
Technical Report MIT-CSAIL-TR-976, December 2004

Machine-Checkable Correctness Proofs for
Intra-procedural Dataflow Analyses

Alexandru Sălcianu and Konstantine Arkoudas

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{salcianu,arkoudas}@csail.mit.edu Fax: 617-253-1221

Abstract

This paper describes our experience using the interactive theorem prover Athena
for proving the correctness of abstract interpretation-based dataflow analyses. For
each analysis, our methodology requires the analysis designer to formally specify the
property lattice, the transfer functions, and the desired modeling relation between
the concrete program states and the results computed by the analysis. The goal
of the correctness proof is to prove that the desired modeling relation holds. The
proof allows the analysis clients to rely on the modeling relation for their own
correctness. To reduce the complexity of the proofs, we separate the proof of each
dataflow analysis into two parts: a generic part, proven once, independent of any
specific analysis; and several analysis-specific conditions proven in Athena.

Key words: Dataflow analysis, correctness proofs, interactive
theorem proving, Athena

1 Introduction

Modern compilers use a variety of dataflow analyses, whose correctness directly
affects the correctness of the produced executables. Although the theoretical
foundations of dataflow analyses are well understood and described in detail
in popular textbooks [19], many such analyses are presented without a formal
specification of the properties they compute and without a correctness proof.
Even when detailed paper-and-pencil correctness proofs are given, they tend
to be very long and mostly tedious. As a consequence, few people ever read
and review such proofs, leading to low confidence in them. We do not want to
underemphasize the importance of such proofs: The first author wrote a large
paper-and-pencil correctness proof for a pointer and escape analysis [23], and,
although difficult, that proof was invaluable in understanding (and correcting)
the analysis design.

The goal of our research is to use advances in interactive theorem proving
to express analysis correctness proofs in a machine-checkable manner. Using

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sălcianu and Arkoudas

an interactive theorem prover has two advantages. First, it forces the analysis
designer to be precise in the description of the analysis and in the specification
of the properties that the analysis computes. Second, the correctness proof
is machine-checkable. Unfortunately, the increased precision and machine-
checkability have the drawback of requiring a significant increase in the proof
effort. In addition, many machine-checkable proofs are unnatural and hard
to read. We use the interactive theorem prover Athena [4, 2] because it has
the potential to tackle these problems. Proof readability and writability were
primary objectives in the design of Athena. The goal was to allow for high-
level structured proofs written in the same style and at the same level of
detail as the informal proofs that are given in practice. Athena also achieves
significant proof automation, both through user-defined tactics and through
the seamless integration of external cutting-edge automated theorem provers
(such as Vampire [25] and Spass [26]).

A dataflow analysis computes an analysis fact for each program point;
the analysis fact conservatively models each possible program state at that
point. In our approach, we ask the analysis designer to provide a formal
specification of the modeling relation, and a correctness proof, i.e., a proof
that the computed analysis facts satisfy the intended modeling relation. Each
program optimization that uses the analysis results can rely on the modeling
relation. Therefore, we decouple the problem of optimization correctness into
two parts: the correctness of the underlying analysis, and the correctness of
the program transformation. Our work examines only the analysis correctness.

Proving the correctness of an analysis is a daunting task. To simplify it,
1) we focus on the high-level definition of the analysis; and 2) we split the
correctness proof into several simpler proofs.

Following classic textbooks [19], we express a dataflow analysis as a fixed-
point of a set of dataflow equations. Intuitively, the analysis starts with a
special initial analysis fact for the beginning of each analyzed procedure, and
next uses the analysis transfer functions to abstractly interpret [8] the pro-
gram statements. The analysis facts belong to a property lattice; in the control
flow join points, the lattice join operator combines the incoming analysis facts.
Given a set of monotonic constraints / transfer functions over a lattice with no
infinite ascending chains, there are well-understood algorithms for computing
the least fixed-point [19]; e.g., Chaotic Iterations (the easiest to implement)
and Iterating Through Strongly-Connected Components (the most efficient).
We consider these fixed-point solvers correct, and do not prove their correct-
ness. Instead, given a set of transfer functions, we focus on proving that any
set of analysis results (one result for each program point) that satisfy the
transfer functions also satisfy the intended modeling relation associated with
the analysis.

We separate the analysis correctness proof into a generic part (proven
once, independent of the examined analysis), and three sufficient analysis-

2

Sălcianu and Arkoudas

specific conditions. For each new analysis, the analysis designer needs to
prove these three conditions in Athena. The generic part of the proof is a
proof by induction that uses the analysis-specific conditions in its base case
and induction step. These conditions require that the analysis fact for the
beginning of an analyzed procedure models the concrete state(s) at that point,
and that the abstract interpretation of each instruction preserves the modeling
relation. 1 In general, the analysis-specific conditions involve the execution of
at most one simple instruction; hence, their proofs are significantly easier than
the entire correctness proof, and, hopefully, large parts of these proofs can be
automatic. Still, as the execution of an invoked procedure may involve many
instructions, some sort of user-supplied frame theorem 2 is required in the case
of a call instruction.

Notice that we study the correctness of the high-level analysis specifica-
tion and not the correctness of a particular analysis implementation. Still, if
we have a high-level analysis specification, we can automatically generate an
implementation that solves the dataflow equations [1, 27].

