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Abstract

We present a new technique for removing unnecessary syn-
chronization operations from statically compiled Java pro-
grams. Our approach improves upon current e�orts based
on escape analysis, as it can eliminate synchronization oper-
ations even on objects that escape their allocating threads.
It makes use of a compact, equivalence-class-based repre-
sentation that eliminates the need for �xed point operations
during the analysis.

We describe and evaluate the performance of an im-
plementation in the Marmot native Java compiler. For
the benchmark programs examined, the optimization re-
moves 100% of the dynamic synchronization operations in
single-threaded programs, and 0-99% in multi-threaded pro-
grams, at a low cost in additional compilation time and code
growth.

1 Introduction

The JavaTM programming language [GJS96] provides syn-
chronization constructs (synchronized methods and blocks)
to permit safe use of concurrently-accessed data structures.
These constructs are used pervasively in both the standard
libraries and the runtime system. In many cases, a large
number of these operations may be safely removed without
compromising program semantics, thus improving perfor-
mance. Removing these operations manually may be incon-
venient, error-prone or even impossible.1

A dynamic synchronization operation in thread T on an
object O is eliminable whenever no other thread T 0 attempts
to synchronize O during the execution of the guarded code.
Algorithms for automatic, static elimination of synchroniza-
tion operations prove conservative approximations of this
condition. Existing work falls broadly into two categories.
One approach [BS96, FKR+00] proves that the program
spawns no threads, making contention impossible and all

1Most Java-to-bytecode translators implement the string concate-
nation primitive '+' via a call to a synchronized library method. Short
of reimplementing strings, users cannot avoid this behavior.
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synchronization operations removable. This is both fast and
e�ective, but has the disadvantages of having no e�ect on
multithreaded programs and being unsound in the presence
of noti�cation operations.2

The second approach [ACSE99, Bla99, BH99, CGS+99,
WR99] proves that the object O cannot escape its creating
thread, and thus cannot be subject to contention. This ap-
proach fares poorly on programs (even single-threaded ones)
where synchronized data structures are stored in static vari-
ables; the median synchronization removal ratio for single-
threaded programs in existing systems is below 55%. The
compile-time costs of escape analysis can also be problem-
atic: context-sensitive dependence-graph-based implemen-
tations such as [WR99] can take an hour or more to opti-
mize programs of 104 statements [Rin99]. Some approaches
improve performance at the cost of precision: [BH99] is
context-insensitive and models only a single level of �eld
dereferences, while [Bla99] blurs distinctions between sib-
ling �elds. [ACSE99] supplements escape analysis by elim-
inating synchronization operations that are always guarded
by other synchronization operations. This promising ex-
tension is limited by cost/precision issues in an underlying
pointer analysis, which does not scale up to programs such
as javacup or javac. In general, it is diÆcult to assess
the compile-time costs of escape-analysis-based implemen-
tations as only [Bla99] discloses analysis times.

We present a simple yet e�ective extension to the es-
cape analysis approach, along with a high performance im-
plementation technique. Our optimization achieves a su-
perior degree of synchronization removal at a low cost in
optimization time. It handles both synchronized methods
and blocks, and preserves the Java synchronization, mem-
ory, and noti�cation semantics. The distinguishing features
of our approach are:

� Explicit modeling of inter-thread object 
ow.
Instead of preserving all synchronization on escaping
objects, our optimization �nds cases where an object
is synchronized only by a single thread (not necessar-
ily its creating thread) during program execution, and
eliminates synchronization for this case. This addi-
tional precision signi�cantly improves the optimization
in some cases, yet is obtained at little additional cost.

2Removing synchronization guarding a wait, notify, or
notifyAll may cause the optimized program to throw a
IllegalMonitorStateException not thrown in the original pro-
gram. Such operations make little sense in single-threaded code,
but may be present in code fragments or libraries also intended for
multi-threaded use.
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� An equivalence class based representation with
polymorphic summaries. Our optimization models
aliasing in a 
ow-insensitive manner by grouping poten-
tially aliased expressions into equivalence classes, and
models synchronization behavior as attributes of these
equivalence classes. The representation is constructed
in a single pass without �xed point operations, and en-
ables context-sensitive analysis and specialization via
a simple mapping function. It is suÆciently compact
that large programs (105 statements) can be optimized
without depth limiting or other explicit abstraction of
nonrecursive �eld access paths.

This paper describes our optimization and evaluates its
utility on both single- and multi-threaded programs, as well
as its costs in terms of compilation time and code expansion.

2 Overview and motivation

2.1 Explicit thread modeling

In contrast with escape based techniques, which preserve
synchronization on objects reachable from global state (and
thus visible to multiple threads), our goal is to preserve
synchronization only on objects potentially synchronized by
more than one thread instance during program execution.

This relatively coarse abstraction of the problem yields
bene�ts in several cases. It allows for the removal of global
synchronization in singly-executing threads, which can arise
when \helper" threads (e.g., asynchronous I/O, user inter-
face code, or watchdog timers) are added to an otherwise
single-threaded program having static instances of thread-
safe data structures. Another common case involves library
abstractions that safely share internal data structures (e.g.,
bu�er pools or graphics resources) via a static lock object,
but are then used only by a single thread. In the important
degenerate case of purely single-threaded programs, this ab-
straction renders all synchronization operations removable.

Making this �ner distinction requires two extensions to
escape analysis. First, it is necessary to track value 
ow
through global state, rather than merely marking globally-
reachable values as \escaped." In other words, an alias anal-
ysis, rather than an escape analysis, is required. This is a
simple extension, since escape analyses already model com-
plex value 
ow, including aliasing, for local state. Second,
the analysis must be able to identify the thread instances
in which particular escaping values are synchronized. In
our implementation, this is accomplished via a straightfor-
ward call-closure analysis that bounds the code executed by
thread instances.

