
Published in the Proceedings of the Principles of Programming Languages, 2002, pages 128–139

CCured: Type-Safe Retrofitting of Legacy Code

George C. Necula Scott McPeak Westley Weimer
University of California, Berkeley

{necula,smcpeak,weimer}@cs.berkeley.edu

Abstract

In this paper we propose a scheme that combines type in-
ference and run-time checking to make existing C programs
type safe. We describe the CCured type system, which ex-
tends that of C by separating pointer types according to
their usage. This type system allows both pointers whose
usage can be verified statically to be type safe, and pointers
whose safety must be checked at run time. We prove a type
soundness result and then we present a surprisingly simple
type inference algorithm that is able to infer the appropriate
pointer kinds for existing C programs.

Our experience with the CCured system shows that the
inference is very effective for many C programs, as it is able
to infer that most or all of the pointers are statically ver-
ifiable to be type safe. The remaining pointers are instru-
mented with efficient run-time checks to ensure that they are
used safely. The resulting performance loss due to run-time
checks is 0–150%, which is several times better than com-
parable approaches that use only dynamic checking. Using
CCured we have discovered programming bugs in established
C programs such as several SPECINT95 benchmarks.

1 Introduction

The C programming language provides programmers with a
great deal of flexibility in the representation of data and the
use of pointers. These features make C the language of choice
for systems programming. Unfortunately, the cost is a weak
type system and consequently a great deal of “flexibility” in
introducing subtle bugs in programs.

This research was supported in part by the National Sci-
ence Foundation Career Grant No. CCR-9875171, and ITR Grants
No. CCR-0085949 and No. CCR-0081588, Air Force contract
no. F33615-00-C-1693, and gifts from AT&T Research and Mi-
crosoft Research. The information presented here does not neces-
sarily reflect the position or the policy of the Government and no
official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
POPL ’02, Jan. 16-18, 2002 Portland, OR USA
(c) 2002 ACM ISBN 1-58113-450-9/02/01...$5.00

While in the 1970s sacrificing type safety for flexibility
and performance might have been a sensible language design
choice, today there are more and more situations in which
type safety is just as important as, if not more important
than, performance. Errors like array out-of-bounds accesses
lead both to painful debugging sessions chasing inadvertent
memory updates and to malicious attacks exploiting buffer
overrun errors in security-critical code. (Almost 50% of re-
cent CERT advisories result from security violations of this
kind [29].) Type safety is desirable for isolating program
components in a large or extensible system, without the loss
of performance of separate address spaces. It is also valu-
able for inter-operation with systems written in type-safe
languages (such as type-safe Java native methods, for exam-
ple). Since a great deal of useful code is already written or
being written in C, it would be useful to have a practical
scheme to bring type safety to these programs.

The work described in this paper is based on two main
premises. First, we believe that even in programs written in
unsafe languages like C, a large part of the program can be
verified statically to be type safe. Then the remaining part
of the program can be instrumented with run-time checks
to ensure that the execution is memory safe. The second
premise of our work is that in many applications, some loss
of performance due to run-time checks is an acceptable price
for type safety, especially when compared to the alternative
cost of reprogramming the system in a type-safe language.

The main contribution of this paper is the CCured type
system, an extension of the C type system with explicit types
for pointers into arrays, and with dynamic types. It extends
previous work on adding dynamic types to statically typed
languages: types and capabilities for the statically-typed el-
ements are known at compile time, while the dynamically-
typed elements are guarded by run-time checks. Our type
system is inspired by common C usage, and includes sup-
port for physical type equivalence [8] and special “sequence”
pointers for accessing arrays. The second contribution of
the paper is a simple yet effective type-inference algorithm
that can translate ordinary C programs into CCured mostly
automatically and in a matter of seconds even for 30,000-
line programs. We have used this inference algorithm to
produce type-safe versions of several C programs for which
we observed a slowdown of 0–150%. In the process, we have
also found programming bugs in the analyzed code, the most

128

1 int *1 *2 a; // array

2 int i; // index

3 int acc; // accumulator

4 int *3 *4 p; // elem ptr

5 int *5 e; // unboxer

6 acc = 0;

7 for (i=0; i<100; i++) {
8 p = a + i; // ptr arith

9 e = *p; // read elem

10 while ((int) e % 2 == 0) { // check tag

11 e = * (int *6 *7) e; // unbox

12 }
13 acc += ((int)e >> 1); // strip tag

14 }

Figure 1: A short C program fragment demonstrating safe
and unsafe use of pointers.

surprising being several array out-of-bounds errors in the
SPECINT95 compress, go and ijpeg benchmarks.

We continue in Section 2 with an informal overview of the
system in the context of a small example program. Then
in Section 3 we present a simple language of pointers, with
its type system (in Section 4) and operational semantics (in
Section 5), followed by a discussion of the type safety guar-
antees of CCured programs. In Section 6 we present a simple
constraint-based type inference algorithm for CCured. We
discuss informally the extension of the language presented
in this paper to the whole C programming language in Sec-
tion 7, necessary source code changes in Section 8, and in
Section 9 we relate our experience with a prototype imple-
mentation.

2 Overview of the Approach

To ensure memory safety, for each pointer we must keep
track of certain properties of the memory area to which it
is supposed to point. Such properties include the area’s size
and the types of the values it contains. For some pointers
this information can be computed precisely at compile time
and for others we must compute it at run time, in which case
we have to insert run-time safety checks.

These two kinds of pointers appear in the example C pro-
gram shown in Figure 1. The program operates on a hy-
pothetical disjoint union datatype we call “boxed integer”
that has been efficiently implemented in C as follows: if a
boxed integer value is odd then it represents a 31-bit integer
in the most significant bits along with a least significant tag
bit equal to one, otherwise it represents a pointer to another
“boxed integer”. We use the C datatype int ∗ to represent
boxed integers. The variable a is a pointer to an array of
boxed integers. The purpose of the function is to accumu-
late in the variable acc the sum of the first 100 boxed integers
in the array. In line 8 we compute the address of a boxed
integer and in line 9 we fetch the boxed integer. The loop
in lines 10–12 unboxes the integer. The subscripts on the
pointer type constructors “*” have been added to simplify
cross-referencing from the text.

By inspection of the program we observe that the values
of the variables a and p are supposed to point into the same
array. Neither of these variables is subject to casts (and
they have no other aliases) and thus we know that the type
of the values they point to is indeed “int ∗”. Furthermore,
we observe that while the pointer a is subject to pointer
arithmetic, the pointer p is not. This means that we must
check uses of “a” for array out-of-bounds errors but we do
not need to do so for the uses of “p” (assuming that a check
is performed in line 8 where “p” is initialized). In this paper
we refer to “p” as a safe pointer and to “a” as a sequence
pointer. To be more precise we associate this information
with the pointer type constructors ∗4 and ∗2 respectively.
Safe and sequence pointers have only aliases that agree on
the type of the value pointed to and thus point to memory
areas whose contents is statically typed.