Contributions: This paper makes the following contributions:

• We present a methodology for doing machine-checkable correctness proofs
for dataflow analyses. Our methodology reduces the proof effort by focusing
only on a clear set of high-level analysis-specific conditions.

• We present experience in applying our methodology for proving the cor-
rectness of three related dataflow analyses in the interactive theorem prover
Athena. In general, the proof effort was reasonable, and the resulting proofs
are similar to paper-and-pencil proofs. Our proofs are available online from
http://www.mit.edu/~salcianu/df-proofs.

Paper structure: Section 2 introduces a simple language that we use for
the presentation of our ideas. Section 3 formally defines the forward intra-
procedural dataflow analyses and their correctness. Section 4 presents the
example of a constant propagation analysis. Section 5 presents our correctness
proof methodology. Sections 6 and 7 briefly introduce Athena and describe
our experience in using it to prove the correctness of three related analyses.
Finally, Section 8 discusses related work, and Section 9 concludes.

2 Program Representation and Semantics

This paper uses the following notation: S∗ is the set of all finite lists with
elements from the set S; S+ is similar to S∗, but contains only non-empty
lists. We write e : l for the list obtained by adding the element e at the head

1 There is also a third correctness condition that we explain later in the paper.
2 Essentially, a frame theorem is a reduced procedure specification: e.g., a procedure does
not change the local variables of its caller.

3

Sălcianu and Arkoudas

of the list l. If f is a function A → B, f [a 7→ b] is the function that behaves
exactly like f , except that f (a) = b. For each relation R ⊆ A× B, we write
a R b for (a, b) ∈ R; R∗ denotes the transitive and reflexive closure of R.

We present our ideas in the context of a simple language with recursive
procedures and local variables. Figure 1 presents the mathematical objects for
the program representation and semantics. A program P is a mapping from a
subset of procedure names to the corresponding procedures. Each procedure
consists of a list of formal parameters and a list of instructions. Instructions
have the expected semantics; e.g., “v := ct” loads the constant ct into the
local variable v; “if(v == 0) goto a” jumps to the a-th instruction from
the current procedure, etc.

P ∈ Program = {P ′ ∈ A → Proc | A ⊆ ProcName, main ∈ A}
p ∈ ProcName procedure names

Proc = Var∗ × Instr∗

v ∈ Var local variables (including formal parameters)
Instr ::= v := ct | v1 := v2 | v := v1 bop v2

| if(v == 0) goto a
| v := call p (v0, v1, ..., vk−1) | return v

bop ∈ Bop = {+, -, *, mod, div, <,≤, >,≥, ==,∧,∨}
a ∈ N addresses inside a procedure

c ∈ State = Stack Concrete states
S ∈ Stack = (VState × Lab ×Var)+ Execution stack
V ∈ VState = Var → Z State of local variables
lb ∈ Lab = ProcName × N Program labels

cinit = 〈λv.0, 〈main, 0〉, v0〉 Initial program state

Fig. 1. Program representation and semantics.

Each instruction has a label lb ∈ Lab = ProcName × N: 〈p, i〉 is the label
of the i-th instruction from the procedure named p. instrAtP (lb) denotes the
instruction from label lb in program P. For most instructions, control goes
from label lb = 〈p, a〉 to next (〈p, a〉) = 〈p, a + 1〉. For a jump instruction,
control can also go to the jump target. predP (lb) denotes the set of control flow
predecessors of label lb , i.e., labels of the instructions that may be executed
right before executing the instruction from label lb .

The meaning of our programs is given by a small-step operational seman-
tics, informally called the concrete semantics. Currently, a concrete state
contains only the execution stack. Each stack frame corresponds to a proce-
dure activation, and contains 1) the state of the local variables of the pro-
cedure, 2) the current label inside the procedure, and 3) the caller variable
that will receive the returned value. The state of the local variables is a total
function from variables to integers; on procedure entry, parameters are ini-
tialized with the values of the actual arguments; all other local variables are
initialized to 0. 3 All variables have integer values; booleans are encoded as

3 Only variables mentioned in the program can have a non-zero value; hence, the state of

4

Sălcianu and Arkoudas

integers in a C-like fashion. The auxiliary function pc takes a concrete state
c = 〈V, lb , vr〉 : Stail, and returns the label of the instruction about to be
executed, i.e., lb .

The execution of a program P starts with the first instruction from the
distinguished procedure main, i.e., instrAtP (〈main, 0〉). An execution of P is
a (possibly infinite) chain of transitions: cinit = c0 ;P c1 ;P . . . ;P ci ;P

ci+1 ;P , The transition ci ;P ci+1 executes the instruction at label
pc (ci) in program P, i.e., the instruction instrAtP (pc (ci)). The transition
relation ;P ⊆ State × State is defined by a case analysis of the instruction
executed in that step. Here is a sample case:

〈V, lb , vr〉 : Stail ;P 〈V [v 7→ ct] ,next (lb) , vr〉 : Stail

where instrAtP (lb) = “v := ct”. [ldc]

Appendix A presents the complete definition of the transition relation ;P .
A state is final if its stack has a single frame and the instruction about to be
executed is “return v.” The value of v is the result of the program.