A primary limitation of this approach is that it only
proves properties that hold for an object's entire lifetime.
Thus, it fails to recognize cases where contention is limited
to particular program scopes (e.g., fork-join parallelism) or
lock scopes (e.g., enclosing synchronization).

2.2 Equivalence class based representation

Like many other systems [Bla99, CGS+99, CmH00, WR99],
our optimization achieves context sensitivity by construct-
ing reusable, polymorphic method summaries that can be
independently applied at multiple call sites. In most exist-
ing work, aliasing is modeled via directed dependence arcs
encoding \points-to" relationships, while escape properties

are formulated as reachability queries over the resulting de-
pendence graphs.

In an e�ort to minimize analysis time and space usage,
our optimization relies on an equivalence based representa-
tion, in which potentially aliased values are forced to share
common representative nodes. This choice enables single
pass 
ow-insensitive analysis of any unit of code without
the need for iteration to model 
ow across back arcs (e.g.,
loops and recursion) in the program's 
ow graph.

The convenience and eÆciency of this representation
come at a cost in precision. Within methods, the direction-
ality of 
ow is lost, resulting in false aliasing between multi-
ple values assigned into a single variable or �eld. A similar
problem arises with recursion, where we give up context sen-
sitivity within a recursive component to avoid iterating the
analysis.

3 Algorithm

3.1 Preliminaries

The algorithm is implemented in the Marmot native com-
pilation system for Java [FKR+00]. Marmot implements
most Java 1.1 semantics and libraries, but does not support
dynamic loading and limits the use of re
ection. The result-
ing \closed-world" assumption enables a number of whole-
program analyses, including the construction of a static call
graph (using Rapid Type Analysis [BS96] and intraprocedu-
ral type propagation) used by our optimization.

For purposes of this exposition, the Marmot intermedi-
ate representation can be viewed as a statically-typed three-
address format with local variables in static single assign-
ment (SSA) form [CFRW91]. Control operations other than
return and throw are irrelevant as the analysis is 
ow insen-
sitive. Both synchronized blocks and methods are imple-
mented with explicit monitorEnter and monitorExit prim-
itives.

3.2 Phase 1: Computing thread properties

The �rst optimization phase identi�es thread allocation sites
(including those in library code, plus an arti�cial site for the
main thread) and computes two attributes for each site:

� the set of methods potentially executed by the thread
being allocated, and

� whether the allocation site (and thus the thread(s) it
allocates) can be executed more than once at runtime.

At each thread allocation site, the corresponding run
method(s) are derived from the thread's type and class hi-
erarchy information. In the special case of a site t = new
Thread(r), where r is an instance of Runnable, we com-
pute r's type via intraprocedural type propagation. In many
cases, r is allocated in the current method, enabling r.run
to be precisely identi�ed. A call graph closure analysis �nds
all methods reachable from the run method(s) and and as-
sociates them with the allocation site.

A thread allocation site is marked as multiply executed
if it is in a loop, is reachable from a non-class-initialization
method having multiple or multiply-executed call sites, or
is reachable from a run method associated with a multiply
executed thread allocation site. An annotation mechanism
allows sites to be declared as singly-executed; we use this in
library code for sites that allocate multiple threads known
not to be simultaneously live.

209



3.3 Phase 2: Building method summaries

The second optimization phase computes

� for each global value (reference constant or static �eld)
and its (transitive) �elds and array elements, the set
of allocation sites of threads potentially synchronizing
the value, and

� for each method, the alias and synchronization e�ects
of the method and its (transitive) callees.

Alias sets The optimization represents runtime values
with instances of the alias set data structure:

aliasSet ::= ? j
h�eldMap; synchronized ; syncThreads ; globali.

The ? case indicates a nonreference value, while the tuple
case describes a reference value. The tuple elements de�ne
properties of the value:

� �eldMap. A mapping from fully quali�ed instance �eld
names to alias sets for the corresponding �eld values;
the distinguished �eldname $ELT denotes the contents
of an array object.

� synchronized. A boolean, true if the value may be the
target of a synchronization operation.

� syncThreads. For escaping values, a set of thread allo-
cation sites representing the thread instances that may
synchronize the value.

� global. A boolean, true if the value can be reached from
a reference constant or static �eld (i.e., it escapes). If
true, all alias sets reachable via �eldMapmust also have
global=true. This ensures that referents of an escaping
object also escape.

Alias sets support a uni�cation operation that merges two
alias sets in place via a union-�nd data structure [ASU86].
The resulting alias set's attributes are the join of the input
attributes under the function, boolean, set, and boolean lat-
tices, respectively. In addition, joining the �eld maps causes
alias sets corresponding to �eldnames present in the domains
of both maps to be uni�ed. The uni�er is also responsible
for noticing when a potentially synchronized value escapes.
Thus, unifying a global alias set with a non-global, synchro-
nized alias set causes the syncThreads attribute of the result
to be augmented with the set of thread allocation sites as-
sociated with the current method.3

Another operation, new instance creation, allows the ab-
straction of the aliasing and synchronization properties of
an alias set. New instance creation returns an alias set iso-
morphic to an existing one, in which only global alias sets
are shared between the old and new instances.

Alias contexts The alias context data structure models
the aliasing and synchronization behavior of parameter, nor-
mal result, and exception result values transmitted between
call sites and methods. It is a tuple

aliasContext ::= hhf0; :::; fni; r; ei
3In e�ect, the optimization records the fact that a thread executes

a synchronization operation on a value V at the point where V es-
capes, not at the point where V is synchronized. Doing so improves
precision because V may not escape all threads that synchronize it.

where fi, r, and e are alias sets corresponding to the param-
eter, return, and exception values. Alias contexts are used
to represent the information both for methods (in which case
the fi represent formal values received from the caller, and
r and e represent values returned to the caller) and for call
sites (in which case the fi represent actual values transmit-
ted to the callee, and r and e represent values returned by
the callee). We call the former use a method context and the
latter a site context.