Now we turn our attention to the pointer values of “e”.
These values are used with two incompatible types “int ∗”
and “int ∗ ∗”. This means that we cannot count on
the static type of “e” as being an accurate description of
its values. In our type system we say that “e” has a dy-
namic pointer type and we associate this information with
the pointer type constructors ∗5 and ∗7. Dynamic point-
ers always point into memory areas whose contents do not
have a reliable static type and must therefore store extra
information to classify their contents as pointers or integers.
Correspondingly, the aliases of dynamic pointers can only be
other dynamic pointers; otherwise a safe pointer’s static type
assumptions could be violated after a memory write through
a dynamic pointer alias. This means that the type construc-
tors ∗1, ∗3 and ∗6 must also be classified as dynamic point-
ers. In this example program, we have a mixture of pointers
whose static type can be relied upon and thus require lit-
tle or no access checks (the safe and sequence pointers), and
also pointers whose static type is unreliable and thus require
more extensive checking.

Motivated by this and similar examples, the CCured lan-
guage is essentially the union of two languages: a strongly
typed language (containing safe and sequence pointers), and
an untyped language for which the type information is main-
tained and checked at run time.

All values and memory areas in the system are either part
of the safe/sequence world, or part of the dynamic world.
The only place these worlds touch is when a typed mem-
ory area contains a pointer to untyped memory. Untyped
memory cannot contain safe or sequence pointers because
we cannot assign a reliable static type to the contents of dy-
namic areas. We shall formalize these invariants starting in
Section 4. Before then, in order to provide some intuition
for the formal development, we summarize in Figure 2 the
capabilities and invariants of various pointer kinds. Since
in C the null pointer is used frequently, we allow the safe
pointers to be null. Similarly, we allow arbitrary integers to
be “disguised” as sequence and dynamic pointers, but not
as safe pointers.

129

Kind Invariants maintained Capabilities Access checks required
Safe
pointer
to τ

• Either 0 or a valid address containing a value
of type τ .

• Aliases are either safe or sequence pointers
of base type τ .

• Cast from sequence pointer
of base type τ .

• Set to 0.

• Cast to integer.

• Null-pointer check when
dereferenced.

Sequence
pointer
to τ

• Knows at run-time if it is an integer, and
if not, knows the memory area (containing
a number of values of type τ) to which it
points.

• Aliases are safe and sequence pointers of
base type τ .

• Cast to safe pointer of base
type τ .

• Cast from integer.

• Cast to integer.

• Perform pointer arithmetic.

• Non-pointer check (sub-
sumes null-pointer check).

• Bounds check when deref-
erenced or cast to SAFE.

Dynamic
pointer

• Knows at run-time if it is an integer, and
if not, knows the memory area (containing
a number of integer or dynamic pointer val-
ues) to which it points.

• The memory area pointed to maintains tags
distinguishing integers from pointers.

• Aliases are dynamic pointers.

• Cast to and from any dy-
namic pointer type.

• Cast from integer.

• Cast to integer.

• Perform pointer arithmetic.

• Non-pointer check.

• Bounds check when deref-
erenced.

• Maintain the tags in the
pointed area when reading
and writing.

Figure 2: Summary of the properties and capabilities of various kinds of pointers.

Types: τ ::= int | τ ref SAFE | τ ref SEQ

| DYNAMIC

Expressions: e ::= x | n | e1 op e2 | (τ)e
| e1 ⊕ e2 | ! e

Commands: c ::= skip | c1; c2 | e1 := e2

Figure 3: The syntax of a simple language with pointers,
pointer arithmetic and casts.

3 A Language of Pointers

There are many constructs in the C programming language
that can be misused to violate memory safety and type
safety. Among them are type casts, pointer arithmetic, ar-
rays, union types, the address-of operator, and explicit deal-
location. To simplify the presentation of the key ideas be-
hind our approach we describe it formally for a small lan-
guage containing only pointers with casts and pointer arith-
metic, and then we discuss informally in Section 7 how we
extend the approach to handle the remaining C constructs.

Figure 3 presents the syntax of types, expressions and
commands for a simple programming language that serves
as the vehicle for formalizing CCured. At the level of types
we have retained only the integers and the pointer types. In
C the symbol “*” is used in various syntactic roles in con-
junction with pointer types; to avoid confusion we have in-
stead adopted the syntax of ML references for our modeling
language. We have three flavors of pointer types correspond-
ing to safe, sequence and dynamic pointers respectively. The
type DYNAMIC is a pointer type that does not carry with it the
type of the values pointed to. This is indicative of the fact
that we cannot count on the referenced type of a dynamic
pointer.

Among expressions we have integer literals and an assort-
ment of binary integer operations, such as the arithmetic and

relational operations, written generically as op. Relational
operations on pointers are done after casting the pointers to
integers. The binary operation ⊕ denotes pointer arithmetic
and the notation ! e denotes the result of reading from the
memory location denoted by e (like *e in C).

The language of commands is greatly simplified. The
only notable form of commands is memory update through a
pointer (p := e is like *p = e in C). Control flow operations
are not interesting because our approach is flow insensitive.
Function calls are omitted for simplification; instead we dis-
cuss briefly in Section 7 how we handle function calls and
function pointers. Among other notable omissions are vari-
able updates and the address-of operator on variables. In-
stead, to simplify the formal presentation, we consider that
a variable that is updated or has its address taken in C
would be allocated on the heap and operated upon through
its address (which is an immutable pointer variable) in our
language. Finally, we ignore here the allocation and deal-
location of memory (including that of stack frames). Even
though the resulting language appears to be much simpler
than C, it allows us to expose formally and in a succinct way
the major ideas behind our type system, the type inference
algorithm and the implementation. The implementation it-
self handles the entire C language.

Our example program from Figure 1 can be transcribed
in this language (with the use of variable declarations and a
few additional control-flow constructs) as shown in Figure 4.
The major change in this version is that we have replaced
the variables i, acc, p and e by pointers, and the accesses
to those variables by memory operations. (The lines 1–5 are
technically not representable in our language. We show them
only to provide a context for the rest of the example. We also
ignore the initialization of these variables.) All the newly
introduced pointer type constructors are SAFE since the cor-
responding pointers are used only for reading and writing.
Another change is that one or more nested dynamic pointer
type constructors are collapsed into the DYNAMIC type.

130

1 DYNAMIC ref SEQ a; // array

2 int ref SAFE p i; // index

3 int ref SAFE p acc; // accumulator

4 DYNAMIC ref SAFE ref SAFE p p; // elem ptr

5 DYNAMIC ref SAFE p e; // unboxer

6 p acc := 0;

7 for (p i := 0; !p i < 100; p i := !p i + 1) {
8 p p := (DYNAMIC ref SAFE)(a ⊕ !p i);

9 p e := !!p p;

10 while ((int) !p e % 2 == 0) {
11 p e := !!p e;

12 }
13 p acc := !p acc + ((int)!p e >> 1);

14 }

Figure 4: The program from Figure 1, translated to CCured.

4 The Type System

In this section we describe the CCured type system for the
language introduced in the previous section. The purpose
of this type system is to maintain the separation between
the statically typed and the untyped worlds, and to ensure
that all well-typed programs can be made to run safely with
the addition of appropriate run-time checks. The run-time
checks are described as part of the operational semantics in
Section 5. For now we concentrate on type checking, and
we shall assume that the program contains complete pointer
kind information.

The type system is expressed by means of the following
three judgments:

Expression typing: Γ ` e : τ
Command typing: Γ ` c
Convertibility: τ ≤ τ ′

In these judgments Γ denotes a typing environment map-
ping variable names to types. Since we do not have declara-
tions in our language, the typing environment is assumed to
be provided externally. The derivation rules for the typing
judgments are shown in Figure 5.

