt-y (-> (q) int))))

is equivalent to the existential type using point above.

Values of existential type, which we shall call existential packages, are
created by the form (packexist Iabs Trep Eimpl). The type identifier Iabs is a
type name that is used to hide the concrete representation type Trep within the
type of the implementation expression Eimpl . For example, Figure 15.4 shows two
existential packages that implement the type contract specified by pt-eface. In
the first package, the abstract name point stands for the type of pair of integers,
while in the second package, it stands for the type of a procedure that maps a
boolean to an integer. As in the dynamic cluster form studied in Section 15.2,
the packexist form implicitly introduces up and down procedures that convert
between the concrete and abstract values.

2In the literature, such types are often written with ∃ or exists just as ∀ and forall are
used for universal polymorphism. For example, a more standard syntax for the pt-eface type
is: ∃ point . {make-pt: int*int → point, pt-x: point → int, pt-y: point → int}.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

610 CHAPTER 15. ABSTRACT TYPES

Syntax

E ::= . . . | (packexist Iabs Trep Eimpl) [Existential Introduction]
| (unpackexist Epkg Ity Iimpl Ebody) [Existential Elimination]

T ::= . . . | (packofexist Iabs Timpl) [Existential Type]

Type Rules

A[up : (-> (Trep) Iabs), down : (-> (Iabs) Trep)] ` Eimpl : Timpl
A ` (packexist Iabs Trep Eimpl) : (packofexist Iabs Timpl)

[epack]

where Iabs 6∈{(FTV A(I)) | I ∈ FreeIds[[Eimpl]]} [import restriction]

A ` Epkg : (packofexist Iabs Timpl)
A[Iimpl : [Ity/Iabs]Timpl] ` Ebody : Tbody

A ` (unpackexist Epkg Ity Iimpl Ebody) : Tbody

[eunpack]

where Ity 6∈{(FTV A(I)) | I ∈ FreeIds[[Ebody]]} [import restriction]
Ity 6∈ (FTV Tbody) [export restriction]

Type Equality

(packofexist I T) = (packofexist I ′ [I ′/I]T) [exists=]

Type Erasure

d(packexist Iabs Trep Eimpl)e
= (let ((up (lambda (x) x))

(down (lambda (x) x)))

dEimple)

d(unpackexist Epkg Ity Iimpl Ebody)e = (let ((Iimpl dEpkge)) dEbodye)

Figure 15.3: The essence of existential types in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 611

(define pair-point-epkg pt-eface

(packexist point (pairof int int)

(record

(make-pt (lambda ((x int) (y int)) (up (pair x y))))

(pt-x (lambda ((p point)) (left (down p))))

(pt-y (lambda ((p point) (right (down p))))))))

(define proc-point-epkg pt-eface

(packexist point (-> (bool) int)

(record

(make-pt (lambda ((x int) (y int))

(up (lambda ((b bool)) (if b x y)))))

(pt-x (lambda ((p point)) ((down p) true)))

(pt-y (lambda ((p point) ((down p) false)))))))

Figure 15.4: Two existential packages that implement pt-eface.

The [epack] type rule in Figure 15.3 specifies how different implementations
can have exactly the same existential type. The implementation expression Eimpl

is checked in a type environment where up converts from the concrete represen-
tation type Trep to the abstract type name Iabs and down converts from Iabs
to Trep . These conversions allow the implementer to hide the concrete repre-
sentation type with an opaque type name, so called because the concrete type
cannot be “seen” through the name, even though the name is an abbreviation
for the concrete type.3 If type checking of a packexist expression succeeds, we
have a proof that there is at least one representation for Iabs (namely Trep)
and one implementation using this representation (namely Eimpl) that satis-
fies the implementation type Timpl . This knowledge is recorded with the type
(packofexist Iabs Timpl), in which any implementation details related to Trep

and Eimpl have been purposely omitted.

The packexist expression can be viewed as a way to package up an imple-
mentation in such a way that representation details are hidden. As indicated by
the type erasure for packexist in Figure 15.3, the dynamic meaning of a packexist
expression is just the implementation expression in a context where up and down

are identity operations. The remaining parts of the expression (Iabs and Trep)
are just type annotations whose purpose is to specify the existential type.

The existential elimination form, (unpackexist Epkg Ity Iimpl Ebody), is the
means of using the underlying implementation hidden by an existential package.

3up and down are just one way to distinguish concrete and abstract types in an existential
type. Some alternative approaches are explored in Exercise 15.9.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

612 CHAPTER 15. ABSTRACT TYPES

The type erasure of this expression — (let ((Iimpl dEpkge)) dEbodye) — indi-
cates that the dynamic meaning of this expression is simply to give the name
Iimpl to the implementation in the scope of the body. The type name Ity serves
as a local name for the abstract type of the existential package that can be used
within Ebody . The abstract name within the existential type itself is unsuitable
for this purpose because (1) it is not lexically apparent to Ebody and (2) it is a
bound name that is subject to renaming.

As an example of unpackexist , consider the following procedure, which is a
typed version of the test-point-impl procedure presented in Section 15.1.

(define test-point-epkg (-> (pt-eface) (pairof int int))

(lambda ((point-epkg pt-eface))

(unpackexist point-epkg pt point-ops

(with point-ops

(let ((transpose (lambda ((p pt))

(make-pt (pt-y p) (pt-x p))))

(point->pair (lambda ((p pt))

(pair (pt-x p) (pt-y p)))))

(point->pair (transpose (make-pt 1 2))))))))

The point-epkg argument to test-point-epkg is any existential package with
type pt-eface. The unpackexist form gives the local name pt to the abstract
point type and the local name point-ops to the implementation record con-
taining the make-pt, pt-x, and pt-y procedures. In the context of local bind-
ings for these procedures (made available by with), the local transpose and
point->pair procedures are created. Each of these takes a point as an argu-
ment and so must refer to the local abstract type name pt for the abstract point
type. Finally, test-point-epkg returns a pair of the swapped coordinates for
the point (1,2).

In the [eunpack] type rule, it is assumed that the package expression Epkg

has type (packofexist Iabs Timpl). The body expression Ebody is type checked
under the assumption that Iimpl has as its type a version of Timpl in which the
bound name Iabs has been replaced by the local abstract type name Ity . For
instance, in the above unpackexist example, where pt is the local abstract type
name, the make-pt procedure has type (-> (int int) pt). The fact that the
result type is pt rather than point is essential for matching up the return type
of transpose and the declared argument type of point->pair.

In the [epack] rule, there is an import restriction on the abstract type
name Iabs that prevents it from accidentally capturing a type identifier men-
tioned in the type of a free variable in Eimpl . Here is an expression that would
unsoundly be declared well-typed without this restriction:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 613

(plambda (t)

(lambda ((z t))

(packexist t int (down z))))

The application (down z) applies the down procedure to a value z of arbitrary
type t. But since down has type (-> (t) int), where t abstracts over the con-
crete type int, this application would unsoundly be declared well-typed without
the import restriction. A similar import restriction is also needed in the [eun-
pack] rule. The import restriction is not a serious issue for programmers because
it can be satisfied by automatically α-renaming a program to give distinct names
to logically distinct type identifiers.

In contrast, the export restriction Ity 6∈(FTV Tbody) in the [eunpack] rule
can be a serious impediment. This restriction says that the local abstract type
name Ity is not allowed to escape the scope of the unpackexist expression by
appearing in the type Tbody of the body expression Ebody . A consequence is that
no value of the abstract type can escape from unpackexist in any way.

Without the export restriction, the [eunpack] rule would be unsound. Con-
sider the following example of what would go wrong if the restriction were re-
moved:

(let ((p (unpackexist proc-point-epkg t point-ops1

(with point-ops1 (make-pt 1 2))))

(f (unpackexist pair-point-epkg t point-ops2

(with point-ops2 pt-x))))

(f p)).

The first unpackexist makes a procedural point whose type within the unpackexist
is the local abstract type t. This point escapes from the unpackexist and is let-
bound to the name p. The type of the point at this time is still t, which is
an unbound type variable in this context. The second unpackexist unpackages
a pair point implementation and returns its pt-x operation, which is renamed
f. Since t is also used as the local abstract type in the second unpackexist ,
the type of f is (-> (t) int), where t again is actually an unbound type
variable. Since f has type (-> (t) int) and p has type t, the application
(f p) would be well-typed. But dynamically an attempt is being made to take
the left component of a procedural point, which should be a type error! This
example makes clear that while it is powerful to be able to locally name the
abstract type within unpackexist , the local type name has no meaning outside
the scope of the unpackexist and so cannot be allowed to escape.

The export restriction fundamentally limits the usefulness of existential types
in practice. For instance, in the test-point-epkg procedure studied above,
it would be more natural to return the transposed point directly, but then

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

614 CHAPTER 15. ABSTRACT TYPES

the type of the unpackexist expression would be the abstract type pt, which
is forbidden by the export restriction. Instead we must first convert the ab-
stract point to a concrete pair in order to satisfy the export restriction. The
restriction also prevents us from writing a make-transpose procedure that
takes a point package and returns a transpose procedure appropriate for that
package. The type of make-transpose would presumably be something like
(-> (pt-eface) (-> (Iabs) Iabs)), where Iabs is the name of the abstract type
used by the given point package. But there is no way to refer to that type ex-
cept within unpackexist expressions inside the body of make-transpose, and
that type cannot escape any such expressions to end up in the result type of
make-transpose.

In practice, there are a few ways to finesse the export type restriction. One
approach is to organize programs in such a way that large regions of the program
are within the body of unpackexist expressions that open up commonly used
data abstractions. Within these large regions, it is possible to freely manipulate
values of the abstract type. The problem with this approach is that it can make
it more difficult to take advantage of one of the key benefits of existential types:
the ability to abstract code over different implementations of the same abstract
type and choose implementations at run-time based on dynamic conditions.

