
Notes on Abstract Interpretation∗

Alexandru Sălcianu
salcianu@mit.edu

November 2001

1 Introduction

This paper summarizes our view of the abstract interpretation field. It is based on the
original abstract interpretation papers of Cousot and Cousot [1, 2], and on the more recent
presentation of Nielsen et al [3, Chapter 4]. This paper does not try to give an exhaustive
view of this field — such an overview would clearly require a lot of space. Instead, we tried
to see what abstract interpretation is and to identify those things that might be useful to
know when designing a novel program analysis. Funny math subtleties are not covered.

Briefly, abstract interpretation is a technique for approximating a basic analysis (at the
limit, the concrete execution of the program), with a refined analysis that sacrifices precision
for speed. Abstract interpretation expresses the connection between the two analyses using a
Galois connection between the associated property lattices (all these terms are well explained
in the paper). Ideally, given a basic analysis and a Galois connection, one could “compute”
the refined analysis; however, in most of the cases this is too hard to be practical: usually,
one starts with both analyses and the Galois connection, and verifies that they satisfy the
conditions from the abstract interpretation theory. One interesting observation of this paper
is that the connection between the basic and the refined analysis does not have to be a Galois
connection. In many practical cases, all we need to reason about the analysis correctness is
an concretization function (see Section 4.5).

If you feel interested, please read on! The rest of this paper is structured as follows:
Section 2 presents the main ideas of abstract interpretation. Section 3 studies the case of a
simple analysis and introduces the notion of “correctness relation”. In Section 4, we show
how a costly analysis over a big property lattice can be approximated by an analysis over
a smaller property lattice, and the connection that has to exist between the two latices in
order for the new analysis to be correct.

∗This paper should be cited as “Alexandru Sălcianu. Notes on Abstract Interpretation. Unpublished
manuscript. Available from http://www.mit.edu/~salcianu.”

1

2 Abstract Interpretation - Main Ideas

The Monotone [Dataflow] Framework [3, Chapter 2] allows the program analysis designer to
specify an analysis in a precise, mathematical format. In this framework, one has to specify
the property lattice, the meaning of the elements of this lattice (i.e., how the analysis results
are interpreted), and the transfer functions associated with the basic instructions. Almost
all currently used static analyses can be expressed in the Monotone Framework. The main
drawback of this framework is that the correctness proof for each analysis has to be done in
an ad-hoc way, usually based on some simulation invariants.1

Abstract Interpretation goes one step beyond the Monotone Framework by allowing the
designer not only to specify an analysis, but also to specify it in a way that will make the
correctness proof mechanical.2 Moreover, it makes it possible to systematically construct
(Cousot’s term is “compute”) an analysis: once a property lattice and a representation
function3 are chosen, the transfer functions can be defined in a systematic way: we just have
to select some computable functions that satisfy some property that we’ll see later (they
have to be “bigger” — i.e., more conservative — than a certain function). Therefore, the
Abstract Interpretation emphasizes the importance of the abstraction function.

Funny note: Very often, the abstraction function can be computed by mechanically combining
some building blocks, which should allow the fast construction of new analyses. In [2, Section 10],
Cousot and Cousot claim that:

“The ideal method in order to construct a program analyzer [...] would consist in
a separate design and implementation of various program analysis frameworks which
could be then systematically combined using a once for all implemented assembler.”

Disturbing, isn’t it? When everything is so “systematic”, one could ask if there is any reason to
do research in the program analysis field. However, our work is not in vain, because [2, Section 10]
continues as follows:

“[...] we show that such an automatic combination of independently designed parts
would not lead to an optimal analyzer and that unfortunately the efficient combination
of program analyses often necessitates the revision of the original design phase.”

Still, even if systematic combination of building blocks is not always the key for an efficient analysis,
it is supposed to give some precious insight into the analysis.

Abstract Interpretation advocates the incremental definition of an analysis. The typical
design is as follows: We start with a very simple analysis, whose correctness is easy to
prove (correctness of such an analysis is formalized in Section 3). Usually, this “analysis”
is a “collecting semantics” that collects precise information about the program. This first
analysis might be too difficult or even impossible to compute statically, usually because the

1Based on personal experience, we can say that choosing the invariants is usually more difficult than
proving them.

2However, it’s worth noting that “mechanical” is not a synonym for “easy” ;-(
3A function that describes how the elements of the property lattice are to be interpreted.