Observe in the typing rules that we check casts with re-
spect to a convertibility relation on types, whose rules are
defined at the bottom of the figure. We also have a spe-
cial typing rule for creating a safe null pointer. Pointer
arithmetic can be done on sequence and dynamic pointers.
Memory operations are legal for safe and dynamic pointers.
A dereference operation on a sequence pointer can be per-
formed after the pointer is cast to a safe one. Notice also
how the type DYNAMIC is used both for pointers into untyped
areas and for the values stored into those areas.

The type convertibility relation captures the situations
in which a cast or coercion is legal in CCured. Notice in
the rules that any type can be converted to an integer but
integers can be converted only to sequence or to dynamic
pointers. However, whenever we convert an integer into a
sequence or a dynamic pointer we obtain pointers for which
dereferences are prevented by run-time checks. The last con-
version rule is used for converting sequence pointers into safe
pointers, in which case the referenced type cannot change.

If this last conversion rule is used then our operational se-
mantics inserts a run-time check to verify that the pointer
being cast is within the bounds of its home area.

It is important to point out that in most cases casts act
as conversions between different representations of values
and in some cases they are also accompanied by run-time
checks. The run-time manipulations that accompany casts
make convertibility different from subtyping in several re-
spects. First, convertibility extended with transitivity and
viewed as a coercion-based subtyping relation [4], would be
incoherent. For example, the series of coercions correspond-
ing to DYNAMIC ≤ int ≤ DYNAMIC have a different effect from
the identity since even if we start with a perfectly usable
pointer we end up with a pointer that has lost its capability
to perform memory operations. Because of lack of coherence
we cannot allow a general subsumption rule and instead we
let the program control the use of conversions, through casts.
Consequently, we do not have a transitivity rule and we rely
instead on the programmer to obtain the same effect by us-
ing a sequence of casts.

5 Operational Semantics

In this section we describe the run-time checks that are nec-
essary for CCured programs to run safely. We do this in the
form of an operational semantics for CCured.

The execution environment consists of a mapping Σ from
variable names to values, a set of allocated memory areas
H (which we call homes), and a mapping M (the memory)
from addresses within the homes to values. The mapping
Σ is assumed to be provided externally just like the similar
mapping Γ from the typing rules. In our language only the
memory changes during the execution. In order to better
expose the precise costs of using each kind of pointer we use
a low-level representation of addresses as natural numbers.
A home is represented by its starting address (H ⊆ N) and
for all homes we define a function size : H → N whose value
is the size of the home. We require the following properties
of the set H and the function size:

• NULL: 0 ∈ H and size(0) = 1.

• DISJOINT: ∀h, h′, i, i′. (h 6= h′ ∧ 0 ≤ i < size(h) ∧
0 ≤ i′ < size(h′)) ⇒ h + i 6= h′ + i′.

We choose the size of the null home to be 1 in order to
ensure that only the null pointer belongs to the null home.
We write H∗ for the set H \{0}. A memory corresponding to
a set of allocated homes is a mapping of addresses to values
MH : N → Values such that its domain consists exactly of
the addresses contained in the non-null homes:

Dom(MH) = {h + i | h ∈ H∗ ∧ 0 ≤ i < size(h) }

Since the set of homes H does not change during the eval-
uation we often omit the subscript H from the memory. We
define two operations on memory. We write M(n) to denote
the contents of the memory address n, and we write M [v�n]
to denote a new memory state obtained from M by stor-
ing the value v at address n. Both of these operations are
defined only when n is a valid address (n ∈ Dom(M)).

131

Expressions:

Γ(x) = τ

Γ ` x : τ Γ ` n : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 op e2 : int

Γ ` e : τ ′ τ ′ ≤ τ

Γ ` (τ)e : τ Γ ` (τ ref SAFE)0 : τ ref SAFE

Γ ` e1 : τ ref SEQ Γ ` e2 : int

Γ ` e1 ⊕ e2 : τ ref SEQ

Γ ` e1 : DYNAMIC Γ ` e2 : int

Γ ` e1 ⊕ e2 : DYNAMIC

Γ ` e : τ ref SAFE

Γ ` ! e : τ

Γ ` e : DYNAMIC

Γ ` ! e : DYNAMIC

Commands:

Γ ` skip

Γ ` c1 Γ ` c2

Γ ` c1; c2

Γ ` e : τ ref SAFE Γ ` e′ : τ

Γ ` e := e′
Γ ` e : DYNAMIC Γ ` e′ : DYNAMIC

Γ ` e := e′

Convertibility:

τ ≤ τ τ ≤ int int ≤ τ ref SEQ int ≤ DYNAMIC τ ref SEQ ≤ τ ref SAFE

Figure 5: The typing judgments.

Expressions:

Σ, M ` n ⇓ n
INT

Σ(x) = v

Σ, M ` x ⇓ v
VAR

Σ, M ` e1 ⇓ n1 Σ, M ` e2 ⇓ n2

Σ, M ` e1 op e2 ⇓ n1 op n2

OP

Casts:
Σ, M ` e ⇓ n

Σ, M ` (int)e ⇓ n
C1

Σ, M ` e ⇓ 〈h, n〉

Σ, M ` (int)e ⇓ h + n
C2

Σ, M ` e ⇓ n

Σ, M ` (τ ref SEQ)e ⇓ 〈0, n〉
C3

Σ, M ` e ⇓ 〈h, n〉

Σ, M ` (τ ref SEQ)e ⇓ 〈h, n〉
C4

Σ, M ` e ⇓ n

Σ, M ` (DYNAMIC)e ⇓ 〈0, n〉
C5

Σ, M ` e ⇓ 〈h, n〉

Σ, M ` (DYNAMIC)e ⇓ 〈h, n〉
C6

Σ, M ` e ⇓ n

Σ, M ` (τ ref SAFE)e ⇓ n
C7

Σ, M ` e ⇓ 〈h, n〉 0 ≤ n < size(h)

Σ, M ` (τ ref SAFE)e ⇓ h + n
C8

Pointer arithmetic:
Σ, M ` e1 ⇓ 〈h, n1〉 Σ, M ` e2 ⇓ n2

Σ, M ` e1 ⊕ e2 ⇓ 〈h, n1 + n2〉
ARITH

Memory reads:

Σ, M ` e ⇓ n n 6= 0

Σ, M ` ! e ⇓ M(n)
SAFERD

Σ, M ` e ⇓ 〈h, n〉 h 6= 0 0 ≤ n < size(h)

Σ, M ` ! e ⇓ M(h + n)
DYNRD

Commands:

Σ, M ` skip =⇒ M
SKIP

Σ, M ` c1 =⇒ M ′ Σ, M ′ ` c2 =⇒ M ′′

Σ, M ` c1; c2 =⇒ M ′′
CHAIN

Σ, M ` e1 ⇓ n n 6= 0 Σ, M ` e2 ⇓ v2

Σ, M ` e1 := e2 =⇒ M [v2�n]
SAFEWR

Σ, M ` e1 ⇓ 〈h, n〉 h 6= 0 0 ≤ n < size(h) Σ, M ` e2 ⇓ v2

Σ, M ` e1 := e2 =⇒ M [v2�h + n]
DYNWR

Figure 6: The operational semantics. The boxed premises are the run-time checks that CCured uses.