In cases where we really want to pass values that mention the abstract type
outside the scope of an unpackexist , we can program around the restriction by
packaging up such values together with their abstract type into a new existential
type. For example, Figure 15.5 shows how to define an extend-point-epkg pro-
cedure that can take any package with type pt-eface and return a new package
that has new operations and values in addition to the old ones. While this tech-
nique addresses the problem, it can be cumbersome, especially since all values
mentioning the same abstract type must always be put together into the same
package (or else later they could not be used with each other). Furthermore,
the components of the original package need to be repackaged to get the right
abstract type (and satisfy the import restriction).4

One paradigm in which the packaging overhead is not too onerous is a simple
form of object-oriented programming. Figure 15.6 shows how the pair and pro-
cedural point representations can be encapsulated as existential packages whose
implementations combine the state and methods of an object. As shown in the
figure, in this paradigm, it is possible to express a generic top-level transpose
method that operates on any value with type point-object. For example, the
following expression is well-typed:

4This is an artifact of using up/down to convert between abstract and concrete types. Such
repackaging is not necessary in some other approaches; see Exercise 15.9.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 615

(define-type new-pt-eface

(packofexist point

(recordof

(make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int))

(transpose (-> (point) point))

(point->pair (-> (point) (pairof int int)))

(origin point)

)))

(define extend-point-epkg (-> (pt-eface) new-pt-eface)

(lambda ((point-epkg pt-eface))

(unpackexist point-epkg pt point-ops

(with point-ops

(packexist newpt pt

(record

(make-pt (lambda ((x int) (y int)) (up (make-pt x y))))

(pt-x (lambda ((p newpt)) (pt-x (down p))))

(pt-y (lambda ((p newpt)) (pt-y (down p))))

(transpose (lambda ((p newpt))

(up (make-pt (pt-y (down p))

(pt-x (down p))))))

(point->pair (lambda ((p newpt))

(pair (pt-x (down p)) (pt-y (down p)))))

(origin (up (make-pt 0 0)))))))))

Figure 15.5: The extend-point-epkg procedure shows how values mentioning
an abstract type can be passed outside unpackexist as long as they are first
packaged together with their abstract type.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

616 CHAPTER 15. ABSTRACT TYPES

(let ((points (list point-object

(make-pair-point 1 2)

(make-proc-point 3 4))))

((pcall append point-object)

points

((pcall map point-object point-object) transpose points)))

For simplicity, the existential type system considered here does not permit
parameterized abstract types, but it can be extended to do so. For instance,
here is an interface type for immutable stacks that is parameterized over the
stack component type t:

(define-type stack-eface

(poly (t)

(packofexist (stackof t)

(recordof

(empty (-> () (stackof t)))

(empty? (-> ((stackof t)) bool))

(push (-> (t (stackof t)) (stackof t)))

(pop (-> ((stackof t)) (stackof t)))

(top (-> ((stackof t)) t))))

Parameterized existential types are explored in Exercise 15.8.

¤ Exercise 15.6 This exercise revisits the integer set abstraction introduced in
Exercise 15.2.

a. Define an interface type intset-eface for integer sets supporting the operations
empty, insert, and member?.

b. Define an existential package list-intset-epkg implementing intset-eface

that represents integer sets as integer lists.

c. Define an existential package pred-intset-epkg implementing intset-eface

that represents integer sets as integer predicates.

d. Define a testing procedure test-intset that takes any implementation of type
intset-eface, creates a set s containing the integers 1 and 3, and returns a three-
element boolean list whose ith element (1-indexed) indicates whether s contains
the integer i. ¢

¤ Exercise 15.7

a. Illustrate the necessity of the import restriction for the [eunpack] rule by giving
an expression that would unsoundly be well-typed without the restriction.

b. Alf Aaron Ames claims that the import restriction in the [epack] rule and the
import and export restrictions in the [eunpack] rule are all unnecessary if before

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 617

(define-type point-object

(packofexist point

(recordof

(state point)

(methods (recordof

(make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))))))

(define make-pair-point (-> (int int) point-object)

(lambda ((x int) (y int))

(packexist point (pairof int int)

(let ((make-pt (lambda ((x int) (y int)) (up (pair x y)))))

(record

(state (make-pt x y))

(methods (record

(make-pt make-pt)

(pt-x (lambda ((p point)) (left (down p))))

(pt-y (lambda ((p point)) (right (down p)))))))))))

(define make-proc-point (-> (int int) point-object)

(lambda ((x int) (y int))

(packexist point (-> (bool) int)

(let ((make-pt (lambda ((x int) (y int))

(up (lambda ((b bool)) (if b x y))))))

(recordof

(state (make-pt x y))

(methods (record

(make-pt make-pt)

(pt-x (lambda ((p point)) ((down p) true)))

(pt-y (lambda ((p point)) ((down p) false))))))))))

(define transpose (-> (point-object) point-object)

(lambda ((pobj point-object))

(unpackexist pobj pt impl

(with impl

(with methods

(packexist newpt pt

(record

(state (up (make-pt (pt-y state) (pt-x state))))

(methods

(record

(make-pt (lambda ((x int) (y int)) (up (make-pt x y))))

(pt-x (lambda ((p newpt)) (pt-x (down p))))

(pt-y (lambda ((p newpt)) (pt-y (down p)))))))))))))

Figure 15.6: Encoding two pair object representations using existential types.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

618 CHAPTER 15. ABSTRACT TYPES

type checking the program is α-renamed to make all logically distinct type iden-
tifiers unique. Is Alf correct? Use suitably modified versions of the unsoundness
examples in this section to support your answer. ¢

¤ Exercise 15.8

a. Extend the syntax and typing rules of FL/XSP to handle parameterized existen-
tial types like (stackof t), which appears in the stack-eface example above.

b. Define an implementation stack-list-epkg of immutable stacks that has type
stack-eface and represents a stack as a list of elements ordered from the top
down.

c. Define a procedure int-stack-test that tests a stack package by (1) defining a
swap procedure that swaps the top to elements of an integer stack; (2) defining a
stack->list procedure that converts an integer stack to an integer list; and (3)
returning the result of invoking stack->list on the result of calling swap on a
stack that contains the elements 1 and 2.

d. Define an interface mstack-eface for mutable stacks and repeat parts b and c
for mutable stacks. ¢

¤ Exercise 15.9 The packexist form uses up and down procedures to explicitly convert
between a concrete representation type and an opaque type name. Here we explore
alternative ways to specify abstract vs. concrete types in packexist . These alternatives
also work for the other forms of pack that we shall study.

a. One alternative to using up and down is to extend packexist to have the form
(packexist Iabs Trep Timpl Eimpl), in which the implementation type Timpl is
explicitly supplied. For example, here is one way to express a pair implementation
of points using the modified form of packexist :

(packexist point (pairof int int)

(recordof (make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))

(record

(make-pt (lambda ((x int) (y int)) (pair x y)))

(pt-x (lambda ((p point)) (left p)))

(pt-y (lambda ((p (pairof int int))) (right p))))))

Within Eimpl , the abstract type point and the concrete type (pairof int int)

are interconvertible.

Give a typing rule for this form of packexist . Your rule should not introduce up
and down procedures. Use examples to justify the design of your rule.

b. An alternative to specifying Timpl in packexist is to require the programmer to
use explicit type ascriptions (via FL/XSP’s the) to cast concrete to abstract
types or vice versa. Explain, using examples.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 619

c. Yet another way to convert between concrete and abstract types is to interpret the
define-datatype form in a creative way. (The module system in Section 15.5
follows this approach.) Each constructor can be viewed as performing a conversion
up to an opaque abstract type and each deconstructor can be viewed as performing
a conversion down from this type. For example, here is a point-as-pair existential
package declared via an alternative syntax for packexist that replaces Iabs and
Trep by a define-datatype declaration:

(packexist
(define-datatype point (pt (pairof int int)))

(record

(make-pt (lambda ((x int) (y int)) (pt (pair x y))))

(pt-x (lambda ((p point)) (match p ((pt (pair x _)) x))))

(pt-y (lambda ((p point)) (match p ((pt (pair _ y)) y))))))

Give a typing rule for this modified form of packexist .

d. Express the examples in Figure 15.5 and Figure 15.6 using the alternative ap-
proaches to existential types introduced above. ¢

15.3 Nonce Types

We have seen that the export restriction makes existential types an impractical
way to express data abstraction in a typed language. The export restriction is a
consequence of the fact that the abstract type name in an existential type and the
local abstract type names introduced by unpackexist forms are not connected to
each other or to the concrete type in any way. One way to address this problem
is by replacing the abstract type names by globally unique type symbols that we
call nonce types. We shall see that nonce types are in many ways a more flexible
approach to abstract types than existential types, but suffer from problems of
their own.

As an example, the type Tpoint−npkg of one implementation of a point ab-
straction might be the nonce package type

(packofnonce #1729

(recordof

(make-pt (-> (int int) #1729))

(pt-x (-> (#1729) int))

(pt-y (-> (#1729) int)))),

where #1729 is the concrete notation for the globally unique nonce type for this
particular implementation. Another point abstraction implementation would
have the same packofnonce type, except that a different unique nonce type (say
#6821) for that implementation would be substituted for each occurrence of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

620 CHAPTER 15. ABSTRACT TYPES

#1729. Nonce types are automatically introduced by the type checker and cannot
be written down directly by the programmer.

Whereas (packofexist Iabs Timpl) is a binding construct declaring that the
name Iabs may be used in the scope of Timpl , (packofnonce νabs Timpl) is not
a binding construct. Rather, it effectively pairs the nonce type νabs with an
implementation type in such a way that the two components can be unbundled
by an elimination form (unpacknonce). Like Iabs , νabs is an opaque name that
hides a concrete representation type. But unlike Iabs , which has no meaning
outside the scope of the packofexist , νabs names a particular concrete represen-
tation throughout the entire program. It serves as a globally unique tag for
guaranteeing that the operations of a data abstraction are performed only on
the appropriate abstract values, regardless of how the operations and values
are packaged and unpackaged. For example, a value of type #1729 is necessar-
ily created by the make-pt operation with type (-> (int int) #1729), and
it is safe to operate on this value with pt-x and pt-y operations having type
(pt-x (-> (#1729) int)). In contrast, these operations are incompatible with
abstract values having nonce type #6821.