3 Forward Intra-Procedural Dataflow Analyses

Definition 3.1 A forward intra-procedural dataflow analysis A is a function
that, for each program P, produces a tuple 〈LP , [[.]]P , Ainit

P ,MP , AP〉, consisting
of:

(i) A property lattice LP , with a join operator tLP and an induced ordering
relation vLP (we ignore the subscript LP whenever it is obvious from the
context).

(ii) A family of monotonic transfer functions [[.]]P : LabP → LP → LP , where
LabP denotes the set of labels from program P. Intuitively, for each label
lb from P, [[lb]]P takes the analysis fact for the program point before label
lb , and returns the analysis fact for the program point after label lb .

(iii) An initial analysis fact Ainit
P ∈ LP for the entry point of each procedure.

(iv) A modeling relation MP ⊆ State×LP ; c MP l iff the analysis fact l ∈ LP

models the concrete state c.

(v) A function AP : LabP → LP , where LabP is the set of labels from P.
AP (lb) is the analysis fact for the program point right before label lb . AP

satisfies the dataflow equations :

∀lb ∈ LabP . AP (lb) w

Ainit
P if lb = 〈p, 0〉

⊔

lb2∈predP (lb)

[[lb2]]P(AP (lb2)) otherwise

The above definition deserves some explanation:

local variables has a finite representation.

5

Sălcianu and Arkoudas

• Why use lattices? First, the ordering relation from lattices offers a clear
modeling of precision and safety. Personally, we pick lattices such that
smaller means “more precise” and bigger means “safer”. 4 Second, the
join lattice operator tells us what to do in the control flow join points: if
a concrete state c is modeled by either l1 ∈ LP or l2 ∈ LP (depending
on which incoming branch is used), then c is modeled by l1 t l2. Third,
finite depth lattices make it trivial to prove the termination of fixed-point
computations required by an analysis, in the case when all transfer functions
are monotonic.

• The previous paragraph mentioned “precision” and “safety”. Here is the
definition of these terms. According to MP , an analysis fact l ∈ LP models
several concrete states. The fewer states l models, the more precise and
less safe l is. An analysis fact l for a label lb is safe iff l models at least all
concrete states that can reach lb . The goal of the analysis is to compute
analysis facts that are safe, and as precise as possible.

• In general, the property lattice depends on the analyzed program; e.g., for
the liveness analysis, we are interested only in the variables that appear
in the analyzed program. In many cases, the program-specific lattice is
a sub-lattice of a bigger, program-independent lattice; e.g., for the live-
ness analysis, the powerset of all (infinitely-many) variables. Still, as such
program-independent lattices may have infinite depth, real analyses work
with program-dependent property lattices (otherwise, the computation of
the fixed points become problematic).

• The dataflow equations simply state that for each procedure, we start with
an initial analysis fact for the procedure entry point, and next use the trans-
fer functions to propagate this information along the control flow graph; we
use t in the control flow join points. Strongly connected components in
the control flow graph require fixed-points. The dataflow equations use w,
instead of equality, to allow aggresive fixed-point approximations. 5

We are now ready to define the correctness of an analysis. We first intro-
duce a predicate to identify the reachable program states, the only states the
analysis cares about:

Definition 3.2 [Reachable States] reachableP (c) def↔ cinit ;P
∗ c.

Definition 3.3 [Analysis Correctness] Consider a forward intra-procedural
analysis A that assigns to each program P the tuple 〈LP , [[.]]P , Ainit

P ,MP , AP〉,
as required by Def. 3.1. Analysis A is correct iff

∀P ∈ Program. ∀c ∈ State. reachableP (c) → c MP AP (pc (c))

4 Some analysis designers pick the opposite; this simply corresponds to flipping the lattice
upside down.
5 E.g., widening [8, 9]; one can also imagine least fixed point solvers that jump to > after
a certain number of iterations failed to reach a fixed point.

6

Sălcianu and Arkoudas

In plain English, for each reachable concrete state c, pc (c) represents the
program point reached by the program execution (i.e., the label of the in-
struction about to be executed); the analysis correctness condition requires
that the analysis result for pc (c), i.e., AP (pc (c)), models the concrete state
c, with respect to the intended modeling relation MP .

4 Example: Constant Propagation

Preliminaries: If A is a set, L = Lift〈A〉 is the lattice with the elements >,
⊥, lift (x) for any x ∈ A, and the following ordering relation: ⊥ is smaller
than any element, any element is smaller than >, and distinct elements of L
are otherwise incomparable. Formally,

l1 vL l2
def↔ (l1 =⊥L) ∨ (l2 = >L) ∨ (l1 = l2)

l1 tL ⊥= l1; ⊥ tL l2 = l2; l tL l = l; otherwise, l1 tL l2 = >

If A is a set, and B is a lattice, F = A → B is a lattice with the following
element-wise ordering relation and join operator:

f1 vF f2
def↔ ∀a ∈ A. f1 (a) vB f2 (a) f1 tF f2 = λa. f1 (a) tB f2 (a)

Analysis Property Lattice: M = VarP → Lift〈Z〉

Analysis Modeling Relation:
c MP m

def↔ ∃V ∈ VState. ∃lb ∈ Lab. ∃vr ∈ N. ∃Stail ∈ Stack .
(c = 〈V, lb , vr〉 : Stail) ∧
(∀v ∈ VarP . (m(v) = >) ∨ (m(v) = lift (V (v)))

Initial Analysis Fact for Procedure Entry Points: Ainit
P = λv. >.