132

The values of integer and safe pointer expressions are plain
integers (without any representation overhead over C), while
the values of sequence and dynamic pointer expressions is of
the form 〈h, n〉:

Values v ::= n | 〈h, n〉

The latter kind of pointer value carries with it its “iden-
tity” (represented by its home). The home is used both to
check if the pointer is actually an integer converted to a
pointer (when the home is 0), or otherwise to retrieve the
size of the home while performing a bounds check.

The operational semantics is defined by means of two
judgments. We write Σ, M ` e ⇓ v to say that in the en-
vironment Σ and in the memory state denoted by M the
expression e evaluates to value v. For commands we use a
similar judgment Σ, M ` c =⇒ M ′ but in this case the result
is a new memory state. The derivation rules for these two
judgments are given in Figure 6.

Notice that we have eight rules for casts, one rule for each
combination of destination type and form of the value being
cast. The rules C3 and C5 show that an integer is converted
to a sequence or to a dynamic pointer by using a null home.
The rule C7 applies when we cast the integer 0 or a safe
pointer to another safe pointer, while the rule C8 applies for
casts from sequence pointers to safe pointers. In this latter
case we must perform a bounds check. Here and in the rules
to follow we mark such run-time checks with a box around
them. Other instances of run-time checks are for memory
operations. If the memory operation uses a safe pointer then
only a null-pointer check must be done, otherwise a non-
pointer check and a bounds check must be done.

The typing rules from Figure 5 suggest that we can per-
form a sequence of conversions τ ref SEQ ≤ int ≤ τ ref SEQ

or even a similar one where the destination type is τ ′ ref

SEQ. This is indeed legal in CCured but the operational rules
show that when starting with a pointer value 〈h, n〉 we end
up after these two conversions with the value 〈0, h+n〉, which
is a pointer value that cannot be used for reading and writ-
ing. This property is quite important in practice: programs
that cast pointers into integers and then back to pointers
will not be able to use the resulting pointers as memory ad-
dresses. We discuss this issue further in Section 8.

5.1 Type Safety

The type system described in Section 4 enforces the separa-
tion between the typed and the untyped worlds. The oper-
ational semantics of Section 5 describes the run-time checks
we perform for each operation on various pointer kinds. In
this section we formalize and outline a proof of the resulting
safety guarantees we obtain for CCured programs.

For each non-null home we define its kind as either
Typed(τ), meaning that it contains a number of values of
type τ and has only safe and sequence pointers of base type
τ pointing to it, or as Untyped , meaning that it contains a
number of values of type DYNAMIC and has only pointers of
type DYNAMIC pointing to it.

Then we define for each type τ the set ‖τ‖H of valid values
of that type. As the notation suggests, this set depends on

the current set of homes:

‖int‖H = N
‖DYNAMIC‖H = {〈h, n〉 | h ∈ H ∧

(h = 0 ∨ kind(h) = Untyped)}
‖τ ref SEQ‖H = {〈h, n〉 | h ∈ H ∧

(h = 0 ∨ kind(h) = Typed(τ))}
‖τ ref SAFE‖H = {h + i | h ∈ H ∧ 0 ≤ i < size(h) ∧

(h = 0 ∨ kind(h) = Typed(τ))}

We extend the notation v ∈ ‖τ‖H element-wise to the cor-
responding notation for environments Σ ∈ ‖Γ‖H (meaning
∀x ∈ Dom(Σ). Σ(x) ∈ ‖Γ(x)‖H).

At all times during the execution, the contents of each
memory address must correspond to the typing constraints
of the home to which it belongs. We say that such a mem-
ory is well-formed (written WF (MH)), a property defined as
follows:

WF (MH)
def
=

∀h ∈ H∗. ∀i ∈ N.
0 ≤ i < size(h) ⇒

(kind(h) = Untyped ⇒ M(h + i) ∈ ‖DYNAMIC‖H

∧ kind(h) = Typed(τ) ⇒ M(h + i) ∈ ‖τ‖H)

There are several reasons why the evaluation of an expres-
sion or a command can fail. The most obvious is that a boxed
run-time check can fail. We actually consider this to be safe
behavior. Another reason for failure is that operands can
evaluate to unexpected values, such as if the second operand
of ⊕ evaluates to a value of the form 〈h, n〉. The third rea-
son is that the operations on memory are undefined if they
involve invalid addresses. We state below two theorems say-
ing essentially that the last two reasons for failure cannot
happen in well-typed CCured programs.

In order to state a progress theorem we want to distin-
guish between executions that stop because memory safety
is violated (i.e. trying to access an invalid memory loca-
tion) and executions that stop because of a failed run-time
check (the boxed hypotheses in the rules of Figure 6). We
accomplish this by introducing a new possible outcome of
evaluation. We say that Σ, M ` e ⇓ CheckFailed when one
of the run-time checks fails during the evaluation of the ex-
pression e. Similarly, we say that Σ, M ` c =⇒ CheckFailed
when the execution of the command c results in a failed
run-time check. Technically, this means that we add deriva-
tion rules that initiate the CheckFailed result when one of
the run-time check fails and also rules that propagate the
CheckFailed outcome from the subexpressions to the enclos-
ing expression.

Theorem 1 (Progress and type preservation) If Γ `
e : τ and Σ ∈ ‖Γ‖H and WF (MH) then either Σ, MH `
e ⇓ CheckFailed or else Σ, MH ` e ⇓ v and v ∈ ‖τ‖H .

Theorem 2 (Progress for commands) If Γ ` c and Σ ∈
‖Γ‖H and WF (MH) then either Σ, MH ` c =⇒ CheckFailed
or else Σ, MH ` c =⇒ M ′

H and WF (M ′
H).

The proofs of these theorems are fairly straightforward
inductions on the structure of the typing derivations. Note
that the progress theorems state more than just memory

133

Expressions and commands:

Γ ` e1 : τ ref q 7→ C1 Γ ` e2 : int 7→ C2

Γ ` e1 ⊕ e2 : τ ref q 7→ C1 ∪ C2 ∪ {q 6= SAFE}
Γ ` e : τ ′ 7→ C τ ′ ≤ τ 7→ C′

Γ ` (τ)e : τ 7→ C ∪ C′ Γ ` (τ ref q)0 : τ ref q 7→ ∅

Γ ` e : τ ref q 7→ C

Γ ` ! e : τ 7→ C

Γ ` e1 : τ ref q 7→ C1 Γ ` e2 : τ2 7→ C2 τ2 ≤ τ 7→ C3

Γ ` e1 := e2 7→ C1 ∪ C2 ∪ C3

Convertibility:

τ ≤ int 7→ ∅ int ≤ τ ref q 7→ {q 6= SAFE} τ1 ref q1 ≤ τ2 ref q2 7→ {q1 � q2} ∪ {q1 = q2 = DYNQ ∨ τ1 ≈ τ2}

Figure 7: Constraint generation rules.

safety. They also imply that well-typed computations of non-
dynamic type are type preserving, similar to corresponding
results for a type-safe language. This means that CCured
is memory safe and is also type safe for the non-dynamic
fragment.

6 Type Inference

So far we have considered the case of a program that is
written using the CCured type system. Our implementation
does allow the programmer to write such programs directly
in C with the pointer kinds specified using the attribute

keyword of GCC. But our main goal is to be able to use
CCured with existing, un-annotated C programs. For this
purpose we have designed and implemented a type infer-
ence algorithm that, given a C program, constructs a set of
pointer-kind qualifiers that make the program well-typed in
the CCured type system.