Like alias sets, alias contexts support uni�cation and new
instance creation. Uni�cation is the pointwise extension of
alias set uni�cation to tuples. The alias context returned
by new instance creation preserves (recursively) all relation-
ships between the original fi, r, and e.

3.3.1 Interprocedural analysis

The interprocedural analysis associates each global value
with an alias set and each method with a method context.
It begins by binding each static �eld and object constant
(e.g., string literal or statically allocated array) to a new
alias set with global=true. It also constructs initial alias
sets for compiler-generated runtime data structures whose
initialization is not explicit in the intermediate code (e.g.,
class objects, interning and re
ection tables, etc).

The analysis then partitions the static call graph into
strongly connected components (SCCs) and traverses them
in bottom-up topological order. Processing an SCC consists
of creating an initial method context object for each method
in the SCC, then applying the intraprocedural analysis to
each of the SCC's methods individually.

3.3.2 Intraprocedural analysis

The intraprocedural analysis ensures that any aliasing or
synchronization by the method and its callees is appropri-
ately represented in the method's context and in global alias
sets. It begins by associating each formal parameter variable
with the corresponding formal alias set from the method
context. It then walks the method's statements, unifying
alias sets using the rules in Figure 1. Because local vari-
ables obey SSA invariants, our implementation saves time
and space by binding locals to new alias sets lazily upon use,
and implements assignments to unbound locals by updating
the binding table instead of performing uni�cation.

Only statements that modify reference variables or val-
ues are processed. Primitive operations that induce aliasing
cause the alias sets of potentially aliased expressions to be
uni�ed. For example, the assignment x.f = y (where x and
y are local variables) causes the analysis to unify y's alias
set with the alias set returned by x:�eldmap(f), where x is
the alias set for x. Similarly, analyzing throw z uni�es z's
alias set with those of all relevant handlers (including the
returned-exception value e of the method context if z could
be uncaught by the method).4

The synchronization operations monitorEnter and
monitorExit set the synchronized property of their argu-
ment alias set. In addition, if the argument alias set is global,
all thread allocation sites reaching the current method are
added to the argument alias set's syncThreads property.

At method invocations, the analysis constructs a site
context S whose formal, return, and exception alias sets

4We can safely ignore implicit exceptions from primitives, as these
are always newly constructed, unaliased objects without reference
�elds.
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Domains

v 2 V local variables
g 2 G global values (constants, static �elds)
f 2 F �eld names

a; r; e 2 A alias sets
mc; sc 2 C method, site contexts
m; p 2M methods

s 2 S thread creation sites
t 2 T types

Analysis State

GAS : G! A alias set lookup for globals
AS : V ! A alias set lookup for locals

MC : M ! C method context lookup
CALLEES : M � V ! 2M method target lookup

SCC : M ! 2M SCC lookup
TC : M ! 2S thread creation site lookup

Analysis Rules

statement action

v0 = v1
v0 = (t)v1

unify(AS(v0);AS(v1))

v = g
g = v

unify(AS(v);GAS(g))

v0 = v1:f
v1:f = v0

unify(AS(v0);AS(v1):�eldmap(f))

v0 = v1[]
v1[] = v0

unify(AS(v0);AS(v1):�eldmap($ELT))

v = �(v0; :::; vn) 8vi unify(AS(v);AS(vi))

v = new T no action

return v unify(AS(v); r)

throw v unify(AS(v); e)

monitorEnter v
monitorExit v

AS(v):synchronized = true
if AS(v):global

AS(v):syncThreads =
AS(v):syncThreads [ TC (m)

v = p(v0; :::; vn) let sc = hhAS(v0); :::;AS(vn)i; AS(v); ei
8pi 2 CALLEES(p; v0)
let mc = MC (pi)

if SCC (m) 6= SCC (pi)
let mc0 = newInstance(mc)

unify(sc;mc0)
else

unify(sc;mc)

Figure 1: Intraprocedural analysis rules for relevant state-
ment types. The rules assume that the statements be-
ing analyzed belong to a method m with method context
hha0; :::; ani; r; ei, where the AS relation maps formal vari-
ables to the corresponding ai. This description slightly over-
simpli�es the handling of exceptions and assignments to lo-
cals (see text).

correspond to the actual, result, and relevant exception alias
sets at the call site. It then iterates over the methods in-
voked by the call site, performing one of the following two
operations:

1. Nonrecursive target. The analysis computes a new in-
stance M 0 of the method context M and uni�es it with
the site context S.5 This has the combined e�ect of
(1) re
ecting callee-side aliases to the call site, and (2)
propagating callee-side properties to the call site. Cre-
ating a new instance each time a method is applied
prevents the accumulation of call-site-speci�c informa-
tion in the method context, allowing context-sensitive
analysis.

2. Recursive target. In this case, the analysis uni�es the
method contextM and site context S. While this intro-
duces context insensitivity at recursive call sites, it has
a large performance bene�t in that the analysis does
not need to iterate over the entire SCC until a �xed
point is reached.6

After a method has been analyzed, the analysis drops the
reference to the local variable mapping, allowing all alias sets
not escaping the method's stack frame to be reclaimed. Sub-
sequent phases requiring information about local variables
reconstitute it by reexecuting the intraprocedural analysis.7

3.3.3 Example

Figure 2 shows part of a toy vector class and three of
its clients immediately prior to synchronization optimiza-
tion. We use a Java-like syntax for the intermediate
code, in which virtual calls have been statically bound,
and each statement executes a single operation. In addi-
tion, explicit monitorEnter, monitorExit, and catch op-
erations are used to implement the synchronized method
SimpleVector.elementAt and the synchronized block en-
circling the ellipsis in method test3. The results of the �rst
analysis phase are shown as comments: we will assume that
both T1 and T2 represent single-instance thread allocation
sites.