Transfer Functions:

instrAtP (lb) [[lb]]P(m)
v := ct m [v 7→ lift (ct)]
v1 := v2 m [v1 7→ m (v2)]
v := v1 bop v2 m [v 7→ >]
v := call p (v0, ..., vk−1) λv′. >
otherwise (if and return) m (unchanged)

Fig. 2. Specification of a simple constant propagation analysis.

Constant Propagation: Figure 2 presents the specification of the constant
propagation analysis. The property lattice for the constant propagation anal-
ysis is M = VarP → Lift〈Z〉, where VarP is the set of all variables from the
program P. For each label lb , the constant propagation analysis computes a
function m that maps each local variable to ⊥, >, or lift (x) , x ∈ Z. The mod-
eling relation (also presented in Fig. 2), requires that for each local variable v

7

Sălcianu and Arkoudas

that has value V (v) = x in the concrete state, m (v) is either > (that approx-
imates all values), or lift (x). Therefore, if m (v) = lift (x) and the analysis is
correct (according to Def. 3.3), we know that in any reachable execution state
at label lb , v has value x. A program optimization can use this guarantee to
safely replace any use of v at label lb with the constant x.

The transfer functions map v to “lift (ct)” for a “v := ct” instruction
and propagate constants across “v1 := v2” copy instructions. The transfer
functions for binary operations and for calls are very conservative; we discuss
more precise transfer functions in Section 7.

5 Analysis Correctness Proof Methodology

This section presents three analysis-specific conditions. As we prove in Theo-
rem 5.2, these conditions are sufficient for correctness.

Condition 1 Upper approximations preserve the modeling relation: 6

∀P ∈ Program. ∀c ∈ State. ∀l1, l2 ∈ LP .
reachableP (c) ∧ (c MP l1) ∧ (l1 v l2) → (c MP l2)

Condition 2 Initial analysis facts are correct:
∀P ∈ Program. ∀c ∈ State. ∀p ∈ N.

reachableP (c) ∧ (pc (c) = 〈p, 0〉) → c MP Ainit
P

The next condition uses the intra-procedural transition relation ³P ; ³P is
similar to the transition relation ;P except that, in the case of a call instruc-
tion, ³P relates the program states before and after the call by “skipping”
over all the instructions from the invoked procedure and its transitive callees.

Condition 3 Commuting diagram (instructions preserve modeling):
∀P ∈ Program. ∀c1, c2 ∈ State. ∀l ∈ LP .

reachableP (c1) ∧ (c1 MP l) ∧ (c1 ³P c2) → c2 MP [[pc (c1)]]P(l)

Definition 5.1 c1 ³P c2 iff one of the following conditions is true:

(i) The instruction about to be executed in c1 is not a call or a return
instruction, and c1 ;P c2; OR

(ii) The instruction about to be executed in c1 is a call, and c2 is the concrete
state immediately after the return from that call, i.e.,

∃ca, cb ∈ State. (c1 ;P ca) ∧ (ca (;|ca|
P)

∗
cb) ∧ (cb ;P c2) ∧ (|c1| = |c2|)

where c ;k
P c′ def↔ (c ;P c′) ∧ (|c| ≥ k) ∧ (|c′| ≥ k)

|c| denotes the height of the stack in state c

In plain English, ca is the state immediately after call, cb is the state immedi-
ately before the return from the invoked procedure, and none of the transitions

6 This corresponds to our choice that in the property lattice smaller should mean “more
precise” and bigger should mean “safer” (the opposite choice is also possible). Here is a
definition of these terms: according to MP , an analysis fact l ∈ LP models several concrete
states. The fewer states l models, the more precise and less safe l is.

8

Sălcianu and Arkoudas

between ca and cb return from the invoked procedure, i.e., all transitions from
ca to cb keep the stack at least as high as the stack from ca.

Note: Condition 3 can be further split into simpler parts, by specializing it
for each kind of instructions.

The next theorem is our only paper-and-pencil proof and shows that con-
ditions 1, 2, and 3 are sufficient for the correctness of our analysis:

Theorem 5.2 If an analysis A satisfies conditions 1, 2, and 3, then A is
correct.

Proof. Let’s pick an arbitrary program P, and an arbitrary state c ∈ State,
such that reachableP (c). We shall prove that c MP AP (pc (c)).

Let pc (c) = 〈p, a〉, i.e., c is about to execute the a-th instruction from
the p-th procedure. As c is reachable, there exists an execution cinit = c0 ;P

c1 ;P . . . ;P ck = c. Let s be the largest i, 1 ≤ i ≤ k, such that |ci| = |ck|,
and |ci−1| = |ck| − 1, or 0 if no such i exists. In both cases, cs is the concrete
state right at the beginning of procedure p’s invocation that c is still executing.

The chain of transitions cs ;P cs+1 ;P . . . ;P ck contains: 1) transitions
for the instructions from procedure p, and 2) transitions for the instructions
from procedures invoked by p. We “skip” over the latter transitions by using
the intra-procedural transition relation: cs = cs0 ³P cs1 ³P . . . ³P cst = ck.
Each transition csi

³P csi+1
corresponds to either 1) a non-call instruction

from procedure p or 2) a call from p to a procedure p ′, the instructions from
p ′ and its transitive callees, and the return back into p.

