
Declaring and Checking Non-null Types in an
Object-Oriented Language

Manuel Fähndrich K. Rustan M. Leino

Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA

{maf,leino}@microsoft.com

ABSTRACT

Distinguishing non-null references from possibly-null refer-
ences at the type level can detect null-related errors in object-
oriented programs at compile-time. This paper gives a pro-
posal for retrofitting a language such as C# or Java with
non-null types. It addresses the central complications that
arise in constructors, where declared non-null fields may not
yet have been initialized, but the partially constructed ob-
ject is already accessible. The paper reports experience with
an implementation for annotating and checking null-related
properties in C# programs.

Categories and Subject Descriptors

D.3.3 [Programming Languages]; D.2.4 [Software En-

gineering]: Software/Program Verification—assertion check-
ers, class invariants, programming by contract ; F.3.1 [Logics

and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms

Languages, Reliability, Verification

Keywords

C#, Java, null references, type system, non-null types

1. INTRODUCTION

Vital to any imperative object-oriented programming lan-
guage is the ability to distinguish proper objects from some
special null object or null objects, commonly provided by the
language as the constant null . When designing a program,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00.

programmers need to consider whether a value may be null,
and often need to handle null differently than proper objects.
Since such handling can be error prone, it is preferable that
a compiler or tool enforces the programming discipline the
programmer intended and points out places where the code
may have errors.
Perhaps the clearest and most direct way for a language
to accommodate such tools is to type expressions according
to whether or not they may yield null. However, the type
systems of mainstream object-oriented languages such as
C# [2] and Java [9] provide only one object type per declared
class, and null is a value of every such object type. In this
paper, we propose splitting reference types into possibly-null
and non-null types, so that expressions that may yield null
can be identified.
Type systems in which one can distinguish special values
such as null from proper values exist. The tagged unions
in the object-centered language CLU [12] are a good exam-
ple. Similarly, object-oriented languages such as Theta [11]
and Moby [5] as well as functional languages such as ML [13]
or Haskell [16] make distinctions between possibly-null and
non-null references in their type systems. In these languages,
the declaration of a field of non-null type provides the fol-
lowing three-part contract:

• The construction of an object or record must initialize
the field with a proper non-null value

• Every read access of the field yields a non-null value

• Every update to the field requires a non-null value

The non-nullity of such a field therefore becomes an object
invariant that is enforced statically (at compile-time) by the
type system.
All the above mentioned languages use a simple mechanism
to establish this object invariant:

An object/record under construction cannot be
accessed until fully constructed.

This programming restriction makes it fairly simple to prove
the three-part contract above.
Unfortunately, the mainstream languages C# and Java give
access to the object being constructed (through this) while
construction is ongoing. This extra flexibility makes reason-
ing about proper initialization of objects much harder, both

1

for the programmer and for an automatic tool, such as the
type system we are proposing in this paper.
Being type-safe languages, C# and Java do ensure that fields
have zero-equivalent values of their type (null for refer-
ences) before an object being constructed can be accessed,
but for fields declared as containing a non-null reference,
this null -initialization is not sufficient, since the field is
not properly initialized. In this paper, we use the adjectives
partially initialized or raw for objects containing non-null-
declared fields that may be uninitialized, and our type sys-
tem distinguishes raw objects from fully initialized objects.

Example The following C# code illustrates the problem
of dealing with partially initialized objects. Class A con-
tains a field name of type string that is annotated as being
non-null. (In our examples, we use annotations of the form
[NotNull] to annotate types with null-related attributes.)

class A {

[NotNull]

string name;

public A([NotNull] string s) {

this.name = s;

this.m(55);

}

virtual void m(int x) { ... }

}

The constructor for A correctly initializes field name with
a non-null string that it obtains as a parameter. It then
proceeds to call the virtual method m on the object being
constructed.
Although this code may look correct—after all, class A prop-
erly initializes its field—the correctness of this code cannot
actually be guaranteed. To see why, consider the following
code (possibly declared in a separate module):

class B : A {

[NotNull]

string path;

public B([NotNull] string p, [NotNull] string s)

: base(s)

{

this.path = p;

}

override void m(int x) {

... this.path ...

}

}

Class B extends class A with another field path that is also
declared as being non-null. The constructor of B correctly
calls the base class constructor of A, and then initializes its
own field path.
The problem with the code is that during the base call to
A’s constructor, the virtual method B.m may be invoked. At
this time, field path of the object under construction has not
yet been initialized. Thus, accesses of this.path in method
B.m may yield a possibly-null value, even though the field
has been declared as being non-null.
In this paper, we propose a way to retrofit a language like

C# or Java with non-null types. The proposal does allow ac-
cess to the object being constructed before it has been com-
pletely constructed, but only in ways that can be statically
checked for soundness. Thus, our proposal accommodates
many modern programming styles.
The contributions of the paper are as follows:

• We give the first sound technical solution to deal with
explicit object initialization in the presence of inher-
itance subtyping and where access to the object un-
der construction is allowed. The main insight we are
using is that initialization is monotonically evolving
from uninitialized to initialized, and we formalize this
insight in the presence of unknown object extensions.

• Our proposal supports existing main-stream languages
in their entirety. It does not require changes to the
language semantics or runtime implementations. Any
program accepted by our type system is also a valid
C# (resp. Java) program with unchanged behavior.
But our type-system does rule out programs for which
safety with respect to nullity cannot be proven.

The advantages of adding non-null types to a language like
C# or Java include:

• Statically checked interface documentation: Clients see
when a method expects a non-null argument, and see
when it promises a non-null return value. Implementa-
tions can rely on the non-nullity of declared parameters
and are held to promises of non-null results.

• Statically checked object invariants: Object invariants
such as fields holding non-null references can be de-
clared and statically checked.

• More precise error detection: The error of using null
when a program’s design expects a non-null value is
detected at the program point where the error is com-
mitted, which often comes before the program point
where an object dereference operation uses the value.

