
Putting Static Analysis to Work for Verification: A Case Study

Tal Lev-Ami∗ Thomas Reps† Mooly Sagiv‡,∗ Reinhard Wilhelm§

Abstract

We study how program analysis can be used to:

• Automatically prove partial correctness of correct pro-
grams.

• Discover, locate, and diagnose bugs in incorrect pro-
grams.

Specifically, we present an algorithm that analyzes sorting pro-
grams that manipulate linked lists. A prototype of the algo-
rithm has been implemented.

We show that the algorithm is sufficiently precise to dis-
cover that (correct versions) of bubble-sort and insertion-sort
procedures do, in fact, produce correctly sorted lists as out-
puts, and that the invariant “is-sorted” is maintained by list-
manipulation operations such as element-insertion, element-
deletion, and even destructive list reversal and merging of two
sorted lists. When we run the algorithm on erroneous ver-
sions of bubble-sort and insertion-sort procedures, it is able to
discover and sometimes even locate and diagnose the error.

1 Introduction

This paper shows that static analysis can be employed to

• Automatically prove partial correctness of correct pro-
grams.

• Discover, locate, and diagnose bugs in incorrect pro-
grams.

While static analysis has been used previously to find poten-
tial bugs (“program anomalies”) as well as to demonstrate the
absence of bugs in programs that manipulate scalar variables
and arrays [12, 1], the present paper concerns programs that
manipulate pointers and heap-allocated storage. This paper
demonstrates that it is possible to create analysis algorithms
that are of sufficient precision that the program’s partial cor-
rectness can be established from the information contained in
the “state-descriptors” obtained via static analysis.

The approach to verification described here uses a method
for creating program-analysis algorithms that was described
in [25, 26] (see Section 2). To illustrate how the verifica-
tion method works, we use an extended version of the “shape

∗Dept. of Comp. Sci.; Tel-Aviv Univ.; Tel-Aviv 69978, Israel;
{tla,sagiv}@math.tau.ac.il

†Comp. Sci. Dept.; Univ. of Wisconsin; Madison, WI 53706; USA;
reps@cs.wisc.edu. Supported in part by the NSF under grant CCR-
9619219 and by the U.S.-Israel BSF under grant 96-00337.

‡Supported in part by the U.S.-Israel BSF under grant 96-00337.
§Informatik; Univ. des Saarlandes; 66123 Saarbrücken; Germany;

wilhelm@cs.uni-sb.de

analysis” described in [25, 26] (which determines information
about the shapes of the heap-allocated data structures that
a pointer variable can point to). In the present paper, shape
descriptors are extended with information that keeps track of
the relative order of the values in data fields of neighboring
list elements. By carrying out static analysis with this family
of shape descriptors, we are able to verify the correctness of
several versions of a sorting program that operates on linked
lists.

The most important characteristics of our method stand
out if we contrast it with conventional approaches to program
verification. Ordinarily, program verification involves estab-
lishing that a given program satisfies a user-supplied specifi-
cation. With the standard approach to proving correctness,
the user supplies a pre-condition and post-condition for each
procedure, as well as a loop-invariant for each loop in the pro-
gram [9, 13]. Taken together, these break the program into
a collection of finite-length path fragments whose correctness
must be established to prove the overall correctness of the pro-
gram. The verification system traverses the program to gather
up a collection of verification conditions—one for each path
fragment. The system then calls a theorem prover to establish
that each verification condition is a theorem [17, 8].

In this paper, we make use of quite different machinery in
order to establish that a program works correctly:

• The user supplies a “descriptor” of the acceptable inputs
to the program.

• An abstract interpretation of the program is performed.

• The descriptor associated with the program’s exit point
is checked to make sure that only acceptable outputs can
be produced.

Thus, with our method, the specification takes the form of
an input descriptor and an acceptability criterion on output
descriptors, but loop invariants are completely omitted.

The latter feature, in particular, is a highly desirable char-
acteristic: Whereas a precise statement of a desired input-
output relationship is something that any verification method
will require, the experience of the last thirty years is that loop
invariants impose such a burden on the programmer that any
method that requires them has, at best, a limited market for
adoption.

The above characterization of our work no doubt raises two
questions in the reader’s mind:

• How much is being swept under the rug by the phrase
“An abstract interpretation of the program is performed”?

• How can a verification method possibly avoid using loop
invariants?

The answers to these questions are as follows:

• Abstract interpretation: It is important that the right
abstract interpretation be performed—in particular, one
that applies to descriptors that are sufficiently expres-
sive to maintain the distinctions needed to allow the
whole enterprise to succeed. The specification of such

an analysis becomes one of the skills needed to apply
our verification methodology.1

However, this seems to present a significant new obsta-
cle to adoption: With the methodology of abstract in-
terpretation, it is typically not an easy task to obtain
appropriate abstract state-transformation functions and
show that they are correct. On the contrary, papers
on program analysis often contain exhaustive (and ex-
hausting) proofs to demonstrate that a given abstract
semantics provides answers that are safe with respect to
a given concrete semantics.

What allows us to overcome this obstacle is a method
for creating program-analysis algorithms set forth in a
previous paper of ours [25, 26]. With this technique, the
developer of a program-analysis algorithm is freed from
most of the proof obligations normally associated with
abstract interpretation. A further advantage of this ap-
proach is that it provides a parametric framework for
program analysis. That is, it provides a method for gen-
erating a program-analysis tool from a high-level, user-
supplied description of what is desired.

• Loop invariants: In the conventional approach to pro-
gram verification, loop invariants serve to break the pro-
gram into a finite number of finite-length path fragments.
In contrast, our approach uses abstraction to allow the
entire program to be “executed” on (finite representa-
tions of) the infinity of possible runtime stores. In some
sense, our approach performs a kind of “state-space ex-
ploration”, and hence is related to model checking [5].
By limiting the abstract execution of the program to an
a priori finite set of store descriptors, convergence to a
fixed-point is guaranteed.

The descriptors that arise at the head of each loop can
be considered to be loop invariants—but ones that have
been automatically inferred by our system, not provided
by the user. Because our domain of descriptors is finite,
this invariant-synthesis problem has a different character
than those used in [4, 29, 30, 28] (i.e., in our work, the
invariants are generated in the course of performing an
iterative fixed-point computation). Furthermore, there
is nothing special about the program points at the heads
of loops; they are treated in exactly the same way that
any other program point is treated during the analysis.

At a technical level, the approach taken in this paper is
much different from that used in conventional approaches to
program verification, where assertions (formulae) are pushed
backwards through statements. The justification for propagat-
ing information in the backwards direction is that it avoids the
existential quantifiers that arise when assertions are pushed
in the forwards direction to generate strongest postconditions.
Ordinarily, strongest postconditions present difficulties because
quantifiers accumulate, forcing one to work with larger and
larger formulae. The abstract-interpretation method from [25,
26] pushes information in the forwards direction. Further-
more, as discussed in Sections 2 and 6, it works at the semantic
level; that is, it operates directly on explicit representations
of logical structures, rather than on implicit representations,
such as logical formulae. Because the analysis is carried out
with respect to a domain of state descriptors that are a priori

1The abstract interpretation is actually designed not for a specific
program, but for a particular datatype—once designed, it can be used
in proving the correctness of multiple programs that manipulate data
of that type.

/* list.h */
typedef struct node {

int d;
struct node *n;

} *L;

Figure 1: A type declaration for singly linked lists.

of bounded size, forwards propagation cannot generate shape
descriptors of unbounded size, and the analysis is guaranteed
to terminate.