The essence of the nonce type approach to abstract data types in FL/XSP is
presented in Figure 15.7. The syntax for creating and eliminating nonce packages
(using packnonce and unpacknonce) and typing nonce packages (packofnonce)
parallels the syntax for existential packages in order to facilitate comparisons.

For example, here is an expression Epair−point−npkg that describes a pair
implementation of a point abstraction as a nonce package:

(packnonce point (pairof int int)

(record

(make-pt (lambda ((x int) (y int)) (up (pair x y))))

(pt-x (lambda ((p point)) (left (down p))))

(pt-y (lambda ((p point) (right (down p))))))).

According to the [npack] typing rule, Epair−point−npkg could have the packofnonce
type Tpoint−npkg given earlier. Each application of the [npack] rule introduces a
fresh nonce type ν (in this case #1729) that is not used in any other application
of the [npack] rule. This nonce type replaces all occurrences of the programmer-
specified abstract type name Iabs (in this case point) in Eimpl . As in existential
types, up and down procedures are used to mediate between the concrete and
abstract types. Note that the Type domain must be extended to include nonce
types (Nonce-Type), which are distinct from type identifiers and type recon-
struction variables. They are instead a sort of newly generated type constant,
similar to Skolem constants used in logic.

The following expression Epair−point−test is a use of the example package that

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 621

Syntax

E ::= . . . | (packnonce Iabs Trep Eimpl) [Nonce Package Introduction]
| (unpacknonce Epkg Ity Iimpl Ebody) [Nonce Package Elimination]

ν ∈ Nonce-Type

T ::= . . . | ν [Nonce Type]
| (packofnonce ν Timpl) [Nonce Package Type]

Type Rules

A[up : (-> (Trep) ν), down : (-> (ν) Trep)] ` [ν/Iabs]Eimpl : Timpl
A ` (packnonce Iabs Trep Eimpl) : (packofnonce ν Timpl)

[npack]

where ν is a fresh nonce type [freshness condition]
Trep does not contain any plambda-bound identifiers [rep restriction]

A ` Epkg : (packofnonce ν Timpl)
A[Iimpl :Timpl] ` [ν/Ity]Ebody : Tbody

A ` (unpacknonce Epkg Ity Iimpl Ebody) : Tbody

[nunpack]

Type Equality

No new type equality rules.

Type Erasure

Same as for packexist/unpackexist.

Figure 15.7: The essence of nonce types in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

622 CHAPTER 15. ABSTRACT TYPES

is possible with nonce packages but not with existential packages:

(let ((pair-point-npkg Epair−point−npkg))
(let ((transpose (unpacknonce pair-point-npkg t pair-point-ops

(with pair-point-ops

(lambda ((p t))

(make-pt (pt-y p) (pt-x p))))))

(pt (unpacknonce pair-point-npkg t pair-point-ops

(with pair-point-ops

(make-pt 1 2)))))

(transpose pt))).

The [nunpack] typing rule can be used to show that Epair−point−test is well-
typed. Since the same nonce type #1729 is used within both occurrences of
unpacknonce , transpose has type (-> (#1729) #1729) and pt has type #1729,
so (transpose pt) (as well as Epair−point−test) has type #1729. As shown by
[nunpack], the type identifier Ity in unpacknonce allows the programmer to locally
name the nonce type of Epkg , which cannot be written down directly. There are
no import or export restrictions in [nunpack]. The substitution [ν/Ity]Ebody

converts all local type identifiers into nonce types that may safely enter and
escape from unpacknonce because they are globally unique type symbols that
denote the same implementation in all contexts.

Although [nunpack] has no restrictions, there are two restrictions in [npack].
The freshness condition requires that a different nonce type be used for each
occurrence of packnonce encountered in the type checking process. The restric-
tion requires careful attention in practice. One way to formalize it in the type
rules would be to modify the type rules to pass a nonce type counter through
the type checking process in a single-threaded fashion and increment the counter
whenever [npack] is used. In languages that allow separate analysis and com-
pilation of modular units, nonce types could include a unique identifier of the
computer on which type-checking was performed along with a timestamp of the
time when type-checking took place.

The [npack] rule also has a rep restriction that prohibits the concrete
representation type Trep from containing any plambda-bound type identifiers. In
the simple form of nonce packages that we are studying, this restriction prevents
a single nonce type from being implicitly parameterized over any types that are
not known when type checking is performed on the packnonce expression. For
example, consider the following expression, which would unsoundly be well-typed
without the restriction:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 623

(let ((make-wrapper

(plambda (t)

(packnonce abs t

(record

(wrap (lambda ((x t)) (up x)))

(unwrap (lambda ((y abs)) (down y))))))))

(let ((wrap-int (unpacknonce (pcall make-wrapper int) wint ir

(select ir wrap)))

(unwrap-bool (unpacknonce (pcall make-wrapper bool) wbool br

(select br unwrap))))

(unwrap-bool (wrap-int 3)))).

If #251 is used as the nonce type in the packnonce expression, then wrap-int

has type (-> (int) #251), unwrap-bool has type (-> (#251) bool), and
(unwrap-bool (wrap-int 3)) has type bool even though it dynamically eval-
uates to the integer 3! The problem is that #251 should not be a single nonce
type but some sort of type constructor that is parameterized over t.

The key advantage of nonce packages over existential packages for express-
ing abstract types is that they have no export restriction. As illustrated by
Epair−point−test , values of and operations on the abstract type may escape from
unpacknonce expressions. Programmers do not have to rearrange their programs
or adopt an awkward programming style to prevent these from happening.

Despite their advantages over existential packages, nonce packages suffer
from two drawbacks as a mechanism for abstract types:

1. Difficulties with expressing nonce types. The fact that nonce types cannot
conveniently be written down directly by the programmer is problematic,
especially in an explicitly typed language. For example, in FL/XSP, the
programmer cannot write a top level definition of the form

(define pair-point-npkg T Epair−point−npkg)

because there is no way to write down the concrete nonce type needed
in T. This is not just an issue of type syntax; the programmer does
not know which nonce type the type checker will choose when checking
Epair−point−npkg .

One way to address this problem is to embed nonce packages in a language
with implicit types, where type reconstruction can infer nonce package
types that the programmer cannot express (see Exercise 15.14). This is
the approach taken in SML, where the nonce-based abstype mechanism
allows the local declaration of abstract data types. But in reconstructible
languages, it is still sometimes necessary to write down explicit types, and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

624 CHAPTER 15. ABSTRACT TYPES

(let ((make-rat-impl

(lambda ((b bool))

(packnonce rat (pairof int int)

(record

(make-rat (lambda ((n int) (d int))

(up (if b (pair n d) (pair d n)))))

(numer (lambda ((r rat))

(if b (left (down r)) (right (down r)))))

(denom (lambda ((r rat))

(if b (right (down r)) (left (down r))))))))))

(let ((leftist-rat (make-rat-impl true))

(rightist-rat (make-rat-impl false)))

((unpacknonce rightist-rat rty rops (select numer rops))

((unpacknonce leftist-rat lty lops (select make-rat lops)) 1 2))

Figure 15.8: A form of abstraction violation that can occur with nonce types.

the inability to express nonce package types reduces expressivity in these
cases.

Another alternative is to require that the abstract type name Iabs in
(packnonce Iabs Trep Eimpl) is a globally unique name that serves as a
concrete nonce type. This lets the programmer rather than the type
checker choose the abstract type name. In this case, the programmer
can write down the abstract type name and there is no need for the local
abstract type name in unpacknonce . There are serious modularity prob-
lems with this approach, but it makes sense in restricted systems where
all nonce packages are created at top level; see Exercise 15.15.

2. Insufficient abstraction. Nonce packages are sound in the sense that there
are no representation violations — a well-typed program cannot en-
counter a run time type error. However, there is still a form of abstrac-
tion violation that can occur with nonce packages. An example of this
is shown in Figure 15.8. The make-rat-impl procedure makes a rational
number implementation, which in all cases represents a rational number
as a pair of integers. However, it is abstracted over a boolean argument b
that chooses one of two representations. When b is true, the numerator
is the left element of the pair and the denominator is the right element;
we will call this the “leftist representation.” When b is false, a “rightist
representation” is used, in which the numerator is on the right and the
denominator is on the left.

In the example, the numer procedure of the rightist representation is ap-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 625

plied to a leftist rational with numerator 1 and denominator 2. Since nonce
types are determined by static occurrences of packnonce and there is only
one of these in the example, the two dynamic invocations of make-rat-impl
yield implementations that use the same nonce type for rat. Thus, the
application is well-typed and at run time will return the value 2.

Thus, the nonce package system allows different implementations of a data
abstraction to intermingle as long as they are represented via the same
concrete type. Although this might seem reasonable in some cases, we
normally expect an abstract type system to enforce the contract chosen by
the designer of an abstraction. Enforcing the contract (and not just ensur-
ing compatible representations) enables the abstraction and the clients to
rely on important invariants that, among other things, ensure correctness
of programs.

