
741

Transfer via Soft Homomorphisms

Jonathan Sorg
University of Michigan
2260 Hayward Street
Ann Arbor, Michigan

jdsorg@umich.edu

Satinder Singh
University of Michigan
2260 Hayward Street
Ann Arbor, Michigan

baveja@umich.edu

ABSTRACT
The field of transfer learning aims to speed up learning
across multiple related tasks by transferring knowledge be-
tween source and target tasks. Past work has shown that
when the tasks are specified as Markov Decision Processes
(MDPs), a function that maps states in the target task
to similar states in the source task can be used to trans-
fer many types of knowledge. Current approaches for au-
tonomously learning such functions are inefficient or require
domain knowledge and lack theoretical guarantees of perfor-
mance. We devise a novel approach that learns a stochastic
mapping between tasks. Using this mapping, we present
two algorithms for autonomous transfer learning – one that
has strong convergence guarantees and another approximate
method that learns online from experience. Extending exist-
ing work on MDP homomorphisms, we present theoretical
guarantees for the quality of a transferred value function.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
transfer learning, Markov decision process, homomorphism

1. INTRODUCTION
Humans are adept at applying knowledge learned in previ-

ous task experiences to aid in accomplishing similar future
tasks. The field of transfer learning aims to produce the
same ability in artificial agents. Central to this ability to
transfer knowledge from a source task to another target task
is the existence of structural similarities between two tasks.
In this work, we adopt the Reinforcement Learning (RL) for-
malism of Markov Decision Processes (MDPs) for specifying
tasks.

The challenge of transfer learning can be divided into two
conceptual steps. First, the structural similarities between
source and target tasks must be identified. Second, they

Cite as: Transfer via Soft Homomorphisms, Jonathan Sorg and Satinder
Singh, Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and
Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-
XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

must be exploited in such a way that performance in the
target task can be improved. These two problems are intri-
cately related, however; the form of the structural similar-
ities often determines the types of knowledge that may be
transferred. One general form of structural similarity that
can be exploited in many ways involves finding an equiva-
lence relationship between states in one task and states in
another. Given this relationship, we can transfer a multi-
tude of knowledge structures including value functions [10],
policies [11], and options [2], among others. Many current
methods rely on hand-coded structural mappings. Although
methods exist for learning a mapping, current methods still
require hand-coded domain knowledge [11, 3] or they explic-
itly enumerate all potential state-mapping functions from a
small candidate set [8, 9]. These methods generally lack
theoretical guarantees of performance.

This idea of a mapping between states in one MDP to
states in another is closely related to abstraction and model
minimization in MDPs [1] and MDP homomorphisms [5].
The goal of transfer learning is slightly different than that
of abstraction. In the abstraction setting, the method is free
to design an arbitrary abstract (source) task, which it then
subsequently solves for the optimal policy. In the transfer
setting, the agent selects a solved source task from its past
experience. During transfer, the agent does not have the
freedom to design an arbitrary source task. However, it is
assumed the source task has already been solved. In both
settings, information learned in the source task – a value
function, policy, etc. – is used to improve performance in
the target task. This process of transferring a structure from
source to target is known as lifting.

The novel aspect of our method is that we adopt a stochas-
tic or soft mapping between states in the source and target
MDPs. The advantages are three-fold. First, by extending
existing work on MDP homomorphisms, we are able to pro-
vide theoretical bounds on performance. Second, the soft-
ness provides a natural means of approximation in the likely
event that the two tasks do not have perfectly matching
structure. Finally, the continuous parameters yield polyno-
mial algorithms for finding good mappings.

1.1 Background on MDP Homomorphisms
An MDP is a tuple 〈S, A, T, R, γ〉 consisting of a state

set S, action set A, transition function {T : S × A × S →
[0, 1]}, an expected reward function {R : S×A → R}, and a
discount factor γ ∈ [0, 1]. A policy is a mapping from each
state to an action {π : S → A}. A Q-function Qπ(s, a) is
the expected discounted reward obtained by taking action a
in state s and following π thereafter. We define the m-step

Cite as: Transfer via Soft Homomorphisms, Jonathan Sorg, Satinder
Singh, Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. 741–748
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

742

optimal Q function such that ∀s ∈ S, a ∈ A:

Qm(s, a) = R(s, a) + γ
X
s′∈S

T (s, a, s′) max
b∈A

Qm−1(s
′, b) (1)

and define Q−1(s, a) = 0. The optimal Q function Q∗(s, a) =
Q∞(s, a). A given Q-function yields a greedy action in each
state according to arg maxa Q(s, a). A policy that is greedy
with respect to the optimal value function is an optimal pol-
icy.

Informally, a homomorphism of a system with transition
dynamics is a transformation that preserves some aspects of
its dynamics. Ravindran [5] defines an MDP homomorphism

from MDP M to MDP M ′, denoted hM �→M′

, as a surjection
from the state-action pairs in M to the state-action pairs
in M ′ that commutes with the dynamics of the MDPs and
preserves the reward function. Throughout this paper, we
simplify the problem by assuming the action portion of this
mapping is the identity function. Henceforth, we will drop
the superscript M �→ M ′ from h when it is clear from con-
text.