2

v1 v2

l1 l2

· ; ·

fL

R R

Figure 1: Basic Analysis

property space is too big or does not respect the Ascending Chain Property.4 Therefore, we
compute an approximation of it, in a smaller property space. We can iterate this refinement
technique several times, till we obtain a computable analysis. In [1], the Cousots even
suggested that the different analyses we obtain can be arranged in a lattice with a specific
ordering relation.5

3 Correctness Relations

The execution of a program can be described as a succession of transitions between “concrete”
values/states from the set V :

v0 ; v1 ; · · · ; vi ; · · ·
The concrete execution may be non-deterministic, i.e., the transition relation ; is not nec-
essarily a function (e.g., consider a language that allows multiple threads of execution).

A program analysis is an “abstract execution” of the program, in a property space L, as
indicated in Figure 1. The property space L should be a complete lattice 〈L,v〉, i.e., a set
L with an ordering relation6 v⊆ L×L such that each subset of L, L′ ⊆ L, has a least upper
bound

⊔
L′ and a greatest lower bound

d
L′ in L.7 Instead of values, the analysis works

with properties (an equivalent term is “abstract values”) li ∈ L:

l0 7→ l1 = fL (l0) 7→ · · · 7→ li 7→ li+1 = fL (li) · · ·
where fL : L → L is a function (we look only at deterministic analyses). Intuitively, li
“models” the value vi, in a way that is problem dependent. More formally, we have a
correctness relation (definition below) R such that vi R li.

Definition 1 (Correctness relation). A relation R ⊆ V × L is said to be a correctness
relation iff it satisfies the following two conditions:

1. ∀v, l1, l2, (v R l1) ∧ (l1 v l2) → (v R l2)

4A lattice has the “Ascending Chain Property” iff there are no infinite ascending chains in it.
5Viktor Kuncak found an error in Cousot’s proof (page x in [1]): a domain mismatch in one of the function

composition operations. However, this error does not affect the Abstract Interpretation framework.
6A relation that is reflexive (∀l ∈ L, l v l), transitive (∀l1, l2, l3 ∈ L, ((l1 v l2) ∧ (l2 v l3)) → (l1 v l3)),

and anti-symmetric (∀l1, l2 ∈ L, ((l1 v l2) ∧ (l2 v l1)) → (l1 = l2)).
7There are two special values in a complete lattice L: “bottom”, the smallest element, ⊥L=

⊔
L∅, and

“top”, the biggest element, >L =
d

L∅.

3

2. ∀v, ∀L′ ⊆ L, (∀l ∈ L′, (v R l)) → v R (
d

L′)

Due to the first condition, if l1 approximates v and the analysis is able to compute an
upper approximation l2 of l1, l1 v l2, l2 is also an approximation of v. Therefore, in the
property lattice L, if l1 v l2, then l1 is more precise than l2 (l2 approximates all the values
approximated by l1 and possibly some other ones).

If a value is approximated by more than one abstract value, the second condition allows
us to deterministically select a single abstract value to use in our analysis: we take the
smallest (i.e., most precise) of them all, lp =

d{l | v R l}. lp is a valid approximation
of v. This condition excludes correctness relations where a value v is approximated by
two incomparable abstract values, and allows us to work with a single analysis instead of
considering one analysis for each candidate abstract value.8

Lemma 1. If R ⊆ V × L is a correctness relation, then:

v R >
(v R l1) ∧ (v R l2) → v R (l1 u l2)

Proof: Direct application of the second condition from Definition 1, for L′ = ∅, respectively
L′ = {l1, l2}.

Note: the top element of the property lattice, >, approximates all the values; therefore, it
is the most imprecise abstract value.

Discussion on the nature of the property space: The requirement that the property
space L is a lattice is reasonable: we need to compare abstract values with regard to their
precision; therefore, it is natural to have some ordering relation. Also, we need the meet and
the join operator in order to combine abstract values:

• If a value is described by both l1 and l2, by combining these two properties, we obtain
the more precise information l1 u l2.

• If a value is described by either l1 or l2, the most precise info that we can infer is l1t l2.

Notice that in the property lattice, “smaller” means “more precise”, “bigger” means “safer”,
u is the equivalent of a logical ∧, and t is the equivalent of a logical ∨. However, do not be
surprised if some people work with the opposite convention!