The notion of an instrumentation predicate plays a key role
in our work. An instrumentation predicate captures a prop-
erty that an individual storage element may or may not pos-
sess. In general, adding additional instrumentation predicates
refines the abstraction used for program analysis; it yields a
more precise analysis algorithm that maintains finer distinc-
tions, and hence allows more questions about the program’s
data structures to be answered.

From the perspective of someone interested in verifying a
program via our approach, the need to adopt a local, element-
wise view of a data structure gives the approach a markedly
different flavor than conventional approaches to program ver-
ification, where the emphasis is on developing invariants. For
instance, the notion of an instrumentation predicate can be
contrasted with that of a datatype invariant (e.g., see [15]):

• A datatype invariant states a global property of an ab-
stract datatype’s instances that holds on entry to and
exit from the datatype’s operations.

• An instrumentation predicate captures a local property
that can be used to distinguish among some of a datatype’s
components.

As will be discussed in Sections 3.1 and 6, with our approach it
is also necessary to specify how the local properties of interest
are affected by the execution of each kind of statement in the
programming language.

We illustrate the use of program analysis for verification
by means of an extended example—the analysis of several ver-
sions of a sorting program that operates on linked lists. We
show that the verification method is sufficiently precise to dis-
cover that (correct versions) of bubble-sort and insertion-sort
procedures do, in fact, produce correctly sorted lists as out-
puts, and that the invariant “is-sorted” is maintained by list-
manipulation operations, such as element-insertion, element-
deletion, destructive list reversal, and merging of two sorted
lists. When we run the algorithm on erroneous versions of
bubble-sort and insertion-sort procedures, it is able to discover
and sometimes even locate and diagnose the error.

Figure 1 shows a declaration of a linked-list type; Figure 2
shows an implementation of an insertion-sort algorithm; Figure 3
contains the main program analyzed by our algorithm. The
C code for procedures create, merge, and reverse is given in
Appendix A.

The remainder of the paper is organized into five sections:
Section 2 summarizes the program-analysis framework of [25,
26], which shows how 3-valued logic can serve as a basis for
program analysis. Section 3 describes how this approach can
be used to show that a sorting procedure is partially correct ,
i.e., if the procedure terminates, then the resulting list is sorted
in increasing order. Section 4 discusses the behavior of the
analysis algorithm on incorrect procedures. Section 5 reports
on an implementation of the method using the TVLA sys-

/* insertion.c */
#include "list.h"
L insert sort(L x) {

L r, pr, rn, l, pl;
r = x;
pr = NULL;
while (r != NULL) {

l = x;
rn = r ->n;
pl = NULL;
while (l != r) {

if (l->data > r->data) {
pr->n = rn;
r->n = l;
if (pl == NULL)
x = r;

else
pl->n = r;

r = pr;
break;

}
pl = l;
l = l->n;

}
pr = r;
r = rn;

}
return x;

}

Figure 2: A correct version of insertion sort.

/* main.c */
#include "list.h"
int main() {

L x, y, z, w;
L create(), insert sort(L);
L merge(L,L), reverse(L);

x = create(); l1:
x = insert sort(x); l2:

y = create(); l3:
y = insert sort(y); l4:

z = merge(x,y); l5:
w = reverse(z); l6:

}

Figure 3: A program that performs several operations on
sorted lists.

tem [18, 19]. Section 6 discusses limitations of our approach,
related work, and future directions.

2 The Use of 3-Valued Logic for Program

Analysis

In this section, we summarize the framework presented in [25,
26], where we showed how 3-valued logic can serve as the
basis for program analysis. A generalized version of that

analysis framework has been implemented in a system called
TVLA [18, 19] (for Three-Valued-Logic Analyzer). TVLA
was used to implement the verification method described in
this paper (and to generate all of the figures presented). Where
relevant, features specific to TVLA will be noted below.

Kleene’s 3-valued logic is an extension of ordinary 2-valued
logic with the special value of 1/2 (unknown) for cases in which
predicates could have either value, i.e., 1 (true) or 0 (false).
Kleene’s interpretation of the propositional operators is given
in Table 3. We say that the values 0 and 1 are definite values
and that 1/2 is an indefinite value.

2.1 Representing Memory States via Logical

Structures

A 2-valued logical structure S is comprised of a set of indi-
viduals (nodes) called a universe, denoted by US , and an in-
terpretation over that universe for a set of predicate symbols.
The interpretation of a predicate symbol p in S is denoted
by pS . For every predicate p of arity k, pS is a function
pS : (US)k → {0, 1}. 2-valued structures are used to repre-
sent memory states used in the operational semantics of the
program.

2-valued logical structures will be depicted as directed graphs
in this paper.2 A directed edge between nodes u1 and u2

that is labeled with binary predicate symbol p indicates that
pS(u1, u2) = 1. Also, for a unary predicate symbol p, we write
p inside a node u when pS(u) = 1; conversely, we write p = 0
inside node u when pS(u) = 0.

The set of predicate symbols is partitioned into two disjoint
sets: core and instrumentation predicate symbols. Core pred-
icates are part of any pointer semantics. They record atomic
properties of the memory state. Instrumentation predicates
are used to record derived properties. They have a defining
formula in terms of the core predicates. Evaluating the for-
mula for an instrumentation predicate i in a structure S yields
its value iS . The operational semantics of a statement is spec-
ified by predicate-update formulae: These say how the values
of the predicates change when the statement is executed.

In this paper, a 2-valued structure represents a memory
state (also called a store); an individual corresponds to a list
element. The intended meaning of the core predicates is given
in Table 1, and the intended meaning of the instrumentation
predicates is given in Table 2 (for the moment ignore the third
column). The store in Figure 4 is represented by the 2-valued
structure S5 shown in Figure 5. The structure S5 has four
nodes, u0, u1, u2, and u3, which represent the four list ele-
ments. This representation intentionally ignores the specific
values of the d- and the n-components (an int and a memory
address, respectively), and just records certain relationships
that hold among list elements:

• The binary relation n captures whether one list element
is the successor of another.

• The binary relation dle keeps track of the relative order
between two list elements’ d-fields.

For each pointer variable x, there is a unary predicate x.
The value of xS(u) is 1 if variable x points to the list element
represented by u. In Figure 5, the unary predicate is 1 only
for u0. To make the figures more intuitive, the value of the
x-predicate is depicted via an edge from a box labeled x to
the node that x points to (and via the absence of edges from

2We only use predicates of arity ≤ 2.

Predicate Intended Meaning Defining Formula
r[n, x](v) Is v reachable from program variable x using component n? ∃v1 : (x(v1) ∧ n∗(v1, v))
c[n](v) Does v reside on a directed cycle of n-components? n+(v, v)
is[n](v) Is v pointed to by more than one n-component? ∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 6= v2

inOrder[dle, n](v) Is v the first of a pair of neighbors with non-decreasing d-fields? ∀v1 : n(v, v1) ⇒ dle(v, v1)
inROrder[dle, n](v) Is v the first of a pair of neighbors with non-increasing d-fields? ∀v1 : n(v, v1) ⇒ dle(v1, v)

Table 2: The instrumentation predicates used in this paper and their meaning. There is a separate predicate r[n, x] for every
program variable x. The defining formulae are explained in Section 2.3.

Predicate Intended Meaning
x(v) Is v pointed to by variable x?
n(v1, v2) Does the n-component of v1 point to v2?

dle(v1, v2) Is the d-component of v1 less-than-or-equal-to
the d-component of v2?