Definition 1. An MDP homomorphism hM �→M′

from a
target MDP M = 〈S, A,T, R, γ〉 to a source MDP M ′ =

〈X, A, T ′, R′, γ〉 is a surjection hM �→M′

: S → X such that
∀s ∈ S, a ∈ A, x′ ∈ X:

R′(h(s), a) = R(s, a) (2)

T ′(h(s), a, x′) =
X

s′:h(s′)=x′,s′∈S

T (s, a, s′). (3)

Given MDPs M , M ′, and homomorphism h, we can make
strong statements relating the two systems. Perhaps most
importantly, it can be shown that the values of the optimal
policies in equivalent states are equal, and an optimal policy
in one system can be easily transformed to produce an op-
timal policy in the other as follows. For all (s, a) ∈ (S ×A),

Q∗(s, a) = Q∗(h(s), a), (4)

where Q∗(h(s), a) is the optimal value of state h(s) in MDP
M ′.

Note that the direction of the mapping is typically oppo-
site that of transfer. Given a homomorphism from the target
MDP to the source MDP, we use it to transfer knowledge
from the source MDP back to the target MDP.

Although the homomorphism result is powerful, the pre-
conditions are too restrictive for our purposes. In practice,
it is unlikely that an agent will have experience in a system
for which there exists a surjection satisfying the constraints.
Even when an exact match does exist, the task of searching
for a corresponding satisfactory function h is difficult. In
fact, a closely-related abstraction problem has been shown
to be NP-hard [5].

2. SOFT HOMOMORPHISMS
Our method provides a solution to both these shortcom-

ings by replacing the discrete function hM �→M′

(s) with a

continuous function fM �→M′

: S × X → [0, 1] such that

∀s ∈ S,
P

x∈X
fM �→M′

s (x) = 1. Throughout this paper, we
drop the superscript M �→ M ′ from f when it is clear from
context.

The function fs(x) can be loosely interpreted as P (X|S),
or the probability that state s ∈ S maps to state x ∈ X. It

has the important property that if we were to restrict fs(x)
to be deterministic, we would restore the semantics of the
homomorphism mapping. However, in general the resulting
structure can no longer be called a homomorphism as it is
no longer a simple surjection. We refer to it throughout as
a soft homomorphism.

This more general class of soft equivalence relationships
can potentially do well in broader settings that may not
work well using a discrete mapping. Furthermore, the re-
laxation from a discretely parameterized function to a con-
tinuously parameterized distribution yields polynomial algo-
rithms with guaranteed solutions. This is akin to approxi-
mately solving an integer programming problem by relaxing
the constraint to integers and converting the problem to a
linear program. Because we have relaxed this constraint,
we will no longer be guaranteed exact optimal value func-
tion equivalence. However, we can bound the transfer error
as a function of how “close” the stochastic mapping is to
determinism.

2.1 Soft Constraints
The constraints in the MDP homomorphism definition can

be extended to handle this more general form of mapping.
In short, everywhere h(s) appears in Definition 1, we replace
it with an expectation with respect to fs(x).

Definition 2. A soft MDP homomorphism fM �→M′

from
a target MDP M = 〈S, A, T, R, γ〉 to a source MDP M ′ =
〈X, A, T ′, R′, γ〉 is a probability distribution P (X|S) denoted
fS(X) such that ∀s ∈ S, a ∈ A, x′ ∈ X:X

x∈X

R′(x, a)fs(x) = R(s, a) (5)

X
x∈X

T ′(x, a, x′)fs(x) =
X
s′∈S

T (s, a, s′)fs′(x
′). (6)

We can similarly extend the lifted Q-function in equation
(4) to the stochastic mapping using expectation. Define the
soft-homomorphism lifted Q-function to be ∀s ∈ S, a ∈ A,

Q̂(s, a)
def

=
X
x∈X

Q∗(x, a)fs(x). (7)

Throughout this paper, we refer to the greedy policy with
respect to the lifted Q-function as the lifted policy.

Notice that if we were to restrict fs(x) to be deterministic,
equations (5-6) are equivalent to equations (2-3). Clearly,
if we were to solve for fs(x) and find a deterministic so-
lution, the discrete homomorphism result (4) still holds:

Q̂(s, a) = Q∗(s, a). In the event that f is stochastic, we
cannot guarantee lifted value equality.

2.2 Error Bounds
Although we know that a deterministic soft homomor-

phism results in a perfect lifted value function, a natural
question to ask is whether a small deviation from determin-
ism is catastrophic. The remainder of this section demon-
strates that a small deviation from a deterministic f results
in a small lifted Q-function error. Lemma 1 bounds from
below and Lemma 3 bounds from above, resulting in in-
equalities of the form

Q∗(s, a) ≤ Q̂(s, a) ≤ Q∗(s, a) + K/(1 − γ),

where K will be defined in Lemma 2.

Jonathan Sorg, Satinder Singh • Transfer via Soft Homomorphisms

743

Lemma 1. Let Q∗ be the optimal Q-function for MDP
M = 〈S, A, T, R, γ〉. Let Q̂ be the lifted Q-function obtained
from a given M ′ = 〈X, A,T ′, R′, γ〉 and soft MDP homo-
morphism function f , then ∀s ∈ S, a ∈ A,

Q̂(s, a) ≥ Q∗(s, a) (8)

Proof. Using induction, first we show the base case:

Q0(s, a) = R(s, a)

=
X
x∈X

R′(x, a)fs(x)

=
X
x∈X

Q0(x, a)fs(x).