• Performance optmizations: Given a reference of a non-
null type, dereference operations and throw state-
ments can proceed without the normal null check, thus
providing a possible runtime advantage in some cases.
If the runtime supports non-null types, the program-
mer can limit where runtime checks are inserted by
judicious use of non-null types. The freedom from
such runtime checks also enables effective compiler op-
timizations, in part due to fewer possible exception
paths [6].

• Fewer unexpected null reference exceptions: The C#
language reference document lists 8 cases when a Null-
ReferenceException can be thrown. Given a non-null
type in those contexts, the compiler guarantees that
such operations do not throw null exceptions.

• Basis for other checkers: The use of non-null types
facilitates the task of writing other program checking
tools for the language by eliminating a large source of
false warnings.

The rest of the paper is organized as follows: Section 2 in-
troduces non-null types. Section 3 deals with the crux of
the paper: how to establish object invariants. Sections 4

2

and 5 extend the proposal to array types and to C# value
types. Section 6 examines the impact of our design on meth-
ods with call-by-reference parameters, on static class fields,
and on generics. Section 7 describes a checker we have im-
plemented and Section 8 discusses our experience in using
the checker on a non-trivial program. Section 9 describes
design alternatives, Section 10 discusses related work, and
Section 11 concludes.

2. NON-NULL TYPES

For every declared class or interface T , we propose the ad-
dition of a distinguished reference type T− for non-null
references (proper objects) of type T . To avoid confusion,
we write T+ (rather than just T) for types including the
null value. That is, C# and Java currently provide just the
possibly-null type T+ , not the non-null type T− . (Here
and throughout, our notation is used to describe concepts,
not to propose language syntax.)
Where the language currently requires an expression of a
reference type T+ and stipulates that a null reference ex-
ception is thrown at runtime if the expression evaluates to
null, we instead require that the expression be of type T− .
For example, our field dereference operator “ . ” takes an ex-
pression of a non-null type as its left-hand argument (and a
field name as its right-hand argument).
The types T+ and T− can be used whenever a type is ex-
pected. For example, formal parameters and method results
can be declared to be of type T− .
Both C# and Java have definite assignment rules for lo-
cal variables: uninitialized local variables do not evaluate
to null, but instead cannot be read until after they have
been assigned. Thus, local variables with non-null types are
supported nicely in these languages, since the eventual ini-
tializations of such variables are forced to assign non-null
references.
As one would expect, if S is declared to be a subclass of
T or T is a super-interface of S , then S+ <: T+ and
S− <: T− , where <: denotes the subtype relation. Fur-
thermore, for any T , T− is a subtype of T + . Therefore,
an expression of type T− can freely be assigned to a vari-
able of type T+ , but to go the other way (to narrow the
type) requires a test. For example:

T− t = new T (. . .); // allocate a non-null object
T+ n = t; // this direction is always allowed
. . .

if (n ! =null) {
t = n; // in this context n has type T−

}
int x = t.f ; // type of t must be non-null

Note that we have now removed null reference exceptions
from the language, since all null violations now instead show
up statically as type errors.
As the code snippet above shows, an application of new

T (. . .) has type T− , since the object constructed is always
non-null.
For an expression e and a type T , the expressions e is T in
C# and e instanceof T in Java return true if e evaluates
to an object of type T that is not null. We do not need these
expressions to be extended to e is T + or e is T− , since
tests against null can already be written in these languages
directly.

Furthermore, in C#, the expression e asT returns e if e is

T , and returns null otherwise. Again, no change to the
language is needed since, under our proposal, there is no
difference between the expressions easT + and easT− ,
and both expressions have type T+ .
This would be the entire story, except for the existence of
compound values, namely the data records of objects, the
elements of arrays, and the fields of value types. As our
example in the introduction shows, the construction of these
compound values complicates the story a good deal. Let’s
look at object construction first, then at array construction,
and finally at value type construction.

3. CONSTRUCTION OF OBJECTS

A field (instance variable) f in a class C may be declared
with a non-null type T− . Consequently, one expects an
expression c.f to yield a non-null value (where c is of type
C−). But during the construction of a C object—that is,
during the execution of the constructor of C and the con-
structors of the superclasses of C — this.f may not have
been initialized yet, where this denotes the object being
constructed. So, a use of the value this.f may yield null,
despite the fact that f is declared to be of the non-null type
T− ! Because C# and Java do not limit the use of this dur-
ing construction, the problem is not limited to cases where
field f is accessed through the special keyword this . If
this is passed as a parameter x to another routine, for ex-
ample, then x.f in the callee may also yield null despite
the fact that f is declared of type T− .
Before we propose a type-based solution to this problem, let
us examine where and why the example in the introduction
is faulty. Consider the object under construction (this)
within A’s constructor, just after the initialization of field
name. At this point, we know that the fields declared in
class A are properly initialized, and the fields of all super
classes of A are properly initialized (because the language
semantics guarantees that A’s constructor has called the base
constructor as well). What we don’t know at this point is
that the fields of any potential subclasses of A are properly
initialized. From a type system perspective, the type of
this at the method call this.m(55) is not really an object
of type A just yet, that is, it cannot be used in every context
where an A object is expected. One context where it cannot
be used yet is in virtual calls, because virtual calls may
implicitly reveal the state of subclasses that have not been
initialized yet.
We propose solving this problem by introducing another
family of types: for any reference type T , T raw− denotes
the partially initialized objects of type T or subclass thereof.
More precisely, for any class T , T raw− denotes a value of
the same structure as a value of type T− , except that any
field of the former may yield null, even if the field is declared
with a non-null type. That is, if f is a field of type T− in
a class C , then the expression c.f may evaluate to null if
c is of type Craw− . However, we require that expressions
assigned to c.f be of type T− , even in the case where c

is of type Craw− .
The restrictions above guarantee that an object, once fully
initialized, never becomes uninitialized again; in other words,
once a T− field of an object is initialized to a non-null ref-
erence, the field will never again contain a null value. This
invariant is necessary to achieve soundness, for it is possi-

3

Object broken into class frames.

object

A
B
...

