1

JavaOne

Sun’s 2004 Worldwide Java Developer Conference-

The New Java™
Technology Memory
Model

‘EP\SITJ,

Jeremy Manson and William Pugh =, 3
http://www.cs.umd.edu/~pugh 18 @ 5o

)
TRYLAS

| 2004 JavaOneSM Conference | Session TS-2331

java.sun.com/javaone/sf

java

X Sun

Audience

* Assume you are familiar with basics
of Java™ technology-based threads
(“Java threads”)

— Creating, starting and joining threads
— Synchronization
—wait and notifyAll

Java Thread Specification

* Revised as part of JSR-133

* Part of the new Java Language Spec
— and the Virtual Machine Spec

* Features talked about here today are in
JDK1.5

— Not all of these ideas are guaranteed to work in
previous versions

— Previous thread spec was broken
—forbid optimizations performed by many JVMs

Safety Issues in Multithreaded
Systems

* Many intuitive assumptions do not hold

* Some widely used idioms are not safe
— Original Double-checked locking idiom
— Checking non-volatile flag for thread termination

* Can't use testing to check for errors

— Some anomalies will occur only on
some platforms

—e.g., multiprocessors
— Anomalies will occur rarely and non-repeatedly

Revising the Thread Spec

* The Java Thread Specification has undergone
significant revision

— Mostly to correctly formalize existing behavior
— But a few changes in behavior

* Goals
— Clear and easy to understand
— Foster reliable multithreaded code
— Allow for high performance JVMs

* Has affected JVMs

— And badly written existing code
—Including parts of Sun’s JDK

This Talk...

* Describe building blocks of synchronization
and concurrent programming in Java

— Both language primitives and util.concurrent
abstractions

* Explain what it means for code to be correctly
synchronized

* Try to convince you that clever reasoning
about unsynchronized code is almost certainly

wrong
— Not needed for efficient and reliable programs

This Talk...

* We will be talking mostly about
— synchronized methods and blocks
— volatile fields

* Same principles work with JSR-166 locks and
atomic operations

* Will also talk about final fields and immutability.

Taxonomy

High level concurrency abstractions
— JSR-166 and java.util.concurrent

Low level locking
— synchronized () blocks

Low level primitives

— volatile variables, java.util.concurrent.atomic
classes

— allows for non-blocking synchronization

Data races: deliberate undersynchronization
— Avoid!
— Not even Doug Lea can get it right

Three Aspects of
Synchronization

* Atomicity
— Locking to obtain mutual exclusion
* Visibility
— Ensuring that changes to object fields made in one
thread are seen in other threads

* QOrdering

— Ensuring that you aren’t surprised by the order Iin
which statements are executed

Don’'t Try To Be Too Clever

* People worry about the cost of synchronization

— Try to devise schemes to communicate between
threads without using synchronization

—Ilocks, volatiles, or other concurrency abstractions

* Nearly impossible to do correctly

— Inter-thread communication without synchronization
IS not intuitive

Quiz Time

x =y =20

Thread 1 Start threads Thread 2

»

I

1

X y

I
"

V' i

u.
I

Can this result in and ?

11 | 2004 JavaOneSM Conference | Session TS-2331

Answer: Yes!

x =y =20

Thread 1 Start threads Thread 2

»

I

1

X y

I
"

V' i

u.
I

Howcani=0andj=0?

12 | 2004 JavaOneSM Conference | Session TS-2331

How Can This Happen?

* Compiler can reorder statements
— Or keep values in registers

* Processor can reorder them

* On multi-processor, values not synchronized in
global memory

* The memory model is designed to allow
aggressive optimization

— Including optimizations no one has implemented yet

* Good for performance

— bad for your intuition about insufficiently
synchronized code

Correctness and
Optimizations

* Clever code that depends the order you think
the system must do things in is almost always
wrong in Java

* Dekker’s Algorithm (first correct lock
implementation) requires this ordering

— doesn’t work in Java, use supplied locks

* Must use synchronization to enforce visibility
and ordering

— As well as mutual exclusion

— |f you use synchronization correctly, you will not be
able to see reorderings

Synchronization Actions
(approximately)

// block until obtain lock
synchronized (anObject) {
// get main memory value of field1 and field2

anObject.fieldl;
anObject.field2;

anObject.field3 = x+y;

int x
int y

// commit value of field3 to main memory

}
// release lock

moreCode () ;

When Are Actions Visible
to Other Threads?

Everything before Thread 2
refl.x =1 an unlock (release) l
lock M lock M
R
ref2 = glo
unlock M unlock M

Thread 1 Is visible to everything] = ref2.x

after a later lock (acquire) l

on the same Object

16 | 2004 JavaOneSM Conference | Session TS-2331

Release and Acquire

* All accesses before a release
— are ordered before and visible to
— any accesses after a matching acquire

* Unlocking a monitor/lock is a release

— that is acquired by any following lock of that
monitor/lock

Ordering

* Roach motel ordering

— Compiler/processor can move accesses into
synchronized blocks

— Can only move them out under special
circumstances, generally not observable

* Some special cases:
— locks on thread local objects are a no-op
— reentrant locks are a no-op

Volatile fields

If a field could be simultaneously accessed by multiple
threads, and at least one of those accesses is a write

— make the field volatile
— documentation
— gives essential JVM guarantees
— Can be tricky to get right, but nearly impossible without volatile

What does volatile do?