¤ Exercise 15.10

a. Would the expression in Figure 15.8. be well-typed if all occurrences of packnonce
and unpacknonce were replaced by packexist and unpackexist? Explain.

b. Below are three replacements for the body of the inner let in the example in
Figure 15.8. For each replacement, indicate whether the whole example expression
would be well-typed using (1) nonce packages and (2) existential packages5. For
each case, discuss whether you think the type system does the “right thing” in
that case.

i. ((unpack leftist-rat lty1 lops1 (select numer lops2))

((unpack leftist-rat lty2 lops2 (select make-rat lops1)) 1 2))

ii. (unpack leftist-rat lty lops

(unpack rightist-rat rty rops

((select numer rops) ((select make-rat lops) 1 2))))))

iii. (unpack leftist-rat lty1 lops1

(unpack leftist-rat lty2 lops2

((select numer lops2) ((select make-rat lops1) 1 2)))) ¢

¤ Exercise 15.11 As noted above, the inability to write down nonce types is in-

compatible with top level define declarations in FL/XSP, which require an explicit

type to handle potentially recursive definitions. Design a top level definition mecha-

nism for FL/XSP that enables the declaration of non-recursive global values. Illus-

trate how your mechanism can be used to give the global name pair-point-npkg to

Epair−point−npkg . ¢

5Assume that the occurrence of packnonce in the figure is changed to packexist for the exis-
tential case.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

626 CHAPTER 15. ABSTRACT TYPES

¤ Exercise 15.12 If the abstract type name Iabs in (packnonce Iabs Trep Eimpl) were
required to be a globally unique name, then it could serve as a programmer-specified
nonce type.

a. Give typing rules for versions of packnonce and unpacknonce that are consistent
with this interpretation. In this interpretation, there is no need for the identifier
Ity in unpacknonce, since the unique name Iabs would be used instead.

b. Describe how to modify the type checking rules to verify the global uniqueness
requirement.

c. Discuss the advantages and disadvantages of this approach to nonce types. Is it
a good idea? ¢

¤ Exercise 15.13 By design, the nonce package types of two syntactically distinct
occurrences of packnonce are necessarily different. For example, two nonce packages
implementing a point abstraction would both have types of the form

(packofnonce νpoint
(recordof

(make-pt (-> (int int) νpoint))
(pt-x (-> (νpoint) int))

(pt-y (-> (νpoint) int))))

but the nonce type νpoint would be different for the two packages. Nevertheless, the
similarity in form suggests that it should be possible to abstract over different imple-
mentations of the same abstract type.

a. Suppose that we modify the syntax of packofnonce to be (packofnonce T Timpl)
but do not change the typing rules [npack] and [nunpack] in any way. Given
this change, write a make-transpose procedure that takes any nonce package
implementing a point abstraction and returns a coordinate swapping procedure
for that implementation. (Hint: use plambda to abstract over the nonce type.)

b. Explain why it is necessary to modify the syntax of packofnonce in order to write
make-transpose. ¢

¤ Exercise 15.14 In this exercise, we consider existential and nonce types in the
context of type reconstruction by adding them to FL/R.

a. Nonce packages can be added to FL/R by extending it with the expression
(packnonce Eimpl) and nonce types.

i. Give an FL/R typing rule for the modified packnonce form.

ii. Describe how to extend the FL/R reconstruction algorithm to reconstruct
the modified packnonce form.

iii. The unpacknonce expression and packofnonce type are not necessary in
FL/R for most programs. Explain why.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 627

iv. In versions of FL/XSP and FL/R supporting records (without row vari-
ables), write an FL/XSP program that cannot be re-expressed in FL/R
due to the inability to write down an explicit nonce type.

b. Existential packages can be added to FL/R by extending it with the expres-
sions (packexist Eimpl) and (unpackexist Epkg Tpkg Iimpl Eimpl) and the type
(packofexist Iabs Timpl). In the modified unpackexist form, the type Tpkg is the
type of the expression Epkg .

i. Give FL/R typing rules for the modified packexist and unpackexist forms.

ii. Describe how to extend the FL/R reconstruction algorithm to reconstruct
the modified packexist and unpackexist forms.

iii. Explain why it is necessary for the reconstruction system to be explicitly
given the type Tpkg of the existential package expression Epkg . Why can’t
it reconstruct this package type?

c. What changes would need to be made above to handle existential and nonce
packages with parameterized types? ¢

¤ Exercise 15.15 Many languages support abstract types that can only be de-
clared globally. Here we explore an abstract type mechanism introduced by a top level
define-cluster form. For simplicity, we assume that programs have the form:

(program

(define-cluster Iimpl 1 Iabs 1 Trep 1 Eimpl 1)
...

(define-cluster Iimpl k Iabs k Trep k Eimpl k)

Ebody)

a. One interpretation of define-cluster is given by the following desugaring for
the above program form:

(let ((Iimpl 1 (packexist Iabs 1 Trep 1 Eimpl 1))
...

(Iimpl k (packexist Iabs k Trep k Eimpl k)))

(unpackexist Iimpl 1 Iabs 1 Iimpl 1
...

(unpackexist Iimpl k Iabs k Iimpl k

Ebody)))

Would the interpretation be any different if all occurrences of packexist and
unpackexist were replaced by packnonce and unpacknonce, respectively?

b. Give a direct typing rule for the program form with define-cluster declarations
that gives the same static semantics as the above desugaring.

c. An alternative desugaring for the program form is:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

628 CHAPTER 15. ABSTRACT TYPES

(let ((Iimpl 1 (packexist Iabs 1 Trep 1 Eimpl 1)))

(unpackexist Iimpl 1 Iabs 1 Iimpl 1
...

(let ((Iimpl k (packexist Iabs k Trep k Eimpl k)))

(unpackexist Iimpl k Iabs k Iimpl k

Ebody))))

What advantage does this desugaring have over the previous one? Give an exam-
ple where this desugaring would be preferred.

d. Give a direct typing rule for mutually recursive top level define-cluster decla-
rations.

e. Give a simple example program where mutually recursive clusters are useful.

f. Suppose that we want to be able to locally define a collection of clusters anywhere
in a program via the following form:

(let-clusters ((Iclust Iabs Trep Eimpl)*) Ebody)

Discuss the design issues involved in specifying the semantics of let-clusters.
¢

15.4 Dependent Types

As we saw with existential packages, the inability to express “the type exported
by this package” makes many programs awkward to write. Nonce types provide
a way to express this idea but suffer from two key drawbacks: (1) nonce types are
thorny to express: either they are chosen by the system, and are inconvenient or
impossible for the programmer to write down explicitly; or they are chosen by
the programmer, in which case their global uniqueness requirement is at odds
with modularity; and (2) they allow abstract types from different instances of
the same syntactic package expression to be confused.

There is another option: use a structured name to select a type out of a
package just as components are selected out of a product. In particular, we
introduce a new type form (dtype Epkg) to mean “the type exported by the
package denoted by Epkg .”

6 It is an error if Epkg does not denote a package.
As with nonce packages, such a package may be viewed as a pair containing a
type and a value. The difference is that the programmer has a convenient way
to express the type component outside the scope of an unpack expression. The
type defined by a package is sometimes referred to as the package’s carrier.

6In a practical system in which packages can export multiple abstractions, we could write
(dselect I E) just as we select named values from records.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 629

A type that contains a value expression is called a dependent type because
the type it represents depends in some sense on the value. The reader may
be justifiably concerned about this unholy commingling of types and values,
especially with respect to static type checking. As we shall see, dependent types
raise some nettlesome issues that the language designer must address in order
to reap the expressiveness benefits.

15.4.1 A Dependent Package System

This section explores a simple package system that uses dependent types to
express abstract types (see Figure 15.9). We shall use the term dependent
package to refer to a package based on dependent types. The packdepend and
packofdepend forms work in a way similar to the previous package systems. For
example, we can define a pair point implementation (pair-point-dpkg) and a
procedural point implementation (proc-point-dpkg) exactly as in Section 15.2
except that we replace all occurrences of packexist by packdepend . Both of the
new packages will have the following interface type:

(define-type point-dface

(packofdepend point

(recordof

(make-pt (-> ((x int) (y int)) point))

(pt-x (-> ((p point)) int))

(pt-y (-> ((p point)) int)))))

Notice that procedure types have been extended to include the names of the
formal parameters: the arrow type constructor -> is now a binding form in
which the formal names are available in the return type. We shall see below
how this is used.

As with existential packages, packdepend and unpackdepend have an import
restriction that prevents the local name of the abstraction from capturing an
existing type name. As before, this restriction can be eliminated by automati-
cally α-renaming programs to make all logically distinct type identifiers unique.
The unpackdepend form has an additional restriction that we will discuss in more
detail later.

As with nonce packages (but not existential packages), dependent pack-
ages have no export restriction, so abstract values may exit the scope of an
unpackdepend expression. But unlike the nonce type system, free references to
the abstract type name exported by unpackdepend are replaced by a user-writable
type: a dependent type that records the program code that generated the pack-
age exporting the type. For example, what is the type Tpair−point in the following
definition?

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

630 CHAPTER 15. ABSTRACT TYPES

Syntax
E ::= . . . | (packdepend Iabs Trep Eimpl) [Dependent Package Introduction]

| (unpackdepend Epkg Ity Iimpl Ebody) [Dependent Package Elimination]

T ::= . . . | (-> ((I T)*) T) [Dependent Arrow Type]
| (packofdepend Iabs Timpl) [Dependent Package Type]
| (dtype Epkg) [Dependent Type Selection]

Type Rules

A[up : (-> ((x Trep)) Iabs), down : (-> ((x Iabs)) Trep)] ` E : T
A ` (packdepend Iabs Trep E) : (packofdepend Iabs T)

[dpack]

where Iabs 6∈ {(FTV A(I)) | I ∈ FreeIds[[E]]} [import restriction]

A ` Epkg : (packofdepend Iabs Timpl)
A[Iimpl : [(dtype Epkg)/Iabs] Timpl] ` [(dtype Epkg)/Ity] Ebdy : Tbdy

A ` (unpackdepend Epkg Ity Iimpl Ebdy) : Tbdy

[dunpack]

where Iabs 6∈ {(FTV A(I)) | I ∈ FreeIds[[Ebody]]} [import restriction]
Epkg must be pure [purity restriction]

A[I1 :T1, . . ., In :Tn] ` E : T
A ` (lambda ((I1 T1) . . . (In Tn)) E) : (-> ((I1 T1) . . . (In Tn)) T)

[λ]

A ` Erator : (-> ((I1 T1) . . . (In Tn)) Tbody)
∀ni=1 . A ` Ei : Ti

A ` (Erator E1 . . . En) : [
n
i=1Ei/Ii]Tbody

[apply]

where Ii∈FreeIds[[Tbody]] implies Ei is pure. [purity restriction]

∀ni=1 . A ` Ei : Ti
A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody

A ` (let ((I1 E1) . . . (In En)) Ebody) : [
n
i=1Ei/Ii]Tbody

[let]

where Ii∈FreeIds[[Tbody]] implies Ei is pure [purity restriction]

Rules for letrec and with are similar and left as exercises.

