
Automatically Proving the Correctness of
Compiler Optimizations

Sorin Lerner Todd Millstein Craig Chambers
Department of Computer Science and Engineering

University of Washington

{lerns,todd,chambers}@cs.washington.edu

ABSTRACT

We describe a technique for automatically proving compiler
optimizations sound, meaning that their transformations are
always semantics-preserving. We first present a domain-
specific language, called Cobalt, for implementing optimiza-
tions as guarded rewrite rules. Cobalt optimizations operate
over a C-like intermediate representation including unstruc-
tured control flow, pointers to local variables and dynami-
cally allocated memory, and recursive procedures. Then we
describe a technique for automatically proving the sound-
ness of Cobalt optimizations. Our technique requires an au-
tomatic theorem prover to discharge a small set of simple,
optimization-specific proof obligations for each optimiza-
tion. We have written a variety of forward and backward
intraprocedural dataflow optimizations in Cobalt, includ-
ing constant propagation and folding, branch folding, full
and partial redundancy elimination, full and partial dead
assignment elimination, and simple forms of points-to analy-
sis. We implemented our soundness-checking strategy using
the Simplify automatic theorem prover, and we have used
this implementation to automatically prove our optimiza-
tions correct. Our checker found many subtle bugs during
the course of developing our optimizations. We also imple-
mented an execution engine for Cobalt optimizations as part
of the Whirlwind compiler infrastructure.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication – correctness proofs, reliability, validation; D.3.4
[Programming Languages]: Processors – compilers, op-
timization; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs –
mechanical verification

General Terms

Reliability, languages, verification.

Keywords

Compiler optimization, automated correctness proofs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

1. INTRODUCTION
Compilers are an important part of the infrastructure re-

lied upon by programmers. If a compiler is faulty, then
so are potentially all programs compiled with it. Unfortu-
nately, compiler errors can be difficult for programmers to
detect and debug. First, because the compiler’s output can-
not be easily inspected, problems can often be found only
by running a compiled program. Second, the compiler may
appear to be correct over many runs, with a problem only
manifesting itself when a particular compiled program is run
with a particular input. Finally, when a problem does ap-
pear, it can be difficult to determine whether it is an error
in the compiler or in the source program that was compiled.

For these reasons, it is very useful to develop tools and
techniques that give compiler developers and programmers
confidence in their compilers. One way to gain confidence in
the correctness of a compiler is to run it on various programs
and check that the optimized version of each program pro-
duces correct results on various inputs. While this method
can increase confidence, it cannot provide any guarantees:
it does not guarantee the absence of bugs in the compiler,
nor does it even guarantee that any one particular optimized
program is correct on all inputs. It also can be tedious to
assemble an extensive test suite of programs and program
inputs.

Translation validation [26, 20] and credible compila-
tion [28, 27] improve on this testing approach by automat-
ically checking whether or not the optimized version of an
input program is semantically equivalent to the original pro-
gram. These techniques can therefore guarantee the correct-
ness of certain optimized programs, but the compiler itself is
still not guaranteed to be bug-free: there may exist programs
for which the compiler produces incorrect output. There is
little recourse for a programmer if a compiled program can-
not be validated. Furthermore, these approaches can have
a substantial impact on the time to run an optimization.

The best solution would be to prove the compiler sound,
meaning that for any input program, the compiler always
produces an equivalent output program. Optimizations, and
sometimes even complete compilers, have been proven sound
by hand [1, 2, 16, 14, 8, 24, 3, 11]. However, manually prov-
ing large parts of a compiler sound requires a lot of effort
and theoretical skill on the part of the compiler writer. In
addition, these proofs are usually done for optimizations as
written on paper, and bugs may still arise when the algo-
rithms are implemented from the paper specification.

We present a new technique for proving the soundness
of compiler optimizations that combines the benefits from

the last two approaches: our approach is fully automated,
as in credible compilers and translation validation, but it
also proves optimizations correct once and for all, for any
input program. We achieve this goal by providing the com-
piler writer with a domain-specific language for implement-
ing optimizations that is both flexible enough to express a
variety of optimizations and amenable to automated cor-
rectness reasoning.

The main contributions of this paper are as follows:

• We present a language, called Cobalt, for defining op-
timizations over programs expressed in a C-like inter-
mediate language including unstructured control flow,
pointers to local variables and dynamically allocated
memory, and recursive procedures. To implement an
optimization (i.e., an analysis plus a code transfor-
mation), users provide a rewrite rule along with a
guard describing the conditions that must hold for the
rule to be triggered at some node of an input pro-
gram’s control-flow graph (CFG). The optimization
also includes a small predicate over program states,
which captures the key “insight” behind the optimiza-
tion that justifies its correctness. Cobalt also allows
users to express pure analyses, such as pointer analysis.
Pure analyses can be used both to verify properties of
interest about a program and to provide information to
be consumed by later transformations. Optimizations
and pure analyses written in Cobalt are directly exe-
cutable by a special dataflow analysis engine written
for this purpose; they do not need to be reimplemented
in a different language to be run.

• We have used Cobalt to express a variety of intrapro-
cedural forward and backward dataflow optimizations,
including constant propagation and folding, copy prop-
agation, common subexpression elimination, branch
folding, partial redundancy elimination, partial dead
assignment elimination, and loop-invariant code mo-
tion. We have also used Cobalt to express several sim-
ple intraprocedural pointer analyses, whose results we
exploited in the above optimizations.

• We present a strategy for automatically proving the
soundness of optimizations and analyses expressed in
Cobalt. The strategy requires an automatic theorem
prover to discharge a small set of proof obligations for
each optimization. We have manually proven that if
these obligations hold for any particular optimization,
then that optimization is sound. The manual proof
takes care of the necessary induction over program ex-
ecution traces, which is difficult to automate. As a
result, the automatic theorem prover is given only non-
inductive theorems to prove about individual program
states.

• We have implemented our correctness checking strat-
egy using Simplify [31, 23], the automatic theo-
rem prover used in the Extended Static Checker for
Java [6]. We have written a general set of axioms
that are used by Simplify to automatically discharge
the optimization-specific proof obligations generated
by our strategy. The axioms simply encode the seman-
tics of programs in our intermediate language. New op-
timization programs can be written and proven sound

without requiring any modifications to Simplify’s ax-
iom set.

• We have used our correctness checker to automatically
prove correct all of the optimizations and pure analy-
ses listed above. The correctness checker uncovered a
number of subtle problems with earlier versions of our
optimizations that might have eluded manual testing
for a long time.

• We have implemented an execution engine for Cobalt
optimizations as part of the Whirlwind compiler infras-
tructure, and we have used it to successfully execute
all of our optimizations.

By providing greater confidence in the correctness of com-
piler optimizations, we hope to provide a foundation for ex-
tensible compilers. An extensible compiler would allow users
to include new optimizations tailored to their applications or
domains of interest. The extensible compiler can protect it-
self from buggy user optimizations by verifying their correct-
ness using our strategy; any bugs in the resulting extended
compiler can be blamed on other aspects of the compiler’s
implementation, not on the user’s optimizations. Extensible
compilers could also be a good vehicle for research into new
compiler optimizations.

The next section introduces Cobalt by example and
sketches our strategy for automatically proving soundness
of Cobalt optimizations. Sections 3 and 4 formally define
Cobalt and our automatic proof strategy, respectively. Sec-
tion 5 discusses our implementation of Cobalt’s execution
engine and correctness checker. Section 6 evaluates our
work, and section 7 discusses future work. Section 8 de-
scribes related work, and section 9 offers our conclusions.