— reads and writes go directly to memory
—not cached in registers

— volatile longs and doubles are atomic
— not true for non-volatile longs and doubles

— compiler reordering of volatile accesses is restricted
—roach motel semantics for volatiles and normals
—no reordering for volatiles and volatiles

Volatile release/acquire

* A volatile write is a release
— that is acquired by a later read of the same variable

* All accesses before the volatile write

— are ordered before and visible to all accesses after
the volatile read

Volatile guarantees visibility

* stop must be declared volatile
— Otherwise, compiler could keep in register

class Animator implements Runnable ({
private volatile boolean stop = false;
public void stop() { stop = true; }
public void run() {
while (!stop)
oneStep() ;

}
private void oneStep() { /*...*/ }

}

Volatile guarantees ordering

* If athread reads data, there is a
release/acquire on ready that guarantees
visibility and ordering

class Future {
private volatile boolean ready;
private Object data;
public Object get() {

if ('ready)
return null: public synchronized

return data; void setOnce (Object o) {
} if (ready) throw .. ;
data = o;
ready = true;

}

Other Acquires and
Releases

* Other actions form release/acquire pairs

e Starting a thread is a release
— acquired by the run method of the thread

* Termination of a thread is a release

— acquired by any thread that joins with the
terminated thread

Defending against data
races

Attackers can pass instances of your object to other
threads via a data race

Can cause weird things to be observed

— could be observed in some JVMs
— in older JVMs, String objects might be seen to change
— change from /tmp to /usr

If a class is security critical, must take steps

Choices:
— use synchronization (even in constructor)

— object can be made visible to multiple threads before
constructor finishes

— make object immutable by making all fields final

Immutable classes

* Make all critical fields final

* Don’t allow other threads to see object until it is
fully constructed

* JVM will be responsible for ensuring that object
IS perceived as immutable

— even if malicious code uses data races to attack the
class

Optimization of final fields

* New spec allows aggressive optimization of
final fields

— hoisting of reads of final fields across
synchronization and unknown method calls

— still maintains immutability

* Should allow for future JVMs to obtain
performance advantages

Finalizers

* Only guaranteed to see writes that occur by the
end of the object’s constructor.

— If finalizer needs to see later writes, use
synchronization

* Fields may be made final earlier than the
program text might imply

— Synchronization on object also keeps it alive

* Multiple finalizers may be run concurrently
— Be careful to synchronize properly!

Synchronize When Needed

* Places where threads interact
— Need synchronization
— May need careful thought
— May need documentation
— Cost of required synchronization not significant

—For most applications
—No need to get tricky

Synchronized Classes

* Some classes are synchronized
— Vector, Hashtable, Stack
— Most Input/Output Streams
— Overhead of unneeded synchronization can be
measurable
* Contrast with Collection classes
— By default, not synchronized

— Can request synchronized version

— Or can use java.util.concurrent versions (Queue,
ConcurrentMap implementations)

* Using synchronized classes
— Often doesn’t suffice for concurrent interaction

Synchronized Collections
Aren't Always Enough

* Transactions (DO NOT USE)
— Violate atomicity...

ID getID(String name) ({
ID x = h.get (name) ;
if (x == null) {

X = new ID();
h.put (name, x);

}

return x;

}

* lterators

— Can’t modify collection while another
thread is iterating through it

Concurrent Interactions

* Often need entire transactions to be atomic
— Reading and updating a Map
— Writing a record to an OutputStream

* QutputStreams are synchronized

— Can have multiple threads trying to write to the
same OutputStream

— Output from each thread is nondeterministically
interleaved

— Often essentially useless

util.concurrent

* The stuff in java.util.concurrent is great, use it

°* ConcurrentHashMap has some additional
features to get around problems with
transactions

— putlfAbsent
— concurrent iteration

°* CopyOnWrite classes allow concurrent
iteration and non-blocking reads

— modification is expensive, should be rare

Designing Fast Code

Make it right before you make it fast

Reduce synchronization costs
— Avoid sharing mutable objects across threads

— avoid old Collection classes (Vector, Hashtable)

— use bulk I/O (or, even better, java.nio classes)

Use java.util.concurrent classes
— designed for speed, scalability and correctness

Avoid lock contention
— Reduce lock scopes

— Reduce lock durations

Things That Don't Work

Thinking about memory barriers
— There is nothing that gives you the effect of a memory barrier

Original Double-Check ldiom
— AKA multithreaded lazy initialization
— Any unsynchronized non-volatile reads/writes of refs

Depending on sleep for visibility

Clever reasoning about cause and effect with respect
to data races

Synchronization on Thread
Local Objects

* Synchronization on thread local objects
— (objects that are only accessed by a single thread)
— has no semantics or meaning
— compiler can remove it
— can also remove reentrant synchronization

—e.g., calling a synchronized method from another
synchronized method on same object

* This Is an optimization people have talked
about for a while

— not sure if anyone is doing it yet

Thread safe lazy
initialization

Want to perform lazy initialization of something that will
be shared by many threads

Don’t want to pay for synchronization after object is
initialized

Standard double-checked locking doesn’t work
— making the checked field volatile fixes it

If two threads might simultaneously access a field, and
one of them writes to it

— the field must be volatile

Wrap-up

* Cost of synchronization operations can be significant
— But cost of needed synchronization rarely is

* Thread interaction needs careful thought
— But not too clever
— Don’t want to have to think to hard about reordering
— No data races in your program, no observable reordering

* Need for inter-thread communication...

Wrap-up - Communication

* Communication between threads

— Requires both threads to interact via
synchronization

* JSR-133 & 166 provide new mechanisms for
communication

— High level concurrency framework
— volatile fields
— final fields

| 2004 JavaOneSM Conference | Session TS-2331