Next we show the induction step.

Qm(s, a)

= R(s, a) + γ
X
s′∈S

T (s, a, s′)max
b∈A

Qm−1(s
′, b)

≤ R(s, a) + γ
X
s′∈S

T (s, a, s′)max
b∈A

X
x′∈X

Qm−1(x
′, b)fs′(x

′)

≤ R(s, a) + γ
X
s′∈S

T (s, a, s′)
X

x′∈X

max
b∈A

Qm−1(x
′, b)fs′(x

′)

= R(s, a) + γ
X

x′∈X

max
b∈A

Qm−1(x
′, b)

X
s′∈S

T (s, a, s′)fs′(x
′)

= R(s, a) + γ
X

x′∈X

max
b∈A

Qm−1(x
′, b)

X
x∈X

T ′(x, a, x′)fs(x)

=
X
x∈X

fs(x)

"
R′(x, a) + γ

X
x′∈X

T ′(x, a, x′) max
b∈A

Qm−1(x
′, b)

#

=
X
x∈X

fs(x)Qm(x, b)

Taking the limit as m → ∞ gives us the bound stated
above.

The lone source of inequality results from “swapping” the
max operation with the summation in the induction step in
the proof of Lemma 1 above. We put an upper bound on the
error incurred by this “swap” in Lemma 2, and in Lemma 3,
we use this result to complete the upper bound for a lifted
Q-function.

In order to bound error as a function of deviation of f from
determinism, we must first define a measure of deviation
from determinism. The measure we use is (1−fs(x̃s)) where
x̃s = arg maxx fs(x). In words, this is the probability that
target state s does not map to its most likely source state.
If the mapping is deterministic, this value will be 0.

In what follows we will use the definitions:

Q−m(s)
def

= min
x:fs(x)>0,a∈A

Qm(x, a)

Q+
m(s)

def

= max
x:fs(x)>0,a∈A

Qm(x, a).

In words, Q−m(s) is the minimum value over all actions a ∈ A
and all states x ∈ X that state s maps to with positive
probability. Q+

m(s) is defined similarly.

Lemma 2. Let MDP M = 〈S, A, T, R, γ〉, let MDP M ′ =

〈X, A, T ′, R′, γ〉, and let fM �→M′

be a soft homomorphism.

Then ∀s ∈ S,

max
a∈A

X
x∈X

Qm(x, a)fs(x) ≥
X
x∈X

max
a∈A

Qm(x, a)fs(x) − Km,s

where Km,s = (1 − fs(x̃s))
`
Q+

m(s) − Q−m(s)
´
.

Proof.

X
x∈X

max
a∈A

Qm(x, a)fs(x) − max
a∈A

X
x∈X

Qm(x, a)fs(x)

=
X
x∈X

max
a∈A

Qm(x, a)fs(x)

− max
a∈A

0
@Qm(x̃s, a)fs(x̃s) +

X
x∈X:x �=x̃s

Qm(x, a)fs(x)

1
A

≤
X

x∈X:x �=x̃s

max
a∈A

Qm(x, a)fs(x) − (1 − fs(x̃s))Q
−
m(s)

≤ (1 − fs(x̃s))(Q
+
m(s) − Q−m(s)) = Km,s

In words, Km,s is the maximum difference between the val-
ues of the best and worst actions in a source state under an
m-step optimal policy times the probability that the given
target state s does not map to the most likely source state.

Lemma 3. Let Q∗ be the optimal Q-function for MDP
M = 〈S, A,T, R, γ〉. Let Q̂ be the lifted Q-function obtained
from a given M ′ = 〈X, A, T ′, R′, γ〉 and soft MDP homo-
morphism function f , then ∀s ∈ S, a ∈ A,

Q̂(s, a) ≤ Q∗(s, a) + K/(1 − γ) (9)

where K = sups,m (1 − fs(x̃s))
`
Q+

m(s) − Q−m(s)
´
.

Proof. This is an induction proof showing that ∀m ≥ 0,

Qm(s, b) ≥
X
x∈X

Qm(x, b)fs(x) −
mX

i=1

γiK. (10)

First we show the base case:

Q0(s, a) = R(s, a)

=
X
x∈X

R′(x, a)fs(x)

=
X
x∈X

Q0(x, a)fs(x) −

0X
i=1

γiK.

Then we follow with the induction proof.