Object viewed at static type Braw−.
Partially-initialized frames are marked
with an asterisk *. Note that all frames of
unknown class extensions are considered
partially initialized.

object∗

A∗

B∗

...

∗

Object viewed at static type Braw(A)−.

object

A
B∗

...

∗

Object viewed at static type Braw(B)−.
Note that the frames of unknown class ex-
tensions are still considered partially ini-
tialized.

object

A
B

...

∗

Figure 1: Illustration of class frames and raw types

ble to have two references to the same object o , one via x

typed Craw− , the other via y typed C− . The former may
have been captured during the construction of the object,
the latter after the construction has completed. If we were
allowed to assign a null value to x.f , then a subsequent
read of y.f would result in null, even if the declared type
of f is T− .
With the restrictions in place, objects evolve monotonically
towards full initialization. This innovation enables us to
keep the overhead of checking field initializations to some-
thing manageable.
We require that, by the end of every constructor of class C

(including the default constructor, if any), every non-null
field declared directly in class C has been assigned. That
is, we require that every path through a constructor to a
normal return include an assignment to every non-null field.
We refer to the definite assignment rules of C# and Java for
the details of the definition of “every path”. Our rule means
that by the time the newly constructed object is returned
to the caller of new , all of its non-null fields have non-null
values. Hence, for any class T , new T (. . .) has type T− ,
not T raw− . In effect, the “last” constructor takes care of
casting the object being constructed from type T raw− to
type T− .
More technically, we break an object into a stack of class
frames, where each class frame represents the fields intro-
duced by the declarations of a particular class (see Figure 1
top). Thus, the object in our example of dynamic type B has
3 class frames, one for class B, one for class A, and one for the
root class object . For each type T raw− , we can then dis-
tinguish an entire family of raw types of the form T raw(S)− ,
where type S is a supertype of T . The extra type S marks
the lowest class frame that is properly initialized. Thus, ev-

object∗

A∗

...

∗

down-cast to B yields

object∗

A∗

B∗

...

∗

Figure 2: Illustration of down-cast from Araw− to

Braw−

If it is known that the static type B is
equal to the dynamic type of an object, as
is the case at a new B expression, then
the type Braw(B)− is equal to B−.

object

A
B

Figure 3: Implicit coercion from raw to non-raw if

dynamic type is known

ery class frame at or above type S is properly initialized,
whereas frames strictly below S are not yet known to be
initialized. Figure 1 illustrates these cases for various raw
types of statically known class B .
The inclusion of all possible class extensions in our raw
types makes it easy to handle ordinary type down-casts from
Araw− to Braw− , as illustrated in Figure 2.
With this refinement in hand, we can precisely state the type
of an object returned by a particular constructor. On entry
to a constructor of class B , this has type Braw− . After
the call to the base class A constructor, the type of this

is Braw(A)− . At the end of the constructor of class B , the
type of this is Braw(B)− .
Thus the after the call to the B constructor in an expression
new B(. . .) , the constructed object has type Braw(B)− ,
that is, an object where all frames at or above class frame
B are initialized. Since it is statically known that B is the
dynamic type of the object—there are no subclass frames—
the object is fully initialized, and thus the entire expression
has type B− (see Figure 3).

3.1 Subtyping of raw types
As one would expect, if S is declared to be a subclass of
T , then Sraw− <: T raw− . Furthermore, if S <: R , then
T raw(S)− <: T raw(R)− , the latter being less initialized than
the former. Similarly, T raw(R)− <: T raw− , where the latter
is the maximal partially initialized type in the family T .
Also, for any T , T− <: T raw− .
For completeness, we also introduce a possibly-null type for
partially initialized objects, written T raw+ . If S is declared
to be a subclass of T , then Sraw+ <: T raw+ . Furthermore,
for any T , T raw− <: T raw+ , and T+ <: T raw+ . In prac-
tice, we don’t expect such types to be necessary.
Since this is of type T raw− in a constructor, any assign-
ments of this to other variables can be done only if the
other variable is of the appropriate type, namely a super-
type of T raw− . For example, if this is passed as a pa-
rameter, then the corresponding formal parameter must be
a partially-initialized type. There’s no explicit place in C#
and Java to give the type of the receiver parameter (for
the case where this is passed as a parameter to a method

4

by virtue of that method being invoked on this), but we
can imagine adding one (perhaps by declaring an instance
method with some special keyword). If a method is in-
voked on an object of type T raw− , then the method’s for-
mal receiver parameter must be of an appropriate partially-
initialized type.

3.2 Correcting our example

Let us revisit our example from the introduction. As we have
identified in our discussion, reads of field path in method
B.m may return null , because the this object is not yet
fully constructed. All that is needed to handle this example
is to state explicitly in the signature of methods A.m and
B.m, that the receiver this is partially-initialized. We use
the annotation [Raw] on the method to mark a method as
callable on a raw object, that is, on objects of type T raw− ,
where T is the type of this . Here is the corrected code.

class A {

[NotNull]

string name;

public A([NotNull] string s) {

this.name = s;

this.m(55);

}

[Raw]

virtual void m(int x) { ... }

}

class B : A {

[NotNull]

string path;

public B([NotNull] string p, [NotNull] string s)

: base(s)

{

this.path = p;

}

[Raw]

override void m(int x) {

... this.path ...

}

}

With these annotations, it is now possible to verify that the
code is consistent with our type rules for non-null types. At
the call to method m in A’s constructor, the type of this is
Araw(A)− . The expected type of method m is Araw− , which
is a supertype of Araw(A)− . Therefore, the call is valid.
Conversely, in the method body of B.m, we know this has
type Braw− . Thus, given the raw type, any read accesses
to this.path may yield null , and the method code must
correctly handle this value. If method B.m also accesses field
this.name, then it would also have to expect null , unless
we strengthen the type of this in the signature of method
m to Araw(A)− . In that case, method B.m can rely on the
fact that class frame A of the object is properly initialized
and thus field name is non-null.