Table 1: The core predicates used in the analysis. There is a
separate predicate x for every program variable x.

∧ 0 1 1/2
0 0 0 0
1 0 1 1/2

1/2 0 1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1

1/2 1/2 1 1/2

¬
0 1
1 0

1/2 1/2

Table 3: Kleene’s 3-valued interpretation of the propositional
operators.

the box for x to the nodes that x does not point to), rather
than by placing the value of xS(u) inside each node u.

Pointer components within the list elements are represented
as binary predicates (i.e., nS(u1, u2) = 1 if the n-component
of u1 points to u2). Also, inequalities between list elements are
represented by the binary predicate dle (i.e., dleS(u1, u2) = 1
if the d-component of u1 is less than or equal to the d-component
of u2).

The unary instrumentation predicate r[n, x](v) holds for
list elements that are reachable from program variable x, pos-
sibly using a sequence of accesses through n-components. In
structure S5 in Figure 5, r[n, x]S5 is 1 for all of the nodes
because they are all reachable from x.

An important aspect of explicitly storing r[n, x] and other
instrumentation predicates is that we can compute the effect of
a program statement on the predicates’ values without reeval-
uating the instrumentation predicates’ defining formulae. For
instance, for the statement y = x, the nodes reachable from y
after the statement executes are the same as the nodes reach-
able from x. There is no need to reevaluate the formula defin-
ing what it means to be reachable from y; instead, we can
generate r′[n, y], the value of predicate r[n, y] in the state af-
ter the statement executes, via the predicate-update formula
r′[n, y](v) = r[n, x](v).

The instrumentation predicate is[n] holds for nodes shared
by n-components. (A node is shared by n-components if it is
pointed to by more than one list elements’ n-component.) In
Figure 5, all the elements of the list are unshared, and thus
is[n]S5 is 0 for all of them. In fact, throughout the execution
of all of the example programs in the paper, is[n]S is always
0, for all nodes.

The instrumentation predicate c[n] holds for nodes on a
cycle of n-components. The cyclicity instrumentation is used
to avoid performing a transitive-closure operation when up-
dating the reachability information [25]. In Figure 5, the list

x 5 8 n 1 n 4 NULLn

Figure 4: A possible store for a linked list.

is acyclic, and thus c[n]S5 is 0 for all of the nodes.
To express sortedness of lists we use the instrumentation

predicates inOrder[dle, n] and inROrder[dle, n]. Predicate
inOrder[dle, n] holds for nodes whose d-components are less
than or equal to those of their n-successor. Similarly,
inROrder[dle, n] holds for nodes whose d-components are greater
than or equal to those of their n-predecessors.

TVLA makes an explicit assumption that the set of predi-
cate symbols used throughout the analysis is fixed. (The num-
ber of individuals in structures can vary throughout the anal-
ysis.)

2.2 Conservative Representation of Sets of

Memory States via 3-Valued Structures

Like 2-valued structures, a 3-valued logical structure S is also
comprised of a universe US , and an interpretation of the pred-
icate symbols. However, for every predicate p of arity k, pS is
a function pS : (US)k → {0, 1, 1/2}, where 1/2 explicitly cap-
tures unknown predicate values.

3-valued logical structures are also drawn as directed graphs.
Definite values are drawn as in the 2-valued structures. Bi-
nary indefinite (1/2) predicate values are drawn as dotted di-
rected edges. Also, we write p = 1/2 inside a node u when
pS(u) = 1/2.

Let S\ be a 2-valued structure, S be 3-valued structure, and

f :US\

→ US be a surjective function. We say that f embeds
S\ into S if for every predicate p of arity k and u1, u2, . . . , uk ∈

US\

, either pS\

(u1, u2, . . . , uk) = pS(f(u1), f(u2), . . . , f(uk))
or pS(f(u1), f(u2), . . . , f(uk)) = 1/2. We say that S con-
servatively represents all the 2-valued structures that can be
embedded into it by some function f . Thus, S can compactly
represent many structures.

Example 2.1 The 3-valued structure S6 shown in Figure 6
represents the 2-valued structure S5 for f(u0) = u0 and f(u1) =
f(u2) = f(u3) = u. In fact, the structure shown in Figure 6
represents all lists with two or more elements.

The unary predicate symbol x has xS6(u0) = 1, indicating
that the program variable x is known to point to the list ele-
ment represented by u0, and xS6(u) = 0, indicating that x is
known not to point to any of the list elements represented by
u.

The unary predicates inOrder[dle, n] and inROrder[dle, n]
both have value 1/2, for both u0 and u, which indicates that
nothing is known about the relative order of the values of the
d-fields of neighboring elements in the list.

x
u0

r[n,x]
inOrder[dle,n] u3

r[n,x]
inROrder[dle,n]
inOrder[dle,n]

dle

u1
r[n,x]

inROrder[dle,n]

dle

dle

u2
r[n,x]

inOrder[dle,n]

n

dle

dle

dle

n
dledle

n

dle

x r[n, x] is[n] c[n] inOrder[dle, n] inROrder[dle, n]

u0 1 1 0 0 1 0
u1 0 1 0 0 0 1
u2 0 1 0 0 1 0
u3 0 1 0 0 1 1

n u0 u1 u2 u3

u0 0 1 0 0
u1 0 0 1 0
u2 0 0 0 1
u3 0 0 0 0

dle u0 u1 u2 u3

u0 1 1 0 0
u1 0 1 0 0
u2 1 1 1 1
u3 1 1 0 1

Figure 5: A logical structure S5 representing the store shown in Figure 4 in graphical and tabular representations.

x
u0

r[n,x]
inROrder[dle,n]=1/2
inOrder[dle,n]=1/2

dle

u
r[n,x]

inROrder[dle,n]=1/2
inOrder[dle,n]=1/2

dle

n

dle
n

x r[n, x] is[n] c[n] inOrder[dle, n] inROrder[dle, n]

u0 1 1 0 0 1/2 1/2
u 0 1 0 0 1/2 1/2

n u0 u

u0 0 1/2
u 0 1/2

dle u0 u

u0 1 1/2
u 1/2 1/2

Figure 6: A 3-valued structure S6 representing arbitrary lists of length 2 or more that are pointed to by program variable x.

The n-edges from u0 to u and from u to u are dotted, in-
dicating that two of the entries for binary predicate symbol
n have indefinite values: nS6(u0, u) = 1/2, indicating that
the list element represented by u0 may point to a list element
represented by u—namely, the second list element (u1 in Fig-
ure 5). Also, nS6(u, u) = 1/2, indicating that a list element
represented by u may or may not point to another list element
represented by u (e.g., in Figure 5 u2 points to u3, but not to
u1); such an element may even point to itself.

2.2.1 Summary nodes

Nodes in a 3-valued structure that may represent more than
one individual from a given 2-valued structure are called sum-
mary nodes. For example, in the structure shown in Figure 5,
the nodes u1, u2, and u3 are represented by the summary node
u in Figure 6.

We use a designated unary predicate sm to maintain summary-
node information. A summary node w has smS(w) = 1/2,
indicating that it may represent more than one node from the
2-valued structure. These nodes are depicted graphically as
dotted ellipses. In contrast, if smS(w) = 0, then w is known
to represent a unique node. Only a node with smS(w) = 1/2
can have multiple nodes mapped to it by an embedding func-
tion.