Our inference algorithm can operate either on the whole
program, or on modules whose interfaces have been anno-
tated with pointer-kind qualifiers. We rely on the fact that
the C program already uses types of the form “τ ref”. All
we need is to discover for each occurrence of the pointer type
constructor whether it should be safe, sequence or dynamic.
To describe the inference algorithm we extend the CCured
type language with the pointer type “τ ref q”, where q
is a qualifier variable ranging over the set of qualifier val-
ues {SAFE, SEQ, DYNQ} (where DYNQ is the qualifier associated
with the DYNAMIC type).

The inference algorithm starts by introducing a qualifier
variable for each syntactic occurrence of the pointer type
constructor in the C program. We then scan the program
and collect a set of constraints on these qualifier variables.
Next we solve the system of constraints to produce a substi-
tution S of qualifier variables with qualifier values and finally
we apply the substitution to the types in the C program to
produce a CCured program.

The substitution S is applied to types using the following
rules:

S(int) = int

S(τ ref q) =

{
DYNAMIC if S(q) = DYNQ

S(τ) ref S(q) otherwise

Note that when the qualifier q is substituted with DYNQ

we ignore the referenced type (τ) of the pointer, which is

consistent with the idea that for the dynamic pointers we
should not count on the declared referenced type. DYNAMIC

pointers never point to typed areas and thus the inference
algorithm is designed to infer only DYNQ qualifiers in the ref-
erenced types of DYNQ pointers.

The overall strategy of inference is to find as many SAFE

and SEQ pointers as possible. Simply making all qualifiers
DYNQ yields always a well-typed solution, but SAFE and SEQ

pointers are preferred.

1. Constraint Collection. We collect constraints us-
ing a modified typing judgment written Γ ` e : τ 7→ C and
meaning that by scanning the expression e in context Γ we
inferred type τ along with a set of constraints C. We also use
the auxiliary judgments τ ≤ τ ′ 7→ C to collect constraints
corresponding to the convertibility relation, and Γ ` c 7→ C
to express constraint collection from commands. The intent
is that a solution to the set of constraints C, when applied
as a substitution to the elements appearing before the sym-
bol 7→, yields a valid typing judgment of the corresponding
syntactic form in CCured. The rules for the constraint col-
lection judgments are shown in Figure 7.

The constraints for pointer arithmetic are fairly straight-
forward and those for casts are expressed as a separate con-
vertibility judgment. For memory reads and writes, we
must bridge the gap between the rules of C and the rules
of CCured. Specifically, we allow memory access through
SEQ (not just SAFE) pointers, and we allow ints to be read
or written through DYNAMIC pointers. In both cases, an im-
plicit cast is inserted to yield a valid CCured program. In a
memory write we allow for a conversion of the value being
written to the type of the referenced type.

To express the convertibility constraints in a concise way
we introduce a convertibility relation on qualifier values,
which essentially says SEQ can be cast to SAFE:

q � q′
def
= q = q′ ∨ (q = SEQ ∧ q′ = SAFE)

Finally, to capture the requirement that all DYNAMIC point-
ers point only to dynamically typed areas, for each type of
the form τ ref q′ ref q we collect a POINTSTO constraint
q = DYNQ⇒ q′ = DYNQ.

134

After constraint generation we end up with a set contain-
ing the following four kinds of constraints:

ARITH: q 6= SAFE

CONV: q � q′

POINTSTO: q = DYNQ⇒ q′ = DYNQ

TYPEEQ: q = q′ = DYNQ ∨ τ1 ≈ τ2

The constraint τ1 ≈ τ2 requires that a valid solution is a
substitution S that makes the types S(τ1) and S(τ2) identi-
cal. This notion is made more precise below.

2. Constraint Normalization. The next step is to nor-
malize the generated constraints into a simpler form. Notice
that the system of constraints we have generated so far has
conditional constraints. The POINTSTO constraints are easy
to handle because we can ignore them as long as the quali-
fier q on the left is unknown, and if it becomes DYNQ, we add
the constraints “q′ = DYNQ” to the system of constraints. If
q remains unknown at the end of the normalization process
we will make it SAFE or SEQ.

However, the same is not true of the TYPEEQ constraints.
If we postpone such constraints and the qualifiers involved
remain unconstrained we would like to make them both SAFE

or SEQ (to mimimize the number of DYNAMIC pointers). But
to do that we must introduce in the system the type equality
constraint, which might lead to contradictions that require
backtracking. Fortunately there is a simple solution to this
problem. We start by simplifying the TYPEEEQ constraint
based on the possible forms of the types τ1 and τ2:

q = q′ = DYNQ ∨ int ≈ int 7→ ∅
q = q′ = DYNQ ∨ int ≈ τ2 ref q2 7→ {q = DYNQ,

q′ = DYNQ}
q = q′ = DYNQ ∨ τ1 ref q1 ≈ int 7→ {q = DYNQ,

q′ = DYNQ}
q = q′ = DYNQ ∨ τ1 ref q1 ≈ τ2 ref q2 7→ {q = q′} ∪ C

where q1 = q2 = DYNQ ∨ τ1 ≈ τ2 7→ C

The only subtlety is in the last rule. We observe that
a constraint of the form “q = q′ = DYNQ ∨ τ1 ref q1 ≈
τ2 ref q2” arises only when the types “τ1 ref q1 ref q” and
“τ2 ref q2 ref q′” appear in the program. This means that
the following POINTSTO constraints also exist:

q = DYNQ⇒ q1 = DYNQ

q′ = DYNQ⇒ q2 = DYNQ

This in turn means that the disjunct q = q′ = DYNQ in the
last reduction rule is redundant and can be eliminated.

After simplifying all TYPEQ constraints, the normalized
system has only the following kinds of constraints:

ARITH: q 6= SAFE

CONV: q � q′

POINTSTO: q = DYNQ⇒ q′ = DYNQ

ISDYN: q = DYNQ

EQ: q = q′

3. Constraint Solving. The final step in our algorithm
is to solve the remaining set of constraints. The algorithm
is quite simple:

3.1 Propagate the ISDYN constraints using the constraints
EQ, CONV, and POINTSTO. After this is done all the other
qualifier variables can be made SEQ or SAFE, as follows:

3.2 All qualifier variables involved in ARITH constraints are
set to SEQ and this information is propagated using the
constraints EQ and CONV (in this latter case the SEQ in-
formation is propagated only from q′ to q, or against
the direction of the cast).

3.3 We make all the other variables SAFE.

Essentially, we find first the minimum number of DYNQ

qualifiers. Among the remaining qualifiers we find those on
which pointer arithmetic is performed and we make them
SEQ, and the remaining qualifiers are SAFE. This solution is
the best one possible in terms of maximizing the number of
SAFE and SEQ pointers.

The whole type inference process is linear in the size of the
program. A linear number of qualifier variables is introduced
(one for each syntactic occurrence of a pointer type construc-
tor), then a linear number of constraints is created (one for
each cast or memory read or write in the program). Dur-
ing the simplification of the TYPEQ constraints the number
of constraints can get multiplied by the maximum nesting
depth of a qualifier in a type. Finally, constraint solving is
linear in the number of constraints.

7 Handling the Rest of C

In the interest of clarity we have formalized in this paper
only a small subset of the CCured dialect of C. Our imple-
mentation handles the entire C programming language along
with most of the extensions in the GNU C dialect. In this
section we discuss informally how we handle the rest of the
C programming language. The full details are presented in
a forthcoming paper.