Qm(s, a) = R(s, a) + γ
X
s′∈S

T (s, a, s′) max
b∈A

Qm−1(s
′, b)

= R(s, a) +
X
s′∈S

T (s, a, s′)γ max
b∈A

Qm−1(s
′, b) (11)

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

744

Focus on the right hand side of (11):

γ max
b∈A

Qm−1(s
′, b)

≥ γ max
b∈A

"X
x′∈X

Qm−1(x
′, b)fs′(x

′) −
m−1X
i=1

γiK

#

= γ max
b∈A

"X
x′∈X

Qm−1(x
′, b)fs′(x

′)

#
−

mX
i=2

γiK

≥ γ
X

x′∈X

max
b∈A

ˆ
Qm−1(x

′, b)fs′(x
′) − K

˜
−

mX
i=2

γiK

= γ
X

x′∈X

max
b∈A

ˆ
Qm−1(x

′, b)fs′(x
′)
˜
−

mX
i=1

γiK. (12)

Substituting (12) back into the right hand side of (11)
and proceding similarly to Lemma 1 yields the induction
invariant (10). Taking the limit as m → ∞ produces the
upper bound (9) stated above.

We combine these results to produce the following theorem.

Theorem 1. Let Q∗ be the optimal Q-function for MDP
M = 〈S, A, T, R, γ〉. Let Q̂ be the lifted Q-function obtained
from a given M ′ = 〈X, A,T ′, R′, γ〉 and soft MDP homo-
morphism function f , then ∀s ∈ S, a ∈ A,

Q∗(s, a) ≤ Q̂(s, a) ≤ Q∗(s, a) + K/(1 − γ) (13)

where K = sups,m (1 − fs(x̃s))
`
Q+

m(s) − Q−m(s)
´
.

Proof. The result follows from Lemmas 1 and 3.

We know from past work that a bound in error of an ap-
proximate value function can be used to bound the loss of
the resulting greedy policy [6]. Therefore, given γ < 1, if
the soft mapping is close to deterministic, the value of the
greedy policy with respect to the lifted value function can
also be shown to be close to the value of the true optimal pol-
icy. Additionally, there are several conditions under which
a lifted Q-function using a soft homomorphism results in
zero error. First, as stated before, a deterministic mapping
results in 0 error.

Corollary 1. Let Q∗ be the optimal Q-function for MDP
M = 〈S, A, T, R, γ〉. Let Q̂ be the lifted Q-function obtained
from a given M ′ = 〈X, A,T ′, R′, γ〉 and soft MDP homo-
morphism function f . If f is deterministic,

Q̂(s, a) = Q∗(s, a). (14)

Proof. If f is deterministic, K = 0 as defined in Theo-
rem 1. Therefore Q∗(s, a) ≤ Q̂(s, a) ≤ Q∗(s, a).

Determinism is not the only condition under which the
lifted Q-function has 0 error. The major distinction between
a deterministic mapping and a stochastic mapping is the
potential for a one-to-many relationship from a target state
to source states. Errors occur only when a target state maps
to source states with different optimal actions. Corollary 2
formalizes this notion. Note that Corollary 1 is a special
case of this result.

Corollary 2. Let M be an MDP with state space S and
action space A. Let Q̂ be the lifted Q-function obtained from
MDP M ′ with state space X and soft MDP homomorphism

Figure 1: Source MDP M ′

Figure 2: Target MDP M

function f . If ∀s ∈ S, x ∈ X, x′ ∈ X such that fs(x) >
0, fs(x

′) > 0:

arg max
a∈A

(Q∗(x, a)) = arg max
a∈A

(Q∗(x′, a)), (15)

then,

Q̂(s, a) = Q∗(s, a).

Proof. (Sketch) If the conditions in (15) hold, then the
reordering of the max and summation operations in the
proof of Lemma 1 has no effect:

max
a∈A

X
x∈X

Qm(x, a)fs(x) =
X
x∈X

max
a∈A

Qm(x, a)fs(x).

We use this fact to remove the lone source of inequality in
the proof of Lemma 1.

In practice, we expect many domains to exhibit a form
of locality: states that exhibit similar dynamics under the
model are likely to have the same optimal action. States that
exhibit similar dynamics are likely to be grouped together
in a soft-homomorphism. This is one reason we expect a
lifted policy using a non-deterministic soft homomorphism
to perform well.

Theorem 2 demonstrates the versatility of soft homomor-
phisms using a small example system.

Theorem 2. There exists a source MDP M ′ and a target

MDP M such that a soft homomorphism fM �→M′

exists with
which the optimal Q-function can be lifted exactly, but no
discrete homomorphism exists.

Proof. Figures 1 and 2 illustrate two MDPs, M and M ′.
Each state has up to two actions which we refer to as (S)olid
and (D)ashed. All transitions are deterministic except where
annotated. A transition to the goal state (shaded) results in
a reward of 1. Other transitions result in 0 reward.

In MDP M ′, there are two paths to the termination states
G and J . On one path (F), the agent is confronted with a
deterministic choice between the goal state G and the non-
goal state J . On the other path (I), both actions have a
50% chance of reaching the goal. In MDP M , there is one
path to the termination states. The agent is confronted at
state B with a choice between two action with transition
probabilities indicated in the figure.

Clearly, the state C can be mapped to state G and sim-
ilarly, state D maps to J deterministically. State B has
dynamics and reward that share properties of both states
F and I . The discrete homomorphism cannot handle this

Jonathan Sorg, Satinder Singh • Transfer via Soft Homomorphisms

745

situation, but the soft homomorphism allows fB(F) = 0.6
and fB(I) = 0.4. The strength of both homomorphism vari-
ants is that they allow dynamics to commute. In this exam-
ple, this allows state A to be mapped stochastically between
states E and H : fA(E) = 0.6, fA(H) = 0.4. Explicit enu-
meration of all possible discrete mappings reveals that no
mapping is a discrete homomorphism.