The second phase begins by assigning a new alias
set �0 = hfg; false; fg; truei to the static variable
SimpleVector.v, and computes the bottom-up schedule
<init>, elementAt, test0, test1, test2. The method con-
text constructed for <init> is hh�1i;?; �3i, where �1 =
hfelements ! �2g; false; fg; falsei and �2 and �3 have de-
fault attributes (hfg; false; fg; falsei). This context indi-
cates that the formal parameter may have a �eld elements

described by �2, and there is no return value. Neither the
formal, any value reachable from it, nor any thrown excep-
tion can be synchronized by <init>.

5Our implementation folds these operations into a single, parallel
traversal of M and S.

6Given the relative imprecision of the RTA based call graph, SCCs
can sometimes be quite large (e.g., most toString methods end up
in a single SCC). Iteration is further complicated by the size of the
alias context data structures, and because convergence is not guar-
anteed (e.g., the \add to head of linked list" method will grow its
list argument on each iteration). We experimented with an adap-
tive, iteration-based scheme that could degenerate into the direct-
uni�cation scheme described above. In most cases, the space bounds
were violated before convergence was achieved, so little to no addi-
tional precision was obtained.

7Because all callee method contexts, even for recursive callees, are
complete at reconstitution time, the nonrecursive strategy (item 1
above) is always used.
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class SimpleVector f
Object[] elements;
static SimpleVector v;

/* invoked by T1, T2 */
static void <init>(SimpleVector this1) f

Object[] temp = new Object[10];
this1.elements = temp;

g

/* invoked by T1, T2 */
static Object elementAt(SimpleVector this2,

int index) f
monitorEnter(this2)
try f
Object[] elts = this2.elements;
Object elt = elts[index];
monitorExit(this2);
return elt;

g
catch (Throwable t) f
monitorExit(this2);
throw t;

g
g

g

/* invoked by T1 */
static void test1() f
SimpleVector v1 = new SimpleVector;
SimpleVector.<init>(v1);
Object o1 = SimpleVector.elementAt(v1, 0);

g

/* invoked by T1 */
static void test2() f
SimpleVector v2 = new SimpleVector;
SimpleVector.<init>(v2);
Object o2 = SimpleVector.elementAt(v2, 0);
SimpleVector.v = v2;

g

/* invoked by T2 */
static void test3() f
SimpleVector v3 = SimpleVector.v;
Object o3 = SimpleVector.elementAt(v3, 0);
monitorEnter(o3);
try f

...
monitorExit(o3);
return;

g
catch (Throwable t) f

monitorExit(o3);
throw t;

g
g

Figure 2: Example program fragments

The method context for elementAt is hh�4;?i; �6; �7i,
where �4 = hfelements ! �5g; true ; fg; falsei, �5 =
hf$ELT ! �6g; false; fg; falsei, and �6 and �7 have default
attributes. In this case, the �rst parameter may be syn-

chronized, and the contents of its elements array may be
returned.

The intraprocedural analysis on test1 �nds that the
value of variable v1 may be synchronized, but does
not escape either into either test1's method context
or a global alias set. Analyzing the �rst three state-
ments of test2 yield a similar con�guration of locals,
with v2 bound to �8 = hfelements ! �9g; true ; fg; falsei,
�9 = hf$ELT ! �10g; false; fg; falsei, and o2 bound to
�10, where �10 has default attributes. The assignment
SimpleVector.v = v2 uni�es �8 with �0, producing (due
to the uni�cation of global and a nonglobal alias sets) the
alias set �0 = �8 = hfelements ! �9g; true ; fT1g; truei
where �9 = hf$ELT ! �10g; false; fg; truei and �10 =
hfg; false; fg; truei. At this point, we know that v and v2
may be aliases holding a value that escapes and is synchro-
nized by a thread allocated at site T1, and that the value in
o2 escapes but is not synchronized.

The analysis of test3 binds v3 to �0. The applica-
tion of elementAt marks �0 as synchronized under the
thread allocated at T2 and binds the variable o3 to �10.
The synchronization of o3 causes �10 to be marked as
synchronized, but only by T2. At the end of phase 2,
the method contexts for <init> and elementAt are as
given above, while the alias set for SimpleVector.v, v2,
and v3 is �0 = hfelements ! �9g; true ; fT1; T2g; truei,
where �9 = hf$ELT ! �10g; false; fg; truei, and
�10 = hfg; true; fT2g; truei.

3.4 Phase 3: Specialization and transformation

The third optimization phase propagates synchronization in-
formation from call sites to callees, and uses this information
to remove or simplify synchronization operations in callees.
It also constructs specialized versions of methods where dif-
ferent call sites allow distinct simpli�cations.

3.4.1 Interprocedural analysis

The interprocedural analysis processes SCCs in a top-down
topological order while maintaining per-SCC queues of spe-
cialization requests (in the form of hmethod ;methodContext i
pairs). The analysis iteratively executes the intraprocedu-
ral analysis over all specialization requests for methods in a
given SCC until all have been satis�ed.

3.4.2 Intraprocedural analysis

The intraprocedural analysis both optimizes the method
body (removing or simplifying synchronization operations
and redirecting calls to specialized targets) and requests
the creation of specialized method bodies. Given a
hmethod ;methodContext i pair, the analysis begins by exe-
cuting the intraprocedural analysis of Section 3.3.2, associ-
ating each local variable with an alias set. It then walks the
method's statements, rewriting synchronization operations
and calls as follows.

� Synchronization operations. An alias set is said
to be contention free if its syncThreads set is empty
or contains a single thread allocation site that exe-
cutes at most once. Given a statement of the form
monitorEnter(o) or monitorExit(o), where o has
alias set o, the analysis checks to see if o is contention
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free. If so, it removes the statement and, if the pro-
gram is multi-threaded (i.e., the analysis found a non-
arti�cial thread allocation site), inserts a memory bar-
rier primitive so that later optimizations will obey the
Java memory semantics at this point.