Meet over paths:9 Suppose we have an abstract initial value l0, such that v0 R l0 where
v0 is the initial concrete value (state). Given a program point, we can consider all concrete
execution paths that reach it, “abstractly execute” each of them starting from v0 to compute
an abstract value, and join the resulting abstract values to obtain an element of the property

8This is of course nice (and is also valid for virtually all the analyses we know), but, at least in our opinion,
is not essential for the correctness of an analysis. We discuss more on this issue at the end of Section 4.

9This is the “historical” term; technically speaking, it would be more appropriate to call it “Join over
paths.”

4

α γ γα

M

L

Vv1 v2

· ; ·

m1 m2

fM

l1 l2
fL

R R
SS

Figure 2: Refined Analysis

lattice that approximates all values (states) possible for that program point. It is usually
not possible to compute the “meet over paths”; therefore, we approximate its result by
computing a fixed point of a set of dataflow equations. To be sure that a fixed point exists,
we require that:

1. The analysis transfer function fL is monotone.

2. The lattice L has the “Ascending Chain Property”: there is no infinite ascending chain
in L.

Note that so far, except for the formal notion of correctness relation, there is no difference
from the classic Monotone Dataflow Framework [3, Chapter 2].

Correctness issues: To prove the correctness of the analysis, it is sufficient to prove

1. The initial property (abstract state) l0 is a correct approximation of the initial value
(concrete state) v0: v0 R l0.

2. Each transition preserves the correctness relation, i.e.,

∀v1, v2, l1, l2, (v1 ; v2) ∧ (v1 R l1) ∧ (fL (l1) = l2) → v2 R l2

Once we prove this, an elementary induction on the length of the execution path shows that
the result of “meet-over-paths” for a specific program point describes all the concrete values
that can occur at that program point (and possibly some other values too), with respect to
the correctness relation R.

4 Refining the analysis

Sometimes, the fixed point computation in L is too difficult or even impossible to perform,
e.g., the analysis converges very slow or L does not satisfy the Ascending Chain Property. In
this case, abstract interpretation recommends using a smaller, more approximate property
lattice, M , such that there is a Galois connection 〈L, α, γ,M〉 between L and M . Based on

5

γ

α

m

L M

α(γ(m))γ(m)

L M

α

γ(α(l))

γ

α(l)

l

α ◦ γ v λm.m γ ◦ α w λl.l

Figure 3: Constraints for a Galois connection

the correctness relation R of the basic analysis and the Galois connection between L and
M , we can define a correctness relation S for a new analysis that computes abstract values
from the lattice M . The situation is depicted in Figure 2.

This section continues as follows: first, we introduce the concept of a Galois connection.
Next, we show how to define the correctness relation S and the transfer function fM for
the new, more approximate analysis. After we look into some properties of the Galois
connections, we prove that S is a correctness relation that is preserved by the new analysis.

4.1 Galois Connections

Definition 2 (Galois Connection). 〈L, α, γ, M〉 is a Galois connection between the lattices
〈L,vL〉 and 〈M,vM〉 iff:

1. α : L → M and γ : M → L;

2. α and γ are monotonic;

3. α ◦ γ vM λm.m;

4. γ ◦ α wL λl.l.

Figure 3 presents a graphic depiction of a Galois connection. α maps elements from L to
elements from the more approximate (more abstract) lattice M . Therefore, it is called the
abstraction function. Conversely, γ is called the concretization function.

The monotonicity restriction is common-sense: it says that the abstraction and the con-
cretization operations preserve the ordering (i.e., the precision). The last two restrictions
are the most interesting:

• the first restriction, α ◦ γ vM λm.m, says that the concretization doesn’t lose any
precision (in many cases, this relation is an equality; see Section 6.1);

• the second one, γ ◦ α wL λl.l, says that the abstraction might lose precision, but
remains correct (remember that in L, bigger means more imprecise but still correct).

6

l1

m1

fL

fM
m2 = fM(m1)

w

γ

α

l2

Figure 4: Transfer function for the refined analysis.

4.2 New Analysis: Correctness Relation and Transfer Function

The correctness relation S ⊆ V ×M for the new analysis is defined as follows:

v S m iff v R γ (m)

For the new analysis transfer function, we can choose any function fM : M → M such that:

fM w α ◦ fL ◦ γ

We shall prove later that S is indeed a correctness relation and that it is preserved by the
transfer function fM .