In the DYNAMIC world, structures and arrays are simply
alternative notations for saying how many bytes of storage to
allocate. In the SAFE world, structures accesses are required
to respect the types of all fields. For example, it is possible
to have a SAFE pointer to a structure field, but you cannot
perform arithmetic on such a pointer. We treat unions as
syntactic sugar for casts.

Explicit deallocation is currently ignored, and the Boehm-
Weiser conservative garbage collector [3] is used to reclaim
storage. However, the CCured system maintains enough
type information to allow the use of a precise collector; this
may be future work.

The address-of operator in C can yield a pointer to a stack-
allocated variable. The variable to which the pointer points
may be inferred to live in the DYNAMIC or SAFE worlds, de-
pending on how the pointer is used. The only difficulty is
that the storage will be deallocated when the function re-
turns, so the CCured run-time checks ensure no stack pointer
ever gets written into the heap or globals. This restriction

135

allows the common use of address-of to implement call-by-
reference; for other uses, the storage in question may have
to be allocated on the heap instead.

DYNAMIC function pointers and variable-argument func-
tions are also handled in CCured, by passing a hidden argu-
ment which specifies the types of all arguments passed. The
hidden argument is then checked in the callee, and parame-
ters interpreted accordingly. Among other things, this level
of checking is sufficient to detect format string errors.

Certain C library functions must be handled specially.
Several functions (of which malloc is the most important)
are treated polymorphically, lest all dynamically-allocated
data be marked DYNAMIC. A few others impose constraints
on argument qualifiers: e.g., memcpy internally does pointer
arithmetic, and hence cannot accept SAFE pointers.

8 Source Changes

The CCured type system and inference algorithm are de-
signed to minimize the amount of source changes required
to conform to its restrictions. However, there are still a few
cases in which legal C programs will stop with a failed run-
time check. In those cases manual intervention is necessary.

One common situation is when the program stores a
pointer in a variable declared to hold an integer, then casts
it back to a pointer and dereferences the pointer. In some
cases, it suffices to change the variable’s declaration from
from (say) unsigned long to void*. This type will certainly
be marked DYNAMIC, but it will work. For other programs, we
may be able to replace casts with pointer arithmetic. For ex-
ample, if e is a sequence or dynamic pointer expression then
the legal CCured expression “e ⊕ (n− (int)e)” is effectively
a cast of the integer n to a pointer (with the same home as
e). As a last resort, it is possible to query the garbage col-
lector at run time to find the home and type of any pointer,
but so far this has not been necessary.

Another problem in otherwise legal C code is the interac-
tion between sizeof and our fat pointers: one must change
occurrences of sizeof(type) to sizeof(expression), when-
ever type contains pointers. A typical example, allocating an
array of 5 integer pointers, is

int **p = (int**)malloc(5 * sizeof(int*));

This code will always allocate space for 5 SAFE pointers, even
if p is inferred to point to SEQ or DYNAMIC pointers. This code
must be changed to

int **p = (int**)malloc(5 * sizeof(*p));

so the size passed to malloc is related to the size of *p.
While most uses of address-of are to implement call-by-

reference, some programs attempt to store stack pointers
into memory. Among the programs we have compiled with
CCured, only two (the SPECINT95 benchmarks li and
ijpeg) do this. The solution is to annotate certain local
variables with a qualifier that causes them to be allocated
on the heap. For li, which makes fairly extensive use of this
feature, this results in a performance penalty of about 25%.

When CCured changes the representation of pointers, this
can lead to problems when calling functions in libraries that
were not compiled with CCured. The typical solution is to
write wrapper functions which translate between two-word
and one-word arguments and return values. The wrapper

must do the run-time checks assocated with the pointers,
before passing them to the underlying library.

The wrapper solution works well for the standard C li-
brary. However, we expect to encounter difficulties when
interoperating with third-party libraries whose interface in-
volves passing pointers to large structures which themselves
contain pointers. We are experimenting with an alterna-
tive implementation scheme in which the bookkeeping infor-
mation for sequence and dynamic pointers that escape the
CCured world are kept in a global table so that we do not
have to change the representation of exported data struc-
tures.

9 Experiments

We ran though our translator several C programs ranging
in size from 400 (treeadd) to 30,000 (ijpeg) lines of code
(including whitespace and comments), with several goals.
First, we wanted to measure the performance impact of the
run-time checks introduced by our translator. Second, we
wanted to see how effective our inference system is at elim-
inating these checks. Finally, we investigated what changes
to the program source are required to make the program run
under the CCured restrictions.

We used several test cases, some from SPECINT95 [26]:
compress is LZW data compression; go plays the board game
Go; ijpeg compresses image files; li is a Lisp interpreter;
and some from the Olden benchmark suite [6], a collection of
small, compute-intensive kernels: bh is an n-body simulator;
bisort is a sorting algorithm; em3d solves an elecromag-
netism problem; health simulates Colombia’s health care
system; mst computes minimum spanning trees; perimeter
computes perimeters of regions in images; power simulates
power market prices; treeadd simply builds a binary tree;
tsp uses a greedy algorithm to approximately solve random
Traveling Salesman Problem instances; and voronoi con-
structs Voronoi diagrams.

Most of the source changes needed to run these bench-
marks were simple syntactic adjustments, such as adding (or
correcting) prototypes and marking printf-like functions.
A few benchmarks required changing sizeof (prevalent in
ijpeg) or moving locals into the heap (for li). No pro-
gram required changes to the data structures or other basic
design elements. A number of remaining bugs in our imple-
mentation prevents us from applying CCured to the other
benchmarks in the SPECINT95 suite.

The running time (median of five) of each of the bench-
marks is shown in Figure 8. The measurements were made
on an otherwise quiescent 1GHz AMD Athlon, 768MB Linux
machine, using the gcc-2.95.3 compiler with -O2 or -O3 op-
timization level (depending on benchmark size).

In all cases the pointer kind inference was performed over
the whole program. However, because inference time is lin-
ear in the size of the program (as argued in Section 6),
we have not observed scalability problems with our whole-
program approach. In fact, our biggest scalability problem
is with the optimizer in the C compiler that consumes our
output (presented as a single, large C source file).

Most of the benchmarks have between 30% and 150%
slowdown. To measure the effectiveness of our inference al-

136

Name Lines Orig. CCured Purify
of code time sf/sq/d ratio ratio

SPECINT95
compress 1590 9.586s 87/12/0 1.25 28
go 29315 1.191s 96/4/0 2.01 51
ijpeg 31371 0.963s 36/1/62 2.15 30
li 7761 0.176s 93/6/0 1.86 50

Olden
bh 2053 2.992s 80/18/0 1.53 94
bisort 707 1.696s 90/10/0 1.03 42
em3d 557 0.371s 85/15/0 2.44 7
health 725 2.769s 93/7/0 0.94 25
mst 617 0.720s 87/10/0 2.05 5
perimeter 395 4.711s 96/4/0 1.07 544
power 763 1.647s 95/6/0 1.31 53
treeadd 385 0.613s 85/15/0 1.47 500
tsp 561 3.093s 97/4/0 1.15 66

Figure 8: CCured versus original performance. The mea-
surements are presented as ratios, where 2.00 means the
program takes twice as long to run when instrumented with
CCured. The “sf/sq/d” column show the percentage of
(static) pointer declarations which were inferred SAFE, SEQ
and DYNAMIC, respectively.

gorithm we used CCured with a naive inference algorithm
that makes all pointers DYNAMIC. The slowdown in this case is
more significant (6 to 20 times slower) and it approaches that
reported by other researchers [2, 13, 18, 19] who tried an all-
run-time-checks approach to memory safety for C. For exam-
ple, the most pointer-intensive benchmark is li, which runs
16 times slower if all pointers are blindly marked DYNAMIC;
however, once the inference discovers that all the pointers
are SAFE or SEQ, it is only twice as slow.