Suppose the agent would like to transfer the value function
from M ′ to M . Given a discount factor γ = 1, the optimal
value of state A is Q∗(A, S) = 0.8. This matches the lifted

value function Q̂(A, S) = fA(E)Q∗(E, S)+fA(H)Q∗(H,S) =
0.6 × 1 + 0.4 × 0.5 = 0.8. This is guaranteed to be the case,
because Corollary 2 holds.

2.3 Action Sequence Equivalence
Although the lifted Q-function is not always guaranteed to

match the true optimal value function, we can show equal-
ity results for state-independent sequences of actions of ar-
bitrary length. In other words, given a soft homomorphism,
the values of open-loop policies can always be lifted exactly.
This is what Givan, Dean and Greig [1] refer to as action
sequence equivalence. We include this result to demonstrate
another reason why, even in the face of a very stochastic
mapping, we have reason to expect the lifted policy will
yield reasonable performance.

Let us define a finite sequence of actions ξn
0 = (a0, a1, ..., an).

A subsequence is denoted ξj
i = (ai, ai+1, ..., aj). The ith

action is denoted ξi. The value of taking the actions in
order from action sequence ξn

0 starting in state s, denoted
Q(s, ξn

0) is defined recursively as Q(s, ξn
n) = R(s, ξn

n) and
Q(s, ξn

i) = R(s, ξi) + γ
P

s′∈S
T (s, ξi, s

′)Q(s′, ξn
i+1).

Theorem 3. If fM �→M′

is a soft homomorphism from a
target MDP M = 〈S, A, T, R, γ〉 to a source MDP M ′ =
〈X, A, T ′, R′, γ〉, then ∀s ∈ S,

Q(s, ξn
0) =

X
x∈X

fs(x)Q(x, ξn
0). (16)

Proof. First we prove the base case.

Q(s, ξn
n) = R(s, ξn)

=
X
x∈X

R′(x, ξn)fs(x)

=
X
x∈X

Q(x, ξn
n)fs(x)

Next we show the induction step.

Q(s, ξn
i) = R(s, ξi) + γ

X
s′∈S

T (s, ξi, s
′)Q(s′, ξn

i+1)

= R(s, ξi) + γ
X
s′∈S

T (s, ξi, s
′)
X

x′∈X

Q(x′, ξn
i+1)fs′(x

′)

= R(s, ξi) + γ
X

x′∈X

Q(x′, ξn
i+1)

X
s′∈S

T (s, ξi, s
′)fs′(x

′)

= R(s, ξi) + γ
X

x′∈X

Q(x′, ξn
i+1)

X
x∈X

T ′(x, ξi, x
′)fs(x)

=
X
x∈X

fs(x)

"
R′(x, ξi) + γ

X
x′∈X

T ′(x, ξi, x
′)Q(x′, ξn

i+1)

#

=
X
x∈X

fs(x)Q(x, ξn
i)

3. LEARNING ALGORITHMS
Another important advantage of soft homomorphisms is

that they are learnable. Current state of the art in discrete
homomorphism learning involves explicit enumeration and
evaluation of all candidate mappings. Past work has made
this tractable by considering mappings from a very limited
set.

In this section, we present two algorithms with different
advantages and requirements. The first algorithm, which
uses convex quadratic programming, works in the restric-
tive case that the agent has access to models of both the
source and target tasks. It has the advantage that if a soft
homomorphism exists, the algorithm is guaranteed to find
one in time polynomial in the sizes of the source and target
tasks. The second algorithm removes the requirement that
a model of the target task be known a priori. We also intro-
duce a compact parameterization of f that allows transfer
to large and continuous state spaces. Both methods work
by minimizing sum of squared error of the form

ε =
X

s,a,x′

(εR(s, a)2 + εT (s, a, x′)2) (17)

where,

εR(s, a) =
X
x∈X

R′(x, a)fs(x) − R(s, a) (18)

εT (s, a, x′) =
X
x∈X

T ′(x, a, x′)fs(x)

−
X
s′∈S

T (s, a, s′)fs′(x
′). (19)

If ε = 0, the mapping is a soft homomorphism. In many
practical scenarios, there will not exist a mapping such that
the constraints can be exactly satisfied. In such cases, ε >
0 and we call the stochastic mapping an approximate soft
homomorphism.

Equation (17) weighs transition constraints and reward
constraints equally. This is not a requirement of either al-
gorithm, but for lack of a better method, we leave it this
way for simplicity. In our experiments, rewards are normal-
ized to the range [0, 1] to compensate for disparities in scale;
however, there are a greater number of transition constraints
than reward constraints.

3.1 Quadratic Programming Solution
If the agent has models of both the source task and the tar-

get task, the convex Quadratic Programming (QP) solution
developed in this section has excellent theoretical properties.
This algorithm begins with the observation that the soft ho-
momorphism constraints (Definition 2) can be expressed as
a set of linear constraints of the form Ay = b and y ≥ 0,
where A is a matrix and y and b are vectors. We would like
to satisfy Ay = b in a least-squares sense such that y ≥ 0.
This is the well-understood linear least squares problem with
nonnegative variables [4]. Although specialized algorithms
exist, it can be solved using a standard quadratic program
solver. Methods for solving it are guaranteed to find a global
minimum in polynomial time. If A has full column rank, the
solution will be unique.