We prove by induction that ∀i. 0 ≤ i ≤ t → csi
MP AP (pc (csi

)), and
next instantiate i with t to prove the final result.

Base case: i = 0. As cs0 = cs is the state at the beginning of p, AP (pc (cs0)) w
Ainit

P (see dataflow equations in Definition 3.1). By Cond. 2, cs0 MP Ainit
P . By

Cond. 1, cs0 MP AP (pc (cs0)).

Induction step: Suppose csi
MP AP (pc (csi

)), and let l2 = [[pc (csi
)]]P(AP (pc (csi

))).
By Cond. 3, csi+1

MP l2. As pc (csi
) ∈ predP

(
pc

(
csi+1

))
, by the dataflow equa-

tions from Def. 3.1, AP

(
pc

(
csi+1

)) w l2. By Cond. 1, csi+1
MP AP

(
pc

(
csi+1

))
.

This completes our proof. 2

Additional proofs: This paper is focused on partial correctness. So far, we
did not discuss the proofs that LP is really a lattice, nor the proof of termina-
tion. Usually, LP is obtained by standard lattice constructors — the product
of two lattices, the powerset of a set, etc. — and all such constructors are
guaranteed to produce a lattice. For termination, we have to prove that LP

does not have any infinite ascending chain (usually proven by a finiteness ar-
gument), and that all transfer functions are monotonic.

Backward analyses: Our methodology can easily be adapted to handle
backward analyses too: Cond. 2 will refer to the procedure exit points, and
Cond. 3 will propagate the modeling relation “backward:”

9

Sălcianu and Arkoudas

∀P ∈ Program. ∀c1, c2 ∈ State. ∀l ∈ LP .
reachableP (c1) ∧ (c2 MP l) ∧ (c1 ³P c2) → c1 MP [[pc (c1)]]P(l)

6 Brief Description of Athena

Athena [4,3] is a new interactive theorem proving system for multi-sorted first-
order logic that has facilities for structured proof representation and proof
checking, automated theorem proving, and model generation. Athena also
provides a Scheme-like higher-order functional programming language, and a
proof abstraction mechanism for expressing arbitrarily complicated inference
methods in a way that guarantees soundness, akin to the tactics and tacticals
of LCF-style systems such as HOL [12] and Isabelle [20]. Proof automation
is achieved in two ways: first, through user-formulated proof methods; and
second, through the seamless integration of state-of-the-art ATPs such as Vam-
pire [25] and Spass [26] as primitive black boxes for general reasoning. For
proof representation and checking, Athena uses a block-structured Fitch-style
natural deduction calculus with novel syntactic constructs and a formal se-
mantics based on the abstraction of assumption bases [2]. Fitch-style natural
deduction [21] is a way of structuring proofs so that they mirror the proofs pre-
sented by mathematicians in practice; special emphasis is placed on modeling
hypothetical reasoning and keeping track of the scope of assumptions.

The assumption base contains the propositions that are known to be valid
at a specific point in the proof. Each (sub)proof adds the proven proposition
to the assumption base. To prove propositions of the form P1 → P2, Athena
provides special constructs that add P1 to the assumption base during the
dynamic scope of P2’s proof. A proof consists of either the application of
primitive inference rules (i.e., modus ponens), or the invocation of an external
ATP. If the external ATP does not succeed in a certain time bound, we do a
few steps of the proof, and next try the ATP again on a simpler proposition.
Common proofs can be abstracted into user-defined methods.

Among other applications, Athena has been used to implement parts of
a proof-emitting optimizing compiler [17] and to verify the core operations
of a Unix-like file system [5]. [4] contains a list of applications, along with a
tutorial on Athena’s syntax and semantics.

7 Experience

We used Athena to formalize and prove the correctness of three related dataflow
analyses. For each analysis, we proved the three conditions from Section 5 and
the monotonicity of the transfer functions.

The first analysis is the simple constant propagation analysis from Sec-
tion 4. The second analysis extends constant propagation with constant fold-
ing: The transfer function for a “v := v1 bop v2” statement computes the
result of the binary operation if the analysis already knows that both operands

10

Sălcianu and Arkoudas

are constants. The third analysis improves over the second one by using a more
precise transfer function for call statements of the form “v := call p (...)”
that maps only v to > (instead of all local variables). The correctness proof
of the third analysis requires the proof of a frame condition, stating that the
execution of the transitively invoked procedures do not change the caller’s
local variables, except for the variable that stores the result of the call.

The table below presents an overview of the formalization and proof ef-
fort (including the proofs of all intermediate results, e.g., the frame condition).
During the proofs for the simple constant propagation, the language formaliza-
tion went though several debugging and simplification iterations. Therefore,
it is impossible to separate the time spent on the first two entries of the table
below.