Example 2.2 [Sorted Lists] The 3-valued structure So is
shown in Figure 7. In contrast with structure S6 of Figure 6,

the fact that inOrder[dle, n]So(u0) and inOrder[dle, n]So(u)
are both 1 means that So represents all lists (with two or more
elements) that are sorted in non-decreasing order according
to the values of the elements’ d-components. This illustrates
how the instrumentation predicates, which have a purely local
viewpoint, provide the ingredients for global properties. As
will be discussed in Section 3.2, global properties can be stated
via quantified formulae over the instrumentation predicates
(cf. Example 3.1).

The fact that dleSo(u0, u) is 1 indicates (as would be ex-
pected) that the first list element holds the minimum of the
values in the list.

The exact choice of which nodes should be summarized is
crucial for the precision of an analysis; this is discussed further
in Section 3.1.

2.3 Formulae

Properties of structures can be extracted by evaluating for-
mulae. We use first-order logic with transitive closure and
equality, but without function symbols and constant symbols.
For example, the formula

∃v1 : (x(v1) ∧ n∗(v1, v)) (1)

extracts reachability information. Here, n∗ denotes the reflex-
ive transitive closure of the predicate n. Therefore, in every

x
u0

r[n,x]
inOrder[dle,n]

inROrder[dle,n]=1/2

dle

u
r[n,x]

inOrder[dle,n]
inROrder[dle,n]=1/2

dle

n

dle

dle
n

x r[n, x] is[n] c[n] inOrder[dle, n] inROrder[dle, n]

u0 1 1 0 0 1 1/2
u 0 1 0 0 1 1/2

n u0 u

u0 0 1/2
u 0 1/2

dle u0 u

u0 1 1
u 1/2 1/2

Figure 7: The 3-valued structure So, shown above, represents lists of length 2 or more that are pointed to by program variable
x, and whose elements are sorted in non-decreasing order according to the values of their d-components.

structure S, x(v1) evaluates to 1 if v1 is the node pointed to
by x and n∗(v1, v) evaluates to 1 in S if there exists a path of
zero or more n-edges from v1 to v. The third column of Table 2
displays the defining formulae for all of the instrumentation
predicates used in this paper.

We say that a formula ϕ is potentially satisfied on a struc-
ture S if there exists an assignment for which ϕ evaluates to
1 or 1/2 on S.

The Embedding Theorem: The Embedding Theorem
(see [25, Theorem 3.11]) states that any formula that evaluates
to a definite value in a 3-valued structure evaluates to the
same value in all of the 2-valued structures embedded into that
structure. The Embedding Theorem is the foundation for the
use of 3-valued logic in static-analysis: It ensures that it is
sensible to take formulae that—when interpreted in 2-valued
logic—define the operational semantics, and reinterpret them
on 3-valued structures. Formulae that define the operational
semantics for programs that manipulate linked lists are given
in [25, 26, 18].

For example, evaluating Formula (1) on the 3-valued struc-
ture shown in Figure 6, yields 1 for v 7→ u0, which indicates
that the list element represented by u0 is reachable from vari-
able x, and 1/2 for v 7→ u, which indicates that the list ele-
ments represented by u may or may not be reachable from the
program variable x. Notice, however, that r[n, x]S6(u) = 1,
which is more precise. This is a general principle with in-
strumentation predicates (referred to as the instrumentation
principle in [25, 26]): In 3-valued structures, the stored infor-
mation for an instrumentation predicate can be more precise
than the result of evaluating the predicate’s defining formula.

3 Proving Partial Correctness of Sorting and

List-Manipulation Procedures

In this section, we describe how the 3-valued-logic analysis
framework can be used to prove that an implementation of an
abstract datatype (ADT) is partially correct. Here we will be
concerned with an ADT of sorted linked lists—i.e., a subset
of the full set of data structures allowed according to the C
typedef shown in Figure 1, consisting of those structures that
meet the “is-sorted” datatype invariant. In the case of sorted
linked lists, we are interested not just in the correctness of
various sorting operations, which create sorted linked lists,
but also in establishing that “is-sorted” is maintained by list-
manipulation operations, such as element-insertion, element-

deletion, destructive list reversal, and merging of two lists.
A sorting procedure is partially correct if, whenever the

procedure terminates, the output list it produces is sorted in
non-decreasing order. Our approach to verification is capable
of establishing this. For instance, the specific analysis that
we discuss below establishes that at program point l2 in Fig-
ure 3, program variable x always points to a list sorted in
non-decreasing order (cf. Figure 9). It also establishes that at
program point l6, program variable w, which holds the reversal
of the merge of two sorted lists, always points to a list sorted
in non-increasing order (cf. Figure 12).

Verification will sometimes fail because the analysis is con-
servative, i.e., it may be that the analysis reports that, at
a given program point, a variable might point to something
other than a sorted list when in fact it always does point to a
sorted list. Our limited experience with several small but intri-
cate programs indicates that this does not happen. The Em-
bedding Theorem and the usage of the abstract-interpretation
methodology [7] guarantees that the converse is impossible:
The analysis can never say that at a given program point l,
variable x always points to a sorted list, and yet there is an in-
put that leads to a store at l in which the x list is not sorted.
Thus, if the analysis says that at the exit vertex variable x
always points to a sorted list, then x will always point to a
sorted list when the procedure finishes execution.

This capability should be contrasted with run-time test-
ing, which can only show the presence of errors, not their
absence [9].

As mentioned in the Introduction, an artifact of our ap-
proach is that some of the work involved in verification takes
place at the level of the ADT definition, rather than at the
level of an individual program or individual statements of a
program. Section 3.1 discusses what is required to define a
suitable analysis for observing ADT properties; Section 3.2
describes how such an analysis can then be used to check the
partial correctness of ADT operations.

3.1 Specifying an Analysis for Observing ADT

Properties

A set of stores that may arise before a statement st is repre-
sented by a logical structure S (i.e., an interpretation of the
core and instrumentation predicates). An operational seman-
tics of st must describe how such an interpretation is changed
by the execution of st. In our work, the operational semantics

is specified by a set of predicate-update formulae associated
with each statement type (or condition)—one such formulae
for each core and instrumentation predicate. For instance,
suppose structure S represents a set of stores that arise be-
fore statement st. A structure S′ that represents the corre-
sponding set of stores that arise after st is obtained by eval-
uating the predicate-update formulae for st. (Evaluation of
the formulae in 2-valued logic captures the transfer function
for st of the concrete semantics; evaluation of the formulae
in 3-valued logic captures the transfer function for st of the
abstract semantics.) For example, suppose that q is a binary
predicate, and that its predicate-update formula for statement
st is q′(v1, v2) = ϕ(v1, v2). The table for predicate q in S′ is
obtained by evaluating ϕ(v1, v2) with each possible binding of
individuals u1, u2 ∈ US to the logical variables v1 and v2.

There can also be precondition formulae that define when
an operation is allowed to be applied. The latter are used to
define the effect of conditions.

Predicate-update formulae for the core predicates x (for
all program variables x) and n, along with definitions and
predicate-update formulae for the instrumentation predicates
is, c, and r[n, x] can be found in [25] and [18]. To define
an analysis suitable for verifying procedures that operate on
sorted linked lists, we have to provide predicate-update formu-
lae for the core predicate dle and the instrumentation pred-
icates inOrder[dle, n] and inROrder[dle, n] (for each of the
statements that manipulate pointer variables). Updating the
core-predicate dle is easy for all statement kinds except malloc
statements; because non-malloc statements do not create any
new individuals, the predicate-update formula is dle′(v1, v2) =
dle(v1, v2). For malloc statements, the predicate-update for-
mula sets the dle value for newly created individuals to 1/2,
i.e.,

dle′(v1, v2) =

{

1 new(v1) ∧ new(v2) ∧ v1 = v2

dle(v1, v2) v1 = v2 ∨ ¬(new(v1) ∨ new(v2))
1/2 otherwise

where the predicate new(v) holds for the newly allocated list
element.