Type Erasure Same as for packexist/unpackexist and packnonce/unpacknonce.

Type Equality
∀ni=1 . Ii ′ 6∈FreeIds[[Tbody]]

(-> ((I1 T1)...(In Tn)) Tbody)
≡ (-> ((I1

′ T1)...(In
′ Tn))[

n
i=1Ii/Ii

′]Tbody)
[->=]

(packofdepend I T) = (packofdepend I ′ [I ′/I]T) [dpackof=]

E1 =depends E2
(dtype E1) = (dtype E2)

[dtype=]

where =depends is discussed in the text.

Figure 15.9: The essence of dependent types in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 631

(define pair-point Tpair−point
(unpackdepend pair-point-dpkg point point-ops

(with point-ops (make-pt 1 2)))

The return type of the make-pt procedure in pair-point-dpkg is point. Ac-
cording to the [dunpack] rule, (dtype pair-point-dpkg) is substituted for this
type. So the invocation of make-pt, the with expression, and the unpackdepend
expression all have the type Tpair−point = (dtype pair-point-dpkg).

The expressive power of dependent types is illustrated by the make-transpose
procedure:

(define make-transpose Tmake−transpose

(lambda ((point-dpkg point-dface))

(unpackdepend point-dpkg pt point-ops

(with point-ops

(lambda ((p pt))

(make-pt (pt-y p) (pt-x p)))))))

What is the type Tmake−transpose of this procedure? It is a procedure that takes
a package that implements the point-dface interface and returns a procedure
that takes a point implemented by the given package and returns a point from
the same package with swapped coordinates:

(-> ((point-dpkg point-dface))

(-> ((p (dtype point-dpkg))) (dtype point-dpkg)))

It should now be clear why the -> type constructor is a binding form in a
dependent type system: the return type can depend on the value of a parameter
(such as point-dpkg above), so we need a way to refer to the parameter. Not all
parameter names are actually used in this fashion. For instance, the parameter
name p is ignored. We shall refer to values of the dependent arrow type as
dependent procedures.

What happens when we apply a dependent procedure? Consider the appli-
cation Etranspose−test :

((make-transpose pair-point-dpkg) pair-point-dpkg)

By the [apply] rule, when we apply make-transpose to a package satisfying
point-dface, we substitute the actual argument expression for the formal pa-
rameter point-dpkg in the type

(-> ((p (dtype point-dpkg))) (dtype point-dpkg))

to give the type

(-> ((p (dtype pair-point-dpkg))) (dtype pair-point-dpkg))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

632 CHAPTER 15. ABSTRACT TYPES

Since pair-point has type (dtype pair-point-dpkg), Etranspose−test is a well-
typed expression denoting a value with type (dtype pair-point-dpkg).

Similarly, free references to let-bound variables are substituted away in the
result type of a let. Now that types refer to values, anytime a value escapes the
scope of a variable binding, that variable is replaced with its definition expression
if it occurs free in the value’s type. The rules for letrec and with are similar
to the [apply] and [let] rules and are left as exercises.

It is instructive to revisit the rational number example from Figure 15.8 in
the context of dependent types. Consider the following two expressions:

((unpackdepend rightist-rat rty rops (select numer rops))

((unpackdepend leftist-rat lty lops (select make-rat lops))

1 2))

((unpackdepend leftist-rat lty2 lops2 (select numer lops2))

((unpackdepend leftist-rat lty1 lops1 (select make-rat lops1))

1 2))

With dependent types, the first expression is ill-typed because an attempt is
made to apply a procedure of type (-> ((r (dtype rightist-rat))) int)

to a value of type (dtype leftist-rat). However, the second expression is
well-typed since the procedure parameter and the argument point both have
type (dtype leftist-rat). So dependent types are able to catch the abstrac-
tion violation in the first expression while permitting operations and values of
the same abstract type to interoperate outside of unpackdepend in the second
expression. In contrast, neither expression is well-typed with existential pack-
ages (due to the export restriction) and both expressions are well-typed with
nonce types (which cannot distinguish different instantiations of a packnonce
expression).

15.4.2 Design Issues with Dependent Types

Dependent types are clearly very powerful. However, care must be taken to
ensure that a dependent type system is sound. Moreover, programmers typically
expect that a statically typed language will respect the phase distinction:
the well-typedness of their programs will be verified in a first (terminating)
type-checking phase that runs to completion before the second (possibly non-
terminating) run time computation phase begins. We shall see that in some
designs for dependent types these phases are interleaved and type checking may
not terminate.

There are several design dimensions in systems with dependent types. One
dimension involves how types are bundled up into and extracted from packages.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 633

In the system we have studied so far, dependent packages have a single type
that is extracted via dtype, but more generally, a dependent package can have
several type components. These are typically named and extracted in a record-
like fashion. We will see an example of this in the module system in Section 15.5.

Another design dimension involves the details of performing substitutions in
the typing rules. Some alternatives to the rules presented in Figure 15.9 are
explored in the exercises for this section.

Perhaps the most important design dimension is type equality on dependent
types: when is the type (dtype E1) considered equal to (dtype E2)? There
are a range of choices here that have significant impact on the properties of the
language. We spend the rest of this section discussing some of the options.

One option is to treat types as first-class run time entities and dependent
packages as pairs of a type and a value. Such pairs are known as strong sums7

because the type component serves as a tag that can be used for dynamic dis-
patch. In this interpretation, (dtype E) extracts the type component of the
pair, which is convertible with the package’s representation type. Since type
checking and evaluation are inextricably intertwined in this design, there is no
phase distinction. Furthermore, abstraction is surrendered by making represen-
tation types transparent. The Pebble language [BL84] took this approach and
used a lock and key mechanism (similar to that described in Section 15.2) to
support data abstraction.

Another option is to consider (dtype E1) to be the same as (dtype E2) if
the expressions E1 and E2 are “equal” for a suitable notion of equality. This is
the approach taken in the [dtype=] rule of Figure 15.9, which is parameterized
over a notion of equality (=depends) that is not defined in the figure. There are
two broad approaches to defining =depends :

• Value equality: At one end of the spectrum, we can interpret two expres-
sions to be the same under =depends if they denote the same package in
the usual dynamic semantics of expressions. In the general case, this im-
plies that type checking may require expression evaluation. As with strong
sums, type checking in this approach may not terminate or may need to be
done at run time. Even worse, determining if two package values are the
same in general requires comparing procedures for equality, which is un-
computable! In practice, some computable conservative approximation for
procedure equality must be used. Such an approximation must necessar-
ily distinguish procedures that are denotationally equivalent. A common
technique is to associate a unique identifier with each procedure value and
to say that two procedures are equal only if they have the same identifier.

7In contrast, existential packages are sometimes called weak sums.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

634 CHAPTER 15. ABSTRACT TYPES

• Static equality: In order to preserve static type checking (with no run time
requirements and a guarantee that type checking terminates), we desire a
definition of ≡depends that is statically computable. The easiest solution
is to say that two dtypes are equal if their expressions are textually the
same (more precisely, if they have equal abstract syntax trees). This is
obviously statically computable, and this simple solution is the one that
we adopt here.

There are other choices for ≡depends besides textual equality. We could, for
example, allow the expressions in equivalent dtypes to admit α-renaming.
We could allow certain substitutions to take place (say if expressions are
equivalent after their lets are substituted away). As long as the equiv-
alence is statically computable and ensures that expressions that denote
different values are not equal, the system is sound. We refer to any such
system as a static dependent type (SDT) system.

For our system to be sound, we need to guarantee that a value that uses a
type exported from one package cannot masquerade as a value of some other
type, e.g., a point from the proc-point-dpkg cannot be passed to an operation
from pair-point-dpkg.

One requirement is that programs must be α-renamed on input. Otherwise,
it would be possible for textually identical expressions to mean different things
in different contexts. Our substitutions when a value exits a binding construct
are not enough. Consider the following code:

(let ((trans (make-transpose pair-point-dpkg))

(pair-point-dpkg proc-point-dpkg))

(trans (unpackdepend pair-point-dpkg point pt-ops

(with pt-ops

(make-pt 1 2)))))

If the new binding of pair-point-dpkg were not α-renamed, then it would be
confused with the pair-point-dpkg that occurs free in the type of trans, which
would be unsound.

A second requirement is that in a dependent type (dtype Epkg), the expres-
sion Epkg be pure — i.e., it must not vary with state. This is true whether a
language uses value or static equality. In a language with mutation, the same
syntactic expression might have different meanings at different times. For ex-
ample, consider the following expression:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 635

(let ((c (cell pair-point-pkg)))

(let ((p (unpack (^ c) pt ops

((select make-pt ops) 1 2))))

(begin

(:= c proc-point-pkg)

((unpack (^ c) pt ops

(select pt-x ops)) p))))

When cell c contains pair-point-pkg, the pair point p is created and has type
(dtype (^ c)). Then c is modified to contain proc-point-pkg, at which time
the procedural point operation pt-x (with type (-> ((dtype (^c))) int) is
applied to p. It should be an abstraction violation to apply the procedural point
operation pt-x to a pair point, but the type system encounters no error, because
the argument type of pt-x and the type of p are both (dtype (^c)). The type
system does not track the fact that (^c) refers to different packages at different
times.

We address this problem by instituting a purity restriction on Epkg in the
[dunpack] rule, which introduces all dependent types. Of course, it is undecid-
able to know when an expression is pure. A simple conservative approximation is
to require that Epkg be a “syntactic value,” a notion introduced in Section 8.2.5
and used in polymorphic types (Section 13.2) and in the type reconstruction
system of FL/R (Section 14.2). However, we will see in Section 15.5 that this
approximation prohibits many expressions we would like to write. A better alter-
native is to use an effect system (see Chapter 16) to conservatively approximate
pure expressions.

¤ Exercise 15.16

a. Write typing rules for letrec and with in a language with dependent types.

b. Dependent types permit code to be abstracted over particular implementations of
a data abstraction. The typing rules of this section require that such abstractions
be curried by the programmer because of the scoping of parameter names in
procedure types. The make-transpose procedure studied above is an example of
such currying. In its type,

(-> ((point-dpkg point-dface))

(-> ((p (dtype point-dpkg)))

(dtype point-dpkg))),

the argument type of the transposition procedure refers to point-dpkg.