2. OVERVIEW
In this section, we informally describe Cobalt and our

technique for proving Cobalt optimizations sound through
a number of examples. A companion technical report [13]
contains the complete definitions of all the optimizations
and analyses we have written in Cobalt.

2.1 Forward Transformation Patterns

2.1.1 Semantics
The heart of a Cobalt optimization is its transformation

pattern. For a forward optimization, a transformation pat-
tern has the following form:

ψ1 followed by ψ2 until s ⇒ s′ with witness P

A transformation pattern describes the conditions under
which a statement s may be transformed to s′. The formulas
ψ1 and ψ2, which are properties of a statement such as “x
is defined and y is not used,” together act as the guard
indicating when it is legal to perform this transformation: s
can be transformed to s′ if on all paths in the CFG from the
start of the procedure being optimized to s, there exists a
statement satisfying ψ1, followed by zero or more statements
satisfying ψ2, followed by s. Figure 1 shows this scenario
pictorially.

Forward transformation patterns codify a scenario com-
mon to many forward dataflow analyses: an enabling state-
ment establishes the conditions necessary for a transforma-
tion to be performed downstream, and any intervening state-
ments are innocuous, i.e., do not invalidate the conditions.

boundary where
holds

ψ2
region where

holds

paths in the CFG

statement s

ψ1

Figure 1: CFG paths leading to a statement s which can be
transformed to s′ by the transformation pattern ψ1 followed

by ψ2 until s ⇒ s′ with witness P. The shaded region
can only be entered through a statement satisfying ψ1, and
all statements within the region satisfy ψ2. The statement
s can only be reached by first passing through this shaded
region.

The formula ψ1 captures the properties that make a state-
ment enabling, and ψ2 captures the properties that make a
statement innocuous. The witness P captures the conditions
established by the enabling statement that allow the trans-
formation to be safely performed. Witnesses have no effect
on the semantics of an optimization; they will be discussed
more below in the context of our strategy for automatically
proving optimizations sound.

Example 1. A simple form of constant propagation re-
places statements of the form X := Y with X := C if there
is an earlier (enabling) statement of the form Y := C and
each intervening (innocuous) statement does not modify Y .
The enabling statement ensures that variable Y holds the
value C, and this condition is not invalidated by the innocu-
ous statements, thereby allowing the transformation to be
safely performed downstream. This sequence of events is ex-
pressed by the following transformation pattern (the witness
is discussed in more detail in section 2.1.2):

stmt(Y := C)
followed by

¬mayDef (Y)
until

X := Y ⇒ X := C
with witness

η(Y) = C

The “pattern variables” X and Y may be instantiated with
any variables of the procedure being optimized, while the pat-
tern variable C may be instantiated with constants in the
procedure.

2.1.2 Soundness
A transformation pattern is sound, i.e., correct, if all the

transformations it allows are semantics-preserving. Forward
transformation patterns have a natural approach for under-
standing their soundness. Consider a statement s trans-
formed to s′. Any execution trace of the procedure that
contains s′ will at some point execute an enabling statement,
followed by zero or more innocuous statements, before reach-
ing s′. As mentioned earlier, executing the enabling state-
ment establishes some conditions at the subsequent state
of execution. These conditions are then preserved by the
innocuous statements. Finally, the conditions imply that s
and s′ have the same effect at the point where s′ is executed.
As a result, the original program and the transformed pro-
gram have the same semantics.

Our automatic strategy for proving optimizations sound
is based on the above intuition. As part of the code for a for-
ward transformation pattern, optimization writers provide a
forward witness P, which is a (possibly first-order) predicate
over an execution state, denoted η. The witness plays the
role of the conditions mentioned in the previous paragraph
and is the intuitive reason why the transformation pattern
is correct. Our strategy attempts to prove that the witness
is established by the enabling statement and preserved by
the innocuous statements, and that it implies that s and s′

have the same effect.1 We call the region of an execution
trace between the enabling statement and the transformed
statement the witnessing region. In figure 1, the part of a
trace that is inside the shaded area is its witnessing region.

In example 1, the forward witness η(Y) = C denotes the
fact that the value of Y in execution state η is C. Our imple-
mentation proves automatically that the witness η(Y) = C
is established by the statement Y := C, preserved by state-
ments that do not modify the contents of Y , and implies that
X := Y and X := C have the same effect. Therefore, the
constant propagation transformation pattern is automati-
cally proven to be sound.

2.1.3 Labels
Each node in a procedure’s CFG is labeled with prop-

erties that are true at that node, such as stmt(x := 5) or
mayDef (y). The formulas ψ1 and ψ2 in an optimization are
boolean expressions over these labels.

Users can define a new kind of label by giving a predicate
over a statement, referred to in the predicate’s body using
the distinguished variable currStmt. As a trivial example,
the stmt(S) label, which denotes that the statement at the
current node is S, can be defined as:

stmt(S)
�

currStmt = S

As another example, syntacticDef (Y), which stands for
syntactic definition of Y , can be defined as:

syntacticDef (Y)
�

case currStmt of

decl X �⇒ X = Y
X := . . . �⇒ X = Y
else �⇒ false

endcase

The label syntacticDef (Y) holds at a node if and only if the
current statement is a declaration of or an assignment to
1The correctness of our approach does not depend on the correctness
of the witness, since our approach independently verifies that the
witness has the required properties.

Y . The “case” predicate is a convenience that provides a
form of pattern matching, but it is easily desugared into an
ordinary logical expression. Similarly, pattern variables and
ellipses get desugared into ordinary quantified variables.

Given the definition of syntacticDef , a conservative ver-
sion of the mayDef label from example 1 can be defined
as:

mayDef (Y)
�

case currStmt of

∗X := Z �⇒ true
X := P (Z) �⇒ true
else �⇒ syntacticDef (Y)

endcase

In other words, a statement may define variable Y if the
statement is either a pointer store (since our intermediate
language allows taking the address of a local variable), a
procedure call (since the procedure may be passed pointers
from which the address of Y is reachable), or otherwise a
syntactic definition of Y .

In addition to defining labels using predicates, users can
also define labels using the results of an analysis. Section 2.4
shows how such labels are defined and how they can be used
to make mayDef less conservative in the face of pointers.

2.2 Backward Transformation Patterns
A backward transformation pattern is similar to a for-

ward one, except that the direction of the flow of analysis is
reversed:

ψ1 preceded by ψ2 since s ⇒ s′ with witness P

The backward transformation pattern above says that smay
be transformed to s′ if on all paths in the CFG from s to the
end of the procedure, there exists a statement satisfying ψ1,
preceded by zero or more statements satisfying ψ2, preceded
by s. The witnessing region of a program execution trace
consists of the states between the transformed statement and
the statement satisfying ψ1; P is called a backward witness.

As with forward transformation patterns, the backward
witness plays the role of an invariant in the witnessing re-
gion. However, in a backward transformation the witness-
ing region occurs after, rather than before, the point where
the transformed statement has been executed. Therefore,
in general a backward witness must be a predicate that re-
lates two execution states ηold and ηnew , representing corre-
sponding execution states in the witnessing region of traces
in the original and transformed programs. Our automatic
proof strategy attempts to prove that the backward witness
is established by the transformation and preserved by the
innocuous states. Finally, we prove that after the enabling
statement is executed, the witness implies that the original
and transformed execution states become identical, imply-
ing that the transformation is semantics-preserving.