A trivial way to obtain safe predicate-update formulae for
instrumentation predicates is to revaluate their defining for-
mulae in the resultant structure after the core-predicates have
been updated. However, this solution is almost always overly
conservative since it may yield 1/2 even when the instru-
mentation predicate cannot be changed by the statement at
all. A more precise solution is to require that the ADT de-
signer provide a change-formulae cst

p (v) for every instrumen-
tation predicate, identifying for which individuals u the exe-
cution of st changes p(u). In the case of inOrder[dle, n] and
inROrder[dle, n] this turns out to be quite simple because a
statement st of the form x = exp cannot change the struc-
ture of the heap at all, and thus cst

inOrder[dle,n](v) = 0 and

cst
inROrder[dle,n](v) = 0. When statement st is of the form
x->n=NULL or x->n=t, only the n field of the node pointed to
by x may be changed, and thus cst

inOrder[dle,n](v) = x(v) and

cst
inROrder[dle,n](v) = x(v).

The predicate-update formulae for instrumentation predi-
cates use the change formulae to recompute the instrumenta-
tion predicate’s value only for individuals for which the pred-
icate’s value may change. Formally, we define the predicate-
update formula as

p′(v) = cst
p (v)?ϕp[{c 7→ ϕst

c |c ∈ CorePredicates}](v) : p(v)

Condition Precondition formula for true-branch

x == y ∃v : x(v) ∧ y(v)
x != y ¬∃v : x(v) ∧ y(v)
x == NULL ¬∃v : x(v)
x != NULL ∃v : x(v)

x->d <= y->d ∃v1, v2 : x(v1) ∧ y(v2) ∧ dle(v1, v2)

x->d == y->d ∃v1, v2 :
x(v1) ∧ y(v2)
∧ dle(v1, v2) ∧ dle(v2, v1)

x->d < y->d ∃v1, v2 : x(v1) ∧ y(v2) ∧ ¬dle(v2, v1)

uninterpreted 1/2

Table 4: Precondition formulae for the true-branch part of
atomic program conditions that manipulate linked lists.

where ϕp is the defining formula of instrumentation predicate
p and ϕst

c is the predicate-update formula for core-predicate c.
The formula (ϕ0?ϕ1 : ϕ2) evaluates to (i) the value of ϕ1 when
ϕ0 evaluates to 1; (ii) the value of ϕ2 when ϕ0 evaluates to 0;
(iii) the value of ϕ1 when ϕ0 evaluates to 1/2, and ϕ1 and ϕ2

evaluate to the same value; and (iv) 1/2 otherwise. Thus, the
above formula is safe because the defining formula for p(v) is
recomputed for all individuals u for which the execution of st
changes the value of p(u).

The ADT designer is obliged to show that the change for-
mulae are safe; i.e., it must not be possible for the formula to
evaluate to 0 for some structure S and individual u, and yet
the execution of st on S changes the value of p(u). For the sort-
ing example, this task was easy because inOrder[dle, n] and
inROrder[dle, n] are “local” properties. However, for global
properties such as reachability, the approach described above
may result in an overly conservative analysis. In [25], we de-
veloped predicate-update formulae for r[n, x] that define the
reachability properties after a statement’s execution in terms
of the reachability properties that hold before the statement
executes.

For conditions with no side effects, we need only write pre-
condition formulae for the true-branches of conditions (see Ta-
ble 4); the precondition formulae for the false-branches are the
negations of these formulae.

The transformers so defined are used in an iterative algo-
rithm to compute, for each program point (control-flow graph
node), a finite set of 3-valued structures that conservatively
represent the set of stores that can possibly occur at that
point.

The abstraction function of the static analysis is defined by
a subset of the unary predicates, which we call the abstraction
properties. The principle behind abstraction is that all list
elements that have the same values for the abstraction pred-
icates are mapped to the same abstract element. Thus, if we
view the set of abstraction predicates as our means of observ-
ing the contents of the heap, the heap cells summarized by one
summary node are those that have no observable differences.

Note that for a fixed set of abstraction properties, there
can only be a constant number of nodes with observable dif-
ferences. Thus, to guarantee that the analysis terminates for
procedures with loops, the iterative fixed-point finding proce-
dure keeps collapsing the structures that arise, by merging all
nodes in a given structure that have no observable differences.
By this means, the number of nodes in any 3-valued structure
is bounded , and the analysis must eventually terminate.

(The above summary glosses over several important details
needed for boosting the precision of the technique. Details can
be found in [25].)

3.2 Specifying and Checking Partial Correct-

ness of ADT Operations

Given the static-analysis algorithm defined in the preceding
section, to demonstrate the partial correctness of ADT op-
erations, the user must supply the following program-specific
information:

• The procedure’s control-flow graph.

• A set of 3-valued structures that characterize the accept-
able inputs to the procedure.

• Formulae that characterize the acceptable outputs of a
correctly working procedure.

The initial 3-valued structures are supplied to the analysis al-
gorithm as the abstract value for the procedure’s entry point;
the analysis algorithm is then run; finally, the formulae that
characterize the acceptable outputs are evaluated on the struc-
tures that are generated by the analysis at the procedure’s exit
point.

Example 3.1 Consider the problem of establishing that the
version of insert sort shown in Figure 2 is partially correct.
Figure 8 shows the three structures that characterize the set
of stores in which program variable x points to an acyclic, un-
shared linked list.3 After running the analysis of insert sort,
we would check to see whether, for all of the structures that
arise at the procedure’s exit node, the following formula eval-
uates to 1:

∀v : r[n, x](v) ⇒ inOrder[dle, n](v). (2)

If the formula evaluates to 1, then the nodes reachable from x
must be in non-decreasing order.

However, at this point, the reader may smell a rat: A
“sorting” procedure that always returns NULL will satisfy For-
mula (2) at the exit point! Thus, Formula (2) is only part
of the specification of the post-condition of a correct sorting
procedure. A second property required of a correct sorting
procedure (as well as of many other procedures that manip-
ulate sorted linked lists) is that the output list must be a
permutation of the input list.

We can establish that the permutation property holds for
the output of insert sort by extending the program-analysis
specification with another predicate, orig[n, x](v), whose value
is set at the entry point to record the elements that are reach-
able from x there. In each statement, the predicate-update
formula used for orig[n, x] is orig′[n, x](v) = orig[n, x](v). In
other words, orig[n, x] serves as an indelible mark on the ele-
ments initially reachable from x. At the end of the procedure,
we then need to check that the following formula evaluates to
1:

∀v : orig[n, x](v) ⇔ r[n, x](v). (3)

If the formula does evaluate to 1, then the elements reachable
from x after the procedure executes are exactly the same as
those reachable at the beginning of the procedure, and conse-
quently the procedure performs a permutation.

In this case, predicate orig[n, x](v) has been introduced
to make it possible to observe whether the output list is a
permutation of the input list. In general, a predicate of this
kind is similar to an auxiliary variable of the kind often used
in conventional program verification to denote the initial value
of a program variable [13, Section 6.2].