Formalization Proofs Total Human
[# non-commented, non-empty lines] Effort

Language + semantics 457 164 621 15 days
Simple ct. propagation 174 262 436 (together)
+ constant folding +50 +71 +121 3 hours
+ more precise transfer
function for call

+4 +685 +689 5 days

The rest of this section gives a brief overview of our work in Athena. All
proofs are available online from

http://www.mit.edu/~salcianu/df-proofs

Our correctness conditions are universally quantified over all programs. To
prove them, we pick one unknown program P, formalize the structure of P,
its semantics, and the analysis for P, and prove (in Athena) the correctness
conditions instantiated for P; next, we generalize over P.

We introduce Athena sorts (similar to types in a programming language)
for the sets from the program representation and semantics. We also intro-
duce function symbols; each relation/predicate is modeled as a function with
boolean values. For each function, we declare its signature and a few axioms.
The signatures allows Athena to do Hindley-Milner-like sort-inference.

Language formalization: We formalize the program structure and seman-
tics only once for all the analyses. We declare the sort VarP for P’s variables
(i.e., the set VarP), the sort ProcNameP for P’s procedure names, and the sort
Instr for instructions. 7 The analyzed program is declared as an (uninter-
preted) function from procedure names to procedures:

7 There are several Athena keywords for introducing sorts. The simplest is domain;
datatype/structure introduce a sort too, but they also introduce function symbols for
the datatype constructors; a structural induction mechanism; axioms stating that each el-
ement of the sort is obtained by using a constructor; and, in the case of datatype, axioms
stating that the domain is freely generated. For non-datatype domains, the user can specify
a different equality relation.

11

Sălcianu and Arkoudas

(domain VarP) # Sort: variables from P.

(domain ProcNameP) # Sort: procedure names in P.

(declare main ProcNameP) # Name of the main procedure (element of the sort ProcNameP)

(datatype Instr # Sort: instructions from P.

(ldc VarP Num) # Constructors correspond to different

(copy VarP VarP) # kinds of instructions.

...)

(datatype Proc # Sort: procedures; one procedure = list of parameters +

(proc (List-Of VarP) (List-Of Instr))) # list of instructions.

(declare P (-> (ProcNameP) Proc)) # The analyzed program.

The formalization of the operational semantics introduces additional sorts,
axioms for the transition relation step (i.e., ;P), and many auxiliary axioms.
The Athena code closely matches the definitions from Section 2 (except that
Athena uses prefix notation):

(datatype StackFrame (stackFrame VState Label VarP)) # VState, Label definitions ommited.

(datatype State (state (List-Of StackFrame)))

...

(declare step (-> (State State) Boolean)) # Operational semantics transition relation.

(define step-axiom-ldc # Axiom: transitions for "v := ct" statements.

Identifiers starting with "?" denote variables in the object logic.

(forall ?vstate ?label ?vr ?tail ?cs2 ?v ?n

(let ((cs1 (state (Cons (stackFrame ?vstate ?label ?vr) ?tail))))

(if (currentInstr cs1 (ldc ?v ?n))

(iff (step cs1 ?cs2)

(= ?cs2 (state (Cons (stackFrame (updateVS ?vstate ?v ?n)

(next ?label)

?vr)

?tail))))))))

(assert step-axiom-ldc) # Add this axiom to the assumption base.

Analysis formalization: We introduce a polymorphic sort for lattices of
the form Lift〈S〉 (that can be instantiated for any set S), and a sort for the
analysis lattice VarP → Lift〈Z〉; for each sort, we define the corresponding
ordering relations:

Sort: polymorphic datatype for lifted domains

(datatype (Lift S)

bottomLift (lift S) topLift)

Definition of orderLift ommited for brevity.

Sort for the analysis lattice. To encode VarP → Lift〈Z〉 in the first-order logic

of Athena, we use a representation similar to a list of association pairs.

(structure M

allTop # allTop encodes λv. >
(updateM M VarP (Lift Num))) # (updateM m v x) encodes m [v 7→ x]

The axioms for updateM (ommited for brevity) state that (lookUpM ?x ?m) returns the

first association for ?x in the mapping ?m, or topLift if no such association exists.

Order relation for the analysis lattice.

(declare orderM (-> (M M) Boolean))

(define orderM-axiom

(forall ?m1 ?m2

(iff (orderM ?m1 ?m2)

(forall ?x (orderLift (lookUpM ?x ?m1)

(lookUpM ?x ?m2))))))

The definitions for the modeling relation and the transfer functions closely
correspond to the definitions from Section 4. The predicate (model c m)

holds iff c MP m; similarly, (tf lb m1 m2) holds iff [[lb]]P(m1) = m2.

Proofs: We prove the first two correctness conditions automatically, using
Athena’s interface to Vampire [25]. Cond. 2 is the easiest: Vampire proves

12

Sălcianu and Arkoudas

that Cond. 2 follows from the set of all axioms; for Cond. 1, we had to pass
only a subset of the axioms (Vampire takes too much time if we give it the
full set of axioms). Condition 3 requires significantly more effort. The Athena
definition of Cond. 3 closely follows the definition from Section 5:

(define commuting-diagram # Condition 3.

(forall ?cs1 ?cs2 ?m1 ?m2 ?lab

(if (and wfProg # Analyzed progran is well-formed; e.g., no invalid jumps.