� Call sites. Given a call statement, the analysis con-
structs a site summary S from the actual, return, and
reachable exception handler alias sets. For each target
method with method context M , it constructs a new
instance M 0 of M and then walks M 0 and S in par-
allel; for each alias set m0 in M 0 that is synchronized,
the syncThreadSet attribute of the corresponding alias
set s is added to the syncThreadSet attribute of m0.8

The updated M 0 is then compared with both M and
the method contexts of all existing or pending special-
izations of the target method, under the condition that
two alias sets match if their contention free status is the
same. If no match is found, the method is cloned and
a request to specialize the cloned method on M 0 is en-
queued. If M 0 does not match M , the call is rewritten
to invoke the appropriate specialized method.9

Marmot's intermediate representation is constructed
from the Java bytecode, which uses explicit synchroniza-
tion operations to implement synchronized blocks. Because
bytecode veri�cation does not prove any invariants about
the use of these operations, it is up to the optimizer to �nd
correlated groups of monitorEnter and monitorExit opera-
tions to remove.

Enter/exit correspondences that do not span method
boundaries are easily handled by our optimization. Within
a method, all potentially aliased objects have identical sync-
Threads attributes, ensuring that all synchronization opera-
tions on a particular object will be preserved or eliminated
as a whole. All of our benchmarks (and, presumably, all
bytecode generated by reasonable Java front ends) have only
intra-method enter/exit correspondences.

Correspondences that span multiple procedures are more
diÆcult, as removing or preserving a synchronization op-
eration in one method may require the removal or preser-
vation of one or more corresponding operations in an-
other method. Our specialization strategy handles this by
aggressively specializing callees with respect to the con-
tention status of values at call sites, ensuring that caller
and (specialized) callee methods will always agree on the re-
moval/preservation choice for any given runtime value. Less
aggressive specialization strategies (in which contexts induc-
ing di�ering contention properties can share a common spe-
cialization) must place additional restrictions on synchro-
nization removal.

8There is no need to transfer aliasing information from caller
to callee, (e.g., by unifying site and method contexts) since all
potentially-aliased caller-side expressions will have identical alias sets.

9Indirect calls require additional e�ort, as the call must invoke the
specialized clone only for a subset of the receiver objects arriving at
runtime. To handle this, new selectors (method names) are intro-
duced at the appropriate points in the class hierarchy; these tail-call
the appropriate clones with identical arguments. Such \trampolines"
allow specializations to be shared at the cost of additional direct call
operations. This overhead is later eliminated by the Marmot code
generator, which \inlines" the tail calls into the dispatch tables and
removes the trampoline method bodies.

3.4.3 Example

We continue the example of Section 3.3.3 into the �nal trans-
formation of the optimization. This phase makes no changes
to test1, as the syncThreads attribute of v1's alias set (and
its elements) matches that of this1 and this2's alias sets.
The same is true for the invocation of <init> in test2. Since
the syncThreads attribute of v2's alias set denotes multiple
threads and the corresponding alias set in elementAt's con-
text does not, test2's call to elementAt is rebound to a
clone, elementAt2, with context hh�11;?i; �13; �14i, where
�11 = hfelements ! �12g; true ; fT1; T2g; falsei, �12 =
hf$ELT ! �13g; false; fg; falsei, and �13 and �14 have de-
fault attributes. In other words, elementAt2 is a specializa-
tion of elementAt that preserves synchronization behavior
on the formal parameter this2.

The call to elementAt in test3 is also retargeted to
elementAt2. Local o3 is found to have the alias set �10 =
hfg; true ; fT2g; truei, which is synchronized, but only by a
singleton thread. This means that all three synchroniza-
tion operations on o3 are eliminable, so they are replaced
by memory barrier primitives.

The <init> method is not processed because it has nei-
ther synchronization operations nor callees. Processing of
elementAt �nds that this2 cannot be synchronized (recall
that both invocations that passed synchronized arguments
were redirected to elementAt2), and successfully replaces
the synchronization operations on this2 with barriers. The
alias set �11 in the context for elementAt2 is synchronized
by two threads, causing all three synchronization operations
to be preserved.

3.5 Other issues

3.5.1 Complexity

The worst-case time/space complexity of the optimization
is at least exponential in program size. A method m1 re-
turning a new pair, both of whose arms point to the meth-
ods's argument, will have a return alias set with �eld map
fleft ! �; right ! �g where � is the formal alias set. A
method m2 containing a cascade of k calls to m1 can con-
struct a formal alias set with a �eld map of size 2k.

That said, few programs construct large recursive data
structures without the use of iteration or recursion. Given
that the analysis does not explore recursive paths in con-
trol 
ow graphs or the call graph, exponential cascades of
the sort described above are rare. The method-local na-
ture of many objects also limits duplication, as such objects
do not contribute to method summaries. In practice, opti-
mization costs are greater than linear in program size but
remain manageable (> 7500 stmts/sec) even for our largest
benchmarks.

3.5.2 Event noti�cation operations

The Java threading model supports event noti�cation via
the Object.wait, Object.notify, and Object.notifyAll
methods, all of which require that their this argument be
locked (otherwise an exception is thrown). Preserving this
behavior in the face of synchronization elimination requires
some additional e�ort.

When a noti�cation method is invoked on an object, a
boolean noti�ed attribute in the object's alias set is set to
true. When the analysis �nds an otherwise removable syn-
chronization operation whose alias set has noti�ed=true, it
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replaces the operation with a specialized version that per-
forms enough bookkeeping to satisfy the noti�cation meth-
ods, without actually performing any machine-level synchro-
nization operations.10

3.5.3 Object cloning

The method Java.lang.Object.clone returns a new object
whose reference �elds are aliased to the corresponding �elds
in the original. Representing this using the scheme described
above is diÆcult because the analysis may add �elds to the
argument object long after the application of clone has been
processed. Explicitly constructing aliases for all possible
�elds would be impractical.