Example 2. Dead assignment elimination may be imple-
mented in Cobalt by the following backward transformation
pattern:

(stmt(X := . . .) ∨ stmt(return . . .)) ∧ ¬mayUse(X)
preceded by

¬mayUse(X)
since

X := E ⇒ skip

with witness

ηold/X = ηnew/X

We express statement removal by replacement with a skip

statement.2 The removal of X := E is enabled by either a
later assignment to X or a return statement, which signals
the end of the procedure. Preceding statements are innocuous
if they don’t use the contents of X.

The backward witness ηold/X = ηnew/X says that ηold and
ηnew are equal “up to” X: corresponding states in the wit-
nessing region of the original and transformed programs are
identical except for the contents of variable X. This invari-
ant is established by the removal of X := E and preserved
throughout the region because X is not used. The witness im-
plies that a redefinition of X or a return statement causes
the execution states of the two traces to become identical.

2.3 Profitability Heuristics
If an optimization’s transformation pattern is proven

sound, then it is legal to transform all matching occurrences
of that pattern. For some optimizations, including our two
examples above, all legal transformations are also profitable.
However, in more complex optimizations, such as code mo-
tion and optimizations that trade off time and space, many
transformations may preserve program behavior while only
a small subset of them improve the code. To address this
distinction between legality and profitability, an optimiza-
tion is written in two pieces. The transformation pattern
defines only which transformations are legal. An optimiza-
tion separately describes which of the legal transformations
are also profitable and should be performed; we call this
second piece of an optimization its profitability heuristic.

An optimization’s profitability heuristic is expressed via a
choose function, which can be arbitrarily complex and writ-
ten in a language of the user’s choice. Given the set ∆ of
the legal transformations determined by the transformation
pattern, and given the procedure being optimized, choose
returns the subset of the transformations in ∆ that should
actually be performed. A complete optimization in Cobalt
therefore has the following form, where Opat is a transfor-
mation pattern:

Opat filtered through choose

This way of factoring optimizations into a transformation
pattern and a profitability heuristic is critical to our abil-
ity to prove optimizations sound automatically, since only
an optimization’s transformation pattern affects soundness.
Transformation patterns tend to be simple even for com-
plicated optimizations, with the bulk of an optimization’s
complexity pertaining to profitability. Profitability heuris-
tics can be written in any language, thereby removing any
limitations on their expressiveness. Without profitability
heuristics, the extra complexity added to guards to express
profitability information would prevent automated correct-
ness reasoning.

For the constant propagation and dead assignment elimi-
nation optimizations shown earlier, the choose function re-
turns all instances: chooseall (∆, p) = ∆. This profitability
heuristic is the default if none is specified explicitly. Be-
low we give an example of an optimization with a nontrivial
choose function.

Example 3. Consider the implementation of partial redun-
dancy elimination (PRE) [15, 10] in Cobalt. One way to

2An execution engine for optimizations would not actually insert such
skips.

perform PRE is to first insert copies of statements in well-
chosen places in order to convert partial redundancies into
full redundancies, and then to eliminate the full redundan-
cies by running a standard common subexpression elimina-
tion (CSE) optimization expressible in Cobalt. For example,
in the following code fragment, the computation x := a + b

at the end is partially redundant, since it is redundant only
when the true leg of the branch is executed:

b := ...;

if (...) {

a := ...;

x := a + b;

} else {

... // don’t define a, b, or x, and don’t use x.

}

x := a + b;

This partial redundancy can be eliminated by making a copy
of the assignment x := a + b in the false leg of the branch.
Now the assignment after the branch is fully redundant and
can be removed by running CSE followed by self-assignment
removal (removing assignments of the form x := x).

The criterion that determines when it is legal to dupli-
cate a statement is relatively simple. Most of the complexity
in PRE involves determining which of the many legal du-
plications are profitable, so that partial redundancies will be
converted to full redundancies at minimum cost. The first,
“code duplication” pass of PRE can be expressed in Cobalt
as the following backward optimization:

stmt(X := E) ∧ ¬mayUse(X)
preceded by

unchanged (E) ∧ ¬mayDef (X) ∧ ¬mayUse(X)
since

skip ⇒ X := E
with witness

ηold/X = ηnew/X
filtered through

. . .

Analogous to statement removal, we express statement
insertion as replacement of a skip statement.3 The label
unchanged (E) is defined (by the optimization writer, as de-
scribed in section 2.1.3) to be true at a statement s if s does
not redefine the contents of any variable mentioned in E.
The transformation pattern for code duplication allows the
insertion if, on all paths in the CFG from the skip, X := E
is preceded by statements that do not modify E and X and do
not use X, which are preceded by the skip. In the code frag-
ment above, the transformation pattern allows x:= a + b to
be duplicated in the else branch, as well as other (unprof-
itable) duplications. This optimization’s choose function is
responsible for selecting those legal code insertions that also
are the latest ones that turn all partial redundancies into full
redundancies and do not introduce any partially dead com-
putations. This condition is rather complicated, but it can
be implemented in a language of the user’s choice and can
be ignored when verifying the soundness of PRE.

3An execution engine for optimizations would conceptually insert
skips dynamically as needed to perform insertions.

2.4 Pure Analyses
In addition to optimizations, Cobalt allows users to write

pure analyses that do not perform transformations. These
analyses can be used to compute or verify properties of in-
terest about a procedure and to provide information to be
consumed by later transformations. A pure analysis defines
a new label, and the result of the analysis is a labeling of
the given CFG. The new label can then be used by other
analyses, optimizations, or label definitions.

A forward pure analysis is similar to a forward optimiza-
tion, except that it does not contain a rewrite rule or a
profitability heuristic. Instead, it has a defines clause that
gives a name to the new label. A forward pure analysis has
the form

ψ1 followed by ψ2 defines label with witness P

The new label can be added to a statement s if on all
paths to s, there exists an (enabling) statement satisfying
ψ1, followed by zero or more (innocuous) statements satisfy-
ing ψ2, followed by s. The given forward witness should be
established by the enabling statement and preserved by the
innocuous statements. If so, the witness provides the new
label’s meaning: if a statement s has label label, then the
corresponding witness P is true of the program state just
before execution of s.

The following example shows how a pure analysis can be
used to compute a simple form of pointer information:

Example 4. We say that a variable is tainted at a pro-
gram point if its address may have been taken prior to
that program point. The following pure analysis defines the
notTainted label:

stmt(decl X)
followed by

¬stmt (. . . := &X)
defines

notTainted (X)
with witness

notPointedTo(X, η)

The analysis says that a variable is not tainted at a state-
ment if on all paths leading to that statement, the variable
was declared, and then its address was never taken. The wit-
ness notPointedTo(X, η) is a first-order predicate defined by
the user that holds when no memory location in η contains
a pointer to X.

The notTainted label can be used to define a more precise
version of the mayDef label from earlier examples, which
incorporates the fact that pointer stores and procedure calls
cannot affect variables that are not tainted:

mayDef (Y)
�

case currStmt of

∗X := Z �⇒ ¬notTainted (Y)
X := P (Z) �⇒ X = Y ∨ ¬notTainted (Y)
else �⇒ syntacticDef (Y)

endcase

With this new definition, optimizations using mayDef be-
come less conservative in the face of pointer stores and calls.

Cobalt currently has no notion of backward pure analyses.
Although we anticipate no technical barrier to introducing

such a notion, additional mechanisms would be required in
order to define the semantics of a label introduced by a back-
ward analysis. So far we have not encountered a need for
backward analyses.

Cobalt also currently only allows the results of a forward
analysis to be used in a forward optimization, or in another
forward analysis. Allowing a forward analysis to be used in a
backward optimization may result in interference, whereby
a transformation triggered by the backward optimization
invalidates the results of the forward analysis. This issue is
discussed in more detail in section 4.1.