4.3 Auxiliary Results about Galois Connections

Lemma 2. Iterating abstraction and concretization does not improve the precision:

α ◦ γ ◦ α = α

γ ◦ α ◦ γ = γ

Proof: As α is monotonic and γ ◦ α w λl.l (by the definition of a Galois connection),

∀l ∈ L, (α ◦ γ ◦ α) (l) = α ((γ ◦ α) (l)) w α (l)

Also, as α ◦ γ v λm.m, by putting m = α (l), we have that

∀l ∈ L, (α ◦ γ ◦ α) (l) = (α ◦ γ) (α (l)) v α (l)

This proves that α ◦ γ ◦ α = α. The other relation is similar.

Here is an alternative formulation of a Galois connection:

Definition 3 (Adjunction). 〈L, α, γ, M〉 is an adjunction between complete lattices 〈L,vL〉
and 〈M,vM〉 iff α : L → M and γ : M → L are total functions such that

α (l) vM m ⇔ l vL γ (m)

The two formulations are equivalent, as the following lemma states:

7

Lemma 3. 〈L, α, γ, M〉 is an adjunction iff 〈L, α, γ, M〉 is a Galois connection.

Proof: Suppose 〈L, α, γ, M〉 is a Galois connection. Suppose α(l) v m; as γ is monotonic,
γ(α(l)) v γ(m). But γ(α(l)) w l by the definition of a Galois connection. Hence, α(l) v
m ⇒ l v γ(m). The other implication is similar, and we prove that 〈L, α, γ,M〉 is an
adjunction.

Now, suppose 〈L, α, γ, M〉 is an adjunction. First, γ(α(l)) w l ⇔ α(l) w α(l), which
is trivially true. So, γ ◦ α w λl.l. Similarly, α ◦ γ v λm.m. The only remaining thing is
the monotonicity of α and γ. Consider l1 v l2. We already know that l2 v γ(α(l2)). So,
l1 v γ(α(l2)), which implies α(l1) v α(l2), i.e., α is monotonic. The proof of γ’s monotonicity
is similar.

Lemma 4. If 〈L, α, γ,M〉 is a Galois connection then α uniquely determines γ by

γ (m) =
⊔{l | α (l) v m}

and γ uniquely determines α by

α (l) =
d{m | l v γ (m)}

Proof: γ (m) =
⊔{l | l v γ (m)} =

⊔{l | α (l) v m} (we’ve used the fact that any Galois
connection is also an adjunction). If 〈L, α, γ1,M〉 and 〈L, α, γ2,M〉 are Galois connections,
it is trivial to show that ∀m ∈ M, γ1 (m) = γ2 (m) which proves that α uniquely determines
γ. The other half of the lemma is similar.

Lemma 5. If 〈L, α, γ,M〉 is a Galois connection then α is completely additive and γ is
completely multiplicative, i.e.,

∀L′ ⊆ L, α (
⊔

L′) =
⊔{α (l) | l ∈ L′}

∀M ′ ⊆ M, γ (
d

M ′) =
d{γ (m) | m ∈ M ′}

In particular, α (⊥L) =⊥M and γ (>M) = >L.

Proof: Consider L′ ⊆ L and an arbitrary m ∈ M . By using the fact that any Galois
connection is also an adjunction, we have that:

α (
⊔

L′) v m ⇔ ⊔
L′ v γ (m)

⇔ ∀l ∈ L′, l v γ (m)

⇔ ∀l ∈ L′, α (l) v m

⇔ ⊔{α (l) | l ∈ L′} v m

By indirect equality10, α (
⊔

L′) =
⊔{α (l) | l ∈ L′}, and α is completely additive. In

particular, α (⊥L) = α (
⊔

L∅) =
⊔

M∅ =⊥M . The other half of the lemma is similar.

Lemma 6. If α : L → M , is completely additive then there exists γ : M → L such that
〈L, α, γ, M〉 is a Galois connection. Similarly, if γ : M → L is completely multiplicative,
then there exists α : L → M such that 〈L, α, γ,M〉 is a Galois connection.

Proof Sketch: Given α or γ, consider γ (respectively α) defined as in the text of Lemma 4
and prove that they constitute a Galois adjunction. By Lemma 3, 〈L, α, γ, M〉 is a Galois
connection. Full proof in [3, pp. 237]

10In a lattice 〈L,v〉, (∀l, (l1 v l) ↔ (l2 v l)) → (l1 = l2); to see why, just consider l = l1, l = l2, and
apply v’s anti-symmetry.