Instead, we move the �eldMap attribute of the alias set
data structure into a separate contents object that supports
uni�cation and new instance creation. Field and array ele-
ment operations on alias sets are delegated to the contents
object, while unify/new instance operations are performed
recursively on the contents object. The Object.clone

method can then be given a special method context in which
the contents objects of the argument and return values are
aliased, but the values themselves are not. This avoids false
aliasing of the base and clone objects, but is still imprecise
on �eld values that are immediately, strongly updated by a
subclass's clone method.

3.5.4 Indirect synchronization removal

For a restricted case, our optimization is able to remove
synchronization operations on objects subject to contention
by multiple threads. In the Marmot runtime, an object's
lock and hashcode data are stored in a corresponding, dy-
namically created extension object. The object extension
operation must synchronize on a global lock, rather than on
the object being extended, as the object's lock is not yet
created.

The analysis described above does not eliminate exten-
sion synchronization in multithreaded programs because the
object being synchronized (the global lock) is indeed syn-
chronized by multiple threads. We extend the analysis by
adding the alias set attributes extended and extThreads,
which mirror synchronized and syncThreads, but track ex-
tension events rather than synchronization events. Exten-
sion operations on objects with contention-free extThreads
sets are redirected to a version that does not perform syn-
chronization.

3.5.5 Single-threaded programs

The thread-allocation-site analysis described in Section 3.2
declares a program single-threaded when it is unable to lo-
cate any thread construction sites other than that for the
main thread. This knowledge allows our algorithm to avoid
the insertion of memory barrier operations. It also en-
ables the use of a garbage collector and runtime system
customized for the single-threaded case.

3.5.6 Performance improvements

We lower the optimization's compile time costs by avoid-
ing work that cannot enable the removal of synchronization

10The Jalapeno system [CGS+99] performs a similar optimization
dynamically by predicating machine-level synchronization primitives
on a bit in the lock object.

// a. original implementation
void f(Object obj) f

if (obj == null) f
obj = hdefaulti;

g
...

g

// b. modified implementation
void f(Object obj2) f

if (obj2 == null) f
f2(hdefaulti);

g else f
f2(obj2);

g
g

void f2(obj) f
...

g

Figure 3: Rewriting a method to avoid aliasing the param-
eter obj with the global-valued expression hdefaulti.

operations. During the second phase, we identify methods
that cannot (transitively) execute synchronization opera-
tions. Such methods will never require removal of synchro-
nization operations or retargeting of call sites, and thus can
be ignored in the transformation phase. This optimization
reduces costs by as much as 50%.

Another optimization lowers memory usage and reduces
uni�cation, comparison, and new instance costs by com-
pressing method contexts. An alias set can be removed from
a context if (1) it is not synchronized, (2) it is not global, (3)
it only appears once in the context, and (4) all of its �elds
are removable. Restrictions (2) and (3) ensure that aliases
are propagated from callees to callers. While the additional
context traversal required by compression can increase costs
on our smaller benchmarks, it reduces optimization times
by as much as 30% on larger ones.

3.5.7 Avoiding false aliasing

Figure 3(a) shows source code for a common Java idiom in
which a null formal parameter value is replaced with a de-
fault value prior to the execution of a method body. Our op-
timization assigns a common alias set to the variable obj and
the expression hdefaulti. If hdefaulti denotes a global value,
the method signature for f will be marked as global. Since
globals are modeled monomorphically, the alias sets of the
actual parameters at all of f's call sites will be uni�ed even
though f induces no callee-side aliasing. In this case, the
(otherwise convenient) bidirectional nature of uni�cation-
based 
ow is problematic.

If the identity of the default value doesn't matter, the
programmer can avoid this problem by constructing new
default values (e.g., via new or cloning) as necessary. If iden-
tity does matter, or construction is too expensive, one can
use the strategy of Figure 3(b). Binding obj via parame-
ter passing instead of assignment keeps hdefaulti's alias set
out of the contexts of both f and f2, avoiding undesirable
aliasing at call sites invoking f. For the dual case in which a
global value is returned, only the new/clone approach can be
used. The Marmot library uses these approaches in meth-
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name methods stmts dyn syncs sync ovhd description
javac 1,877 40,758 1.693E+7 15.62% javac compiling jlex 4 times
javacup 859 21,657 5.926E+5 5.19% javacup generating Java parser
jess 1,339 26,172 4.797E+6 5.97% expert system shell
jlex100 536 15,698 1.665E+8 57.66% jlex generating lexer for sample.lex, 100 times
marmot 8,193 211,332 1.172E+8 10.33% compile javac to native code
mtrt 716 16,500 7.486E+5 1.49% multithreaded ray tracer
multimarmot 8,225 212,160 1.183E+8 9.99% multithreaded compile of javac
plasma 1,038 17,857 4.159E+4 0.01% constrained plasma �eld simulation/visualization
slice 1,059 18,697 1.388E+4 0.02% viewer for 2D slices of 3D radiology data
volano 741 13,085 4.623E+7 5.52% chat room simulator

Figure 4: Benchmark programs. Method and statement counts were performed on the intermediate form just prior to application of
the synchronization optimization algorithm.

name sync operations
original opt

complete partial
javac 1.693E+7 0 3,740
javacup 5.926E+5 0 0
jess 4.797E+6 0 0
jlex100 1.665E+8 0 0
marmot 1.172E+8 0 0
mtrt 7.486E+5 948 0
multimarmot 1.183E+8 7.810E+7 0
plasma 4.159E+4 3,188 0
slice 1.388E+4 8,664 0
volano 4.623E+7 4.610E+5 0

Figure 5: Dynamic synchronization measurements.

ods of the String and StringBuffer classes when the null
value is replaced by the string "null". It also returns clones
of string literals in some contexts where returning a single
value causes undesirable aliasing.