3. COBALT
This section provides a formal definition of Cobalt and of

the intermediate language that Cobalt optimizations manip-
ulate. The full formal details can be found in our technical
report [13].

3.1 Intermediate Language
A program π in our (untyped) intermediate language is

described by the following grammar:

Progs π ::= pr . . . pr
Procs pr ::= p(x) {s; . . . ; s;}
Stmts s ::= decl x | skip | lhs := e | x := new |

x := p(b) | if b goto ι else ι |
return x

Exprs e ::= b | ∗x | &x | op b . . . b
Locatables lhs ::= x | ∗x
Base Exprs b ::= x | c
Ops op ::= various operators with arity ≥ 1
Vars x ::= x | y | z | . . .
Proc Names p ::= p | q | r | . . .
Consts c ::= constants
Indices ι ::= 0 | 1 | 2 | . . .

A program π is a sequence of procedures, and each procedure
is a sequence of statements. We assume a distinguished pro-
cedure named main. Statements include local variable dec-
larations, assignments to local variables and through point-
ers, heap memory allocation, procedure calls and returns,
and conditional branches (unconditional branches can be
simulated with conditional branches). We assume that no
procedure declares the same local variable more than once.
We assume that each procedure ends with a return state-
ment. Statements are indexed consecutively from 0, and
stmtAt(π, ι) returns the statement with index ι in π. Ex-
pressions include constants, local variable references, pointer
dereferences, taking the addresses of local variables, and n-
ary operators over non-pointer values.

A state of execution of a program is a tuple η =
(ι, ρ, σ, ξ,M). The index ι indicates which statement is
about to be executed. The environment ρ is a map from
variables in scope to their locations in memory, and the store
σ describes the contents of memory by mapping locations to
values (constants and locations). The dynamic call chain is
represented by a stack ξ, and M is the memory allocator,
which returns fresh locations as needed.

The states of a program π transition according to the state
transition function →π. We denote by η →π η

′ the fact that
η′ is the program state that is “stepped to” when execution
proceeds from state η. The definition of →π is standard
and is given in our accompanying technical report [13]. We
also define an intraprocedural state transition function ↪→π .

This function acts like →π except when the statement to be
executed is a procedure call. In that case, ↪→π steps “over”
the call, returning the program state that will eventually be
reached when control returns to the calling procedure.

We model run-time errors through the absence of state
transitions: if in some state η program execution would fail
with a run-time error, there won’t be any η′ such that η →π

η′ is true. Likewise, if a procedure call does not return
successfully, e.g., because of infinite recursion, there won’t
be any η′ such that η ↪→π η

′ is true.

3.2 Cobalt
In this section, we first specify the syntax of a rewrite

rule’s original and transformed statements s and s′. Then
we define the syntax used for expressing ψ1 and ψ2. Finally,
we provide the semantics of optimizations. The witness P
does not affect the (dynamic) semantics of optimizations.

3.2.1 Syntax of s and s′

Statements s and s′ are defined in the syntax of the ex-
tended intermediate language, which augments the interme-
diate language with a form of free variables called pattern
variables. Each production in the grammar of the original
intermediate language is extended with a case for a pattern
variable. A few examples are shown below:

Exprs e ::= · · · | E
Vars x ::= · · · | X | Y | Z | . . .
Consts c ::= · · · | C

Statements in the extended intermediate language are
instantiated by substituting for each pattern variable
a program fragment of the appropriate kind from the
intermediate-language program being optimized. For ex-
ample, the statement X := E in the extended intermedi-
ate language contains two pattern variables X and E, and
this statement can be instantiated to form an intermediate-
language statement assigning any expression occurring in
the intermediate program to any variable occurring in the
intermediate program.

3.2.2 Syntax and Semantics of ψ1 and ψ2

The syntax for ψ, and also for label definitions, is de-
scribed by the following grammar:

ψ ::= true | false | ¬ψ | ψ ∨ ψ | ψ ∧ ψ |
l(t, . . . , t) | t = t |
case t of t �⇒ ψ · · · t �⇒ ψ else �⇒ ψ endcase

In the above grammar, l ranges over label names and t
ranges over terms, which are elements drawn from the ex-
tended intermediate language as well as the distinguished
term currStmt. The grammar consists of propositional logic
augmented with label predicates, term equality, and the case
predicate.

The semantics of a formula ψ is defined with respect to
a labeled CFG. Each node n in the CFG for procedure p is
labeled with a finite set Lp(ι), where ι is n’s index. Lp(ι)
includes labels l(t1, . . . , tn) where the terms do not contain
pattern variables. For example, a node could be labeled with
stmt(x := 3) and mayDef (x).

The meaning of a formula ψ at a node depends on a substi-
tution θ mapping the pattern variables in ψ to fragments of
p. We extend substitutions to formulas and program frag-
ments containing pattern variables in the usual way. We

write ι |=p

θ ψ to indicate that the node with index ι satis-
fies ψ in the labeled CFG of p under substitution θ. The
definition of ι |=p

θ ψ is straightforward, with the base case
being ι |=p

θ l(t1, . . . , tn) ⇐⇒ θ(l(t1, . . . , tn)) ∈ Lp(ι). The
complete definition of |=p

θ is in our technical report [13].

3.2.3 Semantics of Optimizations
We define the semantics of optimizations and analyses in

several pieces. First, the meaning of a forward guard ψ1 fol-

lowed by ψ2 is a function that takes a procedure and returns
a set of matching indices with their corresponding substitu-
tions:

Definition 1. The meaning of a forward guard Oguard of
the form ψ1 followed by ψ2 is as follows:

�
Oguard � (p) = {(ι, θ) |
for all paths ι1, . . . , ιj , ι in p’s CFG
such that ι1 is the index of p’s entry node

∃k.(1 ≤ k ≤ j ∧ ιk |=p

θ ψ1 ∧ ∀i.(k < i ≤ j ⇒ ιi |=
p

θ ψ2))}

The above definition formalizes the description of forward
guards from Section 2. The meaning of a backward guard
ψ1 preceded by ψ2 is identical, except that the guard is
evaluated on CFG paths ι, ιj , . . . , ι1 that start, rather than
end, at ι, where ι1 is the index of the procedure’s exit node.
Guards can be seen as a restricted form of temporal logic
formula, expressible in variants of both Linear Temporal
Logic (LTL) [7] and Computation Tree Logic (CTL) [5].

Next we define the semantics of transformation pat-
terns. A forward (backward) transformation pattern Opat =
Oguard until (since) s ⇒ s′ with witness P simply filters
the set of nodes matching its guard to include only those
nodes of the form s:

�
Opat � (p) = {(ι, θ) | (ι, θ) ∈

�
Oguard � (p) and ι |=p

θ stmt(s)}

The meaning of an optimization is a function that takes a
procedure p and returns the procedure produced by applying
to p all transformations selected by the choose function.

Definition 2. Given an optimization O of the form Opat

filtered through choose, where Opat has rewrite rule
s ⇒ s′, the meaning of O is as follows:

�
O � (p) = let ∆ :=

�
Opat � (p) in

app(s′, p, choose(∆, p) ∩ ∆)

where app(s′, p,∆′) returns the procedure identical to p but
with the node with index ι transformed to θ(s′), for each
(ι, θ) in ∆′.4

Finally, the meaning of a pure analysis Oguard de-

fines label with witness P applied to a procedure p is a new
version of p’s CFG where for each pair (ι, θ) in

�
Oguard � (p),

the node with index ι is additionally labeled with θ(label).