8

Note: Lemma 6 proves that for specifying the new, refined analysis, we need to specify
just a new property lattice M and a multiplicative concretization function γ : M → L that
specifies the meaning of M ’s elements. α can then be directly inferred.

4.4 Correctness of the New Analysis

First of all, we need to prove that S is indeed a correctness relation:

Lemma 7. S is a correctness relation.

Proof: First, consider v ∈ V and m1,m2 ∈ M such that v S m1 and m1 vM m2. Then
v R γ (m1), and, as γ (m1) vL γ (m2) (γ is monotonic) and R is a correctness relation, we
have that v R γ (m2) and hence, v S m2.

Next, consider v ∈ V and M ′ ⊆ M such that, ∀m ∈ M ′, v S m. By the definition of S,
∀m ∈ M ′, v R γ (m), and, as R is a correctness relation:

v R (
d{γ (m) | m ∈ M ′})

As γ is fully multiplicative,
d{γ (m) | m ∈ M ′} = γ (

d{m | m ∈ M ′})
and we have proved that v S (

d{m | m ∈ M ′}), which finishes our proof.

Next, we show that the correctness relation S is preserved under computation. Consider
first the following auxiliary result:

Lemma 8. γ (fM (m1)) w fL (γ (m1))

Proof: By the definition of fM ,

fM (m1) w (α ◦ fL ◦ γ) (m1) = α (fL (γ (m1)))

As γ is monotonic and γ ◦ α w λl.l, we have that

γ (fM (m1)) w (γ ◦ α) (fL (γ (m1))) w fL (γ (m1))

Note: Basically, the previous lemma tells that the analysis in M is a conservative11 ap-
proximation of the analysis in L.

Lemma 9 (S is preserved under the computation).

∀v1, v2, m1, m2, (v1 ; v2) ∧ (v1 S m1) ∧ (fM (m1) = m2) → v2 S m2

Proof: By Lemma 8,
γ (m2) w fL (γ (m1))

AsR is preserved under computation, v1 ; v2 and v1 R γ (m1), we obtain that v2 R fL (γ (m1)).
But fL (γ (m1)) v γ (m2), and R is a correctness relation. Therefore, v2 R γ (m2) and hence,
v2 S m2, which completes our proof.

11Remember that in the property lattice L “bigger”, means more imprecise but safe.

9

4.5 Discussion

Patrick and Radhia Cousot [1, 2] claim that the relation between L and M , i.e., the relation
between the basic and the refined analysis, has to be a Galois connection. We (respectfully)
dare to disagree!

It is interesting to consider each requirement from the definition of a Galois connection
and identify the parts of the formalism where that requirement is used. As we explained
before, it is reasonable to demand the property spaces, L and M , to be complete lattices.
The existence of a Galois connection between L and M is used to construct fM (the transfer
function in M) and to prove that S (the new correctness relation) respects the second
condition from the definition of a correctness relation (Definition 1). More precisely, the proof
of that condition uses the fact that γ is fully multiplicative, which is a direct consequence of
the fact that 〈L, α, γ,M〉 is a Galois connection (⇔ adjunction).

But Condition 2 of Definition 1 was imposed only to simplify the design (we always use
the most precise abstract value from the possibly many candidates); we can imagine correct
analyses that do not respect that condition. Consider the case when we relax Definition 1
by removing Condition 2. In this case, if we have an abstraction function γ : M → L and
a transfer function fM : M → M such that γ (fM (m1)) w fL (γ (m1)), the correctness of
the analysis in M (according to the new definition of the correctness relation) is trivial to
prove (note that the proof of the fact that S is preserved under the computation requires
just the aforementioned inequality). In an alternative formulation, we can require α and γ
that respects conditions 1, 2 and 4 (but not 3) from the Definition 2 for a Galois connection,
and choose fM w α ◦ fL ◦ γ as before. Note that we have a weaker connection between L
and M : we don’t require α ◦ γ v λm.m.

We believe that the existence of a Galois connection is more of a “methodological” re-
quirement that makes some parts of the formalism nicer and possibly allows some advanced
extensions of the framework. We don’t think it is essential for the intrinsic correctness of an
analysis that is an approximation of another analysis.