We begin by defining the model parameters and soft ho-
momorphism function f as sets of matrices. The superscipt

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

746

Figure 3: Counter domain, 3 bits

a indicates a unique matrix for each action.

F : |S| × |X| = fs(x) (20)

T
a : |S| × |S| = T (s, a, s′) (21)

R
a : |S| × 1 = R(s, a) (22)

T
a
X : |X| × |X| = T ′(x, a, x′) (23)

R
a
X : |X| × 1 = R′(x, a) (24)

Given these definitions, here are the soft homomorphism
constraints expressed in matrix form:

∀aFT
a
X = T

a
F (25)

∀aFR
a
X = R

a (26)

F1x = 1s (27)

Fij ≥ 0, (28)

where 1s is an column vector of 1’s with length |S|.
The vec operator explicitly converts a matrix B into a

column vector b = vecB by stacking its columns in or-
der. The Kronecker product of two matrices Ap×q ⊗ Br×s

results in a matrix Cpr×qs = {aijB}. The vec operator
can be related to the Kronecker product using the identity
vec(ABC) = (C′ ⊗ A) vecB. We can use this fact to re-
express constraints (25 - 28) as

∀a

ˆ
T

a
X
′ ⊗ Is − Ix ⊗ T

a
˜
vecF = 0 (29)

∀a

ˆ
R

a
X
′ ⊗ Is

˜
vecF = vecR

a (30)ˆ
1
′
x ⊗ Is

˜
vecF = 1 (31)

vecF ≥ 0, (32)

where Is is the identity matrix of size |S| and A′ denotes the
matrix transpose of A. To get the form Ay = b as desired,
the matrices on the left hand side of vecF in equations (29-
31) are stacked to form A and the vectors on the right hand
side are similarly stacked to form b.

Quadratic Programming Example
Figures 3 and 4 illustrate a variant of the binary integer
counter domain adapted from [12]. This domain was devel-
oped to demonstrate an abstraction algorithm, but we use
it here to demonstrate transfer. The state is represented by
an n bit integer. There are two actions: INCREMENT and
DECREMENT. Each action attempts to adjust the integer
in the named direction. Each succeeds with probability 0.8
and fails with probability 0.2, resulting in no change. The
agent receives reward when the lowest three bits are all 0.
The agent observes a unique identifier (not the binary inte-
ger representation) from each state. Although this domain
is not a challenging RL task, it provides an easy mechanism
for producing transfer domains of different sizes. None of
the bits greater than 3 are necessary for predicting reward –
they can be ignored. Therefore, any task larger than 3 bits
can be exactly abstracted to the 3-bit task.

Figure 4: Counter domain, 4 bits

We attempted transfer problems from a source task of
size 23 to a target of size 2n. Using a commercially available
quadratic program solver, we were able to solve counter do-
main transfer problems upwards of size 216 in a matter of
minutes. The method found the optimal deterministic ho-
momorphism for all solved problems. This was guaranteed
to be the case for these problems, because a deterministic
solution exists and the computed A matrix had full column
rank.

Given two MDPs with state spaces S and X, the size of
the solution grows O(|S| · |X|). For example, the 16 bit
transfer problem contains 2490368 constraints and fs(x) re-
quires |S| · |X| = 219 parameters. The QP is able to be
solved quickly by taking advantage of the sparse structure
of the A matrix. Clearly, however, for large problems the
tabular representation of fs(x) used here is impractical. Al-
though the online algorithm presented in the next section
does not have the same convergence guarantees, it allows
for a compact parameterization of the mapping function.

3.2 Approximate Online Algorithm
In practice, it is unrealistic to expect an agent to have a

complete model of the target system. The algorithm devel-
oped in this section drops this requirement, needing only
samples of experience from the world. Also, it allows a
compact parameterization to be used to represent f . We
illustrate both points by demonstrating the algorithm on a
transfer problem from a discrete state source task to a con-
tinuous vector-valued target task.

First we need to compactly parameterize fs(x). There are
many potential representations. The algorithm presented
below assumes that the representation always produces a
valid probability distribution regardless of its parameters.
The following example parameterization, based popular Boltz-
mann distribution, has this property.

fs(x|Θ) =
e〈θx,φ(s)〉P
y

e〈θy ,φ(s)〉
(33)

Each state x in the source MDP has an associated parameter
vector θx which together form the parameter matrix Θ. The
function φ(s) extracts an arbitrary feature vector from state
s. Angle brackets 〈, 〉 represent a dot product.