3.3 Casts between raw and non-raw types
There may be situations where a programmer knows that an
object is fully initialized, even though the type system can-
not prove it. For this situation, we allow typecasts of expres-
sions from a partially-initialized type to a fully-initialized
type. We propose that such a cast succeed by checking each
non-null declared field of the runtime type for proper ini-
tialization. This check can be implemented in C# and Java
using reflection. Alternatively, completion of construction
could be measured by the “last” constructor having finished
and the object having been returned by the new expression
that prompted its construction. However, this alternative
approach requires support from the runtime, since an extra
bit per object is required.
As in the case of nullity, the behavior of the operators is ,
as , and instanceof is not affected and does not affect the
rawness of the operands. These operators inspect only the
named type of the object.

4. ARRAY TYPES

Both possibly-null and non-null types are allowed as the
element type of an array type. In addition, the array type
itself (which is a reference type in both C# and Java) may
be either a possibly-null type or a non-null type. We thus
have the following types for any reference type T :

T− []− non-null array of non-null elements
T+ []− non-null array of possibly-null elements

T− []+ possibly-null array of non-null elements
T+ []+ possibly-null array of possibly-null elements

The covariant array types in C# and Java work as expected
in the presence of these new types, provided the runtime
check on element assignment takes the non-nullity of ele-
ment types into account. This aspect requires runtime sup-
port. For a design without runtime support, the covariant
subtyping of array elements with respect to non-null can be
disallowed.
As with the construction of objects, there is a problem with
the construction of arrays. In particular, there is a problem
if the element type of the array is a non-null type. We
propose that the allocation:

new T
− [n]

where n is an expression that gives the size of the array to
be allocated, return an array of type T− []raw− .
Analogous to the fields of a partially-initialized object, read-
ing the elements from a partially-initialized array may yield
null, and expressions assigned to the elements of a partially-
initialized array must be non-null. However, unlike classes
and fields, there is for an array no program point that corre-
sponds to the end of a constructor, by which time the con-
struction of the array is supposed to have been completed.
Furthermore, a simple definite assignment rule won’t work
to ensure that all array elements are assigned. Therefore, we
instead let the programmer cast the array of type T− []raw−

to an array type T− []− when the programmer claims to
have assigned all elements of the array. The typecast per-
forms a check that all the array elements have been initial-
ized, that is, that they are non-null. A typical program

5

fragment for array initialization thus has the form:

T− []raw−

aTmp = new T− [n];
. . . // initialize the elements of aTmp

T− []−a = (T− []−)aTmp;

To require this check may seem expensive, but note that the
cost of the program’s initializing each array element is likely
to exceed the cost of the typecast expression’s checking that
the array elements are indeed initialized.

5. VALUE TYPES

The C# language supports value types via struct declara-
tions. Structs are data records similar to classes, but they
are manipulated as values rather than as references to the
data record. Structs are declared similarly to objects, with
fields and methods. Struct constructors initialize the fields
of a struct.
What distinguishes structs from objects from an initializa-
tion perspective is that all structs in C# have a default con-
structor that initializes fields to their zero-equivalent values
(i.e., null for reference fields). This default constructor
cannot be overwritten.
This poses a problem, since we want to allow structs with
non-null declared fields, that is, structs for which the default
constructor does not establish the invariant of the struct,
because it does not initialize such fields. To ease the presen-
tation, we distinguish structs for which the default construc-
tor is not sufficient from other structs and call the former
istructs (since they have an invariant). A struct is an istruct
if it has a non-null declared field or contains an istruct.
We model a partially initialized istruct analogously to a par-
tially initialized object by giving it a raw type Sraw . A
constructor for a struct S produces a value of type S , ex-
cept the default constructor of an istruct, which produces
a value of type Sraw . There is no non-null type S− or
possibly-null type S+ for a struct S , since a struct is not
a reference.
Since fields can be istructs, we have to extend our rule for
accessing such fields in partially initialized objects. Recall
that if the field is of reference type T− , then reading the
field yields a possibly-null value of type T + . In the addi-
tional case that the field is an istruct of type S , then reading
the field yields a value of type Sraw , since the struct itself
may not be properly initialized. Assignments to the field,
however, require a value of type S .
Arrays of istructs are handled similarly to arrays of non-
null references. An allocation of an istruct array produces a
partially initialized array of istructs, of type S []raw− . After
the array has been initialized to proper istructs, an explicit
cast is needed to obtain type S []− . This cast involves a
number of non-null checks per element to determine that it
is a properly initialized istruct of type S .
The subtype relation on value types in C# only includes
a boxing conversion between a value type S and the class
root object . Adapting this relation to our raw and non-
null types yields the following subtype relations:

S <: object− S <: Sraw Sraw <: objectraw−

6. OTHER LANGUAGE CONSTRUCTS

This section examines the impact of non-null types on lan-
gauge constructs we have not yet discussed.

6.1 Call-by-reference parameters
A further complication arises in languages like C# that sup-
port call-by-reference (ref) parameters. A formal ref param-
eter represents the same storage location as the actual pa-
rameter to which it is bound. A ref parameter can be read
and assigned to by the callee, and these operations have the
same effect as if they had been performed directly on the
actual parameter. As with any parameter whose value can
be read by the callee, the type of the formal ref parameter
must be a supertype of the type of the actual parameter.
Since a ref parameter can also be assigned to by the callee,
the type of the formal must also be a subtype of the type
of the actual. That is, for ref parameters, the types of the
formal and actual must be identical.
The problem is that, for a class C with a field f of type
T− , if c is of type Craw− , then c.f has type T + in a
read context and type T− in a write context. Since these
types are not identical, no type on the formal ref parameter
will be identical to both. The problem also arises if field f

contains an istruct.
One way to address this problem would be to introduce sep-
arate types for read and write accesses of ref parameters.
However, to avoid further complicating matters, we simply
disallow an expression of the form c.f from being used as
an actual ref parameter if c is of a partially-initialized type
and f is a field of type T− or an istruct.
Note that there is no analogous complication with out pa-
rameters in C#. An out parameter is like a ref parameter,
except the callee must assign to the parameter before return-
ing, and if the callee reads the parameter it must first have
assigned to it. Because of the second of these stipulations,
any value the callee reads from the parameter is indeed of
the parameter’s declared type.