3These are exactly the 3-valued structures that the analysis discovers
as the possible outputs of create.

z
r[n,z]

inOrder[dle,n]
inROrder[dle,n]=1/2

r[n,z]
inOrder[dle,n]

inROrder[dle,n]=1/2

n
dle

dle

n

dle

dle

Figure 11: A structure that arises at l5.

w
r[n,w]

inROrder[dle,n]
inOrder[dle,n]=1/2

r[n,w]
inROrder[dle,n]

inOrder[dle,n]=1/2

dle
n

dle

n

dle

dle

Figure 12: A structure that arises at l6.

Example 3.2 Figure 9 shows the three 3-valued structures
that arise at the end of insert sort, given the structures
shown in Figure 8 as the input structures. The structures
in Figure 9 describe all possible stores in which variable x
points to an acyclic, unshared, sorted linked list. In all three
structures, Formulas (2) and (3) both evaluate to 1.4 Con-
sequently, insert sort is guaranteed to work correctly on all
acceptable inputs.

Example 3.3 Figure 10 shows one of the structures that can
arise at program point l4 of main (see Figure 3). In Figure 10,
the substructure consisting of the x-box together with the up-
per two nodes represents one sorted list of length 2 or more;
the y-box and the lower two nodes represents a second sorted
list of length 2 or more.

Figure 11 shows what is produced by the analysis when the
structure shown in Figure 10 is supplied as the input structure
in the analysis of merge: The output structure represents the
acyclic, unshared, sorted linked lists of length 2 or more. In
other words, merge preserves sortedness.

Figure 12 shows what is produced when the structure shown
in Figure 11 is supplied as the input structure in the analy-
sis of reverse: The output structure represents the acyclic,
unshared, linked lists of length 2 or more, sorted in reverse
order .

Overall, the method described above is able to establish
that at program point l6 of main (Figure 3), program variable
w—which is computed by reversing a list created by merg-
ing two sorted lists—always points to a list sorted in non-
increasing order.

4 Compile-Time Debugging of Programs

As observed earlier, our technique will never report that the
lists produced by a sorting program are sorted when, in fact,
there is some input that leads to unsorted output. In this sec-
tion, we demonstrate how the output of the algorithm when
applied to incorrect programs provides information that is use-
ful for catching bugs at compile time.

4Assuming, in the case of Formula (3), that instrumentation predi-
cate orig[n, x] was added to the analysis.

empty list 1-element lists lists with 2 or more elements

x
r[n,x]

inROrder[dle,n]
inOrder[dle,n]

dle

x
r[n,x]

inROrder[dle,n]=1/2
inOrder[dle,n]=1/2

dle

r[n,x]
inROrder[dle,n]=1/2
inOrder[dle,n]=1/2

dle

n

dle
n

Figure 8: The structures that arise at l1.

empty list 1-element lists sorted lists with 2 or more elements

x
r[n,x]

inROrder[dle,n]
inOrder[dle,n]

dle

x
r[n,x]

inOrder[dle,n]
inROrder[dle,n]=1/2

dle

r[n,x]
inOrder[dle,n]

inROrder[dle,n]=1/2

dle

n

dle

dle
n

Figure 9: The structures that arise at l2.

y
r[n,y]

inOrder[dle,n]
inROrder[dle,n]=1/2

dle

r[n,y]
inOrder[dle,n]

inROrder[dle,n]=1/2

dle

n

x
r[n,x]

inOrder[dle,n]
inROrder[dle,n]=1/2

dle

dle

r[n,x]
inOrder[dle,n]

inROrder[dle,n]=1/2

dle

n

dle

dle

dle
n

dle

dle dle

n
dle

Figure 10: A structure that arises at l4.

A common error in sorting programs is to forget to make
comparisons on boundary elements of the input data [22]. An-
other error reported in [22] is that the output list is not sorted
in the specified order. When our verification method fails to
confirm that a program is a correct sorting procedure, such
bugs can sometimes be diagnosed by inspecting the 3-valued
structures that have been produced by the analysis.

Example 4.1 Figure 13 shows an incorrect version of inser-
tion sort that ignores the first element. A structure that arises
after the program’s exit point is shown in Figure 14. This
structure provides the following clues about the nature of the
bug:

• Because inOrder[dle, n] is 1 for the summary node, most
of the elements of the list must be arranged in non-
decreasing order.

• However, inOrder[dle, n] is 1/2 for the first node, which
indicates that it may or may not be in the proper place
with respect to the rest of the list elements.

Example 4.2 Figure 15 shows a bubble-sort procedure. For
the analysis of this procedure, we added an instrumentation
predicate, DataIsNEqual[dle, n], defined by the formula:

∀v1 : n(v, v1) ⇒ ¬(dle(v, v1) ∧ dle(v1, v)).

A subtle bug in bubble-sort arises if we change the con-
dition for swapping elements from “y->data > yn->data” to
“y->data >= yn->data”. With this change, the procedure
does not terminate if the input list contains two elements
whose d-fields have identical values. The reason is that in ev-
ery pass over the list, these two elements would be swapped,
and thus the sort would never terminate. Because such a bug
only manifests itself for certain inputs, this is something that
testing could overlook.

When our verification method is applied to the erroneous
bubble-sort program, and supplied with the input structures
from Figure 8 (i.e., arbitrary acyclic, unshared linked lists),

#include "list.h"
L insert sort b2(L x) {

L r, pr, rn, l, pl;
if (x == NULL)

return NULL;
pr = x;
r = x->n;
while (r != NULL) {

pl = x;
rn = r->n;
l = x->n;
while(l != r) {

if(l->d > r->d) {
pr->n = rn;
r->n = l ;
pl->n = r;
r = pr;
break;

}
pl = l;
l = l->n;

}
pr = r;
r = rn;

}
return x;

}

Figure 13: An incorrect version of insertion sort that ignores
the first element.

x
r[n,x]

inOrder[dle,n]=1/2
inROrder[dle,n]=1/2

r[n,x]
inOrder[dle,n]

inROrder[dle,n]=1/2

dle
n

dle

n

dle

Figure 14: A structure that arises at the exit point of
insert sort b2.

the analysis discovers that the only lists that can arise at the
end of the procedure are ones in which all of the data fields
have different values. This shows up in the final 3-valued
structure as DataIsNEqual[dle, n] having the value 1 for all
list elements.

Example 4.3 Figure 16 shows an incorrect version of inser-
tion sort. Our method would indicate that Formula (3) fails to
evaluate to 1 in the 3-valued structures that arise at the exit
point, and thus fails to confirm that the program performs a
permutation of the list (because some elements may be lost).

Additional information about the program can be obtained
by checking for memory-cleanness violations, along the lines
of [10].5 By applying appropriate cleanness-checking formulae
to the 3-valued structures that arise in the analysis of this
program, it is possible to detect that a memory leak occurs at
program point l.

5The method presented in this paper can avoid some of the false
alarms that would be reported by the method described in [10].

/* bubble sort.c */
#include "Bool.h"
#include "list.h"
void bubble sort(L x) {

change = TRUE;
while (change) {

p = NULL;
change = FALSE;
y = x;
yn = y->n;
while (yn != NULL) {

if (y->data > yn->data) {
t = yn->n;
change = TRUE;
y->n = t;
yn->n = y;
if (p == NULL)

x = yn;
else

p->n = yn;
p = yn;
yn = t;

} else {
p = y;
y = yn;
yn = y->n;

}
}

}
}

Figure 15: A correct version of bubble sort.