4. PROVING SOUNDNESS AUTOMATICALLY
In this section we describe our technique for automatically

proving soundness of Cobalt optimizations. The full details,
including the proofs of the theorems, are in our technical
report [13].

We say that an intermediate-language program π′ is a
semantically equivalent transformation of π if, whenever
main(v1) returns v2 in π, for some values v1 and v2, then it
4If there are multiple pairs in ∆′ with the same index ι, then one of
them is chosen nondeterministically.

also does in π′. Let π[p 7→ p′] denote the program identical
to π but with procedure p replaced by p′. An optimization
O is sound if for all intermediate-language programs π and
procedures p in π, π[p 7→

�
O � (p)] is a semantically equivalent

transformation of π.
To prove a Cobalt optimization sound, we prove the

soundness of its associated transformation pattern. We
say that a transformation pattern Opat with rewrite rule
s ⇒ s′ is sound if, for all intermediate-language programs
π and procedures p in π, for all subsets ∆ ⊆

�
Opat � (p),

π[p 7→ app(s′, p,∆)] is a semantically equivalent transfor-
mation of π. If a transformation pattern is sound, then any
optimization O with that transformation pattern is sound,
since the optimization will select some subset of the transfor-
mation pattern’s suggested transformations, and each subset
is known to result in a semantically equivalent transforma-
tion of π. Therefore, we need not reason at all about an
optimization’s profitability heuristic in order to prove that
the optimization is sound.

First we discuss a property of Cobalt that simplifies the
obligations necessary for proving a transformation pattern
sound. Then we describe these obligations for forward and
backward optimizations, respectively.

4.1 Noninterference
As described above, for a transformation pattern to be

sound, it must be possible to apply any subset of the
suggested transformations without changing a procedure’s
semantics. Therefore, to prove a transformation pattern
sound, we must argue that its suggested transformations
cannot interfere with one another. Interference occurs when
multiple transformations that are semantics-preserving in
isolation cause a procedure’s semantics to change when per-
formed together.

In general it is possible for an optimization to interfere
with itself. For example, consider an optimization that per-
forms both dead assignment elimination and redundant as-
signment elimination. On the following program fragment

· · ·
S1: x := 5;

S2: x := 5;

· · ·

our hypothetical optimization will suggest both S1 and S2

for removal: S1 is dead and S2 is redundant. Perform-
ing either removal is correct, but performing both removals
changes the program’s semantics.

Fortunately, it is possible to show that a Cobalt transfor-
mation pattern cannot interfere with itself: if each transfor-
mation from a set of suggested transformations is correct in
isolation, then performing any subset of the transformations
is correct. The optimization above cannot be directly writ-
ten in Cobalt. Instead, it must be written as two separate
optimizations, one forward and one backward.5

Because of Cobalt’s noninterference property, the
optimization-specific obligations to be discharged as part of
our proof strategy need only pertain to a single transforma-
tion. The theorems described below validate the sufficiency
of these obligations for proving Cobalt optimizations sound.

5The example illustrates a potential unsoundness from combining for-
ward and backward transformation patterns. This is the reason that
we currently disallow employing a forward pure analysis in a backward
transformation. We can, however, prove that a forward transforma-
tion pattern cannot interfere with any forward pure analysis.

4.2 Forward Transformation Patterns
Consider a forward transformation pattern of the follow-

ing form:

ψ1 followed by ψ2 until s ⇒ s′ with witness P

As discussed in section 2, our proof strategy entails showing
that the forward witness P holds throughout the witness-
ing region and that the witness implies s and s′ have the
same semantics. This can naturally be shown by induction
over the states in the witnessing region of an execution trace
leading to a transformed statement. In general, it is difficult
for an automatic theorem prover to determine when proof
by induction is necessary and to perform such a proof with
a strong enough inductive hypothesis. Therefore we instead
require an automatic theorem prover to discharge only non-
inductive obligations, which pertain to individual execution
states rather than entire execution traces. We have proven
that if these obligations hold for any particular optimization,
then that optimization is sound.

We use index as an accessor on states:
index ((ι, ρ, σ, ξ,M)) = ι. The optimization-specific
obligations, to be discharged by an automatic theorem
prover, are as follows, where θ(P) is the predicate formed
by applying θ to each pattern variable in the definition of
P:

F1. If η ↪→π η
′ and index (η) |=p

θ ψ1, then θ(P)(η′).

F2. If θ(P)(η) and η ↪→π η′ and index (η) |=p
θ ψ2, then

θ(P)(η′).

F3. If θ(P)(η) and η ↪→π η′ and ι = index (η) and
stmtAt (π, ι) = θ(s) and stmtAt (π′, ι) = θ(s′), then
η ↪→π′ η′.

Condition F1 ensures that the witness holds at any state
following the execution of an enabling statement (one sat-
isfying ψ1). Condition F2 ensures that the witness is pre-
served by any innocuous statement (one satisfying ψ2). Fi-
nally, condition F3 ensures that s and s′ have the same se-
mantics when executed from a state satisfying the witness.

As an example, consider condition F1 for the constant
propagation optimization from example 1. The condition
looks as follows: If η ↪→π η

′ and index (η) |=p

θ stmt(Y := C),
then θ(η′(Y) = C). The condition is easily proven auto-
matically from the semantics of assignments and the stmt
label.

The following theorem validates the optimization-specific
proof obligations.

Theorem 1. If O is a forward optimization satisfying con-
ditions F1, F2, and F3, then O is sound.

The proof of this theorem uses conditions F1 and F2 as
part of the base case and the inductive case, respectively, in
an inductive argument that the witness holds throughout a
witnessing region. Condition F3 is then used to show that
s and s′ have the same semantics in this context.

A pure analysis ψ1 followed by ψ2 defines label with

witness P is proven sound similarly. We require conditions
F1 and F2 to be satisfied; F3 has no analogue. These con-
ditions allow us to show that label indeed has the semantics
of the witness P.

4.3 Backward Transformation Patterns
Consider a backward transformation pattern of the fol-

lowing form:

ψ1 preceded by ψ2 since s ⇒ s′ with witness P

The optimization-specific obligations are similar to those for
a forward transformation pattern, except that the ordering
of events in the witnessing region is reversed:

B1. If η ↪→π ηold and η ↪→π′ ηnew and ι = index (η) and
stmtAt (π, ι) = θ(s) and stmtAt(π′, ι) = θ(s′), then
θ(P)(ηold , ηnew).

B2. If θ(P)(ηold , ηnew) and ηold ↪→π η′old and ιold =
index (ηold) and ιnew = index (ηnew) and ιold |=π

θ ψ2

and stmtAt (π, ιold) = stmtAt (π′, ιnew), then there
exists some η′new such that ηnew ↪→π′ η′new and
θ(P)(η′old , η

′

new).

B3. If θ(P)(ηold , ηnew) and ηold ↪→π η and ιold =
index (ηold) and ιnew = index (ηnew) and ιold |=π

θ ψ1

and stmtAt(π, ιold) = stmtAt(π′, ιnew), then ηnew ↪→π′

η.

Condition B1 ensures that the backward witness holds be-
tween the original and transformed programs, after s and s′

are respectively executed.6 Condition B2 ensures that the
backward witness is preserved through the innocuous state-
ments. Condition B3 ensures that the two traces become
identical again after executing the enabling statement (and
exiting the witnessing region).

Analogous to the forward case, the following theorem val-
idates the optimization-specific proof obligations for back-
ward optimizations.

Theorem 2. If O is a backward optimization satisfying
conditions B1, B2, and B3, then O is sound.