6.2 Static class fields
The runtime semantics of C# and Java guarantee that static
fields are null initialized. Furthermore, prior to the first ac-
cess of a static field T.f , the runtime tries to execute the
static class constructor for class T . This algorithm guar-
antees that static field initializers are executed before their
first access, except in the presence of cycles in the refer-
ence pattern between static class constructors, or forward
references within a class constructor to fields it hasn’t yet
initialized. When a static field of a class is accessed whose
initializer is already running, the runtime simply obtains the
current value of the field, which may be null .
Although we could handle the entire initialization semantics
conservatively in our type system, it is not practical to do
so, since it wouldn’t be able to take advantage of the com-
mon non-cyclic case. We therefore assume that cyclic de-
pendencies between static initializers of multiple classes are
symptomatic of a design problem and should be found by
other means. Testing is usually a reasonable way to detect
these problems, since the complexity of static initializers is
typically low.
We thus assume that any static field of a different class ac-
cessed from a static constructor is already initialized. We are

6

left with the problem of forward references within a static
constructor to fields that are initialized later. For each class
T , we treat its static fields as belonging to a special static
object of type T that is implicitly passed to all methods.
By default, all methods expect these static objects to be in
the fully initialized state, i.e., as type T − for each class T ,
thereby relying on the initialization of all static fields.
During execution of the static constructor for class T , we
assume that T ’s static fields are uninitialized, which is ex-
pressed by giving the static object type T raw− . Each static
constructor is responsible for initializing the static fields of
its class.
To call a method from the static constructor of class T , the
called method must be specially annotated as handling the
raw static state of class T . In other words, such a method
must not rely on the static fields of class T being initialized.
However, the method can rely on the initialization of static
fields of other classes.
In practice, we think these restrictions are reasonable. If
methods are called from static constructors, they must in
general be aware that not all fields are initialized yet. The
most common methods called from static constructors are
instance constructors. Thus some of these must be anno-
tated.

6.3 Generics
The next major release of C# will add support for generic
types and methods to the language. Similar additions are
planned for the Java language. This section briefly explores
the impact of generics on our proposal.
Our distinctions between possibly-null and non-null values
at the type level are orthogonal to the generics proposals in
the sense that type abstraction in those proposals abstracts
only over the underlying class/interface type, but does not
abstract over the nullity of references of such types. There-
fore, if T is a bound generic type in the context of some
class or method, it will be possible to form types T− and
T+ . Instantiations of T will only be other types S without
nullity modifiers.
The alternative approach, where type abstraction also ab-
stracts over nullity, is problematic, since it leads to situa-
tions where we need to give meaning to types of the form
T+ in contexts where we instantiate T with S− .
Thus, the addition of type genericity will not automatically
provide genericity over nullity. Such genericity is orthogonal
and has to be added independently.

7. IMPLEMENTATION

To evaluate our design, we implemented a non-null checker
for C#. This section describes our implementation and sim-
plifying assumptions.
We augment type declarations in C# programs using a lan-
guage feature called custom attributes. Custom attributes
are structured comments that persist into the compiled ob-
ject code. A custom attribute consists of a name plus zero
or more positional and named parameters, whose values are
limited to compile-time constants of a few basic types.
For annotating fields, parameters, and results, we defined
two parameter-less attributes, [MayBeNull] and [Raw]. The
following table lists the correspondence between the types
in our design and the C# syntax.

T− T

T+ [MayBeNull] T

T raw− [Raw] T

T raw(S)− [Raw(Upto=typeof(S))] T

As the table shows, we chose the default for a reference to
be a non-null type. We have found that this choice requires
fewer annotations than making the possibly-null case the
default. It would be a simple matter to allow alternative
class-wide or module-wide defaults.
Since attributes are preserved in the CIL (common interme-
diate language) bytecode produced by the C# compiler, we
decided to implement our checker at the CIL level, rather
than at the C# language level. This approach offers several
advantages: 1) no source code parsing and semantic disam-
biguation is necessary, 2) only a small and well-defined set of
instructions needs to be handled, and 3) the same checker
works for other languages that compile down to CIL (for
example Visual Basic, and Managed C++).
In C# (and in the CIL), local variables in method bodies
cannot be annotated with attributes. Instead, our checker
infers the nullity and rawness type information using a sim-
ple flow-sensitive method-local (intra-procedural) data-flow
analysis. The analysis is smart enough to refine the anno-
tations in branches of tests against null. Programmers can
thus use ordinary tests against null to refine a type from T +

to T− .
The typecast from T raw− to T− in our design is imple-
mented by a special method

static void AssertInit([Raw] object rawobj);

that uses reflection to dynamically check that all non-null
declared fields are indeed non-null. The checker recognizes
calls to this method and treats the argument as initialized
in the continuation.
Our checker does not yet implement the full design described
in this paper. The differences are as follows:

• No support for non-null array elements.

• No support for annotations to make methods callable
from static constructors.

Furthermore, the checker assumes programs are free of syn-
chronization errors. For example, after a possibly-null field
has been tested against null, a subsequent read of the field
(without intervening assignments to the field or method
calls) is assumed still to be non-null, even though another
thread could potentially update the field to null.
Augmenting type declarations with nullity and rawness in-
formation allows our static checker to be completely mod-
ular. It analyzes each method body independently. At
method calls, only the annotations on the called method
signature are used to check the validity of the call.
Our checker implementation is also completely separate from
the compiler and the runtime. We have not modified the
CIL runtime in any way. All implicit null checks that the
language imposes are still performed by the runtime during
execution. Thus, a program that does not pass our checker
can still be run, and the runtime will throw exceptions on
null accesses.