Program size has a big influence on how many of the point-
ers can be statically verified. Small programs like the Olden
benchmark suite tend to have few data types, and they are
used in straightforward ways. Large programs, especially
those designed to be extended in the future, use pointers
in many ways. In the case of ijpeg, it uses object-oriented
downcasts throughout, and thus a large number of the point-
ers become DYNAMIC.

We discovered and fixed several bugs in the SPECINT95
benchmarks: compress and ijpeg each contain one array
bounds violation, and go has (at least) eight array bounds
violations and one use of an uninitialized integer variable as
an array index. In each case we verified that fixing the bug
did not change the program’s eventual output (for the test
vectors considered), which partially explains how these bugs
survived for so long in otherwise well-tested programs.

Most of the bugs in go involved erroneous index arithmetic
within large, multi-dimensional arrays. Finding these bugs
demonstrates an advantage of our type-sensitive approach.
If we simply marked all home areas as untyped, and only
checked for errors when a pointer strayed out of its home
area, we would miss errors that happen to stay within the
intended home area. While we were originally motivated by
performance to discover safe pointers, we found that doing
so enhanced our bug-finding ability too.

The last column in Figure 8 shows the slowdown of these
programs when instrumented with Purify (version 2001A)
[10], a tool that instruments existing C binaries to detect
memory errors and leaks by keeping two bits of storage for
each byte in the heap (unallocated, uninitialized and initial-
ized). However, Purify does not catch pointer arithmetic
that yields a pointer to a separate valid region [13], a prop-
erty that Fischer and Patil [20] show to be important. Pu-
rify tends to slow programs down by a factor of 10 or more,
much more than CCured. Of course, Purify does not require
source code, so may be applicable in more situations. Pu-
rify did find the uninitialized variable in go, but none of the
other bugs, because the accesses in question did not stray
far enough to be noticed.

10 Related Work

Abadi et al. [1] study the theoretical aspects of adding a
Dynamic type to the simply-typed λ-calculus and discuss ex-
tensions to polymorphism and abstract data types. Thatte
[28] extends their system to replace the typecase expressions
with implicit casts. Their system does not handle reference
types or memory updates and Dynamic types are introduced
to add flexibility to the language. In contrast our system was
designed to handle memory reads and writes, allows DYNAMIC
values to be manipulated (e.g., via pointer arithmetic) with-
out checking their tags, and uses DYNAMIC types to guarantee
the safety of code that cannot be statically verified.

Chandra and Reps [8] present a method for physical type
checking of C programs based on structure layout in the pres-
ence of casts. Their inference method can reason about casts
between various structure types by considering the physical
layout of memory. Our example in Section 2 would fail to
type check in their system for the same reason that we must
mark some of the pointers DYNAMIC: its safety cannot be guar-
anteed at compile time. Siff et al. [24] identify that many
casts in C programs are safe upcasts and present a tool to
check such casts.

The programming languages CLU [17], Cedar/Mesa [16]
and Modula-{2+,3} [5] include similar notions of a dynamic
type and a typecase statement. This idea can also be seen
in CAML’s exception type [22].

Other related work in this area falls into three broad cat-
egories: (1) extensions to C’s type system, (2) adding run-
time checks to C, and (3) removing run-time checks from
LISP.

Previous efforts to extend C’s type system usually deal
with polymorphism. Smith et al. [25] present a polymor-
phic and provably type-safe dialect of C that includes most
of C’s features (and higher-order functions, which our cur-
rent system handles weakly) but lacks casts and structures.
Evans [9] describes a system in which programmer-inserted
annotations and static checking techniques can find errors
and anomalies in large programs. Ramalingam et al. [21]
have presented an algorithm for finding the coarsest accept-
able type for structures in C programs. Most such type
systems and inference methods are presented as sources of
information. In this paper we present a type and inference
system with the goal of making programs safe.

137

There have been many attempts to bring some measure of
safety to C in the past by trading space and speed for secu-
rity. Previous techniques have been concerned with spatial
access errors (array bounds checks and pointer arithmetic)
and temporal access errors (touching memory that has been
freed) but none of them use a static analysis of the form
presented here. Kaufer et al. [14] present an interpretive
scheme called Saber-C that can detect a rich class of errors
(including uninitialized reads and dynamic type mismatches
but not all temporal access errors) but runs about 200 times
slower than normal. Austin et al. [2] store extra informa-
tion with each pointer and achieve safety at the cost of a
large (up to 540% speed and 100% space) overhead and a
lack of backwards compatibility. Jones and Kelly [13] store
extra information for run-time checks in a splay tree, allow-
ing safe code to work with unsafe libraries. This results in
a slowdown factor of 5 to 6. Fischer and Patil have pre-
sented a system that uses a second processor to perform
the bounds checks [19]. The total execution overhead of a
program is typically only 5% using their technique but it
requires a dedicated second processor. Loginov et al. [18]
store type information with each memory location, incurring
a slowdown factor of 5 to 158. This extra information allows
them to perform more detailed checks and they can detect
when stored types mismatch declared types or union mem-
bers are accessed out of order. While their tool and ours are
similar in many respects their goal is to provide rich debug-
ging information and ours is to make C programs safe while
retaining efficiency. Steffen’s rtcc compiler [27] is portable
and adds object attributes to pointers but fails to detect
temporal access errors and does not perform any check opti-
mizations. In fact, beyond array bounds check elimination,
none of these techniques use type-based static analysis to
aggressively reduce the overhead of the instrumented code.

Finally, much work has been done to remove dynamic
checks and tagging operations from LISP-like languages.
Henglein [11] details a type inference scheme to remove tag-
ging and untagging operations in LISP-like languages. The
overall structure of his algorithm is very similar to ours
(simple syntax-direct constraint generation, constraint nor-
malization, constraint solving) but the domain of discourse
is quite different because his base language is dynamically
typed. In Henglein’s system each primitive type construc-
tor is associated with exactly one tag, so there is no need
to deal with the pointer/array ambiguity that motivates our
SEQ pointers. In C it is sometimes necessary to allocate an
object as having a certain type and later view it as having
another type: Henglein’s system disallows this because tags
are set at object creation time (that is, true C-style casts
or unions are not fully supported [12]). Henglein is also
able to sidestep update and aliasing issues because tagging
and untagging create a new copy of the object (to which
set! can be applied, for example) so one never has tagged
and untagged aliases for the same item. His algorithm does
not consider polymorphism or module compilation [15]. The
CCured system uses a form of physical subtyping for point-
ers to structures and it is not clear how to extend Henglein’s
constraint normalization procedure in such a case.