Next we adjust the soft constraints in Definition 2 to han-
dle the continuous target MDP. This can be done by simply
replacing the sum on the right hand side of (6) with an inte-
gral. We then take the gradient of (17) with respect to θy.
The resulting gradient computation still contains expecta-
tions with respect to s. The online algorithm approximates
these expectations using samples. Given a state transition
(s, a, r, s′) (state, action, reward, next state), and a learning
rate α, it updates the parameters a small step in the negative

Jonathan Sorg, Satinder Singh • Transfer via Soft Homomorphisms

747

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Simple grid task Cat and Mouse task

Figure 5: Grid world to Cat-and-Mouse world trans-

fer problem

gradient direction (for each x′, y) given by −Δθx′,y =

αε̂T (s, a, s′, x′)

 X
x∈X

Tx(x, a, x′)
∂fs(x)

∂θy

+
∂fs′(x

′)

∂θy

!

+ αε̂R(s, a, r)

 X
x∈X

Rx(x, a)
∂fs(x)

∂θy

!
, (34)

where ε̂R(s, a) and ε̂T (s, a, x′) are sample approximations of
equations (18-19):

ε̂R(s, a, r) =
X
x∈X

R′(x, a)fs(x) − r (35)

ε̂T (s, a, s′, x′) =
X
x∈X

T ′(x, a, x′)fs(x) − fs′(x
′). (36)

Discrete to Continuous Transfer Example
The gridworld in Figure 5 was chosen to isolate one impor-
tant skill that is shared in a large number of common tasks:
that of navigating to a fixed point. The agent (represented
by a circle) starts in a random location. The agent has four
actions: N, S, E, and W. Each moves in the corresponding
direction and stops against the boundaries. With 0.4 prob-
ability, the action fails and the agent moves in a uniformly
random direction. When the agent reaches the goal state
(shaded) in the center of the grid, it receives 1 reward and
the agent resets to a random new start state. The agent
receives 0 reward otherwise. The value of γ is 0.95. The
agent observes a unique identification integer for each grid
location as demonstrated in the diagram.

In the continuous Cat-and-Mouse world in Figure 5, the
agent, represented by the cat, must learn how to catch a
mouse. The cat is represented by a 1 × 1 rectangle in
bounded (10 × 10) two dimensional space. The cat has N,
S, E, and W actions. Each action moves the cat 1 unit in
the corresponding direction plus noise in both dimensions
drawn from independent Gaussian random variables with
μ = 0 and σ = 0.2. The mouse is represented by a 0.5 × 0.5
unit rectangle and takes random cardinal direction steps of
length 0.5 plus independent Gaussian noise with the same
distribution as the cat’s. When either the cat or mouse at-
tempt to move across a boundary, movement is cancelled.
When the cat’s bounding box overlaps that of the mouse,
the agent gets 1 reward and both the cat and mouse reset
to new positions. Otherwise, the agent receives 0 reward.
The value of γ is 0.95. The cat has a sensor that provides it

0 1 2 3 4
x 106

0

0.05

0.1

0.15

0.2

0.25

Training Steps

A
vg

. R
ew

ar
d

pe
r t

im
e

st
ep

Learning a homomorphism through experience

Lifted Policy
Optimal Policy
Random Policy

Figure 6: Continuous Transfer Performance

with a vector observation equal to the (x, y) offset between
it and the mouse.

In both the grid world and the Cat-and-Mouse world, the
goal for the agent is to navigate to a location in 2D space
using actions that move it in the cardinal directions. In the
case of Cat-and-Mouse, the goal location in moving. We
would like to capture the common structure in such a way
that knowledge learned in the simple grid world can be ap-
plied to improve the agent’s performance in Cat-and-Mouse
world. This transfer task is challenging in a number of ways:
the continuous state space requires an approximate map-
ping, the dynamics of a moving goal differ from those of a
stationary one, and the observation spaces share no struc-
ture. We do not expect that the lifted Q-function will match
exactly to the optimal Q-function. However, we will show
that the method will produce a lifted Q-function with a sim-
ilar “shape” as the optimal Q-function, resulting in a greedy
policy that is nearly optimal.

In this experiment, the agent is first placed in a 10x10
grid world and is given enough time to learn an approxi-
mate model and an approximately optimal value function.
The agent is then moved to the Cat-and-Mouse task. The
agent starts with a uniformly distributed f parameterized
as in equation (33) with φ(s) = 〈x, y, 1〉, where x and y are
the offset values observed by the agent. To learn the soft ho-
momorphism, the agent takes random actions and observes
the outcomes. These outcomes are then used to produce
samples of the gradient, equation (34), and the parameters
are updated accordingly. Note that although we used a ran-
dom policy for ease of exposition, this is by no means a
requirement. In fact, if the world were sampled according
to a distribution more closely representing the stationary
distribution under the optimal policy, the gradient descent
method will focus on states most relevant to an optimal
agent.

To evaluate the quality of f , we periodically froze learning
and computed the greedy policy with respect to the lifted
value function. Each frozen policy was evaluated by com-
puting the average reward obtained over 1 million evaluation
steps. These results are compared against a random pol-
icy baseline and an approximately optimal policy. Figure 6
diplays the results of an average of 20 learning curves. The
error bars represent the 1st and 3rd quartiles of the data at
each evaluation step. Even though these two problems differ
in a number of ways, the best lifted value functions produce
greedy policies that are close to optimal.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

748

4. DISCUSSION
Figure 6 demonstrates the ability to learn an approximate

soft homomorphism from an unfamiliar continuous environ-
ment to a known discrete world online using a stream of
experience. This knowledge structure was used to trans-
fer knowledge sufficient to produce a nearly optimal pol-
icy. There are few methods that can claim to achieve au-
tonomous transfer in this setting.