(reachableState ?cs1) # reachableP (?cs1)
(model ?cs1 ?m1) # ?cs1 MP ?m1

(ipStep ?cs1 ?cs2) # ?cs1 ³P ?cs2

(pc ?cs1 ?lab) # pc (?cs1) = ?lab

(tf ?lab ?m1 ?m2)) # [[?lab]]P (?m1) = ?m2

(model ?cs2 ?m2)))) # ?cs2 MP ?m2

To prove commuting-diagram, we perform a case analysis on the instruction
from ?lab, and prove each case as a separate theorem. The modeling rela-
tion requires a certain condition to hold for each local variable v (see Fig. 2);
accordingly, most of the proofs do a case analysis on whether v is the vari-
able being modified by the instruction or not. The proofs are a combination
of manual and automatic sub-proofs. The entire proof scripts are available
online.

8 Related Work

Compiler correctness has always been an active research area. [13] presents a
paper-and-pencil correctness proof for an entire Scheme compiler; small parts
of the proof were later formalized in Isabelle [7]. The compiler examined
by [13] consists mostly of syntax-directed conversion steps. By comparison,
we focus on machine-checkable correctness proofs for dataflow analyses.

The Verifix project [11] uses program checkers to dynamically check the
correct compilation of a given program. Formal methods can later be used
to prove the correctness of the program checkers. The Credible Compila-
tion framework [22, 17] allows a compiler optimization to output, in addition
to the optimized program, a proof that the optimized program is semanti-
cally equivalent to the original one. The proof can be checked by a small
trusted proof checker; if the proof does not check, the compiler can simply ig-
nore the problematic optimization. The Translation Validation Infrastructure
(TVI) [18] attempts to accomplish the same goals as Credible Compilation,
but without any assistance from the compiler. TVI attempts to discover an
equivalence proof (instead of just checking a proof produced by the compiler).
When applied to optimization stages of the GNU C Compiler compiling real
applications, TVI generates many simulation invariants and the custom-built
theorem prover manages to prove almost, but not all of them. 8 A parallel,
similar project, Translation Validation, succeeded in handling several aggres-
sive optimizations that do not preserve the loop structure of the program [28].

8 E.g., as explained in [18, Section 6], for the case of gcc compiling itself, 3.5% of the
constraints generated for the common-subexpression-elimination (CSE) optimization are
not simplified, i.e., automatically proven by the theorem prover.

13

Sălcianu and Arkoudas

The correct assumption behind the aforementioned four projects is that
it is much easier to check the correctness of an optimization on a particular
program than for all programs. Also, these approaches can detect errors in the
implementation of conceptually correct analyses. Still, we believe that proving
the correctness of an analysis for all possible programs is very important for
the high-level design of the analysis, and can be a useful complement for
translation validation approaches.

Cobalt [15] is a framework for defining syntax-directed analyses and opti-
mizations. Cobalt requires the analysis designer to specify an analysis invari-
ant, and next uses the theorem prover Simplify [10] to prove the correctness
of the optimizations. However, Cobalt does not deal with classical dataflow
analyses: It does not allow the definition of analysis property lattices, transfer
functions, etc. Instead, Cobalt supports analyses expressed as reachability
conditions on the control flow graph. 9

Very close to our research is the work from [14] and [6]. [14] presents
a correctness proof in Isabelle [20] for the Java Bytecode Verifier (that in-
cludes a dataflow analysis for computing the stack typing at various program
points); [6] presents a constructive proof in Coq [24] for a dataflow analy-
sis for JavaCard Bytecode. Both of these papers present work of excellent
quality, and the complete resulting proofs are available online. 10 They dif-
fer from our work in several respects. First, we place a heavier emphasis
on proof readability. We aim at allowing analysis designers to write read-
able proofs, structurally similar to the ones they would write on paper, but
with the advantage of machine-checkability; we invite the interested readers to
contrast our proofs (in terms of readability) with the proofs from [14] and [6].
Second, Athena allows significant automation that reduces the overall proof
effort. This is done by using Fitch-style tactics capable of incorporating ar-
bitrary computation into the proof-search process; and through the seamless
integration of state-of-the-art automated theorem provers. To the best of our
knowledge, the official versions of Coq and Isabelle are not interfaced with
external ATPs yet. Third, we are more focused on the presentation of a clear
framework for proving the correctness of a broad class of dataflow analyses,
instead of getting very focused on one specific analysis.

9 Conclusion

This paper presents our experience with dataflow analysis proofs in the in-
teractive theorem prover Athena. Our experience indicates that such proofs

9 A forthcoming publication [16] describes Rhodium, a successor of Cobalt that allows the
definition of dataflow analyses that use a restricted lattice (a powerset of all user-defined
analysis facts). Our work aims at proving correctness of dataflow analyses that use a wider
range of lattices.
10 From http://www.doclsf.de/papers/tcs02.html for [14], respectively from
http://www.irisa.fr/lande/pichardie/CarmelCoq/Esop04 for [6].

14

Sălcianu and Arkoudas

are possible, and that modern automated theorem provers increase the level
of automation. Still, the state-of-the-art in theorem proving is very far from
full automation, and significant human effort is required.

Acknowledgments

We are grateful to Darko Marinov for many useful discussions on analysis cor-
rectness, credible compilation, and theorem proving. This research was sup-
ported by the DARPA Cooperative Agreement FA 8750-04-2-0254, DARPA
Contract 33615-00-C-1692, the Singapore-MIT Alliance, and the NSF Grants
CCR-0341620, CCR-0325283, and CCR-0086154.