4 Results

4.1 Benchmark programs

We tested our algorithm on �ve single-threaded and �ve
multi-threaded programs, described in Figure 4. Most
of these programs are well known. Marmot is the
bytecode-to-native-code compiler described in [FKR+00],
while multiMarmot is a version of marmot recon�gured to
perform per-method optimizations (amounting to approx-
imately 25% of total compilation time) in two parallel
threads. Plasma and slice are modi�ed versions of public-
domain applet code.11 Volano is the VolanoMarkTM 1.0 net-
working benchmark; we optimized both the client and server
but report results only for the client.

The method and statement counts were performed af-
ter unreachable methods (in both the benchmark program
and the libraries) were removed by a \treeshake" pass. The
\synchronization overhead" column approximates the frac-
tion of execution time spent performing synchronization op-
erations in the unoptimized program. We computed this
value by measuring the average cost of an executing an
empty synchronized block (7.5E-8 seconds, or 58 machine
cycles), multiplying it by the number of dynamic synchro-
nization operations, and dividing by the unoptimized exe-

11Available from the author.
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Figure 6: Fraction of synchronization operations removed

cution time.12 Interestingly, the single-threaded programs
execute far more synchronization operations as a function
of running time than the multi-threaded programs do.

Testing was performed on a dual-processor 770Mhz Intel
Pentium III workstation with 512MB of memory under Win-
dows 2000 Professional. All results are the mean of multiple
executions; standard deviations were nominal.

4.2 Synchronization removal

Figure 5 shows dynamic synchronization counts for the orig-
inal and optimized versions of the benchmark applications.
The \partial" category refers to operations that were only
partially removed to preserve the noti�cation semantics (c.f.,
section 3.5.2); only javac had removals of this sort.

Figure 6 presents the fraction of synchronizations re-
moved in each of three scenarios. The leftmost column
of each bar represents our optimization with all methods
treated as executing in all threads, restricting removals to
those enabled by escape analysis. As an escape analysis,
our system is roughly comparable to existing work, except
on javac, where it does much better, and jess, where it fails
almost completely due to an imprecision in the call graph
causing false aliasing with a static. The central column rep-

12This �gure overestimates the cost of recursive synchronization
(no machine level lock is required) and underestimates the cost of ini-
tial synchronization (a lock object must be allocated) and contention
(queue operations are required). The estimate does not account for
secondary e�ects due to caches, missed optimizations, etc.
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name execution time
original opt gcopt

javac 8.13 6.44 5.97
javacup 0.86 0.76 0.66
jess 6.03 5.63 5.12
jlex100 21.66 8.37 8.09
marmot 85.10 71.35 61.83
mtrt 3.78 3.73 3.73
multimarmot 88.85 80.67 80.67
plasma 22.41 22.51 22.51
slice 4.64 4.64 4.64
volano 6.29 6.29 6.29

Figure 7: Execution time measurements (user+kernel time in
seconds).
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Figure 8: Speedup.

resents the optimization with thread information enabled.
This version achieved 100% elimination in single threaded
code and improvements over our escape analysis in plasma

and slice.
The rightmost column represents a rough upper bound

on the degree of synchronization removal possible using tech-
niques that prove an object to be synchronizable by at most
one thread during the object's lifetime. We computed this
value by instrumenting the library to count the number of
objects synchronized by more than one thread during exe-
cution, and assuming that all other synchronizations were
removable. In mtrt, the optimization improved upon the
bound because some synchronization operations referencing
multiply-synchronized objects were found to be removable
(c.f., section 3.5.4). In multimarmot, worker threads per-
forming per-method optimizations never contend for per-
method data, but since that data is reached from a shared
symbol table, a large number of unnecessary synchronization
operations are preserved. All three scenarios fare poorly
on volano, where 98% of the synchronization takes place
on BufferedInputStream objects that are synchronized by
multiple threads.13

13An analysis tracking relationships between locks may be able to
remove these synchronizations, which appear to be guarded by an
escaping, but less frequently synchronized, DataInputStream object.

4.3 Execution time

Figure 7 presents execution times for unoptimized and op-
timized versions of the benchmark programs. For programs
found to be single-threaded by our analysis, we examined
two strategies. The �rst performs synchronization elimi-
nation only, while the second passes a threading 
ag to
the code generator and runtime system, enabling the use
of memory allocation and collection primitives specialized
for the single-threaded case.

In Figure 8, each speedup result is divided into three seg-
ments. The lower segment represents an estimated speedup
computed from the measured synchronization counts and
the average-case synchronization cost described in Sec-
tion 4.1. Together, the lower two segments represent the
speedup measured when our optimization is applied. This
value exceeds the estimate because synchronization removal
enables additional optimization.14 The sum of all three seg-
ments is the speedup measured when the optimization and
the single-threaded 
ag are enabled. In cases where nontriv-
ial speedup is achieved, the additional optimizations account
for a signi�cant fraction of the improvement (the majority
of the improvement in 4 of 6 cases).

Other than multimarmot, which improved by 10%, the
multi-threaded benchmarks did not become faster as a re-
sult of synchronization removal. Mtrt performs all of its
synchronization as part of loading its data �le, which repre-
sents a small fraction of the overall computation. All of the
synchronization in plasma and slice occurs in the AWT
libraries; the inner loops of the applets are 
oating point
computations that do not perform synchronization. No per-
formance improvement was obtained on volano, as very few
synchronization operations were removed.

4.4 Static costs

Figure 9 presents various static measures of our optimiza-
tion. The absolute costs of the synchronization analysis were
quite low (seconds), and represented only a small fraction
of overall compilation time.15 At the same time, by shrink-
ing method sizes (removing synchronization code) and in-
creasing method counts (generating specialized methods),
the optimization signi�cantly altered the costs of subse-
quent phases of the Marmot optimizing compiler. Overall
compilation times fell by 79% in javacup, but rose by 20%
in multimarmot. With the exception of javac, which con-
tains noti�cation operations, the single-threaded programs
did not require specialization. For multithreaded programs,
the average number of specializations per method ranged
from .08 (mtrt) to .20 (volano).