5 A Prototype Implementation

Section 2 reviewed the method for creating program-analysis
algorithms described in [25, 26]. This approach provides a
parametric framework for program analysis. That is, it pro-
vides a method for generating different program-analysis tools
from high-level, user-supplied descriptions of what is desired.
The ideal is to have a fully automatic method—a yacc for
program analysis, so to speak. A prototype version of such
a system, called TVLA, has recently been implemented in
Java [18, 19]. TVLA mostly spares the user from having to
possess a deep knowledge of program analysis (just as yacc,
by generating a parser from a context-free grammar, spares a
yacc user from having to understand the details of LALR(1)
parsing theory).

The current implementation of TVLA is capable of han-
dling programs that use pointers, including allocation state-
ments, deallocation statements, and destructive updates through
pointers. Casting and pointer arithmetic is not supported.
Currently TVLA supports only intraprocedural analysis.

The analysis described in this paper has been implemented
in TVLA. Because TVLA does not currently support interpro-
cedural analysis, we have conducted “unit tests” by analyzing
one procedure at a time on the relevant input structures. Per-
formance information for the analysis algorithm running on a
Pentium II 400 MHz under Linux with JDK 1.2 is presented
in Table 5.6 (Note that the figure reported for “Number of
Structures” is the total number of structures that were cre-

6Our experience has been that the system runs about 20% faster
using JVM under Windows.

#include "list.h"
L insert sort b1(L x) {
L r, pr, rn, l, pl;
r = x;
pr = NULL;
while (r != NULL) {

l = x;
pl = NULL;
while (l != r) {

if (l->data > r->data) {
pr->n = r->n;
r->n = l;
if (pl == NULL)
x = r;

else
pl->n = r;

r = pr;
break;

}
pl = l;
l = l->n;

}
pr = r;
l: r = r->n; /* creates a leak */

}
return x;

}

Figure 16: An incorrect version of insertion sort, in which a
memory leak occurs at program point l.

Procedure Number of Time
Structures (seconds)

create 9 0.45
insert sort 2963 158.695
merge 1238 74.092
reverse 87 2.266
insert b1 8198 627.309
insert b2 1823 114.474
bubble sort 4350 245.74
bubble sort b 4794 295.338

Table 5: Running time and total number of structures that
arise during analysis for the procedures analyzed.

ated at all program points, not the number of structures kept
at an individual control-flow-graph node.)

We have also used TVLA to implement a version of the
analysis that works on dynamic arrays. This is actually some-
what simpler than what has been described above because
the cyclicity and sharing instrumentation predicates are not
needed.

6 Limitations, Related Work, and Future Di-

rections

So far, the implementation is only able to analyze small pro-
grams in a “friendly” subset of C. We will try to extend it to
a larger subset of C, and to scale it up to programs of realistic
size. One possible way involves first running a cheap and im-
precise pointer-analysis algorithm, such as the flow-insensitive
points-to analysis described in [27], before proceeding to our

quite precise but expensive analysis. We will also look into re-
ducing the storage requirements of our method by representing
the predicate tables with BDDs [2].

Verification systems such as [16] have an advantage over
our method because they compute weakest preconditions. In-
formation is propagated backwards, which may lead to a sig-
nificant storage savings; however, as noted in the Introduction,
verification systems require that loop invariants be supplied by
the user. For erroneous programs, verification systems that
use weakest preconditions can also produce counterexamples,
which provides useful feedback to the programmer. However,
the system in [16] cannot be used to establish the correct-
ness of sorting algorithms, and is significantly slower than
TVLA, even for proving memory-cleanness properties. One
possible explanation is that propagating formulae is more ex-
pensive than propagating structures. It is conceivable that our
method could be combined with demand dataflow analysis to
propagate information backwards; however, the presence of
destructive updates greatly complicates the problem.

Only intraprocedural analysis is currently supported in
TVLA. Therefore, the analysis of a recursive version of quick-
sort is not yet possible.7 An extension to perform interproce-
dural analysis is under development.

In general, our analysis cannot establish liveness proper-
ties, e.g., that the invocation of a function always terminates.
However, in many cases, it is possible to establish the nega-
tion of a liveness property by checking a safety property. For
example, we used our analysis to show that when the change
flag is not set in bubble sort, the program never terminates.
In Section 4, we discussed a more interesting example in which
our analysis detected that a buggy version of bubble sort does
not terminate on a list that contains some elements with equal
values.

Even for safety properties, however, our technique can
sometimes be overly imprecise. For example, the set of in-
strumentation predicates discussed in Section 3 does not al-
low us to conclude that a sorting program is stable, i.e., never
reorders two elements with the same d-field.

Other abstract-interpretation algorithms can also be used
for verification. For instance, in [1], it is shown that intervals
can be used to precisely analyze McCarthy’s “91-function”.
There it is also shown how to propagate information in the
backwards direction. However, intervals do not provide suffi-
cient information to handle dynamically allocated data struc-
tures and destructive updates or even the sortedness proper-
ties of arrays.

Abstract interpretation has also been used for verification
in Cecil/Cesar [23, 24] and FLAVERS [11]. However, the kind
of verification performed in that work is of a different char-
acter from what we have done in the present paper. Both
Cecil/Cesar and FLAVERS address the problem of checking
whether the events in the execution of a program always meet
a specified sequencing constraint. In contrast, the goal of our
work is to verify partial correctness in the sense of Hoare [14].
Because our work addresses the use of dynamically allocated
heap-allocated storage—and hence must characterize an un-
bounded number of storage elements—it concerns a situation

7We have tried running the algorithm on a version of quicksort that
uses an explicit stack, but the algorithm ran out of space. It is possible
that this may be overcome by using extra instrumentation predicates to
track relationships between stack and list elements. Another plausible
approach would be to use an inductive strategy—using an assertion that
a recursive call returns a sorted list. Our emphasis to date has been
on purely automatic analyses, where the only user-supplied assertion
required is one that characterizes the input to the procedure.

that has always been considered quite difficult in the verifica-
tion community [21]. A surprising fact about our work is that
it shows that, in some cases, the problem can be addressed
by means of static program analysis. Our work also addresses
pointer indirections and aliases, which are especially difficult
to handle when heap-allocated elements are considered.

Model checking [5] and program analysis are two different
techniques that can be used to establish safety properties of
programs. In some ways, however, the TVLA system “feels”
very similar to SMV [20]; in both systems, the operational
semantics is specified as a transition relation. On the other
hand, the use of first-order logic in TVLA enables it to han-
dle dynamically allocated objects, which are outside the scope
of current model-checking techniques. Furthermore, the use
of 3-valued logic (and abstraction with respect to a subset of
the unary predicates) allows TVLA to automatically obtain a
transition relation that operates on bounded-size representa-
tions, which ensures that the analysis terminates. However,
because most model-checking techniques are based on propo-
sitional logics and finite automata, many optimization tech-
niques are possible, such as the use of BDDs to represent sets
of propositions.

The original problem that motivated the use of 3-valued
logic for program analysis was shape analysis, where the goal is
to determine, for each program point, a set of “shape descrip-
tors” that characterize the possible shapes of the structures
that could have been constructed using dynamically allocated
storage [25, 26]. In this paper, the machinery for perform-
ing static program analysis via 3-valued logic was applied to
a quite different problem, namely that of characterizing the
intermediate and final states of sorting algorithms.

Our use of shape analysis for verification is different from
the use of shape analysis by Corbett [6].8 Corbett uses the re-
sults of shape analysis to improve the performance of a model
checker for concurrent Java programs. Shape analysis is used
to identify which heap-allocated variables are purely local to
one thread and which shared variables are protected by locks.
This information is used, in turn, to avoid having to explore
all possible interleavings of threads.