7.1 Extensions
Our implementation makes use of a few small extensions
that we have not described so far.

7

Strengthened return type Overriding methods may
want to strengthen the result type from possibly-null to non-
null. This is sound, and we allow such cases via another
attribute [NotNull].

Initialized field precondition Within constructors, it
is sometimes convenient to call an accessor that returns some
aspect of the object under construction. By default, the
checker flags such calls as errors, since the receiver is still
raw. These accessors, however, typically read only one field.
Thus, if the field is intialized in the calling context, then
such calls can be permitted. We added a simple refinement
of the [Raw] annotation of the form

[Raw(except="fieldnames ")]

that can be used to annotate such accessors. It states that
the object is raw, except for the given initialized fields.

Helper initializers Some classes use helper methods
called from the constructor to initialize fields. For our checker
to prove that all fields are initialized at the end of the con-
structor, it needs extra annotations on the helper method
indicating which fields the method initializes. We added the
following annotations:

[Inits]

[Inits("fieldnames ")]

Both annotations on a parameter or receiver of type T im-
ply that on entry to the method, the parameter has type
T raw(S)− , where S is the supertype of T . The first an-
notation additionally states that on exit, the parameter has
type T raw(T)− , i.e., all fields declared in T have been ini-
tialized. The second annotation states that only the listed
fields have been initialized.

8. EXPERIENCE

We have experimented with our checker on one of our own
C# programs of roughly 20KLOC. The checker was able to
validate non-nullity for 8000 individual places in the code,
where, according to the .NET CIL semantics, a null check
is performed. The checker takes approximately 10 seconds
to run on a 1.8GHz P4 PC.
Perhaps surprisingly, we found that checking a simple prop-
erty like non-nullity can point out higher-level design issues
in the code. We describe the kinds of errors detected in
our code base and the shortcomings of the current checker
implementation.

8.1 Errors
Many non-null errors are simple failures to handle all pos-
sible cases in the program. Here, we focus on more subtle
bugs we discovered.

Vacuous initialization We found several instances of
the following statement in constructors:

this.foo = foo;

where the right-hand side foo was intended to denote a pa-
rameter of the constructor. It turned out, however, that
there was no such parameter and what looked like a field
initialization was in fact a dummy assignment of the form

this.foo = this.foo;

Use of wrong local The operator as is used to test the
dynamic type of an object. It returns the first argument if its
dynamic type is compatible with the tested type, otherwise
it returns null.

bool m(Q other) {

T that = other as T;

if (other == null) return false;

if (this.bar != that.bar) ...

The code above intends to return false if other is not of
type T. Unfortunately, the first test compares other against
null instead of comparing that against null. The checker
discovers the problem at the access of that.bar, since that

may be null.

Use of as rather than downcast The checker assumes
that y in the code below can be null.

// x has dynamic type T, but static type is Q

T y = x as T;

... y ...

As long as the unchecked invariant is true, the code looks
fine, but if the invariant becomes false (because of code
changes), the error gets caught later than desired as a stray
null reference. It is better to use a downcast y = (T)x, be-
cause it will dynamically detect the error earlier and also
keep the static type checker from issuing an error.

Field declared too high in class hierarchy We found
two instances in our code where a field was declared in an
abstract base class, but only some of the subclasses actually
initialized and used the field. Making the field possibly-null
in this scenario is undesirable since it caters to the non-
using subclasses at the expense of the users of the field. It is
better to move the field declaration to a derived base class
(possibly inserted), so that the field does not appear in the
subclasses that don’t use it. After this transformation, we
detected some subclasses that did not initialize the field, but
still accessed it later!

Sloppy inheritance Occasionally, inheritance is used
purely for subtyping purposes, without the desire to inherit
implementation. Such situations call for the use of inter-
faces. But in situations where the type to be subtyped is
not an interface, inheritance is still used. This approach
usually leads to ugly code using null to initialize base class
fields. The approach may be viable if the subclass can cor-
rectly reimplement all methods of the base class. But that is
not possible if the base class has public fields or non-virtual
methods. In our code, null checking pointed out one such
case in which an interface rather than a class type should
be used as the common supertype of two implementations.

Non-instance method The checker marked several calls
to instance methods from within constructors as not expect-
ing the receiver object in the raw state. It turned out that
these methods could be made static, since they didn’t access
the receiver object.

Non-sealed class We found a couple of classes that trig-
ger all of their behavior from calling the constructor, i.e.,

8

they compute some result during construction and cache it.
The constructed object is then used to access the computed
result only. Our checker marks method calls on this within
the constructor as errors, since the receiver is still raw, but
the called methods are not declared to expect a raw receiver.
We fixed this case by making these classes sealed (or final
in Java). In constructors of sealed classes after all fields
are initialized, the checker knows that the object under con-
struction is no longer raw, since there cannot be any subclass
fields.

8.2 Annotations
To give an impression of the density of annotations, the
following table lists the number and kind of annotations on
fields, parameters, receivers, and return types.

Total MayBeNull Raw Annotated
Fields 922 38 0 2.6%
Parameters 2367 64 1 0.5%
Receivers 1581 - 1 < 0.1%
Returns 1581 40 0 2.5%

In addition, the code contains 84 assertions of the form

Debug.Assert(x != null);

where it was not possible to express an invariant using our
current annotations. We used a single cast from raw to a
non-raw type using our AssertInit dynamic check.
With the 226 annotations in place, the checker reports 40
spurious warnings due to our incomplete handling of static
field initializers and arrays with null elements.
These numbers show that the annotation burden is very
small. This stems in a large part from the fact our defaults
are well chosen.