5. IMPLEMENTING COBALT
We have implemented a tool that automatically checks

the correctness of Cobalt optimizations as well as an exe-
cution engine for running them. Section 5.1 describes our
correctness checker, and section 5.2 describes our execution
engine.

5.1 Correctness Checker
We have implemented our strategy for automatically prov-

ing Cobalt optimizations sound with the Simplify auto-
matic theorem prover. For each optimization, we ask Sim-
plify to prove the three associated optimization-specific
obligations given a set of background axioms. There are
two kinds of background axioms: optimization-independent
ones and optimization-dependent ones. The optimization-
independent axioms simply encode the semantics of our in-
termediate language and they need not be modified in or-
der to prove new optimizations sound. The optimization-
dependent axioms encode the semantics of user-defined la-
bels and are generated automatically from the Cobalt label

6This condition assumes that s
′ does not get “stuck” by causing a

run-time error. That assumption must actually be proven, but for
simplicity we elide this issue here. It is addressed by requiring a few
additional obligations to be discharged that imply that s

′ cannot get
stuck if the original program does not get stuck. Details are in our
technical report [13].

definitions. Our correctness checker translates label defi-
nitions into Simplify axioms by expanding case expressions
into ordinary boolean expressions and performing a few sim-
ple transformations to produce axioms in a form accepted
by Simplify.

To encode the Cobalt intermediate language in Simplify,
we introduce function symbols that represent term construc-
tors for each kind of expression and statement. For example,
the term assgn(var(x), deref (var(y)) represents the state-
ment x := ∗y . Next we formalize the representation of pro-
gram states. Simplify has built-in axioms about a map data
structure, with associated functions select and update to ac-
cess elements and (functionally) update the map. This is
useful for representing many components of a state. For ex-
ample, an environment is a map from variables to locations,
and a store is a map from locations to values.

Given our representation for states, we define axioms for
a function symbol evalExpr, which evaluates an expression
in a given state. The evalExpr function represents the func-
tion η(·) used in section 2. We also define axioms for a
function evalLExpr which computes the location of a lhs ex-
pression given a program state. Then we provide axioms for
the stepIndex, stepEnv, stepStore, stepStack, and stepMem
functions, which together define the state transition func-
tion →π from section 3.1. These functions take a state and
a program and return the new value of the state component
being “stepped.” As an example, the axioms for stepping
an index and a store through an assignment lhs := e are as
follows:

∀η, π, lhs, e.
stmtAt (π, index (η)) = assgn(lhs, e) ⇒

stepIndex (η, π) = index (η) + 1

∀η, π, lhs, e.
stmtAt (π, index (η)) = assgn(lhs, e) ⇒

stepStore (η, π) = update(store(η),evalLExpr (η, lhs),
evalExpr (η, e))

The first axiom says that the new index is the current index
incremented by one. The second axiom says that the new
store is the same as the old one, but with the location of lhs
updated to the value of e.

Finally, the ↪→π function is defined in terms of the →π

function. In the context of intraprocedural analysis, we do
not have access to the bodies of called procedures. There-
fore, we conservatively model the semantics of stepping over
a procedure call by a set of axioms that hold for any call.
The primary axiom says that the store after a call preserves
the values of local variables in the caller whose locations are
not pointed to before the call. This axiom encodes the fact
that locals not reachable from the store cannot be modified
by a call.

We have implemented and automatically proven sound a
dozen Cobalt optimizations and analyses (which are given
in our technical report [13]). On a modern workstation,
the time taken by Simplify to discharge the optimization-
specific obligations for these optimizations ranges from 3 to
104 seconds, with an average of 28 seconds.

5.2 Execution Engine
To run Cobalt optimizations without first rewriting them

in some other language, we have implemented an execution
engine for Cobalt as an analysis in the Whirlwind compiler,
a successor to Vortex [4].

This analysis stores at each program point a set of sub-
stitutions, with each substitution representing a potential
witnessing region. Consider a forward optimization:

ψ1 followed by ψ2 until s ⇒ s′

with witness P filtered through choose

The flow function for our analysis works as follows. First,
if the statement being processed satisfies ψ1, then the flow
function adds to the outgoing dataflow fact the substitution
that caused ψ1 to be true. Also, for each substitution θ
in the incoming dataflow fact, the flow function checks if
θ(ψ2) is true at the current statement. If it is, then θ is
propagated to the outgoing dataflow fact, and otherwise it
is dropped. Finally, merge nodes simply take the intersec-
tion of the incoming dataflow facts. After the analysis has
reached a fixed point, if a statement has a substitution θ in
its incoming dataflow fact that makes θ(stmt(s)) true and
the choose function selects this statement, then the state-
ment is transformed to θ(s′).

For example, in constant propagation we have ψ1 =
stmt(Y := C) and ψ2 = ¬mayDef (Y). Below we show the
dataflow facts propagated after a few example statements:

S1 : a := 2; [Y 7→ a, C 7→ 2]
S2 : b := 3; [Y 7→ a, C 7→ 2], [Y 7→ b, C 7→ 3]
S3 : c := a;

S1 satisfies ψ1, so its outgoing dataflow fact contains the sub-
stitution [Y 7→ a, C 7→ 2]. S2 satisfies ψ2 under this substi-
tution, so the substitution is propagated; S2 also satisfies ψ1

so [Y 7→ b, C 7→ 3] is added to the outgoing dataflow fact. In
fact, the dataflow information after S2 is very similar to the
regular constant propagation dataflow fact {a 7→ 2, b 7→ 3}.
At fixed point, the statement c := a can be transformed to
c := 2 because the incoming dataflow fact contains the map
[Y 7→ a, C 7→ 2]. Note that this implementation evaluates
all “instances” of the constant propagation transformation
pattern simultaneously.

Our analysis is implemented using our earlier framework
for composable optimizations in Whirlwind [12]. This frame-
work allows optimizations to be defined modularly and then
automatically combines all-forward or all-backward opti-
mizations in order to gain mutually beneficial interactions.
Analyses and optimizations written in Cobalt are there-
fore also composable in this way. Furthermore, Whirlwind’s
framework automatically composes an optimization with it-
self, allowing a recursively defined optimization to be solved
in an optimistic, iterative manner; this property is likewise
conferred on Cobalt optimizations. For example, a recursive
version of dead-assignment elimination allows X := E to be
removed even if X is used before being redefined, as long as
it is only used by other dead assignments (possibly including
itself).7

6. DISCUSSION
In this section, we evaluate our system along three di-

mensions: expressiveness of Cobalt, debugging value, and
reduced trusted computing base.

Expressiveness. One of the key choices in our approach
is to restrict the language in which optimizations can be

7Although Cobalt optimizations can be composed, we have not yet
proved that the flow function of our Cobalt engine satisfies the prop-
erties required in [12] for the composition to be sound. We plan to
investigate this in future work.

written, in order to gain automatic reasoning about sound-
ness. However, Cobalt’s restrictions are not as onerous as
they may first appear. First, much of the complexity of an
optimization can be factored into the profitability heuristic,
which is unrestricted. Second, the pattern of a witnessing
region — beginning with a single enabling statement and
passing through zero or more innocuous statements before
reaching the statement to be transformed — is common to
many forward intraprocedural dataflow analyses, and simi-
larly for backward intraprocedural dataflow analyses. Third,
optimizations that traditionally are expressed as having ef-
fects at multiple points in the program, such as various sorts
of code motion, can in fact be decomposed into several sim-
pler transformations, each of which fits Cobalt’s transforma-
tion pattern syntax.