The fact that the verification method proposed in this pa-
per is based on the method from [25, 26] for creating program-
analysis algorithms has advantages and disadvantages: Al-
though the developer of a program-analysis algorithm is freed
from the proof obligations normally associated with abstract
interpretation, he is left with the responsibility of showing that
the predicate-update formulae correctly reflect how predicates
are affected by the execution of the various kinds of statements
in the programming language. There are several reasons for
believing that this is much less of a burden than that normally
imposed with standard approaches to abstract interpretation:

• As pointed out in the Introduction, the formulae (and
associated proofs) are actually not for a specific pro-
gram, but for a particular datatype—once designed, they
can be used in proving the correctness of multiple pro-
grams that manipulate data of that type. For instance,
in this paper, we were able to adopt unchanged all of
the predicates used for shape analysis of linked-list pro-
grams [25, 26]. As more experience is gained with this
approach, libraries of predicate-update formulae (with
standard proofs of correctness) will be developed.

• In Section 3.1, we described an approach to creating fam-
ilies of predicate-update formulae in terms of change-

8Corbett uses a version of the shape-analysis algorithm described
in [3].

formulae. Factoring the predicate-update formulae in
this way makes it much easier to provide the necessary
correctness proofs.

• We have some ideas about how to automatically generate
correct predicate-update formulae for the instrumenta-
tion predicates.

References

[1] F. Bourdoncle. Abstract debugging of higher-order im-
perative languages. In SIGPLAN Conf. on Prog. Lang.
Design and Impl., New York, NY, 1993. ACM Press.

[2] R.E. Bryant. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Trans. on Computers, C-
35(6):677–691, August 1986.

[3] D.R. Chase, M. Wegman, and F. Zadeck. Analysis of
pointers and structures. In SIGPLAN Conf. on Prog.
Lang. Design and Impl., pages 296–310, New York, NY,
1990. ACM Press.

[4] T.E. Cheatham, Jr., G.H. Holloway, and J.A. Townley.
Symbolic evaluation and the analysis of programs. IEEE
Trans. on Softw. Eng., 5(4):402–417, 1979.

[5] E.M. Clarke, Jr., O. Grumberg, and D.A. Peled. Model
Checking. The M.I.T. Press, 1999.

[6] J.C. Corbett. Using shape analysis to reduce finite-state
models of concurrent Java programs. Trans. on Softw.
Eng. and Method., 9(1):51–93, 2000.

[7] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Symp. on Princ. of Prog. Lang.,
pages 269–282, New York, NY, 1979. ACM Press.

[8] L.P. Deutsch. An Interactive Program Verifier. PhD the-
sis, Univ. of California, Berkeley, CA, 1973.

[9] E.W. Dijkstra. A Discipline of Programming. Prentice-
Hall, 1976.

[10] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in
linked lists. In Static Analysis Symp., 2000.

[11] M.B. Dwyer and L.A. Clarke. Data flow analysis for ver-
ifying properties of concurrent programs. In Proc. of the
2nd ACM SIGSOFT Symp. on the Found. of Softw. Eng.,
pages 62–75, New York, NY, 1994. ACM Press.

[12] W. Gillett. Iterative Global Flow Techniques for Detecting
Program Anomalies. PhD thesis, Univ. of Illinois, 1977.

[13] D. Gries. The Science of Programming. Springer-Verlag,
1981.

[14] C.A.R. Hoare. An axiomatic basis for computer pro-
gramming. Commun. ACM, 12(10):576–580, 583, Octo-
ber 1969.

[15] C.A.R. Hoare. Recursive data structures. Int. J. of Comp.
and Inf. Sci., 4(2):105–132, 1975.

[16] J.L. Jensen, M.E. Joergensen, N.Klarlund, and M.I.
Schwartzbach. Automatic verification of pointer pro-
grams using monadic second-order logic. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., 1997.

[17] J.C. King. A Program Verifier. PhD thesis, Carnegie-
Mellon Univ., Pittsburgh, PA, 1969.

[18] T. Lev-Ami. TVLA: A framework for Kleene based
static analysis. Master’s thesis, Tel-Aviv University, 2000.
Available at http://www.math.tau.ac.il/∼tla.

[19] T. Lev-Ami and M. Sagiv. TVLA: A system for imple-
menting static analyses. In Static Analysis Symp., 2000.

[20] K. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[21] J.M. Morris. Assignment and linked data structures. In
M. Broy and G. Schmidt, editors, Theoretical Founda-
tions of Programming Methodology, pages 35–41. D. Rei-
del Publishing Co., Boston, MA, 1982.

[22] G.J. Myers. The Art of Software Testing. John Wiley
and Sons, 1978.

[23] K.M. Olender and L.J. Osterweil. Cecil: A sequencing
constraint language for automatic static analysis genera-
tion. IEEE Trans. on Softw. Eng., 16(3):268–280, 1990.

[24] K.M. Olender and L.J. Osterweil. Interprocedural static
analysis of sequencing constraints. Trans. on Softw. Eng.
and Method., 1(1):21–52, January 1992.

[25] M. Sagiv, T. Reps, and R. Wilhelm. Parametric
shape analysis via 3-valued logic. Tech. Rep. TR-
1383, Comp. Sci. Dept., Univ. of Wisconsin, Madison,
WI, August 1998. (Revised March 2000.) Available at
“http://www.cs.wisc.edu/wpis/papers/parametric.ps”.

[26] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In Symp. on Princ. of Prog.
Lang., 1999.

[27] B. Steensgaard. Points-to analysis in almost-linear time.
In Symp. on Princ. of Prog. Lang., pages 32–41, 1996.

[28] N. Suzuki and K. Ishihata. Implementation of array
bound checker. In Symp. on Princ. of Prog. Lang., pages
132–143, New York, NY, 1977. ACM Press.

[29] M. Tamir. ADI: Automatic derivation of invariants. IEEE
Trans. on Softw. Eng., 6(1):40–48, 1990.

[30] B. Wegbreit. The synthesis of loop predicates. Commun.
ACM, 17(2):102–112, 1974.

A Auxiliary Procedures Analyzed

Procedures reverse, create, and merge are given in Fig-
ures 17, 18, and 19, respectively.

#include "list.h"
List reverse(List x) {

List y, t;
y = NULL;
while (x != NULL) {

t = y;
y = x;
x = x->n;
y->n = t;

}
t = NULL;
return y;

}

Figure 17: A C procedure that reverses a list (using destructive
updating).

#include "list.h"
L create() {

int i, rand(void);
L temp, r;
char *malloc(int);
i = rand();
r = NULL;
while (i>0) {

temp = (L)malloc(sizeof(struct node));
temp->d = rand();
temp->n = r;
r = temp;
i--;

}
return r;

}

Figure 18: A C procedure that creates a random list of positive
integers.

#include "list.h"
L merge(L p, L q) {

L head list, tail list;
if (p==NULL) return q;
if (q==NULL) return p;
if (p->d < q->d) {
head list = p;
p = p->n;

} else {
head list = q;
q = q->n;

}
tail list = head list;
while ((p!=NULL) && (q!=NULL)) {

if (p->d < q->d) {
tail list->n = p;
p = p->n;

} else {
tail list->n = q;
q = q->n;

}
tail list = tail list->n;

}
if (p!=NULL)
tail list->n = p;

else if (q!=NULL)
tail list->n = q;

return head list;
}

Figure 19: A C procedure that merges two sorted lists.