The optimization's e�ect on the amount of code gener-
ated16 varied greatly. In some cases, the removal of syn-
chronization code (which Marmot always inlines) more than
compensated for the addition of specialized methods and any

14In the single-threaded case, memory barriers are eliminated, en-
abling a small amount of additional load caching. Most of the bene�t
comes from additional inlining made possible (under Marmot's size-
based heuristics) by reductions in method sizes when synchronization
code is removed.

15It is worth noting that the analysis allocates a large amount of
storage while analyzing a method, much of which becomes dead when
the method summary is constructed. Not surprisingly, the optimiza-
tion performs better under Marmot's generational garbage collector
than under its copying collector.

16The \code growth" column in Figure 9 refers only to executable
code generated for the user program and Java libraries. It does not
include C or assembly runtime code, static data, or static metadata.
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name opt frac of comp specs tramps code
time comp time growth
(sec) time change

javac 4.17 6.75% 3.45% 3 0 9.88%
javacup 1.01 2.75% -79.15% 0 0 -21.76%
jess 1.59 4.55% -14.05% 0 0 6.82%
jlex100 0.56 3.28% -8.79% 0 0 -1.03%
marmot 22.00 5.41% 12.99% 0 0 20.35%
mtrt 0.86 3.85% 2.73% 58 49 -0.93%
multimarmot 28.03 6.46% 20.38% 1198 775 4.32%
plasma 1.11 4.04% 10.59% 132 124 8.73%
slice 1.16 3.90% 18.35% 152 124 12.43%
volano 0.73 3.91% 10.69% 148 86 7.8%

Figure 9: Static statistics. Optimization time includes the cost of call graph construction.

additional inlining enabled by method size decreases. For
the single-threaded programs, almost all of the code size in-
crease is attributable to the inlining of allocation operations
under the single-threaded storage management regime.

5 Related work

This section describes work not addressed in the introduc-
tion or in the text.

5.1 Synchronization optimizations

[DR96, DR97] describe schemes for aggregating multiple
critical regions guarded by the same lock into a single, larger
critical region, and for replacing multiple lock objects with
a single lock that guards all of the subobjects' operations.
These techniques reduce the number of lock operations per-
formed at the risk of reducing parallelism due to coarser lock
granularity. [Tse95] automatically restructures parallel pro-
grams to replace barrier synchronization with less expensive
operations, or to remove it entirely. In both cases, the trans-
formations were developed for a particular style of thread
synchronization produced by a parallelizing compiler, so it
is not clear that they are sound for general monitor synchro-
nization as in Java.

Another way to reduce the runtime cost of synchroniza-
tion operations is to implement them more eÆciently. The
IBM \thin locks" work [BKMS98] and the Marmot lock im-
plementation [FKR+00] are examples of fast locking mech-
anisms.

5.2 Related analyses

The construction of abstract summary functions for use
in interprocedural analysis dates back at least to the
\functional approach" of [SP81]. Alias analysis based
on equivalence classes and uni�cation was introduced
in [Ste96b, Ste96a]. Recent work in the context of summary-
based pointer analysis includes [CRL99, CmH00] and the
summary-based escape analyses [Bla99, CGS+99, WR99]
discussed in the introduction. [FRD00] explores a combina-
tion of equivalence-class-based analysis and procedure sum-
maries that supports higher-order procedures.

6 Future work

While our optimization did very well on single-threaded
benchmarks and had some success in the multithreaded case,

there is much work to be done for multithreaded programs.
Our optimization treats all threads as though they run for
the duration of program execution, while many programs
(including multimarmot) use fork/join strategies in which
thread lifetimes are far shorter. This suggests the pursuit
of more temporally sensitive strategies. Another open issue
is the treatment of threads themselves; all existing analysis,
including ours, treat all data reachable from thread objects
as escaping. More powerful techniques are required to show
that some state held in instance variables of threads remains
unaliased.

Our 
ow analysis is fragile in the presence of cycles in
the call graph (e.g., jess). Possible improvements include
enhancing the Marmot static call graph analysis via context
sensitive techniques or modeling of polymorphic data struc-
tures. Alternatively, we could avoid the use of a static call
graph by encoding method dispatch into types and using
the instantiation constraint based 
ow analysis technique
of [FRD00]. A third option would allow limited use of sets of
aliasSet to represent values in cases where uni�cation yields
false aliases [SH97].

The high speed of our analysis opens several opportuni-
ties. One possibility is to use the analysis as a preprocessing
phase to reduce the cost of a more precise model. Another is
an iterative, pessimistic call graph optimization in the style
of [HH98], in which the analysis is used to model class sets,
which are used to improve the call graph, enabling reanaly-
sis, etc., until convergence is achieved.

We plan to apply equivalence-class-based summarization
techniques to other interprocedural problems such as stack
allocation, memory disambiguation, and type propagation.

Finally, we believe it is important to continue the search
for and the development of additional, more realistic mul-
tithreaded programs for use in the design and testing of
optimizations.

7 Conclusion

We have described an e�ective, eÆcient technique for stati-
cally removing unnecessary synchronization operations from
Java programs. The distinguishing features of this approach
are

� the use of thread closure and alias analyses rather
than escape analysis, enabling more precise modeling
of value 
ow in the face of global variables and multiple
threads, and
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� the use of equivalence class based method summaries,
enabling simple, fast, non-�xed-point, context-sensitive
analysis and transformation.

Our optimization handles both synchronized methods
and blocks, and preserves the Java synchronization, mem-
ory, and noti�cation semantics. Our experiments, performed
in the context of an optimizing compiler, demonstrate im-
provements in dynamic synchronization counts and execu-
tion time in both single- and multi-threaded programs, at a
reasonable cost in compilation time and code growth.
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