We make no claims about the data efficiency of the online
algorithm. This work largely focused on the theoretical re-
sults, and the experiment is meant as a proof of concept. We
claim that in the larger context of an agent presented with
a number of tasks, the cost of learning a homomorphism
is an amortized cost. When confronted with multiple tasks
in both the source and target domains, it is likely that one
mapping will work well across a number of transfer prob-
lems. This is especially true in the case of skill acquisition,
which involves multiple subgoals (reward functions) being
defined in the same state space.

The guarantees provided by MDP homomorphisms break
down when the reward function is changed; however, it was
shown in [12] that the reward constraint in MDP homo-
morphisms may be replaced by a constraint on an arbitrary
feature of the MDP. A similar extension may be made to
soft homomorphisms, allowing soft homomorphisms to be
defined in terms relevant to transition dynamics that are
independent of a particular goal. In this way, a soft ho-
momorphism may be made reusable by allowing solutions of
multiple tasks to be transferred using a single state mapping.

Although this work focused on the transfer problem, it is
important to note that the results apply directly to abstrac-
tion methods as well. In fact, the precise form of the soft
mapping function we use has been used in previous work on
soft state aggregation [7]. In that work, fs(x) was used as a
soft partitioning function and it was improved using Bellman
error. They were able to show improvement in clustering,
but show no optimality results. Our work specifies precise
conditions under which a soft partitioning scheme can re-
sult in an error-free Q-function. In future work, we plan
to develop efficient abstraction algorithms using the results
developed here. As we stated in the introduction, the ab-
straction problem can be seen as an extention to the transfer
problem – one in which a simple source domain is chosen and
solved on-the-fly.

Past work on MDP homomorphisms and transfer learn-
ing has often included an action translation mechanism in
addition to the state mapping. Our work does not preclude
action abstraction; for example, the action mapping from
discrete MDP homomorphisms needs only to be modified
slightly to be used in our current results. However, the chal-
lenge of efficiently learning an action mapping has not yet
been solved. Future work will examine soft action mappings
for efficient learning.

This work is similar to the concept of an approximate
MDP homomorphism [5], but there is one key difference. An
approximate homomorphism allows for an inexact match,
but it is still a discrete mapping. The power of soft homo-
morphisms comes from the fact that the mapping itself is
continuously parameterized. Approximate homomorphisms
do not yield the efficient algorithms given above, nor do they
allow a class of mappings as flexible.

5. ACKNOWLEDGMENTS
This work is supported by the Air Force Office of Sci-

entific Research under grant FA9550-08-1-0418. Any opin-
ions, findings, conclusions, or recommendations expressed
here are those of the authors and do not necessarily reflect
the views of the sponsors.

6. REFERENCES
[1] R. Givan, T. Dean, and M. Greig. Equivalence notions

and model minimization in markov decision processes.
Artificial Intelligence, 147(1-2):163–223, 2003.

[2] G. Konidaris and A. G. Barto. Building portable
options: Skill transfer in reinforcement learning. In
Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, pages 895–900,
2007.

[3] Y. Liu and P. Stone. Value-function-based transfer for
reinforcement learning using structure mapping. In
Procedings of the Twenty-First National Conference
on Artificial Intelligence, pages 415–20, July 2006.

[4] L. F. Portugal, J. J. Judice, and L. N. Vicente. A
comparison of block pivoting and interior-point
algorithms for linear least squares problems with
nonnegative variables. Mathematics of Computation,
63(208):625–643, 1994.

[5] B. Ravindran. An Algebraic Approach to Abstraction
in Reinforcement Learning. PhD dissertation,
University of Massachusetts, Amherst MA, 2004.

[6] S. Singh and R. Yee. An upper bound on the loss from
approximate optimal-value functions. Machine
Learning, 16(3):227–233, 1994.

[7] S. P. Singh, T. Jaakkola, and M. I. Jordan.
Reinforcement learning with soft state aggregation. In
Advances in Neural Information Processing Systems,
volume 7, pages 361–368, 1995.

[8] V. Soni and S. Singh. Using homomorphisms to
transfer options across reinforcement learning
domains. In Proceedings of the Twenty-First
International Joint Conference on Artificial
Intelligence, 2006.

[9] M. E. Taylor, G. Kuhlmann, and P. Stone.
Autonomous transfer for reinforcement learning. In
Procedings of the Seventh International Joint
Conference on Autonomous Agents and Multiagent
Systems, May 2008.

[10] M. E. Taylor, P. Stone, and Y. Liu. Value functions
for RL-based behavior transfer: A comparative study.
In Proceedings of the Twentieth National Conference
on Artificial Intelligence, pages 880–885, July 2005.

[11] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via
inter-task mappings in policy search reinforcement
learning. In Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 1–8, May 2007.

[12] A. P. Wolfe and A. G. Barto. Decision tree methods
for finding reusable mdp homomorphisms. In
Procedings of the Twenty-First National Conference
on Artificial Intelligence, pages 530–535, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