Suppose that we want to modify the typing rules for a dependently typed language
to implicitly curry multiple parameters — i.e., to allow the types of later param-
eters to refer to the names of earlier parameters. For example, in the modified
system, an uncurried form of make-transpose could have the type

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

636 CHAPTER 15. ABSTRACT TYPES

(define-type uncurried-make-transpose-type

(-> ((point-dpkg point-dface) (p (dtype point-dpkg)))

(dtype point-dpkg)))

Curiously, the [λ] rule does not need to change to support implicitly curried pa-
rameters.8 The [apply] rule, however, must change. Write a new [apply] rule that
supports procedure formals that refer to previous parameters. E.g., a procedure of
type uncurried-make-transpose-typemust be applied to two arguments where
the type of the second argument depends on the value of the first. ¢

¤ Exercise 15.17 Del Sharkmon suggests the following alternative [dunpack’] type
rule that does dependent type substitutions on the way out of unpackdepend rather than
on the way in.

A ` Epkg : (packofdepend Iabs Timpl)

A[Iimpl : [Ity/Iabs]Timpl] ` Ebdy : Tbdy

A ` (unpackdepend Epkg Ity Iimpl Ebdy) : [(dtype Epkg)/Ity]Tbdy

[dunpack ′]

a. Using dependent packages, redo Exercise 15.10(b) using (1) the original [dunpack]
rule and (2) Del’s [dunpack ′] rule. Which rule do you think is better and why?

b. Del claims that [dunpack ′] is better than [dunpack] in some situations where Epkg
contains side effects. Write an expression that is well-typed with [dunpack ′] but
not [dunpack].

c. For any expression that is well-typed with [dunpack ′] but not [dunpack], it is
possible to make the expression well-typed by naming Epkg with a let. Show this
in the context of your expression from the previous part. ¢

¤ Exercise 15.18 Ben Bitdiddle looks at the typing rules in Figure 15.9 and your

solution to Exercises 15.16 and 15.17 and complains that all the substitutions make him

dizzy. He suggests leaving them all out except for those in the [apply] rule. Under what

assumptions is his idea sound? Write a type safe program that type checks under the

given rules but does not type check under Ben’s. ¢

15.5 Modules

15.5.1 An Overview of Modules and Linking

It is desirable to decompose a program, especially a large one, into modular
components that can be separately written, compiled, tested, and debugged.

8In a system with kinds, the [λ] rule would change because we would need the scope to be
manifest to verify that dependent types are well-formed.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 637

Such components are typically called modules but are also known as packages,
structures, units, and classes.9 Ideally, each individual module is described by
an interface that specifies the components required by the module from the
rest of the program (the imports) and the components supplied by the module
to the rest of the program (the exports). Interfaces often list the names and
types of imported and exported values along with informal English descriptions
of these values. Such interfaces make it possible for programmers to implement
a module without having to know the implementation details of other modules.
They also make it possible for a compiler to check for type consistency within a
single module.

In most module systems, modules are record-like entities that have both
type and value components. In this respect, they are more elaborate versions
of the packages we have studied. Indeed, modules are often used as a means
of expressing abstract types in addition to being a mechanism for decomposing
a program into parts, which is why we study them here. The key difference
between the modules discussed here and the packages we studied earlier is that
there is an expectation that modules can be separately written and compiled
and later combined to form a whole program.

The process of combining modules to form a whole program is called linking.
The specification for how to combine the modules to form a program is written
in a linking language. Linking is typically performed in a distinct link time
phase that is performed after all the individual modules are compiled (compile
time) but before the entire program is executed (run time).

A crude form of linking involves hard-wiring the file names for imported
modules within the source code for a given module. In more flexible approaches,
a module is parameterized over names for the imported modules and the linking
language specifies the actual modules to be used for the parameters. Ideally,
the linking language should check that the interface types of the actual module
parameters are consistent with those of the formal module parameters. In this
case, the linking language is effectively a simple typed programming language.

Often, a linking language simply lists the modules to be combined. For
example, the object files of a C program are linked by supplying a list of file
names to the compiler. A linking language can be made more powerful by
adding other programming language features that allow more computation to be
performed during the linking process. But the desire to make linking languages
more expressive is often in tension with the desire to guarantee that (1) the
linking process terminates and (2) mere mortals can reliably understand and use

9In many languages, such as C, files serve as de facto modules, but in general the relationship
between source files and program modules can be more complex.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

638 CHAPTER 15. ABSTRACT TYPES

the sophisticated types that often accompany more expressive linking languages.

An extreme design point is to make the linking language the same as the
base language used to express the modules themselves. Such first-class module
systems are powerful because arbitrary modules can be created at run time and
the decision of which module to import can be based on dynamic conditions.
These systems blur the distinction between link time and run time, and for
any Turing-complete base language, the linking process may not terminate. For
these reasons, linking is usually specified in a different language from the base
language that is suitably restricted to guarantee termination and designed to
link programs in a separate phase. In such second-class module systems,
modules are not first-class values that can be manipulated in the base language.
The module systems of the CLU, SML and OCAML languages are examples
of expressive second-class module systems.

15.5.2 A First-Class Module System

We conclude this chapter by presenting a first-class module system based on
static dependent types and incorporating extensions for sum-of-product data
type definitions, pattern matching, higher-order abstractions (type construc-
tors), and multiple abstract type and value definitions in a single module. Our
module system illustrates how the simple ideas presented earlier can be com-
bined into a more realistic system, and also how delicate a balance must be
struck to make the system both useful and correct.

We add the module features to FL/R to yield the language FL/RM. A
language where types are reconstructed is far more convenient for programming
than an explicitly typed language, where the explicit types can be tedious and
challenging to write. However, as we shall see below, certain types (the types of
modules) must be declared because they cannot be reconstructed. This is not a
big drawback since explicit module types are important in software engineering
for documenting module interfaces.

15.5.2.1 The Structure of FL/RM

The syntax and semantics of FL/RM are presented in Figures 15.10–15.13. Fig-
ure 15.10 presents the new expression and type syntax that FL/RM adds to
FL/R. A module is a record-like entity whose abstract type components are
declared via define-datatype (discussed below) and whose value components
are declared via define. The type of a module is a moduleof type that records
the abstract types and the types of each of the named value components. The
named type and value components of the module denoted by Emod are made

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 639

available to a client expression Ebody via the (open Emod Ebody) form, which is
the module analog of the with form for typed records. Programmers load sepa-
rately compiled modules from an external storage system via the load construct.
Loading is described in more detail in Section 15.5.2.5.

Dependent types have the form (dselect Itc Emod), which selects the ab-
stract type constructor named Itc from the module denoted by Emod . As in
Section 15.4, dependent procedure types of the form (-> ((I T)*) T) must
be supported. Parameter names may be omitted from non-dependent procedure
types (i.e., where the parameter names don’t appear in the return type); it is
assumed that the system treats these as dependent procedure types with fresh
parameter names. The type syntax also includes type constructor applications
of the form (TC T*), where a type constructor TC is either an identifier or
the result of extracting a type constructor from a module. In both cases, the
type constructor is presumed to be either a name the programmer declares via
define-datatype or a predefined type constructor name like listof.

Conventional type reconstruction cannot, in general, infer module types. For
this reason, optional declarations have been added to the syntax for lambda and
letrec expressions and define declarations. (We use the convention that syntax
enclosed by square brackets is optional.) Whenever an identifier introduced by
lambda, letrec, or define denotes a module (or a value whose type includes a
module type), that identifier must have its type supplied. If the type is omitted,
the program will not type check.

15.5.2.2 Datatypes and Pattern Matching

The define-datatype form is a typed version of the define-data sum-of-
products declaration introduced in Section 10.4. It declares a parameterized
abstract type constructor along with a collection of constructor procedures and
their associated deconstructors. For example,

(define-datatype (treeof t)

(leaf)

(node t (treeof t) (treeof t)))

declares a binary tree type constructor, treeof, that is parameterized over the
node value type t. It also declares two constructor/deconstructor pairs with the
types shown in Figure 15.14. The constructor procedure types are quantified over
the type constructor parameter t. The deconstructor procedure types are addi-
tionally quantified over the return type r of the deconstructor. The types of the
constructor and deconstructor procedures associated with a define-datatype

declaration are formalized by the ⊕ operator (see Figure 15.12), which extends

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

640 CHAPTER 15. ABSTRACT TYPES

Syntax

E ::= ... | (lambda (LF *) E)
| (letrec ((I [T] E)*) E)
| (match Edisc (P E)*)
| (module DD* D*) [Module introduction]
| (open Emod Ebody) [Module elimination]
| (load S) [Load compiled code]

LF ::= I | (I T) [Lambda Formals]
P ::= L | I | _ | (I P*) [Patterns]

DD ::= (define-datatype AB (Icnstr Tcomp*)*) [Datatype Definition]
D ::= (define I [T] E) [Value Definition]

AB ::= (Itc Iparam*) [Abstract Type]
UID ::= System dependent [Unique File Identifier]

T ::= ... | (moduleof (AB*) (I TS)*) [Module Type]
| (TC T*) [Type Constructor Application]
| (-> ((I T)*) T) [Dependent Proc Type]
| (-> (T*) T) [Non-dependent Proc Type]
| (dselect Itc Emod) [Dependent Type]

TC ::= Itc | (dselect Itc Emod) [Type Constructor]
TS ::= T | (generic (I*) T) [Type Schema]

Sugar

The usual FL/R desugaring function D is extended as follows:

D[[(match Edisc (P E)*)]] = D[[Dmatch[[(match Edisc (P E)*)]]]]

where Dmatch is the pattern matching desugarer presented in Figure 10.30 with the
modification to equalL described in the text.