The PRE example in section 2.3 illustrates all three of
these points. PRE is a complex code-motion optimiza-
tion [15, 10], and yet it can be expressed in Cobalt using
simple forward and backward passes with appropriate prof-
itability heuristics. Our way of factoring complicated opti-
mizations into smaller pieces, and separating the part that
affects soundness from the part that doesn’t, allows users
to write optimizations that are intricate and expressive yet
still amenable to automated correctness reasoning.

Even so, the current version of Cobalt does have limita-
tions. For example, it cannot express interprocedural op-
timizations or one-to-many transformations. As mentioned
in section 7, our future work will address these limitations.
Also, optimizations and analyses that build complex data
structures to represent their dataflow facts may be difficult
to express. Finally, it is possible for limitations in either our
proof strategy or in the automatic theorem prover to cause
a sound optimization expressible in Cobalt to be rejected.
In all these cases, optimizations can be written outside of
our framework, perhaps verified using translation valida-
tion. Optimizations written in Cobalt and proven correct
can peacefully co-exist with optimizations written “the nor-
mal way.”

Debugging benefit. Writing correct optimizations is
difficult because there are many corner cases to consider,
and it is easy to miss one. Our system in fact found sev-
eral subtle problems in previous versions of our optimiza-
tions. For example, we have implemented a form of com-
mon subexpression elimination (CSE) that eliminates not
only redundant arithmetic expressions, but also redundant
loads. In particular, this optimization tries to eliminate a
computation of ∗X if the result is already available from a
previous load. Our initial version of the optimization pre-
cluded pointer stores from the witnessing region, to ensure
that the value of ∗X was not modified. However, a failed
soundness proof made us realize that even a direct assign-
ment Y := . . . can change the value of ∗X, because X could
point to Y . Once we incorporated pointer information to
make sure that direct assignments in the witnessing region
were not changing the value of ∗X, our implementation was
able to automatically prove the optimization sound. With-
out the static checks to find the bug, it could have gone
undetected for a long time, because that particular corner
case may not occur in many programs.

Reduced trusted computing base. The trusted com-
puting base (TCB) ordinarily includes the entire compiler.
In our system we have moved the compiler’s optimization
phase, one of the most intricate and error-prone portions,

outside of the TCB. Instead, we have shifted the trust in
this phase to three components: the correctness checker, in-
cluding the automatic theorem prover, the manual proofs
done as part of our framework, and the engine that exe-
cutes optimizations. Because all of these components are
optimization-independent, new optimizations can be incor-
porated into the compiler without enlarging the TCB. Fur-
thermore, as discussed in section 5, the execution engine is
implemented as a single dataflow analysis common to all
user-defined optimizations. This means that the trustwor-
thiness of the execution engine is akin to the trustworthiness
of a single optimization pass in a traditional compiler.

Trust can be further enhanced in several ways. First,
we could use an automatic theorem prover that generates
proofs, such as the prover in the Touchstone compiler [22].
This would allow trust to be shifted from the theorem prover
to a simpler proof checker. The manual proofs of our frame-
work are made public for peer review in [13] to increase
confidence. We could also use an interactive theorem prover
such as PVS [25] to validate these proofs.

7. FUTURE WORK
There are many directions for future work. We plan to ex-

tend Cobalt to handle interprocedural optimizations. One
approach would extend the scope of analysis from a single
procedure to the whole program’s control-flow supergraph.
A technical challenge for this approach is the need to express
the witness P in a way that is robust across procedure calls.
For example, the predicate η(Y) = C does not make sense
once a call is stepped into, because Y has gone out of scope.
We intend to extend the syntax for the witness to be more
precise about which location is being talked about. A dif-
ferent approach to interprocedural analysis would use pure
analyses to define summaries of procedures, which could be
used in intraprocedural optimizations of callers.

Currently Cobalt only supports transformations that re-
place a single statement with a single statement. It should
be relatively straightforward to generalize the framework to
handle one-to-many statement transformations, allowing op-
timizations like inlining to be expressed. Supporting many-
to-many statement transformations, including various kinds
of loop restructuring optimizations, would also be interest-
ing.

We plan to try inferring the witnesses, which are currently
provided by the user. It may be possible to use some simple
heuristics to guess a witness from the given transformation
pattern. As a simple example, in the constant propagation
example of section 2, the appropriate witness, that Y has
the value C, is simply the strongest postcondition of the
enabling statement Y := C. Many of the other forward
optimizations that we have written also have this property.

Our current notion of a semantically equivalent transfor-
mation reasons only about computations in the original pro-
gram that terminate without an error. It would be straight-
forward to reason about computations that end in a run-time
error by extending the →π function to step to an explicit er-
ror state in these situations. We would also like to extend
the notion of semantic equivalence to allow reasoning about
nonterminating computations.

We plan to explore more efficient implementation tech-
niques for the Cobalt execution engine, such as generating
specialized code to run each optimization [32]. Another di-
rection for improving efficiency would be to allow analyses

to be defined over a sparse representation such as a dataflow
graph.

Finally, an important consideration that we have not ad-
dressed is the interface between the optimization writer and
our automatic correctness checker. It will be critical to pro-
vide useful error messages when an optimization cannot be
proven sound. When Simplify cannot prove a given propo-
sition, it returns a counterexample context, which is a state
of the world that violates the proposition. An interesting
approach would be to use this counterexample context to
synthesize a small intermediate-language program that il-
lustrates a potential unsoundness of the given optimization.

8. RELATED WORK
Temporal logic has previously been used to express

dataflow analyses and reason about them by hand [32, 33,
29, 30, 11]. Our language is inspired by recent work in this
direction by Lacey et al. [11]. Lacey describes a language
for writing optimizations as guarded rewrite rules evaluated
over a labeled CFG, and our transformation patterns are
modeled on this language. Lacey’s intermediate language
lacks several constructs found in realistic languages, includ-
ing pointers, dynamic memory allocation, and procedures.
Lacey describes a general strategy, based on relating exe-
cution traces of the original and transformed programs, for
manually proving the soundness of optimizations in his lan-
guage. Three example optimizations are shown and proven
sound by hand using this strategy. Unfortunately, the gen-
erality of this strategy makes it difficult to automate.

Lacey’s guards may be arbitrary CTL formulas, while our
guard language can be viewed as a strict subset of CTL that
codifies a particularly common idiom. However, we are still
able to express more precise versions of Lacey’s three ex-
ample optimizations (as well as many others) and to prove
them sound automatically. Further, Lacey’s optimization
language has no notion of labels defined by pure analyses nor
of profitability heuristics. Therefore, expressing optimiza-
tions that employ pointer information (assuming Lacey’s
language were augmented with pointers) or optimizations
like PRE would instead require writing more complicated
guards, and some optimizations we support may not be ex-
pressible by Lacey.

As mentioned in the introduction, much other work has
been done on manually proving optimizations correct [14,
16, 1, 2, 8, 24, 3]. Transformations have also been proven
correct mechanically, but not automatically: the transfor-
mation is proven sound using an interactive theorem prover,
which requires user involvement. For example, Young [35]
has proven a code generator correct using the Boyer-Moore
theorem prover enhanced with an interactive interface [9].

Instead of proving that the compiler is always correct,
translation validation [26, 20] and credible compilation [28,
27] both attack the problem of checking the correctness of
a given compilation run. Therefore, a bug in an optimiza-
tion only appears when the compiler is run on a program
that triggers the bug. Our work allows optimizations to be
proven correct before the compiler is even run once. How-
ever, to do so we require optimizations to be written in a
special-purpose language. Our approach also requires the
Cobalt execution engine to be part of the TCB, while trans-
lation validation and credible compilation do not require
trust in any part of the compiler.