8.3 Shortcomings
Our experiment also revealed several shortcomings in our
checker, most of which will require extensions to our anno-
tation language.

Field precondition Some methods expect a possibly-
null field to be non-null where in fact every calling context
does establish this precondition. Our annotations are cur-
rently not rich enough to express this precondition. This
case differs from the initialized field precondition case de-
scribed in our extensions (Section 7.1), in that non-null fields
of raw objects never revert back to null, which makes check-
ing easier.

Field postcondition Some methods establish that a
possibly-null field is in fact not-null, and callers rely on it im-
mediately after the call. Again, we need extra annotations
to express this case. A similar case arises through predicate
methods that test if a field is non-null and return a boolean.
The context testing the result then deduces that the field is
non-null.

Parent-child cycle There were two instances in our
code base where a constructor creates a cycle between this

and some object t that it creates and stores in a field child
of this . The constructor passes this down to the con-
structor of the child object t which in turn stores it as a

pointer to its parent. That is, the code establishes:

this.child == t && t.parent == this

Our annotations do not allow us to establish this invariant.
We believe a specialized set of annotations for the parent
and child fields can be devised to capture this scenario. This
problem has given rise to other solutions in the past [18].

Lack of polymorphism over nullity There was one
case in our code base where an abstract method of type

abstract object Visit(T arg1, object arg2);

was implemented in two incompatible contexts. One imple-
mentation expected non-null objects as arg2 and produced
non-null objects in return, whereas a second implementa-
tion accepted null as arg2, but would only produce null as
a result, if arg2 was actually null.
Unfortunately, the addition of generics to C# will not solve
this issue, since nullity annotations are orthogonal to gener-
ics, and generic types cannot be instantiated with nullity
information (see Section 6.3).

Staged initialization An idiom our approach currently
cannot handle is staged object initialization, where an object
is only partially initialized by its constructor. Later, some
method is called that further initializes part of the object
and from there on, the newly initialized fields never become
null again. We are developing a generalization of our work
on rawness to address this problem [4].

Properties with possibly-null values A C# property
is a pair of methods, a getter and a setter for reading and
writing some aspect of an object. In the C# syntax, get-
ter and setter calls look exactly like field reads and writes.
Unlike field accesses, however, our checker cannot refine the
type of a getter after its result has been tested against null.
If the property is subsequently accessed again, the checker
assumes again that it returns a possibly-null reference. To
avoid false positives, we rewrote our code to bind the get-
ter result to a local for both the test against null and the
subsequent use.

Other invariants Some objects have more complicated
invariants that cannot be expressed with our annotations.
For example, an object may have two possibly-null fields,
but at every moment, at most one of them is null.

9. DESIGN ALTERNATIVES

Because the largest complication of our type system and
checker implementation relates to raw objects, it is instruc-
tive to consider a design alternative that would avoid such
complications.
To avoid partially initialized objects, while keeping the fla-
vor of constructors of C# and Java, constructors should be
split into three sections:

1. A prelude that must initialize all fields of the current
class frame but without access to this . It is impor-
tant, though, that this section have access to construc-
tor parameters. For example, the field initializers in
C# implicitly form such a prelude, but since they have
no access to the constructor parameters, that feature
is not frequently applicable.

9

2. A call to the base class constructor. At this point, the
current class frame is fully initialized (and so are all
class frames of subtypes).

3. A constructor body that has full access to this and
where this is fully initialized.

For structs, the same design as above can be applied and
unlike the current .NET CIL design, it must allow definition
of the default constructor. To properly initialize arrays, a
syntactic form such, as an array comprehension, would serve
the purpose.
This alternative design assumes that all objects can always
be fully initialized at construction time, thereby simplifying
the model, since no partially initialized objects ever arise.
Although these simplifications would be desirable, they do
not necessarily match up with programmer practice. We be-
lieve that instead, we need to generalize the idea of rawness,
so that programmers can describe what state an object is
in, even outside the dynamic scope of a constructor. This
need arises from the use of staged initialization, which we
think is a common and legitimate practice.

10. RELATED WORK

The goal of our proposal is to introduce another degree of
rigor into programming languages, a mechanism by which
programmers can state their design decisions and get help
from a static checker to identify places in the source code
where the program does not live up to the intended design.
This is similar to the goals of, for example, ESC/Java [8],
a static checking tool whose annotation language provides a
non-null modifier for variable declarations. Our proposal
differs from ESC/Java in that object invariants in ESC/Java
are not enforced under all circumstances, whereas we have
aimed for a sound design.
The following category of related work has some form of
non-null types and checking, but for languages without ob-
jects or inheritance subtyping—the main complications ad-
dressed by our proposal: LCLint [3] (a tool for checking
various properties of C programs that also provides null and
non-null annotations on references, but no soundness guar-
antees and no object invariants), MrSpidey [7] (a tool that
analyzes Scheme programs for type errors, including null
access), Vault [1] (a C-style language aiming at making low-
level programming safer by providing typestate checking,
including null reference checking), Cyclone [10] (a C-style
language providing explicit region-based memory manage-
ment), CCured [15] (a tool that compiles and type checks
C programs under a safer type system), and Typed Assem-
bly Language [14] (a target language for typed compilation,
which uses the idea of monotonic initialization via initializa-
tion flags, but not in the presence of inheritance subtyping).
Null-related work in object-oriented languages was men-
tioned in the introduction. None of these languages provides
access to the object under construction, thereby avoiding
the problem of having to deal with partially initialized ob-
jects [12, 11, 5].
Some null validations can be proven through other means,
such as the presence of dominating accesses to the same
object (see the Marmot paper [6]). Such techniques alone,
however, cannot prove the kinds of invariants our system
can establish. To obtain a modular analysis, the kinds of
annotations we propose are needed.

The thought of introducing non-null types in a language like
Java certainly isn’t new. For example, at least two other
proposals can be found on the web, by Stata [19] and by
Smith [17]. As both of these proposals suggest, non-null
types are natural and can be valuable. However, neither
proposal even mentions the more difficult problem of con-
structing objects with non-null components, let alone sug-
gests a solution to the problem.