Figure 15.10: Syntax for the module system of FL/RM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 641

Type Rules

∀mj=1 . (A ⊕ [DD1 , . . . ,DDn])[I1 :T1,...,Im :Tm] ` Ej : Tj
A `(module DD1 . . . DDn

(define I1 [T1] E1)...(define Im [Tm] Em))

: (moduleof ((Itc1 Ip1,1 ...Ip1,a1
)...(Itcn Ipn,1 ...Ipn,an

))

(I1 (mgen T1))...(Im (mgen Tm)))

[module]

where DD i = (define-datatype (Itci Ipi,1 ...Ipi,ai) ...)

(mgen T) = (generic (J*) T)
J* = FTV (T) − FTE(A) − {Itc1 , . . . , Itcn}

A ` Em : (moduleof ((Itc1...)...(Itcn...)) (I1 TS1)...(Im TSm))
A[I1 : sub(TS1),...,Im : sub(TSm)] ` sub(Eb) : Tb

A ` (open Em Eb) : Tb

[open]

where sub(X) = [ni=1(dselect Itci Em)/Itci]X [Dependent type introduction]
Em is pure [Purity restriction]

` contents [S] : T
A ` (load S) : T

[load]

The [proc], [apply], [let], and [letrec] rules are similar to those in Section 15.4 and are
left as exercises.

Type Equality

∀ni=1 . Ti =Ti
′

(moduleof (AB1 . . .ABk) ((I1 T1) . . .(In Tn)))
= (moduleof (AB1 . . .ABk) ((I1 T1

′) . . .(In Tn
′)))

[moduleof=]

(This is more restrictive than necessary; see discussion in text.)

Em1
=depend Em2

(dselect I Em1
) = (dselect I Em2

)
[dselect=]

where =depend is textual equality and all programs are appropriately α-renamed.

{I1 , . . . , In} = {I1 ′, . . . , In ′}
T =T ′

(generic (I1...In) T) = (generic (I1
′...In

′) T ′)

[generic=]

T = (generic () T) [type-generic=]

The [->=] rule from Figure 15.9 is used for dependent arrow types.

Figure 15.11: Static semantics for the module system of FL/RM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

642 CHAPTER 15. ABSTRACT TYPES

The notation A ⊕ DD denotes a type environment such that

(A ⊕ DD)(I) =







(generic (Ip1 . . . Ipm)
(-> (T1 . . . Tn) (Itc Ip1 . . . Ipm))),
if I = Icon and DD = (define-datatype (Itc Ip1 . . . Ipm)

. . . (Icon T1 . . . Tn) . . .)

(generic (Iret Ip1 . . . Ipm) ; Iret is fresh

(-> ((Itc Ip1 . . . Ipm) ; datum

(-> (T1 . . . Tn) Iret) ; success continuation

(-> () Iret)) ; failure continuation

Iret)),
if I = Icon./˜ and DD = (define-datatype (Itc Ip1 . . . Ipm)

. . . (Icon T1 . . . Tn) . . .)

A(I), otherwise

A ⊕ [DD1 , . . ., DDn] is an abbreviation for ((A ⊕ DD1) ⊕ . . .) ⊕ DDn .

Figure 15.12: Notation for extending type environments with datatypes.

Type Erasure

d(define-datatype (Itc Ip1 . . . Ipk)
(Icnstr1 T1 ,1 . . .T1 ,m1

) . . . (Icnstrn Tn,1 . . .Tn,mn
))e

= (define-data Itc (Icnstr1 x1 . . . xm1
) . . . (Icnstrn x1 . . . xmn

))

d(module DD1 . . . DDk (define I1 [T1] E1) . . .(define In [Tn] En))e
= (let ((Idd1 Edd1) . . . (Iddm Eddm))

(recordrec (I1 dE1 e) . . .(In dEne)))
where Ddef [[dDD1 e]] @ · · · @ Ddef [[dDDke]]

= [(define Idd1 Edd1) . . . (define Iddm Eddm)]
using the Ddef function from Figure 10.24.

d(open Emod Ebody)e = (with-fields (I1 . . . In) dEmode dEbodye)
where Emod : (moduleof (AB *) (I1 T1) . . . (In Tn))

Operational Semantics

(load S)⇒ contents[S] [load]

Figure 15.13: Dynamic semantics for the module system of FL/RM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 643

leaf : (generic (t) (-> () (treeof t)))

leaf~ : (generic (r t)

(-> ((treeof t) (-> () r) (-> () r))

r)

node : (generic (t) (-> (t (treeof t) (treeof t)) (treeof t)))

node~ : (generic (r t)

(-> ((treeof t)

(-> (t (treeof t) (treeof t)) r)

(-> () r))

r)

Figure 15.14: The types of the constructor and deconstructor procedures intro-
duced by the treeof datatype declaration.

a type environment with these types.

Although deconstructors may be used explicitly in programs, they are usually
used implicitly via the match construct introduced in Section 10.5. In the module
language, the match construct can be desugared exactly as in Figure 10.30,
except that equalL must be an equality operation appropriate for the type
of the literal L rather than the generic equal?. For instance, equal17 is =,
equaltrue is bool=?, and equal ′foo is sym=?.

For simplicity, unparameterized datatypes are required to be written as ap-
plications of nullary type constructors. For instance, a geometric shape type
could be declared as

(define-datatype (shape)

(square int)

(rectangle int int)

(triangle int int int))

in which case the figure type would be (shape) (the application of a nullary type
constructor) and not shape (which is a nullary type constructor, not a type). It
is left as an exercise to extend the language to support declarations of types in
addition to type constructors.

15.5.2.3 Example: A Parameterized Module

As a non-trivial example of a module, consider the parameterized table module
expression EmakeTableModule in Figure 15.15, which implements an immutable
but updatable table as a linked list of key/value pairs. The module declares a
tableof type constructor parameterized over the value type t. Additionally, we

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

644 CHAPTER 15. ABSTRACT TYPES

want to abstract our table implementation over the type of the key, which must
admit equality testing via a key=? procedure. We achieve this simply by using
lambda to parameterize the table module over a key module key-mod. Since
the type of key-mod cannot be inferred, it is explicitly provided. When we call
this procedure on a particular key module, we get back a table module that is
polymorphic in the type of value stored in the table.

Most languages would require that we write the table module in terms of a
key module that must be supplied at either compile time or link time. There
would be a separate language for specifying the relationship between the table
and key modules. For example, in SML we would use a functor (a linking
language function) to abstract the table module over the key module. But
because FL/RM has first class modules, the relationship can be expressed via
ordinary procedural abstraction.

15.5.2.4 Semantics of module and open

The static and dynamic semantics of the module constructs is defined in Fig-
ures 15.11–15.13. From the type erasure for module in Figure 15.13, we see
that at run time a module is just a record of values denoted by recursively
scoped definition expressions that are evaluated in the scope of the constructor
and deconstructor procedures introduced by the define-datatype declarations.
This scoping information is also apparent in the [module] type rule, where the
value bindings in the module are analyzed with respect to a type environment
that not only includes the types of all constructor and deconstructor procedures
declared in the define-datatype declarations (via ⊕) but also includes the
types of the defined expressions. In addition to types for the value bindings,
the moduleof type for a module expression includes abstract types of the form
(Itc Ip1 . . . Ipk) declared by the define-datatype declarations. Only the ab-
stract type constructor name Itc is a binding occurrence; the type parameters
Ip1 . . . Ipk are provided only to indicate arity information (the number of type
arguments for the type constructor).

As indicated by the definition of ⊕ in Figure 15.12, constructors create values
with the abstract type and deconstructors decompose values with the abstract
type. Thus, they play the role of up and down in the typing rule for packdepend in
Figure 15.9 (see Exercise 15.9). As indicated by the [module] type rule and the
module type erasure rule, the constructor and deconstructor procedures are not
exported by a module unless the programmer includes explicit value definitions
for them. Thus, the programmer has complete control over how abstract values
are constructed and deconstructed. If the constructors for an abstract type are
not exported, clients cannot create forgeries that possibly violate representation

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 645

(lambda ((key-mod (moduleof ((key))

(key=? (-> ((key) (key)) bool)))))

(open key-mod

(module

(define-datatype (tableof t)

(empty)

(non-empty (pairof (pairof (key) t)

(tableof t))))

(define make-table empty)

(define lookup

(lambda (k tbl succ fail)

(match tbl

((empty) (fail))

((non-empty (pair (pair ak x)) rest)

(if (key=? k ak)

(succ x)

(lookup rest k succ fail))))))

(define insert

(lambda (newk newval tbl)

(lookup tbl k

(lambda (x) (error alreadyInTable))

(lambda () (non-empty (pair newk newval) tbl)))))

(define delete

(lambda (k tbl)

(match tbl

((empty) tbl)

((non-empty (pair (pair ak x)) rest)

(if (key=? k ak)

rest

(non-empty (pair (pair ak x)

(delete rest k))))))))

)))

Figure 15.15: An expression EmakeTableModule denoting a procedure that takes a
key module and returns a table module.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

646 CHAPTER 15. ABSTRACT TYPES

invariants. If the deconstructor for an abstract type is not exported, then clients
cannot directly manipulate the concrete representation of an abstract value.

For example, in the table module in Figure 15.15, the empty constructor is ex-
ported by the module under a different name (make-table), but the non-empty
constructor and the empty~ and non-empty~ deconstructors are not exported.
These are used only to define the lookup, insert, delete operations. So it is
impossible for a client to create a non-empty table or manipulate the bindings
of a table except through these operations.

For simplicity, we consider two moduleof types to be equal when their ab-
stract types are exactly the same (including order and parameter names) and
their bindings have equal types in the same order. This is overly restrictive.
The reader is encouraged to develop a more lenient type equality rule as well as
subtyping rules for moduleof.

The type erasure rule for (open Emod Ebody) indicates that it dynamically
makes the value bindings of the module denoted by Emod available in the body
expression Ebody . Note that the type erasure rule needs to “know” the type of
Emod in order to determine the field names needed by with-fields. The [open]
typing rule is similar to the [dunpack] rule for dependent packages in that it
substitutes a dependent type for all occurrences of abstract type constructors
in the body expression. As in [dunpack], the expression on which a dependent
type depends must be pure. The easiest way to guarantee this is to require Emod

in (dselect Itc Emod) to be a syntactic value. However, we will see shortly
that this solution has fundamental drawbacks in the presence of parameterized
modules.