Proof-carrying code [19], certified compilation [21], typed

intermediate languages [34], and typed assembly lan-
guages [17, 18] have all been used to prove properties of
programs generated by a compiler. However, the kinds of
properties that these approaches have typically guaranteed
are type safety and memory safety. In our work, we prove
the stronger property of semantic equivalence between the
original and resulting programs.

9. CONCLUSION
We have presented an approach for automatically proving

the correctness of compiler optimizations. Our technique
provides the optimization writer with a domain-specific lan-
guage, called Cobalt, for writing optimizations. Cobalt is
both reasonably expressive and amenable to automated cor-
rectness reasoning. Using our technique we have proven cor-
rect implementations of several optimizations over a realistic
intermediate language. We believe our approach is a promis-
ing step toward the goal of reliable and user-extensible com-
pilers.

Acknowledgments

This research is supported in part by NSF grants CCR-
0073379 and ACI-0203908, a Microsoft Graduate Fellow-
ship, an IBM Faculty Development Award, and by gifts from
Sun Microsystems. We would also like to thank Keunwoo
Lee, Andrew Petersen, Mark Seigle and the anonymous re-
viewers for their useful suggestions on how to improve the
paper.

10. REFERENCES

[1] Patrick Cousot and Radhia Cousot. Abstract
interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, pages 238–252, Los
Angeles CA, January 1977.

[2] Patrick Cousot and Radhia Cousot. Systematic design of
program analysis frameworks. In Conference Record of the
Sixth ACM Symposium on Principles of Programming
Languages, pages 269–282, San Antonio TX, January 1979.

[3] Patrick Cousot and Radhia Cousot. Systematic design of
program transformation frameworks by abstract
interpretation. In Conference Record of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Portland OR, January 2002.

[4] Jeffrey Dean, Greg DeFouw, Dave Grove, Vassily Litvinov,
and Craig Chambers. Vortex: An optimizing compiler for
object-oriented languages. In Proceedings of the 1996 ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 83–100, San Jose CA,
October 1996.

[5] E.M. Clarke and E.A. Emerson. Synthesis of
Synchronization Skeletons for Branching Time Temporal
Logic. In Logics of Programs: Workshop, volume 131 of
Lecture Notes in Computer Science, Yorktown Heights,
New York, May 1981. Springer-Verlag.

[6] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Extended
static checking for Java. In Proceedings of the ACM
SIGPLAN ’02 Conference on Programming Language
Design and Implementation, June 2002.

[7] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan
Stavi. On the temporal analysis of fairness. In Proceedings
of the 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 163–173, Las
Vegas, Nevada, 1980.

[8] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a verified
implementation of Scheme. Lisp and Symbolic
Compucation, 8(1-2):33–110, 1995.

[9] M. Kauffmann and R.S. Boyer. The Boyer-Moore theorem
prover and its interactive enhancement. Computers and
Mathematics with Applications, 29(2):27–62, 1995.

[10] Jens Knoop, Oliver Rüthing, and Bernhard Steffen.
Optimal code motion: Theory and practice. ACM
Transactions on Programming Languages and Systems,
16(4):1117–1155, July 1994.

[11] David Lacey, Neil D. Jones, Eric Van Wyk, and
Carl Christian Frederiksen. Proving correctness of compiler
optimizations by temporal logic. In Conference Record of
the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland OR,
January 2002.

[12] Sorin Lerner, David Grove, and Craig Chambers.
Composing dataflow analyses and transformations. In
Conference Record of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
Portland OR, January 2002.

[13] Sorin Lerner, Todd Millstein, and Craig Chambers.
Automatically proving the correctness of compiler
optimizations. Technical Report UW-CSE-02-11-02,
University of Washington, November 2002.

[14] J. McCarthy and J. Painter. Correctness of a compiler for
arithmetic expressions. In T. J. Schwartz, editor,
Proceedings of Symposia in Applied Mathematics, January
1967.

[15] E. Morel and C. Renvoise. Global optimization by
suppression of partial redundancies. Communications of the
ACM, 22(2):96–103, February 1979.

[16] F. Lockwood Morris. Advice on structuring compilers and
proving them correct. In Conference Record of the 1st
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Boston MA, January 1973.

[17] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman,
Richard Samuels, Frederick Smith, David Walker,
Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. In 1999 ACM SIGPLAN
Workshop on Compiler Support for System Software, pages
25–35, Atlanta GA, May 1999.

[18] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to Typed Assembly Language. ACM
Transactions on Programming Languages and Systems,
21(3):528–569, May 1999.

[19] George C. Necula. Proof-carrying code. In Conference
Record of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Paris, France,
January 1997.

[20] George C. Necula. Translation validation for an optimizing
compiler. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 83–95, Vancouver, Canada, June 2000.

[21] George C. Necula and Peter Lee. The design and
implementation of a certifying compiler. In Proceedings of
the ACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation, Montreal, Canada,
June 1998.

[22] George C. Necula and Peter Lee. Proof generation in the
Touchstone theorem prover. In Proceedings of the
International Conference on Automated Deduction, pages
25–44, Pittsburgh, Pennsylvania, June 2000.
Springer-Verlag LNAI 1831.

[23] Greg Nelson and Derek C. Oppen. Simplification by
cooperating decision procedures. ACM Transactions on
Programming Languages and Systems, 1(2):245–257,
October 1979.

[24] D. P. Oliva, J. Ramsdell, and M. Wand. The VLISP
verified PreScheme compiler. Lisp and Symbolic
Computation, 8(1-2):111–182, 1995.

[25] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K.

Srivas. PVS: Combining specification, proof checking, and
model checking. In Computer-Aided Verification, CAV ’96,
volume 1102 of Lecture Notes in Computer Science, pages
411–414, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

[26] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’98, volume 1384 of Lecture
Notes in Computer Science, pages 151–166, 1998.

[27] Martin Rinard. Credible compilation. Technical Report
MIT-LCS-TR-776, Massachusetts Institute of Technology,
March 1999.

[28] Martin Rinard and Darko Marinov. Credible compilation.
In Proceedings of the FLoC Workshop Run-Time Result
Verification, July 1999.

[29] David A. Schmidt. Dataflow analysis is model checking of
abstract interpretations. In Conference Record of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego CA, January 1998.

[30] David A. Schmidt and Bernhard Steffen. Data flow analysis
as model checking of abstract interpretations. In Giorgio
Levi, editor, Proceedings of the 5th International
Symposium on Static Analysis (SAS), volume 1503 of
Lecture Notes in Computer Science (LNCS), pages
351–380. Springer-Verlag, September 1998.

[31] Simplify automatic theorem prover home page,
http://research.compaq.com/SRC/esc/Simplify.html.

[32] Bernhard Steffen. Data flow analysis as model checking. In
T. Ito and A.R. Meyer, editors, Theoretical Aspects of
Computer Science (TACS), Sendai (Japan), volume 526 of
Lecture Notes in Computer Science (LNCS), pages
346–364. Springer-Verlag, September 1991.

[33] Bernhard Steffen. Generating dataflow analysis algorithms
for model specifications. Science of Computer
Programming, 21(2):115–139, 1993.

[34] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone,
Robert Harper, and Peter Lee. TIL: A type-directed
optimizing compiler for ML. In Proceedings of the ACM
SIGPLAN ’96 Conference on Programming Language
Design and Implementation, Philadelphia PA, May 1996.

[35] William D. Young. A mechanically verified code generator.
Journal of Automated Reasoning, 5(4):493–518, December
1989.