Jagannathan et al. [12] use a more expensive and more
precise flow-sensitive analysis called polymorphic splitting to

eliminate run-time checks from higher-order call-by-value
programs. Shields et al. [23] present a system in which dy-
namic typing and staged computation (run-time code gen-
eration) coexist: all deferred computations have the same
dynamic type at compile-time and can be checked precisely
at run-time. Such a technique can handle persisting dy-
namic data, a weakness of our current system. Soft type
systems [7] also infer types for procedures and data struc-
tures in dynamically-typed programs. Advanced soft type
systems [30] can be based on inclusion subtyping and can
handle unions, recursive types and other complex language
features. Finally, [15] presents a practical ML-style type in-
ference system for LISP. As with Henglein [11], such systems
start with a dynamically typed language and thus tackle a
different core problem.

11 Conclusion and Future Work

The C programming language is the language of choice for
systems programming because of its flexibility and control
over the layout of data structures and the use of pointers.
Unfortunately, this comes at the expense of type safety. In
this paper we propose a scheme that combines program anal-
ysis and run-time checking to bring type safety to existing
C programs by trading off some performance.

The key insight of this work is that even in C programs
most pointers are used in such a way that they can be verified
to be type safe using typing rules similar to those of strongly
typed languages. Furthermore the rest of the pointers can
be checked at run-time to ensure that they are indeed used
safely. The entire approach hinges on the ability to infer
accurately which pointers need to be checked at run time
and which do not. We present a surprisingly simple type
inference algorithm that is able to do just that.

Perhaps the most surprising result of our experiments is
that in many C programs most pointers are perfectly safe
(and our inference is able to discover that), which means that
those programs are just as safe as if they had been written
in a type-safe language. Consequently the cost of enforcing
safety for many C programs is relatively low and even with a
prototype implementation we were able to achieve overheads
several times smaller than those of comparable tools that rely
exclusively on run-time checking.

The two flavors of typed pointers that we present in this
paper cover many of the programming paradigms encoun-
tered in C programs. But there are still other operations
on pointers that could be statically proven safe, which our
type system fails to recognize. The most important exam-
ple is tagged union types with incompatible members, which
the current CCured system flags as untyped; a special case
is object-oriented “downcasts,” used heavily by ijpeg. To
handle these situations without resorting to the DYNAMIC

sledgehammer, it would be useful to have a more expressive
language of pointer types than our current system provides.

12 Acknowledgments

We would like to thank Alex Aiken and Jeff Foster for useful
comments on earlier drafts of this paper and also Raymond

138

To, Aman Bhargava, S. P. Rahul, and Danny Antonetti for
helping with the implementation of the CCured system.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic
typing in a statically typed language. ACM Transactions on
Programming Languages and Systems, 13(2):237–268, April
1991.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient de-
tection of all pointer and array access errors. SIGPLAN
Notices, 29(6):290–301, June 1994. Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language De-
sign and Implementation.

[3] H.-J. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Software—Practice and Experience,
27:807–820, Sept. 1997.

[4] V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Comput-
ing with coercions. In LISP and Functional Programming,
pages 44–60, 1990.

[5] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow,
and G. Nelson. Modula3 report, 1989.

[6] M. C. Carlisle. Olden: Parallelizing Programs with Dynamic
Data Structures on Distributed-Memory Machines. PhD the-
sis, Princeton University Department of Computer Science,
June 1996.

[7] R. Cartwright and M. Fagan. Soft typing. In Proceedings of
the ’91 Conference on Programming Language Design and
Implementation, pages 278–292, 1991.

[8] S. Chandra and T. Reps. Physical type checking for C. In
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, vol-
ume 24.5 of Software Engeneering Notes (SEN), pages 66–75.
ACM Press, Sept. 6 1999.

[9] D. Evans. Static detection of dynamic memory errors. ACM
SIGPLAN Notices, 31(5):44–53, 1996.

[10] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the Usenix Winter
1992 Technical Conference, pages 125–138, Berkeley, CA,
USA, Jan. 1991. Usenix Association.

[11] F. Henglein. Global tagging optimization by type inference.
In Proceedings of the 1992 ACM Conference on LISP and
Functional Programming, pages 205–215, 1992.

[12] S. Jagannathan and A. Wright. Effective flow analysis for
avoiding run-time checks. In Proceedings of the Second In-
ternational Static Analysis Symposium, volume 983, pages
207–224. Springer-Verlag, 1995.

[13] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs.
AADEBUG, 1997.

[14] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: an interpreter-
based programming environment for the C language. In Pro-
ceedings of the Summer Usenix Conference, pages 161–171,
1988.

[15] A. Kind and H. Friedrich. A practical approach to type
inference for EuLisp. Lisp and Symbolic Computation,
6(1/2):159–176, 1993.

[16] B. Lampson. A description of the Cedar language. Technical
Report CSL-83-15, Xerox Palo Alto Research Center, 1983.

[17] B. Liskov, R. R. Atkinson, T. Bloom, E. B. Moss, R. Schaf-
fert, and A. Snyder. CLU Reference Manual. Springer-
Verlag, Berlin, 1981.

[18] A. Loginov, S. Yong, S. Horwitz, and T. Reps. Debugging via
run-time type checking. In Proceedings of FASE 2001: Fun-
damental Approaches to Software Engineering, Apr. 2001.

[19] H. Patil and C. N. Fischer. Efficient run-time monitoring
using shadow processing. In Automated and Algorithmic De-
bugging, pages 119–132, 1995.

[20] H. Patil and C. N. Fischer. Low-cost, concurrent checking
of pointer and array accesses in C programs. Software—
Practice and Experience, 27(1):87–110, Jan. 1997.

[21] G. Ramalingam, J. Field, and F. Tip. Aggregate structure
identification and its application to program analysis. In
Symposium on Principles of Programming Languages, pages
119–132, Jan. 1999.

[22] D. Remy and J. Vouillon. Objective ML: A simple object-
oriented extension of ML. In Symposium on Principles of
Programming Languages, pages 40–53, 1997.

[23] M. Shields, T. Sheard, and S. L. P. Jones. Dynamic typing
as staged type inference. In Symposium on Principles of
Programming Languages, pages 289–302, 1998.

[24] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and
T. Reps. Coping with type casts in C. In 1999 ACM Foun-
dations on Software Engineering Conference (LNCS 1687),
volume 1687 of Lecture Notes in Computer Science, pages
180–198. Springer-Verlag / ACM Press, September 1999.

[25] G. Smith and D. Volpano. A sound polymorphic type system
for a dialect of C. Science of Computer Programming, 32(1–
3):49–72, 1998.

[26] SPEC 95. Standard Performance Evaluation Corportation
Benchmarks. http://www.spec.org/osg/cpu95/CINT95, July
1995.

[27] J. L. Steffen. Adding run-time checking to the Portable C
Compiler. Software—Practice and Experience, 22(4):305–
316, Apr. 1992.

[28] S. Thatte. Quasi-static typing. In Conference record of the
17th ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 367–381, 1990.

[29] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step
toward automated detection of buffer overrun vulnerabilities.
In Network Distributed Systems Security Symposium, pages
1–15, Feb. 2000.

[30] A. Wright and R. Cartwright. A practical soft type system
for Scheme. ACM Transactions on Programming Languages
and Systems, 1997.

139

	Introduction
	Overview of the Approach
	A Language of Pointers
	The Type System
	Operational Semantics
	Type Safety

	Type Inference
	1. Constraint Collection.
	2. Constraint Normalization.
	3. Constraint Solving.

	Handling the Rest of C
	Source Changes
	Experiments
	Related Work
	Conclusion and Future Work
	Acknowledgments