11. CONCLUSION

In summary, to retrofit an object-oriented language like C#
or Java to have non-null types, we propose breaking the ref-
erence types into four families of types, by introducing a
taxonomy along the following two axes: non-null types ver-
sus possibly-null types, and partially-initialized types versus
fully-initialized types. Let S and T be any classes or in-
terfaces (where defined), where T is a superclass or super-
interface of S , and let X and Y be any types such that
X <: Y . Then the following relations hold:

T− <: T+ T+ <: T raw+

T− <: T raw− T raw− <: T raw+

S− <: T− Sraw− <: T raw−

S+ <: T+ Sraw+ <: T raw+

and

X []− <: X []+ X []+ <: X []raw+

X []− <: X []raw−

X []raw−

<: X []raw+

X []− <: Y []− X []raw−

<: Y []raw−

X []+ <: Y []+ X []raw+
<: Y []raw+

Our experience with an implementation of our proposal for
C# has been positive in that it eliminated null-reference
problems and unearthed a number of design-level problems.
We end by sketching how our partially-initialized types may
help with two other problems related to initialization in
C# and Java. First, for any readonly (in C#) or final (in
Java) field f , after the allocation of an object x and be-
fore the assignment to x.f , reading x.f will return a zero-
equivalent value. This may lead to unexpected behavior in a
program, especially if x.f is read in a method that is called
from a constructor rather than in the constructor itself. Un-
der our proposal, if x is of a fully-initialized type, then x.f

is guaranteed to have its final value.
Second, a constructor in C# and Java may “leak” the ob-
ject this being constructed before it is fully constructed by
throwing this (if the type of this is an exception type).
This is dangerous because an exception handler may then
expect to use the object as if it were fully initialized. Un-
der our proposal, the argument to throw must have type
Exception− (in C#) or Throwable− (in Java), thus pre-
venting partially initialized exceptions from being thrown.
Perhaps our partially-initialized types can help in establish-
ing and maintaining object invariants more generally.

12. REFERENCES

[1] Robert DeLine and Manuel Fähndrich. Enforcing
high-level protocols in low-level software. In
Proceedings of the 2001 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI), volume 36, number 5 in
SIGPLAN Notices, pages 59–69. ACM, May 2001.

10

[2] ECMA. Standard ECMA-334: C# Language
Specification, December 2002. Available on the web as
http://www.ecma-international.org/publications

/files/ecma-st/Ecma-334.pdf.

[3] David Evans, John Guttag, James Horning, and
Yang Meng Tan. LCLint: A tool for using
specifications to check code. In Proceedings of the
ACM SIGSOFT ’94 Symposium on the Foundations of
Software Engineering, pages 87–96, 1994.

[4] Manuel Fähndrich and K. Rustan M. Leino. Heap
monotonic typestates. In Proceedings of the 1st
International Workshop on Aliasing, Confinement and
Ownership, July 2003.

[5] Kathleen Fisher and John H. Reppy. The design of a
class mechanism for Moby. In Proceedings of the 1999
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
volume 34, number 5 in SIGPLAN Notices, pages
37–49. ACM, May 1999.

[6] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf,
Bjarne Steensgaard, and David Tarditi. Marmot: An
optimizing compiler for Java. Software-Practice and
Experience, 30(3), 2000.

[7] Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Stephanie Weirich, and Matthias
Felleisen. Catching bugs in the web of program
invariants. In Proceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and
Implementation (PLDI), volume 31, number 5 in
SIGPLAN Notices, pages 23–32. ACM, May 1996.

[8] Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In
Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI), volume 37, number 5 in
SIGPLAN Notices, pages 234–245. ACM, May 2002.

[9] James Gosling, Bill Joy, and Guy Steele. The Javatm

Language Specification. Addison-Wesley, 1996.

[10] Trevor Jim, Greg Morrisett, Dan Grossman, Michael
Hicks, James Cheney, and Yanling Wang. Cyclone: A
safe dialect of C. In USENIX Annual Technical
Conference, General Track, pages 275–288, June 2002.

[11] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay
Ghemawat, Robert Gruber, Paul Johnson, and
Andrew C. Myers. Theta reference manual,
preliminary version. Memo 88, Programming
Methodology Group, MIT Laboratory for Computer
Science, February 1995. Available on the web at
http://www.pmg.lcs.mit.edu/Theta.html.

[12] Barbara Liskov and John Guttag. Abstraction and
Specification in Program Development. MIT Electrical
Engineering and Computer Science Series. MIT Press,
1986.

[13] Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, 1990.

[14] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From system F to typed assembly language.
ACM Transactions on Programming Languages and
Systems, 21(3):527–568, 1999.

[15] George C. Necula, Scott McPeak, and Westley
Weimer. CCured: Type-safe retrofitting of legacy
code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 128–139, 2002.

[16] Simon Peyton Jones, John Hughes, Lennart
Augustsson, Dave Barton, Brian Boutel, Warren
Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze,
Paul Hudak, Thomas Johnsson, Mark Jones, John
Launchbury, Erik Meijer, John Peterson, Alastair
Reid, Colin Runciman, and Philip Wadler. Haskell 98
report, February 1999. Available on the web as
http://haskell.org/onlinereport.

[17] Chris Smith. Java pointifications: Nullability
constraints, June 2001. Available on the web as
http://cdsmith.twu.net/professional/java

/pontifications/nonnull.html.

[18] Frederick Smith, David Walker, and Greg Morrisett.
Alias types. In Proceedings of the 14th European
Symposium on Programming, volume 1782 of LNCS,
pages 366–381. Springer, March 2000.

[19] Raymie Stata. Improving the safety of Java, December
1995. Available on the web as
http://larch-www.lcs.mit.edu:8001/~raymie/Java

/javachangessafety.html.

11