5 Fixed Point Computation Issues

To compute the result of an analysis, we usually have to compute a fixed point of a monotonic
transfer function f : L → L, where L is a complete lattice.

This is usually done by computing the limit of an Ascending/Descending Kleene Sequence
(denoted AKS, respectively DKS), (fn (τ))n, where the start value τ is the bottom element
of L, ⊥, for AKS, respectively the top element, >, for DKS. If AKS stabilizes, it will
stabilize to the least fixed point of f , lfp (f). This is not true in general but it is true if f is
continuous12, which is almost always the case.13 Similarly, if DKS stabilizes, it stabilizes to
an upper approximation of the greatest fixed point of f , gfp (f). For the rest of this section,
we focus on AKS (DKS is simply its dual).

12∀L′ ⊆ L, f (
⊔

L′) =
⊔{f (l) | l ∈ L′}.

13We usually work with finite property lattices, and on a finite lattice, continuity is equivalent to mono-
tonicity.

10

However, sometimes the fixed point computation might be difficult to perform directly,
e.g., because the AKS doesn’t stabilize or stabilizes very slowly. For these cases, the
Cousots [1] advocated the use of a technique called “widening” which computes an up-
per approximation of the AKS — an Ascending Approximation Sequence (AAS) — which
converges faster than AKS. This technique will produce an upper approximation of lfp (f).
By applying a companion technique called “narrowing”, we can compute a Truncated De-
scending Sequence (TDS) that goes down in the lattice toward lfp (f), and stabilizes to a
better (but still correct) approximation of it. Both techniques are based on binary operators
∇, ∆ : L → L. The rest of this section is structured as follows: we first introduce a few basic
notions about fixed points in Section 5.1. We describe the widening technique in Section 5.2
and the narrowing technique in Section 5.3.

5.1 Basic Fixed Points Notions

Consider a monotone function f : L → L on a complete lattice L = 〈L,v,t,u,⊥,>〉. We
introduce the following definitions:

• l ∈ L is a fixed point for f iff f (l) = l;

• f is reductive at l ∈ L iff f (l) v l;

• f is extensive at l ∈ L iff f (l) w l.

Accordingly, we introduce the following sets:

Fix (f) = {l | f (l) = l} set of fixed points
Red (f) = {l | f (l) v l} set of elements upon which f is reductive
Ext (f) = {l | f (l) w l} set of elements upon which f is extensive

Obviously, Fix (f) = Red (f) ∩ Ext (f). As L is a complete lattice, each of these sets has
both a least upper bound and a greatest lower bound. In particular,

d
Fix (f) = lfp (f) (the

least fixed point of f) and
⊔

Fix (f) = gfp (f) (the greatest fixed point of f). By Tarski’s
theorem, we have

lfp (f)
def
=

d
Fix (f) =

d
Red (f) ∈ Fix (f)

gfp (f)
def
=

⊔
Fix (f) =

⊔
Ext (f) ∈ Fix (f)

We can also prove the following relations for the elements of the Ascending/Descending
Kleene Sequences:

fn (⊥) v ⊔{fm (⊥) | m ∈ N} v lfp (f) v gfp (f) v d{fm (>) | m ∈ N} v fn (>)

If we impose further restrictions on f (e.g., continuity), some of the inequalities will be
transformed into equalities. However, in general, all the above inequalities can be strict.

11

5.2 Widening

Idea: given a (possibly ascending) chain (ln)n, use a special “widening” operator to con-
struct a fast-converging sequence of elements that stabilizes to an upper approximation of
lfp (f).

First, we introduce a new notation, which, given an operator and a sequence, allows us to
construct a new sequence (with possibly better properties than the initial one):

Definition 4. Given a chain (ln)n in L and an operator φ : L× L → L, (lφn)n is a chain in
L, constructed as follows:

lφn =

{
ln if n = 0

lφn−1 φ ln otherwise

Now, we are ready to present the widening technique.

Definition 5. ∇ : L× L → L is a widening operator iff:

1. ∇ is an upper bound operator, i.e., ∀l1, l2, l1 v l1∇l2, l2 v l1∇l2.