References

[1] M. Alt and F. Martin. Generation of efficient interprocedural analyzers with
PAG. In Proc. 2nd International Static Analysis Symposium, pages 33–50, 1995.

[2] K. Arkoudas. Denotational Proof Languages. PhD thesis, Massachusetts
Institute of Technology, 2000.

[3] K. Arkoudas. Specification, abduction, and proof. In Second International
Symposium on Automated Technology for Verification and Analysis, Taiwan,
October 2004.

[4] K. Arkoudas and others. Athena. http://www.pac.lcs.mit.edu/athena.

[5] K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying a file system
implementation. In Sixth International Conference on Formal Engineering
Methods (ICFEM’04), volume 3308 of LNCS, Seattle, Nov 8-12, 2004 2004.

[6] D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a data flow
analyzer in constructive logic. In Proc. 13th ESOP, 2004.

[7] B. Ciesielki and M. Wand. Using the theorem prover Isabelle-91 to verify
a simple proof of compiler correctness. Technical Report NU-CCS-91-20,
Northeastern University College of Computer Science, December 1991.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. 4th POPL, 1977.

[9] P. Cousot and R. Cousot. Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation. In Lecture Notes
in Computer Science, pages 269–295, 1992.

[10] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Laboratories Palo Alto, 2003.

[11] G. Goos and W. Zimmermann. Verification of compilers. In Correct System
Design, 1999. LNCS 1710.

[12] M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving
environment for higher-order logic. Cambridge University Press, Cambridge,
England, 1993.

15

Sălcianu and Arkoudas

[13] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a verified implementation of
Scheme. Lisp and Symbolic Computing, 8(1–2):33–110, Mar. 1995.

[14] G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer
Science, 298(3), April 2003.

[15] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the
correctness of compiler optimizations. In Proc. ACM PLDI, pages 220–231.
ACM Press, 2003.

[16] S. Lerner, T. Milstein, E. Rice, and C. Chambers. Automated soundness proofs
for dataflow analyses and transformations via local rules. In Proc. 32nd ACM
POPL, 2005. To appear.

[17] D. Marinov. Credible compilation. Master’s thesis, MIT Laboratory for
Computer Science, 2000.

[18] G. C. Necula. Translation validation for an optimizing compiler. In Proc. ACM
PLDI, pages 83–95, Vancouver, British Columbia, Canada, June 2000.

[19] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[20] L. C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LNCS.
Springer-Verlag, 1994.

[21] F. J. Pelletier. A Brief History of Natural Deduction. History and Philosophy
of Logic, 20:1–31, 1999.

[22] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings
of the Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

[23] A. Salcianu. Pointer analysis and its applications to Java programs. Master’s
thesis, MIT Laboratory for Computer Science, 2001.

[24] The Coq Development Team; INRIA LogiCal Project. The Coq proof assistant
- official website. http://coq.inria.fr.

[25] A. Voronkov et al. The anatomy of Vampire (implementing bottom-up
procedures with code trees). Journal of Automated Reasoning, 15(2):237–265,
1995.

[26] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume II,
chapter 27, pages 1965–2013. Elsevier Science, 2001.

[27] K. Yi and W. L. Harrison III. Automatic generation and management of
interprocedural program analyses. In 20th ACM POPL, 1993.

[28] L. Zuck, A. Pnueli, Y. Fang, B. Goldberg, and Y. Hu. Translation and run-time
validation of optimized code. In Workshop on Run-Time Verification, 2002.

16

Sălcianu and Arkoudas

A Transition Relation for Concrete Semantics

This section presents the remaining cases from the definition of the operational
semantics transition relation ;P :

〈V, lb , vr〉 : Stail ;P 〈V [v1 7→ V (v2)] ,next (lb) , vr〉 : Stail

where instrAtP (lb) = “v1 := v2”
[copy]

〈V, lb , vr〉 : Stail ;P 〈V [v 7→ x] ,next (lb) , vr〉 : Stail

where instrAtP (lb) = “v := v1 bop v2”
⊗ (bop ,V (v1),V (v2), x)

[binop]

⊗ (bop , x1, x2, x) holds iff x is the result of binary operation bop on x1 and x2

〈V, lb , vr〉 : Stail ;P 〈V, lb2, vr〉 : Stail

where instrAtP (lb) = “if(v == 0) goto at”

lb = 〈p, a〉, lb2 =
{ 〈p, at〉 if V (v) = 0

next (lb) if V (v) 6= 0

[jz]

〈V, lb , vr〉 : Stail ;P 〈Vcallee, 〈p, 0〉, v〉 : 〈V,next (lb) , vr〉 : Stail

where instrAtP (lb) = “v := call p (v0,...,vk−1)”
The pth procedure of P has parameters v ′0, v ′1, . . . , v ′k−1

Vcallee = (λv.0)
[
v ′0 7→ V (v0), v

′
1 7→ V (v1), . . . , v

′
k−1 7→ V (vk−1)

]
[call]

〈V, lb , vr〉 : 〈V2, lb2, vr2〉 : Stail ;P 〈V2 [vr 7→ V (v)] , lb2, vr2〉 : Stail

where instrAtP (lb) = “return v” [ret]

17