An example of the result of applying the [module] and [open] type rules
is the type TmakeTableModule (Figure 15.16) of the expression EmakeTableModule

studied earlier. Each of the procedures exported by the module has a type
schema that parameterizes over unification variables introduced by type recon-
struction. Note how all instances of the (key) type have been replaced by
((dselect key key-mod)) due to the substitution in the [open] rule.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 647

(-> ((key-mod (moduleof ((key))

(key=? (-> ((key) (key)) bool)))))

(moduleof ((tableof t))

(make-table (generic (a) (-> () (tableof a))))

(lookup (generic (b c)

(-> (((dselect key key-mod)) (tableof b)

(-> (b) c) (-> () c))

c)))

(insert (generic (d)

(-> (((dselect key key-mod)) d (tableof d))

(tableof d))))

(delete (generic (e)

(-> (((dselect key key-mod)) (tableof e))

(tableof e))))

))

Figure 15.16: The type TmakeTableModule of the expression EmakeTableModule .

15.5.2.5 Loading Modules

The load construct supports the development and construction of large pro-
grams by allowing separately developed program modules to refer to one an-
other. In our simple system, (load S) causes the desugared expression named
by the unique name S to replace (load S). The loaded expression is called
contents[S] in our rules.

Because module dependencies must be acyclic, it is not possible to have
modules that directly load each other. Nevertheless, modules with recursive
dependencies can be parameterized over their dependencies and expressed within
FL/RM; see Exercise 15.26.

Unifying the programming and linking languages via load and first-class
modules is very powerful. As illustrated above, the creation, instantiation, and
linking of parameterized modules is easily accomplished via lambda and appli-
cation. It is also possible to choose which modules to load at run time using if,
as in the following procedure:

(lambda (matrix)

(open (if (sparse? matrix)

(load "sparse-matrix-module-v3.22.cmp")

(load "dense-matrix-module.cmp-v4.5"))

... code that manipulates matrix ...))

The ability to use arbitrary computation when linking program components
permits idioms that are not expressible in most linking languages. Some down-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

648 CHAPTER 15. ABSTRACT TYPES

sides are that linking is not a separate phase from computation and it may not
terminate.

The simple module facility described here still has many important short-
comings.

• Module types can quickly become very awkward to write. Often, we don’t
need all the functionality of a module, only particular features. The table
module above can use any type with equality as a key. Subtyping can sup-
ply the necessary machinery, but it is still useful for languages to provide
special syntax for specifying that a type parameter must support certain
operations. CLU’s where mechanism was designed to solve this problem.

• Explicitly abstracting over modules is a tedious operation, and results in
overly complex code when, for example, two modules must share a common
definition. SML’s sharing specification was designed to address this issue.

• Having programmers essentially encode all version information in a man-
ifest string constant is very inconvenient. It is possible to have the pro-
grammer specify just a name, like "make-table-module.cmp", have the
compiler use the most recent version of the file, and have the compiler
and runtime system ensure that the code available during type checking
is in fact the source for the object code loaded at run time. FX used the
desugaring process to introduce a unique stamp from the file system for
this purpose. Whenever a module is modified, any other modules that
load that module name must be recompiled. Exercise ?? explores more
sophisticated approaches to the value store.

• In the presence of parameterized modules, there is a fundamental problem
with using the crude syntactic value test to conservatively approximate
which module expressions do not have side effects. To see this, suppose
that we replace the body of the open subexpression in Figure ?? by just
the insert application. In this case, the type of both the insert and
open subexpressions would be ((dselect tableof tbl-mod) bool), but
the inner let would have type

((dselect tableof (mk-tbl-mod int-key-mod)) bool)

and the outer let would have a type like

((dselect tableof ((load "make-table-module-v1.3.cmp")

(load "int-key-module-v2.0.cmp")))

bool)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 649

The problem with the last two types is that both module expressions in
the dselects are applications and therefore not syntactic values (expansive
in the literature). Even though both expressions are in fact referentially
transparent, the conservative syntactic test of non-expansiveness fails and
causes type checking to fail. This sort of failure will occur whenever an
attempt is made to export a type containing an abstract type from a
parameterized module outside the scope of an application of that module.

Thus, the syntactic value test for expression purity imposes a kind of
export restriction on abstract values, thereby reducing the power of the
module system. This problem can be mitigated somewhat by using let to
introduce names for applications, as in the let binding of tbl-mod, without
which even the type of the insert expression would contain the application
(mk-tbl-mod int-key-mod). But let only locally increases the scope
in which subexpressions are well-typed and cannot remove the effective
export restriction. What we really need is a better way to determine the
purity of an expression, which is the subject of the next chapter.

¤ Exercise 15.19 In the table implementation in Figure 15.15, the lookup procedure

takes success and failure continuations, and is polymorphic in the return type of the

continuations. Alternatively, lookup could be modified to return either the value stored

under the key or some entity indicating the value was not found. Define a new datatype

to express this return type, and modify the table implementation to use it. ¢

¤ Exercise 15.20 Sam Antix notices that the load syntax requires the value’s name

to be a manifest constant. He suggests that load should be a primitive procedure that

takes a string argument, i.e., one could apply load to any expression that returns a

string. Is this a good idea? Why or why not? ¢

¤ Exercise 15.21 The abstract type names (and their parameters) introduced by

define-datatype and used in moduleof types are binding occurrences. Extend the

definition of FTV and type substitution to properly handle these type names. ¢

¤ Exercise 15.22 Is the following FL/RM expression well-typed? If so, give the
type reconstructed for test and the type of the whole expression. If not, explain.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

650 CHAPTER 15. ABSTRACT TYPES

(let ((mk-tbl-mod (load "make-table-module-v1.3.cmp")))

(int-key-mod (load "int-key-module-v2.0.cmp"))

(let ((tbl-mod (mk-tbl-mod int-key-mod)))

(open tbl-mod

(let ((test (lambda (k v)

(lookup k

(insert k v (make-table))

(lambda (x) x)

(error shouldntHappen)))))

(pair (test 1 true) (test 2 3)))))) ¢

¤ Exercise 15.23 It would be convenient if the module system were extended to
support the declaration of types in addition to type constructors. For example, after
the extension, an alternative way to define the geometric shape type discussed in the
text would be

(define-datatype shape

(square int)

(rectangle int int)

(triangle int int int))

and (square 3) would have the type shape.

a. Extend the type syntax, typing rules, and the definition of ⊕ so that
define-datatype can declare types in addition to type constructors.

b. An alternative strategy is to transform all declarations and uses of user-defined
types to declarations and uses of nullary type constructors. Define a program
transformation that implements this strategy. ¢

¤ Exercise 15.24 Write a type equality rule for moduleof type expressions that (1)

permits the type components to be in any order; (2) permits the value components to be

in any order; and (3) ignores the names (but not the number!) of the type parameters

for each type constructor. ¢

¤ Exercise 15.25 The module system described above uses static dependent types.

Write [proc], [let], [letrec], and [apply] typing rules for this language, being careful to

carry out all necessary substitutions. You may want to refer to Figure 15.9 and Exercise

15.16. ¢

¤ Exercise 15.26 Consider the following three expressions:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 651

EA = (module

(f (lambda (x)

(if (= x 0)

0

((open (load "B.cmp") g) (- x 1))))))

EB = (open (load "A.cmp")

(module

(g (lambda (x)

(if (= x 0)

1

(+ ((open (load "A.cmp") f) (- x 1))

(g (- x 1))))))))

EC = (let ((amod (load "A.cmp"))

(bmod (load "B.cmp")))

(+ (open amod (f 3))

(open bmod (g 3))))

a. Suppose that we want to compile EA to the file "A.cmp", EB to the file "B.cmp",
and EC to the file "C.cmp". Explain why there is no compilation order that can
be chosen that will allow us to eventually execute the code in EC that will use
EA for "A.cmp" and EB for "B.cmp". Consider the case where the file system
contains pre-existing files named "A.cmp" and "B.cmp".

b. It is possible to change EA and EB into parameterized modules that do not
directly load modules from particular files, but instead load modules from a pa-
rameter that is a (thunk of) a module. Based on this idea, rewrite EA, EB , and
EC in such a way that all three files can be compiled and executing EC will return
the desired result. ¢

¤ Exercise 15.27 Modify the type reconstruction algorithm from Chapter ?? to

handle the module, open, load, lambda, and letrec constructs. ¢

Reading

• CLU[L+79]

• SML and revised[AM87, MTH90, MTHM97]

• Mesa[MMS78]

• Benjamin Pierce’s book[Pie02]

• John Mitchell’s books[Mit96, Mit03]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

652 CHAPTER 15. ABSTRACT TYPES

• [CW85] discusses polymorphism, bounded quantification, existential types,
compares existential types to data abstraction in Ada.

• Mitchell and Plotkin’s existential types [MP84]. Impredicative Strong Ex-
istential Equivalent to Type:Type[HH86].

• MacQueen on Modules[Mac84, Mac88]. Dependent types to express mod-
ular structure[Mac86]

• Harper on modules[Har86, HMM90]

• [CHD01][CHP99]

• [Ler95]

[Ada] [Parnas?] [ML sharing]
For more information on existential types, see John Mitchell’s textbook,

[Mit96]. Luca Cardelli’s Quest language [Car89] employed first-class existential
types.

Static dependent types are due to Mark Sheldon and David Gifford [SG90].
For a somewhat different of view in which a type is its operation set, see the

programming language Russell [BDD80].
The programming language Pebble [BL84] included strong existential types

(also known as strong sums) and dependent types that could contain any value.
Type checking in Pebble could fail to terminate if values in dependent types
looped.

Putting type declarations into a language with type reconstruction, as we
did with our final module system design, can lead to some surprising results.
For example, it is easy to make type checking undecidable. To see how inferable
and non-inferable types can be combined in a decidable type system, see James
O’Toole’s work in [OG89].

[Recent work on dependent types: Cayenne, Hongwei’s work.]