2. For all ascending chains (ln)n in L, the ascending chain (l∇n)n (also in L) eventually
stabilizes

Given a monotone function f : L → L on a complete lattice L, and a widening operator
∇ on L, we define the sequence (fn

∇)n as follows:

fn
∇ =




⊥ if n = 0
fn−1
∇ if n > 0 ∧ f

(
fn−1
∇

) v fn−1
∇

fn−1
∇ ∇ f

(
fn−1
∇

)
otherwise

We can prove that (fn
∇)n stabilizes at a value fm

∇ (i.e., ∀n > m, fn
∇ = fm

∇) such that
f (fm

∇) v fm
∇ (i.e., f is reductive at fm

∇). Furthermore, using Tarski’s theorem, we infer that
fm
∇ w d

Red (f) = lfp (f), i.e., the value where (fn
∇)n stabilizes is a safe approximation of

lfp (f). See [3, pp. 222-227] for details.

Personal Note: The widening technique can be useful even outside abstract interpreta-
tion. For example, in a normal dataflow analysis, we can use it to make sure that the series of
abstract values computed for a given program point by the analysis iterations is an ascending
chain, even if the transfer functions are not monotonic.

5.3 Narrowing

Idea: In the previous section, we’ve seen how to use a widening operator to compute an
ascending chain (fn

∇)n which stabilizes to fm
∇ , an upper approximation of lfp (f). Moreover,

f (fm
∇) v fm

∇ , i.e., f is reductive in the point of stabilization fm
∇ . Therefore, (fn (fm

∇))n is a
descending chain of elements in Red (f). Any element of this chain is an upper approximation
of lfp (f); the more elements of the chain we compute, the more precise is our approximation.
As the chain might not converge, we can use a “narrowing” operator to construct a chain
that descends slower, and stabilizes faster.

12

Definition 6. ∆ : L× L → L is a narrowing operator iff:

1. ∀l1, l2, l2 v l1 → l2 v l1∆l2 v l1.

2. For all descending chains (ln)n in L, the sequence (l∆n)n eventually stabilizes.

Given a narrowing operator ∆, we can construct the sequence ([f]n∆)n, called the “Trun-
cated Descending Sequence” (TDS) in [1], by

[f]n∆ =

{
fm
∇ if n = 0

[f]n−1
∆ ∆ f

(
[f]n−1

∆

)
if n > 0

We can prove that ([f]n∆)n is a descending chain which stabilizes to an upper approximation
of lfp (f). See [3, pp. 228-231] for details.

6 Advanced Galois Connection Issues

6.1 Galois Insertions

In [1], Patrick and Radhia Cousot use Galois insertions instead of Galois connections. Future
papers switched to Galois connections. A Galois insertion is very similar to a Galois con-
nection, but now the abstract domain M does not contain multiple elements that describe
the same concrete values, i.e., M does not contain superfluous elements. Given a Galois
connection, it is possible to transform it into a Galois insertion (see [3, pp. 242-244]).

Definition 7 (Galois Insertion). 〈L, α, γ, M〉 is a Galois insertion between the lattices
〈L,vL〉 and 〈M,vM〉 iff:

1. α : L → M and γ : M → L;

2. α and γ are monotonic;

3. α ◦ γ = λm.m;

4. γ ◦ α wL λl.l.

Lemma 10. If 〈L, α, γ, M〉 is a Galois insertion, then

• α is surjective (i.e., each abstract value models some concrete value(s));

• γ is injective (i.e., each concrete value is the concretization of at most one abstract
value).

Proof: Consider an arbitrary m ∈ M . By condition 3, α (γ (m)) = m. Therefore, ∀m ∈
M, ∃l = γ (m) ∈ L, such that α (l) = m, i.e., α is surjective. For the other half, consider
arbitrary m1,m2 ∈ M such that γ (m1) = γ (m2) = l. We have that m1 = α (γ (m1)) =
α (γ (m2)) = m2. Therefore γ is injective.

13

6.2 Systematic Design of Galois Connections

Galois connections can be combined in serial / parallel ways to compose new analyses.
Serial composition corresponds to the merging of two successive layers of approximation
in the analysis design, while the parallel compositions (a couple of them are possible) are
used when we have several analyses of individual components of a structure and we want to
combine them in a single analysis. See [3, Section 4.4] for details.

7 Acknowledgements

Many thanks to Viktor Kuncak and Darko Marinov for many interesting (and time consum-
ing!) discussions on abstract interpretation and program analysis in general.

References

[1] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc. 4th
POPL, 1977.

[2] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In Proc. 6th POPL, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York,
NY.

[3] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Anal-
ysis. Springer-Verlag, 1999.

14

